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Chapter 11

Introduction: Fundamental
Physical Constants

In any physical theory we meet with constants which characterize the stability prop-
erties of different types of matter: of objects, processes, classes of processes and so
on. These constants are important because they arise independently in different sit-
uations and have the same value, at any rate within accuracies we gained nowadays.
That is why they are called fundamental physical constants (FPC) [1]. To define
strictly thia notion is not possible. It is because the constants, mainly dimensional,
are present in definite physical theories. In the process of scientific progress some
theories are replaced by more general ones with their own constants, some relations
between old and new constants arise. So, we may talk not about absolute choice of
FPC, but only about the choice corresponding to the present state of the physical
SCIENCES.

Really, quite recently (before the creation of the electroweak interaction
theory and some Grand Unification Models it was considered that this choice is the
followings:

C, hs o, GF’ G m,(or me); GJ Hs I A! k! I:

where &, GF, g, and G are constants of electromagnetic, weak, strong and grav-
itational interactions, H, p and A are cosmological parameters {Hubble constant,
mean density of the Universe and cosmological constant), k and 7 are the Boltzmann
constant and the mechanical equivalent of heat which play the role of conversion fac-
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tors between temperature from one side, energy and mechanical units from another
side. After adoption in 1983 of a new definition of the meter (A = ¢t or £ = t)
this role is partially played also by the speed of light c. It is now also a conversion
factor between units of time (frequency) and length, it is defined with absolute (null)
accuracy.

Now, when the theory of electroweak interactions has a firm experimental
basis and we have some good models of strong interactions the more prefarable
choice is as follows:

h$ (c)a g2, M, 9@, GFu scs AQG‘D: G: H} Py Av k: I

and, possibly, three angles of Kobayashi-Maskawa - #;,0; and 6. Here 8, is the
Weinberg angle, 8. is the Cabibbo angle and Agep is a cut-off parameter of quantum
chromodynamics. Of course, if the theory of four known now interactions will be
created then we probably will have another choice. As we see the macroconstants
remain the same though in some unified models, i.e. in multidimensional ones, they
may be related in some manner (see below).

All these constants are known with different aceuracies. The most precisely
defined constant was and remain the speed of light ¢: its accuracy was 10~'° and
now it iz defined with null accuracy. Atomic constants, e, i, m and others are defined
with accuracies 1076 < 1077, G-with the accuracy 10~4, 8,-with accuracy 10%; the
accuracy of H is also 20% though several groups give values differing by the factor
of 2. Even worse situation is now with other cosmological parameters (FPC): mean
density estimations vary within an order of magnitude; for A we have limits above
and below, in particular zero value is also acceptable.

As to the nature of FPC, we may mention several approaches. One of the
first hypotheses belongs to J.A. Wheeler: in each cycle of the Universe evolution
FPC arise anew along with physical laws which govern its evolution. Thus, the
nature of FPC and physical laws is connected with the origin and evolution of our
Universe.

Less global approach to the nature of dimensional constants suggests that
they are needed to make physical relations dimensionless or they are measures of
asimptotic states. Really, the speed of light appears in relativistic theories in factors
like v/c, at the same time velocities of usual bodies are less than ¢, so it plays also
the role of an asymptotic limit. The same sense have some other FPC: & is the
minimal quantum of action, e is the minimal observable charge (if we do not take
into account quarks which are not observable in a free state) etc.
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Finally, FPC or their combinations may be considered as natural scales defin-
ing basic units. If earlier basic units were chosen more or less arbitrarily, i.e. the
second, meter and kilogram, than now first two are based on stable (quantum) phe-
nomena. Their stability is ensured by well established physical laws which include
FPC.

Exact knowledge of FPC and precision measurements are necessary for test-
ing main physical theories, extention of our knowledge of nature and, in the long
run, for practical applications of fundamental theories. Within thia, such theoretical
problems arise: 1) development of models for confrontation of a theory with exper-
tment in critical situations (i.e. for verification of GR, QED, QCD or GUT), 2)
setting limits for spacial and temporal variations of FPC.

As to classification of FPC we may set them now into four groups due to
their generality:
1) Universal constants such as & which divides all phenomena into quantum and
nonquantum (micro and macro worlds) and to a certain extent ¢, which divides
all motione into relativistic and nonrelativistic, 2) counstants of interactions like
a, 8., Agcp and G; 3) constants of elementary constituencies of matter like m,, m,,, m,,
etc., and 4) transformation multipliers such as k, I and partially ¢. Of course, this
division into classes is not absolute. Many constants shifted from one class to an-
other. For example, ¢ was a charge of a particular objeci-electron, class 3, then it
became a characteristic of a class 2 (electromagnetic interaction, & = % in combi-
nation with & and c}, speed of light ¢ waa nearly in all classes: from 3 it moved into
1, then also inte 4. Some of the constants ceased to be fundamental (i.e. densities,
magnetic moments, etc.) as they are calculated via other FPC.

As to the number of FPC, there are two opposite tendencies: number of
“0ld” FPC is usually diminishing when a new, more general theory is created, but
at the same time new fields of science arise, new processes are discovered in which
new constants appear. So, in the long run we may come to some minimal choice
which is characterized by one or several FPC, may be, connected with the so called
Planck parameters-combinations of ¢, § and G:

L= (%) ~10"0cm, my = (ch/26)/* ~ 1075 ,
.= Lic~ 1079,

The role of these parameters is important as m;, characterizes the energy of
unification of four known fundamental interactions: strong, weak, electromagnetic



152

and gravitational ones and L is a scale where classical notions of space-time locse
their meaning.

The problem of the gravitational constant G measurement and stability is
a part of a very much developing field, called gravitationalrelativistic metrology.
It appeared due to the growth of a measuring technique precision, spread of mea-
surements over large scales and tendency to the unification of fundamental physical
interaction (see [2]).

Absolute velue measurements of G. There are several laboratory determi-
nations of G with precisions of 1072 and only 4 at the level of 1074, They are (in
107 mikg 1572,

1. Facy, Pontikis, France, 1972 - 6,6714 £ 0,0006
2. Sagitov et al.,, USSR, 1979 - 6,6745 + 