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Abstract

The physical structure of the relativistic theory of gravitation is discussed.
The significant role that the hypothesis of locality plays in the framework of gen-
eral relativity iz elucidated, and the limitations of this hypothesis are pointed ocut.
Nonlocal electrodynamics of a uniformly rotating system is presented; the theory is
based on the idea that the propagation of electromagnetic radiation is independent
of observers. The general nonlocal theory of accelerated observera in Minkowski
spacetime goes beyond the hypothesis of locality and appears to be in agreement
with available experimental data. The nonlocal theory excludes the possibility of

existence of a fundamental scalar field in nature.
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Chapter 15

Physical Structure of General
Relativity

Of all the basic theories of physics, the only one that does not have a basis in mi-
crephysics is gravitation. It is not clear at present how to bring the macrophysical
description of gravitation into harmony with the quantum theory. It would therefore
be interesting to reduce general relativity to its basic elements in order to clarify the
physical structure of the macrophysical theory of gravitation. The standard rela-
tivistic theory of gravitation, i.e., Einstein’s general relativity, is the most successful
theory of gravitation at present, since it is in excellent agreement with all available
observational data [1]. This theory is based on two main ideas: the first is the notion
that the result of any physical measurement should be independent of the choice of
coordinates that are assigned to events in spacetime, so that observables are scalar
invariants. The second idea is the Einstein principle of equivalence, which provides
a heuristic connection between a gravitational field and an accelerated frame. These
ideas provide a framework in which Newtonian gravity is generalized in such a way

that it becomes consistent with Lorentz invariance.



To reduce the theory to its essential elements, it is necessary to begin
with the Lorentz invariance of Maxwell’s equations. Imagine an observer at rest
in Minkowski spacetime. The absolute spacetime of Minkowski corresponds to an
ensemble of inertial reference frames each moving uniformly with respect to the oth-
ers. Let us choose a member of this ensemble; for instance, this preferred inertial
frame could correspond to the rest frame of the cosmic microwave background radi-
ation. Observers at rest in this frame can be thought of a8 carrying an orthonormal
tetrad frame :\’E‘a), where 5«2‘0) is the vector taugent to the worldline of the observer
and thus corresponds to the time axis and the spatial axes are then determined
by :\;'0’ i = 1,2,3. All measurements are performed with respect to the observers’
space-time axes, which for the preferred set of observers are A(,) = 64; therefore,
the electric and magnetic fields that appear in Maxwell’s equations in the preferred
frame are the fields as measured by the static observers in that frame. The Lorentz
invariance of Maxwell’s equations implies that the electromagnetic field in any iner-
tial frame is in fact the field as measured by inertial observers at rest in that frame.
Alternatively, one could consider all such observers as moving uniformly in a pre-
ferred apacetime frame; then, each such observer would carry an orthonormal tetrad
Aley that is related to the tetrad of the preferred static observers by a member of the
Lorentz group. The electromagnetic field measured by such an observer is simply

the projection of the Faraday tensor on the tetrad frame of the observer,

F:‘B = Fl“’/\?u))rﬁ} 3 (1.1)

where F),, is the Faraday tensor measured by the preferred static observers.

The description of phenomena according to inertial observers via the the-
ory of Lorentz invariance is limited in two significant respects. The firat restriction
is that jnertial observers use only Cartesian coordinates z = (t,x) such that the

metric is always of the form ds? = 5,5dz*dz?, where 749 is the Minkowski mettic
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tensor with signature +2 and the speed of light ¢ is unity unless specified other-
wise. Consider assigning coordinates (f,x') to the event characterized by inertial
coordinates (¢, x) such that ¢ = ¢(t,x) and X’ = x'({,x). Inertial observers can
refer physical phenomena to arbitrary systems of smooth coordinates. To show this,
let us assume that the spacetime interval is invariant under such passive coordi-
nate transformations; this assumption is a simple generalization of the fact that
the Euclidean distance between two points in space is independent of whether one
uses Cartesian coordinates or, say, spherical coordinates. It is then a simple matter
to express the equation of motion of a particle with respect to the new coordinate
system. In particular, the Lorentz force law

d’z* dz¥
m = e, (1.2)

for a particle of mass m and charge ¢ in Minkowski spacetime takes the form

a“.r’ ' dr' dr’
LA Y P TR (13)
where
3.7:’ gz’ -
P (e) = 5 F(a) - (4)

and in the new coordiante system indices are raised and lowered via g}, (z') given
by

; Oz 9zP
Gur = M8 i g (1.8)

so that ds? = ¢, (a")dz*dz" remains invariant. The Christoffel connection I'f, is
given in Minkowski spacetime by
5 a
™ = (a‘"" ) R (1.6)

dze } dz'edzc
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which vanishes if the coordinate transformation is linear. The Christoffel connection
is therefore absent in all inertial frames. It is important to recognize that the proper
time interval v along the path of the charged particle is in fact determined by static
inertial observers in Minkowski spacetime; these observers determine the speed of the
particle and hence the particle’s Lorentz +y-factor. The proper time interval is then
calculated from the integration of dr = dt/y. The anxiliary field variables satisfy
the covariant form of Maxwell’s equations; that is, equation (1.4} can be inverted
and the field in the inertial frame can be expressed in terms of the field with respect
to atbitrary coordinates (i.e., the auxiliary ficld). Maxwell’s equations for the field
in the inertial frame then imply that the auxiliary field satisfies the covariant form
of Maxwell’s equation with the covariant derivative defined through the connection
(16). In a given situation, the boundary conditions and the symmetries of the
problem may be such that the solution of the covariant equations could be simpler;
the actual field is then determined via the inverse of equation (1.4}, i.e.,
tp Ao
Aty W n
This is entirely analogous to the standard treatment of electrodynamics where curvi-
linear coordinates are routinely employed for the sake of simplicity. The auxiliary
field F, has no direct physical significance, it can only facilitate the determination
of the Faraday tensor F,,.; however, F, (2} can be considered to be the components
of the electromagnetic field in the new coordinates since the form F,, de* A dx* is
a geometric invariant. That is, the components of the tetrad frame of the preferred
inertial observers with respect to the new coordinates are

+4 dz' . o'

Therefore, the tensor transformation rule (1.7) becomes F; ;vii’;)i'(‘é) = Fgg, 30 that

the field as measured in the inertial frame can be equally well determined in the new
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coordinate system by the projection of the field on the tetrad frame of the observer.
The resulting framework is consistent as well as elegant. Thus the Maxwell-Lorentz
theory has heen extended to arbitrary coordinates by inertial observers without in-
troducing any new basic physical assumption into the theory. The structure of the
argument i important: The renaming of events by new coordinates is pointwise;
therefore, the equation of motion of a point charge with respect to the new coordi-
nates can naturally lead to the identification of the auxiliary electromagnetic field
and the transformation rule for the field under arbitrary coordinate transformations.
The approach outlined here can be extended to other fields as well through their in-
teractions with the electromagnetic field. The mathematical procedure that emerges
is tensor calculus on the flat spacetime manifold. It can be simply extended to the
Riemannian manifolds of general relativity.

The first limitation of the theory of Lorentz invariance has thus turned
out to be of a purely mathematical nature; that is, inertial observers can employ
any system of admissible coordinates. The second restriction of the theory is that
only inertial observers are permitted to make physical measurements. This is a
fundamental physical restriction, since all actual observers are accelerated. Inertial
observers are fictitious: any attempt to verify that an observer is indeed inertial
will necessarily leave the {presumed inertial) observer accelerated. It is important
to note that the quantum theory of measurement is thus far exclusively concerned
with inertial observers. Most laboratory experiments, however, take place on the
Earth which—among other motions—rotates about its axis. In fact, the whole
observational basis of Lorentz invariance as well as the quantum theory rests upon
experiments in accelerated reference frames. The success of these theories must
therefore be accounted for by any reasonable theory of accelerated systems. Tt
is natural to suppose that a connection needs to be established between actual
accelerated observers and ideal inertial observers.
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The second restriction is removed in the standard theory by a hypothesis of
locality: at any instant, an accelerated observer is presumed to be locally equiva-
lent to a comoving inertial observer. This pointwise equivalence of an accelerated
observer with a class containiﬁg a continuous infinity of hypothetical idea! instan-
taneously comoving inertial observers is the physical basis in the standard theory
for extending the theory of Lorentz invariance to accelerated observers. It follows
from the hypothesis of locality that a tetrad frame can be associated with the ac-
celerated observer along its path. This frame coincides at each instant with the
tetrad frame of the comoving inertial observer up to a spatial rotation. Thus all
pointwise measurernents of the accelerated observer can be expressed in terms of
the corresponding measurements of comoving inertial observers. For instance, the
time measured by the accelerated observer using a comoving clock is in fact the
proper time r in accordance with the hypothesis of locality. This is usually referred
to as the “clock hypothesis”; therefore, the hypothesia of locality replaces various
more specialized hypotheses that exist in the literature of standard relativity theory

regarding the measurements of accelerated systems.

The removal of both restrictions from the theory of Lorentz invariance leads
to a theory that satisfies the so-called principle of general covariance [2]. The phys-
ical content of general covariance is a prescription for what observers measure. A
generally covariant theory accommodates observers with arbitrary acceleration em-
ploying any system of coordinates that is suitable for the problem under considera-
tion. It should be clear from the foregoing discussion that once a consistent prescrip-
tion is given for the measurements of an accelerated observer, a generally covariant
theory can be developed. The measured quantities are scalar invariants since this
must be the case in the Lorentz invariant theory and this property is preserved by
tensor calculus once the theory is extended to arbitrary coordinate systems. In the
case under consideration, for instance, the electromaguetic field measured by an ac-

celerated observer with respect to inertial coordinates is F{'n“ 5 = Fus )i‘{"a))«‘(’m, where
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Afey{T) is the tetrad frame of the accelerated observer. The measured field compo-
nent is determined via the hypothesis of locality by equation (1.1) for a momentarily
comoving inertial observer; however, the result is expressed here as F(a)(ﬁ) for no-
tational convenience. The accelerated observer can employ coordinates in which it
is at rest (“comoving coordinates”), in that case F{ )5 = Fy,A(ys), Where F,
is the Faraday tensor with respect to the accelerated coordinatea and satisfies the
covariant form of Maxwell’s equations. This tensor, Fy,,, still has no direct physical
significance; only its projection onto the frame of the observer expressed with re-
apect to the accelerated coordinates is physically significant, since it is the measured
electromagnetic field.

Gravitation is introduced into this scheme via Einstein’s principle of equiva-
lence. According to this heuristic principle, an observer—i.e., a classical measuring
device—moving freely in a gravitational field is locally equivalent with an observer
that is accelerated with respect to Minkowski spacetime; the uniqueness of this
acceleration is of central importance for the development of the geometric theory
of gravitation. The Newtonian version of this idea is a direct consequence of the
universality of the gravitational interaction, i.e., the equality of gravitational and

inertial masses for any classical point particle.

In Newtonian mechanics, any force acting on a test particle of unit inertial
mass is at each instant equivalent to the acceleration of the particle according to
Newton’s second law of motion. Furthermore, the test particle is instantaneously
inertial. That is, the state of a particle is determined by its absolute position and
velocity at any instant of absolute time; therefore, the hypothesis of locality holds in
Newtonian mechanics since the accelerated particle and the instantaneously comov-
ing inertial particle have the same classical state. It follows from these considerations
that every test particle under the influence of Newtonian forces is locally inertial. It

proves useful to state this result in a different way: The action of a force on a free
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test particle is locally equivalent to the action of a certain inertial force. In this way,
one can cbtan a simple generalization of Larmor's theorem that would be applicable
to a particle in an arbitrary classical force field [3]. Thus at each instant of time
and every point in space, the forces may be replaced by local accelerated frames. It
turns out that in the case of gravitation such accelerated frames are unigue in the
sense that they are independent of the nature of the test particles involved. This
follows from the principle of equivalence of inertial and gravitational masses. The
universality of the gravitational interaction thus implies that the corresponding local
accelerated frames are only functions of position and time. The pointwise unique
gravitational acceleration thus serves as the connection between the local inertial
frames. These underlying ideas can be simply generalized to the relativistic domain
[4]. They made it possible for Einstein and Grossmann to propose a geometric
theory of gravitation in 1913. The theory took its final form in Einstein’s general
relativity of 1916.

In brief, Einstein's principle of equivalence together with the hypothesis of
locality implies that any observer in a gravitational field is locally inertial; therefore,
at all (nonsingular) events in a gravitational field observera can define local inertial
frames which are then connected through the structure of spacetime. The gravita-
tional field must therefore reside in the spacetime structure. The flat Minkowski
spacetime, for instance, has no structure capable of accommodating a gravitational
field. The gsimplest possibility is to identify the gravitational field with the curvature
of spacetime manifold. This is postulated in the standard geometric interpretation of
general relativity; furthermore, the gravitational field equations are generalizations
of Poisson’s equation, V20 = 4xGp, for the Newtonian gravitational potential ® in
a way that is consistent with the Riemannian structure of spacetime. The simplest

possibility, i.e.,

1 8xG
Rl“’ -_— Eg”yﬂ = —L:—Tw ] (1.9)
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involves the energy-momentum tensor which replaces the matter density p. In gen-
eral relativity, the Newtonian acceleration of gravity is transformed into the Christof-
fel connection of spacetime. Only nongravitational forces produce true translational
accelerations which are then absolute; that is, a translational acceleration can be rep-
resented by a vector a* such that the magnitude of acceleration g(z), ¢*(z) = a,a*,
is totally independent of the coordinate system employed. The equation of motion

of a test particle is thus given by
diz#

5 dz?
dr? re dr

—‘Zi: =a*(z) , (1.10)
where @“{z) is the sum total of nongravitational forces acting on the particle per
unit of its inertial masa. In general, a system can have both translational and rota-
tional accelerations, however. It follows from Einstein’s principle of equivalence that
locally—i.e., to the extent that spacetime curvature can be neglected—gravitational
effects are the same as inertial effects; therefore, gravitation can be approximately
described in terms of gravitoelectric and gravitomagnetic fields corresponding to
translational and rotational inertia, respectively. This is the gravitational Larmor
theorem [3], which is very useful in the post-Newtonian approximation to general
relativity. The gravitomagnetic field of a massive rotating body is a measure of its
absolute rotation. If rotation were relative, the gravitomagnetic field would have to
be determined by the rotation of the rest of the universe with respect to the body.
In contrast to Coriolis and centripetal accelerations that are only proportional to
kinematic quantities relevant o motion (e.g., angular frequency), the dragging fre-
quency of the local inertial frames—which is essentially the gravitomagnetic field—is
proportional to the moment of inertia of the rotating body in additicn to purely
kinematic variables. Two adjacent bodies rotating at the same frequency could have
different moments of inertia; therefore, it is impossible that the motion of the rest

of the universe could preduce an effect proportional to the moment of inertia [5,6].

Thus Lorentz invariance, the hypothesis of locality, Einstein’s principle of
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equivalence, and the field equations constitute the basic physical components of

general relativity. This paper is mainly concerned with the question of validity of
the hypothesis of locality.



Chapter 16

Hypothesis of Locality

The presumed equivalence of an accelerated observer with a momentarily comoving
inertial observer is exactly true for point particles in Newtonian mechanics since
the state of a particle is determined by its position and velocity alone. At each
instant, the accelerated particle has the same state as the comoving inertial particle;
therefore, the hypothesis of locality must be valid for pointlike coincidences. In
case of realistic measurements, however, the acceleration of the measuring device is
locally immaterial only when the influence of inertial effects can be neglected over
the length and time scales characteristic of elementary local measurementa {7]. Such
a classical measuring device—for which the hypothesis of locality is approximately
valid under the experimental conditions—will be referred to as a standard measuring

device.

The hypot.hesig of locality implies that every standard cbserver carries an
orthonormal tetrad Afa) such that

D2 o
Bt =68 Ny 21)
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where the scalars @,p indicate the deviation of the tetrad frame from parallel trans-
port and form an antisymmetric tensor under local Lorentz transformations. Any
length or time scale formed via ¢ug, ddog/drT, etc., is an acceleration scale character-
istic of the motion of the standard device. In most situations, however, the proper

acceleration scales formed from the invatiants of ¢.p, i.e.,

1 1
§¢aﬂ¢aﬂ =—g+f , Eﬁf';ﬁéw =g-f , (22)

bring out the main acceleration aspects (as opposed to the velocity aspects) of the
motion. Here 47, is the dual acceleration tensor, and g and f are the translational
(“electric”} and rotational (“magnetic”) parts of the acceleration tensor ¢,z, reapec-
tively. It follows that in general there existe a translational acceleration length and
a rotational acceleration length. Let £ be a characteristic acceleration length and X
be the intrinsic scale of the phenomenon under observation; then, A/L is expected
to indicate the degree of divergence from the assumption of locality. This deviation
is expected to be far below the measurement accuracy for a standard device. For
instance, for optical phenomena with X ~ 102 A in a system with linear acceleration
g ~ 10% cm/fsec®, £ = /g ~ 1 £yr and X/L ~ 10, 50 that experiments thus far
do not show any deviations from the hypothesis of locality (cf. Sectior 5).

It should be clear from the foregoing discussion that the hypothesis of locality
is an important and useful approximation; however, it is not a general law of nature.
Imagine, for instance, a particle of mass m and charge ¢ moving uniformly with
speed v in Minkowski spacetime; if the particle is accelerated, it will radiate and the
characteristic wavelength of the radiation is comparable to the acceleration length,
i.e., X ~ L. The hypothesis of locality should then be violated for a hypothetical
cbserver comoving with the particle on the basis of intuitive considerations presented
above. It turns out that this is indeed the case since the work of Abraham, Lorentz
and Dirac has shown that a radiating charged particle must satisfy an equation of

the form
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dx 29 Px
" et 3)

where the radiation reaction term violates the hypothesis of locality: the position
and velocity of the radiating particle are not sufficient to determine its state and
hence the particle is not instantaneously equivalent to a hypothetical comoving
inertial particle.

The hypothesis of locality is in general violated for wave phenomena that are
intrinsically nonlocal [8-10]. In the eikonal limit (A — 0), locality is recovered for the
ray picture, It is necessary, however, to have access to standard classical measuring
devices—for which the hypothesis of locality is valid—in order to be able to establish
local reference frames for accelerated observers. The hypothesis of locality imposes
limitations on standard devices and it is interesting to describe the basis for these

classical limitations [11].

Consider an accelerated observer in Minkowski spacetime. Let ##() be the
worldline of the observer; at proper time 7, the observer is locally equivalent to an
ideal inertial observer with tetrad frame A{, (7). The instantaneous inertial observer
would naturally assign coordinates X° = 7 and X' = a6, to spacetime events.
Here &, {,A(y) = 0, is the unit vector at #*(r} along a spacelike line that connects
##(r) to the event with Minkowski coordinates z*, and o is the proper length of
this spacelike segment. Thus X* constitute the accelerated coordinate system by
the hypothesis of locality, and the two coordinate systems are related by

o = B(X") + X0f,y (2.4)

It follows from differentiating both sides of this equation that

de* = [(1— g X) Mgy + (£ x X) M, ] dXO 4 MypdX' (2.5)
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where equation (2.1} and the definitions of g and f (i.e., ¢n = —g: and ¢;; = €0 f*)
have been used. Writing the metric as ds? = g, dz"dz" = g, dX*dX", we find the

metric in the accelerated observer’s geodesic system of coordinates
sw=-(1-g- X" +(fxX)* , (2.6)
= (f x X).' y G = 6“:; . (27)

These equations reflect the fact that space is Euclidean at each instant by the
hypothesis of locality. The observer’s acceleration vector a* is always spacelike
with ¢; = -a,,)tfi) and a”a, = g%, while the observer’s spatial frame rotates with

frequency f aboui a nonrotating (i.e., Fermi-Walker transported) frame.

The spatial and temporal extent of validity of an accelerated coordinate
system is generally limited on the basis of physical considerations. To illustrate this
point, consider the coordinate transformation (2.4) for the simple case of uniform
linear acceleration of magnitude g along the z-axis in Minkowski spacetime. The
worldline of the observer is given by 1 = ¢*8v/¢, 2 = § = 0 and £ = ¢*(y -
1)/g, where the speed of the observer is ¢f = ctanh{gr/¢) and the corresponding
Lorentz v-factor is ¥ = cosh(gr/c). The only nonzero components of the observer’s
nonrotating tetrad frame are Ay, = A}y = 7, Mgy = Ay = #7, and A}y = M, =
1. The inertial coordinates (i,z,y,z) are related to the accelerated coordinates
(T,X.,Y,2) via

= (Z + ?) sinh (gT/c) (2.8)

z=X , y=Y , (2.9)
& &

2= (Z + ?) cosh (¢T/e) — 7 (2.10)

where the observer is at the origin of spatial coordinates in the accelerated system.
At any given instant r, the transformation between the inertial coordinates and the

coordinates of the momentarily comoving inertial frame is given by
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t—T=rt'+8) , =2 , y=¢ , and z-Z=o+Bt) . (211)

A comparison of these transformations with equations (2.8)-(2.10) makes it clear
that the former simply represent a consistent and continuous form of the latter
equations. To study the limitations inherent in the hypothesis of locality, 1magine
two observera P and P at rest along the z-axis and a distance £ apart with P at the
origin of coordinates. At ¢t = 0, they are accelerated from rest in exactly the same
way with uniform acceleration g. Their distance according to inertial observers is

always £, but according to observer P, P is at a distance L given by [11]

T+glfe* = (1+2ey+ e’)* , (2.12)

where ¢ = gf/c® and the Fermi system (2.8)-(2.10) along the path of P has been
employed. Alternatively, in the instantaneous rest frame of P and P, their distance
is £ = ~f by Lorentz contraction—if at each instant the momentarily comoving

inertial system given by equation (2.11) is employed. As ¢ — 0,

Lig ~1 -~ %ﬁz‘yc ; (2.13)

therefore, consistency is achieved only when £ is negligible compared to the proper
acceleration length £ = ¢*/g. On the other hand, the difference between L and £

could become appreciable for a given ¢ < 1 once 7 exceeds ¢/g.

Consider now a standard device that is accelerated, and let P and P be
two points of this device. It follows from the general argument outlined above
that the dimension of a standard measuring device must be very small compared
to £ and the duration of the measurement must be very short compared to £/c.
On the other hand, since a standard device of mass m is classical in nature, the

intrinsic scales of length and time that characterize the classical device must greatly



264

exceed its wave characteristics given by its Compton wavelength k/mc and period
h/met. The classical and quantum limitations together imply that £ >> kfme.
For translational acceleration this inequality implies that ¢ << mc’/h; therefore,
for a device of mass m there is a maximal translational acceleration {12] given by
mc?/k. Similar limitations apply for other accelerations including tidal accelerations
suffered by a standard device in a gravitational field; a singularity develops when

the relevant acceleration length goes to zero [11,13].

It should be clear from these considerations that the measurements of an
accelerated observer are linked to those of the hypothetical comoving inertial ob-
servers; in fact, an accelerated observer passes through an infinite sequence of such
ideal observers. Let F,4(7) represent the electromagnetic field that is actually mea-
sured by the accelerated observer and F4(7) = Flu A, Afy) represent the field that
is measured by the ideal momentarily comoving inertial observers. It is interest-
ing to consider the most general relationship between F,s and Fj; that would be
consistent with causality and would preserve the superposition principle. A general

linear relation is

Fap(r) = Fop(} + fﬂ: Kop ' (r, 1) Fps(r')ar’ (2.14)

where 7y represents the instant at which the observer’s acceleration begins. The
kernel K g is antisymmetric in its first and second pairs of indices, but is otherwise
totally undetermined at this point; a new assumption is required In order o specify
the kernel. The nonlocal part of equation (2.14) is expected to be of order A/L
and can be determined from the notion that the propagation of electromagnetic

radiation is observer-independent. This idea is developed in the following section.



Chapter 17

Duality of Absolute and Relative
Motion

The general theory of relativity, which agrees with all observational data available
at present, constitutes the culmination of efforts to extend the principle of relativ-
ity (Lorentz invariance) to the relativity of motion in general. It turns out that
even in this theory accelerated motion is absolute, i.e., local inertial effects cannot
be described in terms of the relative motion of moving distant masses [5,6]. This
circumstance provides the motivation to look at the problem of motion from the
viewpoint of complementarity. That is, the theory of relativity involves absolute
motion, while the theory of absolute motion (including classical mechanics, elec-
trodynamics, and quantum mechanics) involves the principle of relativity (Lorentz

invariance).

The description of motion in classical physica ia based upon two distinct
pictures. The particle picture involves Newtonian point particles while the wave
picture involves classical electromagnetic radiation. Mach pointed out that the

intrinsic and extrinsic states of a Newtonian point particle are not directly connected
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[14]. That is, the mass of a classical particle has no direct connection with the state
of the particle characterized by its position and velocity in Newton’s absolute space
and time. Particles are, however, directly connected with each other via interactions
such as gravity. Therefore, classical particle motion is relattoe, since the particle can
be referred directly to other particles while it cannot be referred directly to absolute
space and time.

The same general argument for the motion of classical electromagnetic waves
would imply that classical electromagnetic wave motion is absolute, i.e., nonrelative,
since relative and absolute movements are mutually exclusive: The intrinsic state of
a wave—characterized by its frequency, wavelength, intensity, and polarization—is
directly connected to its extrinsic state characterized by its wave function. Thus a
classical wave can be directly referred to absolute space and time while a classical
particle can only be directly referred to other particles. Hence classical wave motion

is absolute, since an electromagnetic wave propagates independently of any observer.

The idea that the propagation of electromagnetic waves is independent of
observers is clearly valid for inertial observers as a consequence of Lorentz invariance.
It is assumed here that this notion is valid for any observer; this hypothesis can be
tested experimentally {cf. Section 5). It goes beyond the hypothesis of locality and

hence the standard theory of accelerated observers.

Tt has not been possible to establish a physical theory solely on the basis of
relativity of motion; similarly, absolute motion of electromagnetic waves incorporates
the principle of relativity (Lorentz invariance}. Thus Newtonian mechanics and the
Maxwell-Lorentz electrodynamics incorporate the duality of relative and absolute
motion; for instance, a charged particle emits electromagnetic waves only when it

undergoes acceleration.

It is inieresting to extend wave-particle duality to include the duality of
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absolute and relative motion. Thus neither the picture of particle motion as relative
nor the picture of wave motion as absolute is complete; motion has complementary
classical aspects in relative and absolute movements. To illustrate this idea, let us
consider the nonrelativistic motion of a particle in a potential V according to the
Heisenberg picture. In this “particle” representation, the Hamiltonian is

1

H=
2m

5+ V(X) (3.1)

and the momentum is p = m dik/dt, so that the fundamental quantum condition,
[#%,$*] = ik6;y, implies

|65 = e - (32

The observables corresponding to the position and velocity of the particle are related
to its intrinsic property—i.e., mass m—via k as a consequence of the particle’a nonlo-
cality. These observables commute, however, and Newtonian mechanics is recovered
when m — oo; that 1s, a massive systemn behaves in accordance with Newtonian me-
chanics since the influence on the system of any disturbance accompanying an act of
observation is expected to be negligibly small. In terms of the Schrédinger picture,
the state of the particle is characterized by a wave function ¥(t,x) that satisfies the
Schrédinger equation. This equation depends explicitly upon the particle mass and
thus connects the intrinsic and extrinsic states of the particle in the “wave” picture.
More generally, the intrinsic inertial properties of the particle are determined by its
mass as well as spin; mass and spin describe the irreducible unitary representations

of the Poincaré group [15].

It follows from the fundamental quantum condition that it is impossibie to
prepare a system in a simultaneous eigenstate of position and momentum; hence, a

matter wave can never stand completely stilf with respect to an inertial observer.
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The validity of this assertion for the appearance of any fundamental wave with
respect to arbitrary observers is the basic hypothesis employed in this paper. It is
an immediate consequence of this hypothesis that it would be impossible to describe
the relative motion of a physical system with respect to a fundamental wave since

no observer can ever be comoving with the wave.



Chapter 18

Nonlocality

It is a general properiy of the Volterra system (2.14) that in the space of continuous
functions the relationship between F,5 and F,g is unique. Moreover, it is reasonable
to assume that the continuous function K,g.s{7, ") depends only upon v — 7' so0 that
this function is a convolution-type kernel. I proves useful to inttoduce instead of
F¥ a six-vector F4, where the index A ranges over the set (01, 02,03,23,31,12).

Thus in matrix notation we have

F=F4 j; K{r - )F(r)dr (1)

where K = (K4g), the matrix K4p is related to the kernel in equation (2.14)
through
2K opys(7y ') — Kap(r —~ 7'), and F' = AF. The basic assumption that if F is

constant, then F must be constant as well implies that

A(ry+ ,/,: K(r —7A(dr' = Alm) {4.2)

gince F(ro0) = A(7e)F (7o) in any case. The integral equation {4.2) can be solved by
means of the resolvent kernel R auch that
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Alro) + j: R(r — T)A(ro)dr’ = A(7) . (4.3)

It follows immediately upon differentiating equation (4.3) that

= )

R(T - To) dr

Am) , (4.4}

so that the resolvent kernel and hence the kernel are proportional to the acceleration.
Once the resolvent kernel is calculated via equation (4.4), K can be determhined
ueing standard procedures of the theory of Volterra integral equations [16]. In
particular, Laplace transformations provide a useful method due to the assumption
of convolution-type kernels [17). If the observer is inertial, R = 0 and hence K = 0
and the standard result of the Lorentz-invariant theory is thus recovered. On the
other hand, when the observer is accelerated the nonlocal part is generally of order
X/L, which tends to zero when X — 0; hence, the hypothesis of locality is recovered

in the eikonal limit.

Let us suppose that the acceleration of the observer is turned off at =,
and for 7 > 7 the observer is inertial again; then, equation (4.1) implies that
F(r) = F'(r) + C, where

C= ]ﬂ. " K(n — ) )dr’ (4.5)

i3 a constant field that is the residue of past acceleration. Maxwell’s equations are
differential equations for the electromagnetic field; therefore, the field is determined
in any given situation up to a constant electromagnetic field. Boundary conditions
are needed in general to specify the field uniquely. 1t follows that in any measuring

device the influence of past accelerations would be canceled when the device is reset

.
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Let us now consider a concrete example. Imagine an inertial observer moving
uniformly with speed v parallel to the y-axis of an inertial frame; at t =0,z = >0
and y = z = 0, the observer is accelerated such that for ¢ >> 0 it moves on a circle
of radius r around the origin in the (z,y)-plane with constant frequency ). The
azimuthal angle indicating the position of the uniformly rotating cbserver is given
by v = (it = +{Ir, where « is the Lorentz factor corresponding to v = rf2. The

natural tetrad frame of the uniformly rotating observer is given by

Moy = 7(1,—Bsinp, fcosp,0) (4.6)
Ay = (0,co8 2,8inp,0) (4.7)
Ay = 7(8, —sing, cos,0} (4.8)
My =(0,0,0,1) (4.9)

with respect to inertial coordinates. Here 8 = v/c, and the spatial axes J\‘(‘.-), i=
1,2,3, correspond, respectively, to the radial, tangential and normal directions for

the circular motion of the cbserver. Representing F' as a column vector

F=[g] , (4.10)

we find F¥ = AF, where A is of the form

A=[__AK= i:] : (4;11)

with

Ay = : (4'.1:2)

—3sing cosp 0

ycoap 7ysing 0
0 0 =~

and
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0 0 -1
Ap=—8y| O 0 0 . (4.13)
cos sing 0

It is now possible to compute the resolvent kernel using equation {4.4), and the
kernel by employing Laplace transforms. It turns out that K = (K“4p) is a constant

matrix of the form

_| &5 K
K—[“Kz Kl] : (4.14)
where K and K, are antisymmetric matrices
0 -1 0
K=vall o of , (4.15)
0 00
and
06 O .
K=87aloo —1| . (4.16)
01 0

Note that K; is proportional to s, the generator of rotations about the z-axis,
while K; is proportional to I, the generator of rotations about the r-axis; in gen-
eral, (I;);, = —e;jx. The physical interpretation of this result becomes clear upon
computing the acceleration tensor ¢, using equations (4.6)-(4.9). The result is

0 —t 00
_|s 0 f30

=10 - 00| ° (4.17)
0O 0 00

where ¢, = Av*(t and f3 = 43(} are scalar invariants. It follows that K; =f . I and
K; = g - 1. Moreover, it is interesting to note that the kernel is antisymmetric, i.e.,

Kuap = —Kpy.
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The relationship between F and F, given by equation (4.1) for a radiation

field, can be explicitly written for the uniformly rotating observer as

& = +{cos g By + sin Ey) + fvBs + 10 L T(sing'E; - cos @ E)dr ,  (4.18)
£ = —sin 9By + cos pFs + 79 fu "(cos @' By + sin @' Eg)dr' (4.19)
&3 = 1E3 — By(cos By + sinBy) + A0 j; “(~sing'By +cos g’ B)dr' , (4.20)
By = y(cos @By + sinpB;) — fyE: + 1°0 ‘[] 1P(sin ¢'By — cosp’By)dr’ (4.21)
By = — singB, + cos By + 19 jo "(cos ' By +sin ' Br)dr' (4.22)
Bs = 1By + Br{cospBs +sinpBy) + 7R [ (sin g/ By —con ' Ea)dr' . (4:23)

It should be clear that if F does not represent a radiation field, then the nonlocal
part does not exist and F = F'.

Imagine now an incident monochromatic plane electromagnetic wave of fre-

quency w propagating along the z-axis. The incident field is given by

F = twa [ ;: ] e~wbr=a (4.24)

where a is a complex amplitude, €; = (e, & iez)/v/2, by = Fiey, and the upper
(lower) sign represents positive (negative) helicity radiation; we adopt the convention
that only the real part of equation (4.24) indicates the {classical) field. Here e, and
e, are unit vectors along the r and y axes, respectively. The nonlocal theory of
accelerated observers is linear; therefore, it is sufficient to explore the consequences of
the theory for the wave under consideration, since a general pulse may be expressed
as a linear superposition of monochromatic plane waves. It follows from F' = AF
that

F' = iwa [ e‘% ]e"‘"" - (4.25)
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where b, = Tie),, and the polarization vector as measured by the comoving inertial

observer is given by

¥ (4-26)

e, = 7:1 E
+
2 * 8y

which reduces to ey for 8 — 0. Here the measured frequency according to the
hypothesis of locality is

o =ywFl) , (4.27)

which involves the transverse Doppler effect as well as helicity-rotation coupling. For
instance, in a positive-helicity wave the electric and magnetic vectors rotate with
frequency w about the axia of propagation (z-axis). The rotating observer perceives
the same type of rotation of the vectors but with frequency ~(w — {1); for w = 1,
the fields are perceived to be constant in time as a consequence of the hypothesis of
locality. Moreover, the angular momentum of the field about the z-axis is constant,
so that a positive (negative) helicity wave is perceived to be right (left) circularly
polarized by the rotating observer.

It follows from equations (4.18)-(4.23) that

we T} [ e ]

F = twa ) b,

(4.28)
This result has three important consequences. The first is that as a result of the
nonlocal part of equation (4.1), the measured amplitude of the positive-helicity
radiation with w > §} is enhanced by a factor of (1 — /w)™?, while the amplitude
of the negative-helicity radiation is diminished by a factor of (1 + [}/w)™!. This
prediction of the nonlocal theory could be tested, for example, by considering radio

waves with reduced wavelength of A ~ 1 cm incident on a system rotating at a
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frequency of ~ 500 rounds per second; then, /w = A/L ~ 1077. The second
consequence is that for the positive-helicity radiation with « = {}, the nonlocal
theory predicts a time-varying field given by

F = iwa(l — fpo7) [ E:: ] . (4.29)

The linear temporal variation of F implies that the absolute magnitude of the mea-
sured field grows indefinitely with proper time; this circumstance is an immediate
consequence of the fact that the constant amplitude of the incident monochromatic
plane wave is maintained over time. Thus this divergence of the field would be
absent for any finite incident packet of radiation. The third consequence is that the
average of F over time is nonzero and proportional to the rotation frequency, while

the time average of F’ (as well as F) is zero.

The electrodynamics of accelerated observers has been presented here in
terms of the Faraday tensor F,,; however, the same general results could be obtained
from a nonlocal theory of the vector potential A,. The nonlocal theory of a vector
field is developed in the Appendix.

Electrodynamics has been the focus of this paper; however, the ideas pre-
sented here can be extended to other fundamental fields as well. A basic consequence
of the general nonlocal theory is that the existence of a basic scalar field is forbid-
den. This comes about because A is unity for a scalar field and hence R = 0, which
implies that K = 0, so that the scalar field is aiways local. The same would hold for
a psendoscalar field. Thus the possibility of existence of states with «' = 0 cannot
be avoided. It would therefore be possible for a acalar field to stay completely at
rest with respect to an accelerated observer. This contradicts the basic premise of
this work.

It is clear from the structure of the nonlocal theory that only when the
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acceleration is non-uniform would there be a contribution to the measured frequency
beyond the hypothesis of locality. The sole exception to this rule would occur,
however, when the frequency measured in accordance with the hypothesis of locality

vanishes.

The observational consequences of the spin-rotation coupling—evident in

equations (4.27) and (4.28)—are explored in the following section.



Chapter 19

Spin-Rotation-Gravity Coupling

Imagine an observer (i.e., a classical measuring device) rotating about the z-axis
in an inertial frame. For instance, this could be any observer fixed on the Earth
rotating about its proper axis of rotation. Consider a free particle passing by the
rotating observer at an instant. What is the energy of the particle as measured
by the observer at that event? To answer this question, an assumption is required
regarding the measurements of accelerated observers. The standard assumption in
the theory of relativity is that the accelerated observer is instantaneously equivalent
to a comoving inertial observer. According to this bypothesis, the relationship be-
tween the observer and the particle is the same as between two inertial observers at
the event in question. Therefore, E' = y(E—v - P), where v = £ x r. This relation
can be written as

E=yE-2-L) , (5.1)

where I = r x P. This is a relativistic generalization of the well-known relation
in classical mechanica relating the Hamiltonian in the inertial frame to that in the

rotating frame, H' = H — £2 - L, which results in the Coriolis and centrifugal forces.
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Let us now consider a wave field characterized by a wave function (¢, x}.
The transformation to the rotating frame may be expressed in terms of spherical
coordinates as (r,8,¢) — (r',#,¢" + (), so that if the wave function has temporal
and azimuthal dependence of the form exp(—iEt/k)exp(i M) in the inertial frame,
then in the rotating frame its time dependence becomes exp[—i(E — A MQ)t/K],
where M is the total angular momentum parameter along the axis of rotation. Since

the observet’s standard clock reads », dr = di/, we find that in the rotating frame

E' =(E —KMQ) , (5.2)

where M = 0,+1,%2,..., for a scalar or a vector field, and M = ] + u, with
#=0,£1,42,..., for a Dirac field. To make contact with classical mechanics, we
may express equation (5.2) as H' = y(H — §7-J).

The hypothesis of locality in the classical particle picture implies that E’
should always be positive as in equation (5.1), while equation (5.2) implies that £
can be positive, zero, or negative. It should be clear that this is a consequence
of the wave character of the field and is independent of its spin. Clearly, we can
write in general J = L 4+ 8 and thus the wave treatment reveals the existence of
a general spin-rotation coupling term given by —yf2 - 8. An explicit connection
between equation (5.1) and equation (5.2) can be established if we consider the
JWKB approximation; then, Y =r x P+ 8 and s0

ExyE-v-P)-902-8 . (5.3)

It follows that the hypothesis of locality in the particle picture is valid in general
when the de Broglie frequency w, E = hw, is infinite, so that the waves may be
considered in the ray approximation. Only in the limit of a ray—whose interactions
are pointlike by definition—would the hypothesis of locality acquire validity.



ras)

Consider, for the sake of concreteness, an electromagnetic field F,,, in Minkowski
spacetime and an accelerated observer following a given worldline, Let the observer’s
tetrad frame be Af,,, then the electromagnetic field measured by the accelerated ob-
server is Fog = Fu A, My according to the hypothesis of locality. If 7 is the
proper time along the path of the observer, the Fourier transform of F.4(r) can
give the spectrum of frequencies measured by the observer. If this is calculated for
the uniformly rotating observer, equation (5.2) is recovered. On the other hand,
if we use the standard relativistic Doppler formula in this case, then the result
wp = —k,dr*/dr is equivalent to equation (5.1). The Doppler frequency is time
dependent, since the frequency depends on the velocity of the observer at the event
of observation, while the spectrum {5.2) is nonlocal and depends on the whole his-
tory of the observer. It follows from these considerations that the application of the
hypothesis of locality produces different results in the classical particle and wave
pictures; however, the former may be obtained from the latter in the eikonal limit.
There can be little doubt that equation (5.2) should essentially be the correct re-
sult while equation (5.1) is simply the pointlike approximation. On the other hand,
the standard theory of relativity is most consistent when it is thought of as a the-
ory of pointlike coincidences. Therefore, it is important to investigate the physical
consequences of the validity of equation (5.2) beyond the Doppler effect.

To this end, let us first deal with the question of why E’ can become nega-
tive, At first sight, this result contradicts the spirit of relativity theory where only
the relative motion of observers is of significance. Thus inertial effects, which in
classical mechanics provide an absolute distinction between inertial and accelerated
observers, would have to be interpreted in terms of the gravitational effects of dis-
tant masses. However, recent work on this problem has shown that inertial effects
cannot be interpreted in this way within the standard geometric framework of gen-
eral relativity [5,6]. In fact, the notion of absolute motion is indispensable. On the
other hand, any theory based on absolute motion should necessarily incorporate the
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principle of relativity (i.e., Lorentz invariance). This circumstance has led to the
principle of complementarity of absolute and relative motion [5]. On this basis, any
conflict with the quantum theory of accelerated observers is thus avoided; therefore,
the results presented here supersede our previous treatment of this problem [18].
For the problem under consideration, inertial observers are not ignored; energy is
always positive for ideal inertial observers. However, a noninertial observer can find
negative energy eigenstates as a result of inertial wave effects. This would be a
consequence of acceleration relative to absolute spacetime. It is important to notice
that absorption of negative energy by an accelerated device cannot be interpreted
as emission of positive energy by the device since then the caunsal sequence of events
in the inertial frame would be different from the causal sequence of events in the
accelerated system. There is no basis for making such a far-reaching assumption.
In this work, the inertial frame and the ideal inertial observers will always be pre-
served and the correspondence between observations in the two frames will be of
central importance for the interpretation of phenomena by accelerated observers,
These views correspond to the way observations are actually interpreted: astronom-
ical observations—performed by observers rotating with the Earth—are in no way
limited by the light cylinder {at ¢/$1) corresponding to the proper rotation of the
Earth; in fact, all inertial effects due to Earth rotation are subtracted out of the data
and then the reduced data (referring now to ideal inertial observers) are analyzed.

The general correspondence between accelerated observers and inertial observers-
upon which the present study is based—does not place any extra causality restric-
tions on accelerated observers. The limitations inherent in the accelerated coordinate
system [19] are simply due to the limitations of standard measuring devices which
are necessary to establish such coordinate systems. These limitations arise from the
hypothesis of locality as discussed in Section 2.

The possibility that E’ can be gzero turns out to have far-reaching conse-
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quences. One may think that this possibility cannot be realized in practice since
it involves angular momentum eigenstates. However, recent experiments at the
Stanford Synchrotron Radiation Laboratory [20] have demonstrated that a coherent
beamn of X-ray photons can be prepared in the laboratory in a state characterized by
{w, J, M). K is interesting to illustrate £’ = 0 using a thought experiment: Imagine
an observer rotating uniformly with frequency {} and a beam of positive helicity
electromagnetic radiation incident along the axis of rotation. Then ' = y{w — Q)
since the observer perceives the electromagnetic field rotating along the direction of
propagation with frequency w — 2 with respect to time ¢ or y{w — 2} with respect to
its proper time 7. For a rotating cbserver along the axis of rotation ¥ = 1, but ' is
still w — 2, For w = 11, the observer stays completely at rest with the field. That is,
according to all observers that are static in the rotating system, the electromagnetic
field has no temporal variation at all. The possibility that E' = 0, i.e., observers can
stay completely at rest with an electromagnetic wave contradicts the complemen-
tarity principle of absolute and relative motion and should be rejected. Classical
motion involves particles as well as electromagnetic waves. Classical particle motion
is relative while classical wave motion is absolute in the sense that it is independent
of any observer. Hence, it should be impossible for an observer to remain at rest with
reapect to an electromagnetic wave. The nonlocal theory of accelerated ohservers
presented in the previous section incorporates the complementarity principle in a
natural way and is consistent with all observational data available at present [17].
The basic idea of the nonlocal theory is Lo replace the hypothesis of locality with the
assumption that the field measured by the accelerated observer is a linear superposi-
tion of the measurements of the infinite class of hypothetical inertial observers that
the accelerated observer has passed through. This is the most general assumption
that is consistent with causality as well as the superposition principle. The non-
local theory excludes the possibility of existence of any fundamental acalar field in
nature (cf. Section 6); this consequence of the theory appears to be consistent with
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observational data. Furthermore, the nonlocal theory is in agreement with equation
{5.2) for a uniformly rotating observer except for E' = 0. Under this “resonance”
condition, the electromagnetic fields as measured by the uniformly rotating observer
vary linearly with proper time. When £’ > 0, the nonlocal theory implies—for the
thought experiment under consideration here—that the measured amplitude of the
positive helicity component would increase by a factor of (1 —w/ ). In & similar
way, the amplitude of the negative helicity component would decrease by a factor
of (I +w/)"'. It would be most interesting to subject this result of the nonlocal
theory to a direct laboratory test.

To test the theoretical ideas presented here, one has to verify the existence
of the spin-rotation-gravity coupling in its varied forms as well as the consequences
of the nonlocal theory. Therefore, let us consider below some of the current experi-
mental possibilities:

{i) It appears from the recent work of Papini and his coworkers {21} that certain
depolarization effects that had been observed in circular accelerators [22] could
be explained by the spin-rotation coupling. This work has opened up a new
path of inquiry regarding polarized beams in high-energy accelerators with
possibilities for further theoretical and experimental studies.

(ii) Significant progress has been achieved in the quantum-mechanical study of
Newtonian gravity and inertia via interferometry: in particular, neutron and
neutral atom interferometers have been especially useful thus far [23]. When
the spin of, say, the newtron is considered, the Hamiltonian for a thermal
neutron in an interferometer fixed in a frame rotating with frequency 2 (such
as the Earth) includes the term —8 - £2, which is an inertial term proportional
to intrinsic spin (rather than the inertial mass). A definite experimental set-up
for measuring this effect has been suggested by Werner [23,24] and progress
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continues towards the development of large-scale interferometers capable of
measuring this effect [24].

The observed gravitationally-induced quantum phase of particles is due to
the Newtonian “gravitoelectric” contribution; the corresponding gravitomag-
netic contribution due to Earth rotation would be ten orders of magnitude
smaller [25]. When the spin of the particle is taken into account, the Hamilto-
nian includes the term §- f2, where f2p is the dragging frequency of the local
inertial frames due to Earth rotation. This is a consequence of the spin-rotation
coupling and the gravitational Larmor theorem [3], which states that a grav-
itomagnetic field can be locally replaced by a rotating frame with 2 = —f2p.
For the Earth, 2p/2x ~ GJ/2xc?R? ~ 1071"Hz at the poles; therefore, the
gravitational spin-spin coupling is far below the level of sensitivity of current

experiments.

The physical consequences of the spin-rotation-gravity couplings for a Dirac
particle have been investigated by a number of authors [26]. For a neutrino
with a very small inertial mass, Cai and Papini [27] have pointed out that the
spin-rotation coupling might have interesting consequences for neutrino astro-
physics. Moreover, the consequences of helicity-rotation-gravity couplings for
light have been theoretically explored [28] for applications in astronomy (such
ag differential gravitational deflection of polarized radiation, and polarization-
dependent aberration of starlight) as well as laboratory experiments (e.g.,
helicity-Sagnac effect).

(it} Silverman [29] has discussed the optical activity induced by spin-rotation cou-
pling for systems (in particular, atomic hydrogen in its ground state) in a rotat-
ing frame. He has pointed out that the results could be significant for metrol-
ogy as well as astronomy. In the presence of a gravitational field, Silverman’s
results could be carried over to the gravitomagnetic case by the gravitational
Larmor theorem [3,28], i.e., 2 — —f2p, where £ is the dragging frequency of



a local inertial frame. Let us note that for the Earth, flg/2x = 10~°Hz, while
for an extreme Kerr black hole of mass M, {15 /2% &= 3 x 10%( Mg /M)Hz. Thus
Silverman’s results could be of interest in connection with the astrophysica of

a rotating collapsed system.

(iv) Several recent papers [30] have reported on experiments that have searched
for novel spin-dependent interactions in the laboratory. With respect to a
frame fixed on the Earth, a spinning particle with v << ¢ (as in the reported
experiments {30]) should have an extra interaction Hamiltonian, Hga = —5-
2+8S-2p. Since hlg = 0.5 x 107%V and Aflp ~ KAGJ/AR? ~ 10-PeV
for the Earth, at least the first term should have been detectable in some of
the reported experiments. For instance, Venema et al. [30] report a sensitivity
of = 2 x 10~MeV for a spin-dependent interaction energy. These experiments
need to be carefully re-examined in order to determine if the spin-rotation

coupling has already been detected in the laboratory.
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Discussion

Phenomenological nonlocal electrodynamics has existed at least since the early work
of Hopkinson [31], who followed Maxwell’s suggestion—based on Boltzmann’s work
in elasticity theory—regarding the dielectric properties of glasses. Such nonlocal
theories rely upon phenomenological memory effects that usually fade exponentially
[32]. However, the nonlocal theory presented here is not phenomenological in nature;
in particular, for the uniformly rotating observer there is constant “memory” of the

acceleration.

Nonlocal effects are usually extremely small in most experimental conditions;
however, the nonlocal theory entails the interesting prediction that basic scalar
a8 well as pseudoscalar fields do not exist. This is a direct consequence of the
assumption that the propagation of a fundamental field is independent of the motion
of the observer; that is, an arbitrary observer can never be comoving with respect
to a basic field.

The classical theory developed here can be simply extended to the quantum

regime, since the basic ideas employed in the construction of the nonlocal theory
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are in fact compatible with quantum mechanics. Qnce a general quantum field
F is given in the inertial frame, the quantum field F according to an accelerated
observer is determined from the general nonlocal transformation given by the form
of equation (4.1}). The quantum invariance condition is satisfied in this approach;
that is, quanta are not created nor destroyed upon transformation to the accelerated

system.

Finally, the general approach adopted in this paper points towards a nonlocal
field theory of gravitation that would reduce to general relativity in the eikonal limit.
The structure of auch a theory is currently under investigation. In this connection,
it should be pointed out that nonlocal theories of gravitation have been the subject

of recent investigations [33,34).
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Chapter 22

Appendix

The purpose of this appendix is to present the nonlocal theory of a vector field A,.
In particular, 4, could be the vector potential associated with an electromagnetic
field F,, = 8,A, — 8,A,; however, the vector potential is determined up to a gauge
transformation. Though A, has therefore no independent physical significance in
the classical theory, this is not generally the case in quantum mechanics.

The hypothesis of locality implies that the measured field according to ac-

celerated observers is

A, = xia)An ’ (Al)
while the nonlocal theory predicts

Aq(r) = AL (1) + L K2 O(r — 1) Ay(r)dr' . (A2)

Imagine now the uniformly rotating observer under consideration in Section

4. Let A represent the column vector (A, ); then,



A=A4 (A3)

where A* is given by
7y —Pysing Pycosp ©

. 0 cos @ sing 0
A* = . Ad
By —vysinp vycosp 0 (A-4)

0 0 0 1

on the basis of equations (4.6)-(4.9). The resolvent kernel can be determined from
the general relation (4.4} and the result is

BP4*sing —Pycosp ~PBysing 0

.l _ —Bycosyp —sing  ycosp 0
R =" gyding —yosp —y2sinp 0] ° (A5)
0 0 0 0

Using Laplace transforms, it is possible to show that for the uniformly rotating
observer the kernel is a constant matrix whose elements are proportional to the
scalars associated with the acceleration of the observer. In fact,

085 0 0
. anlB 0 -10
00 0 90

where K* = (K #); hence, the kernel is antisymmetric as before, since

;ﬂ = _Qsaﬂ 1 (AT)

where the acceleration tensor $,g is given by equation (4.17).

1t is now possible to express the nonlocal vector field measured by the rotat-
ing observer in terms of the field measured by static inertial observera in Minkowski

spacetime. The result is
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Ao = yAo-+ By(—sinpAs +con pAz) + 1R [ (cos ' As +sing r)dr’ | (A®)
Ay = cos oAy + sin pA; + 11 jo "(sing'Ay — cos g Ag)dr’ | (A9)
Aa = BrAo+7(—sinpAs + 00spA) + 70 [ (cos Ay +sin ' An)dr’ | (A.10)
As=As . (A.11)

Let us now restrict attention to an electromagnetic vector potential corre-
sponding to the monochromatic plane wave under consideration in Section 4. In a
particular gauge, we can set

A=a [ ell ] e~ (A.12)

where a is the complex amplitude introduced in equation {4.24). The hypothesis of
locality implies that the vector potential measured by the accelerated observer is

+ify

8] 1 —iw'r

A=l i | ) (A.13)
1]

On the other hand, it follows from equations (A.8)-(A.11) that

w F e
= Al4
wF A (A14)
This result contains the same general features that were discussed for F in Section

4; in particular, 4 varies linearly with proper time when o' = (.
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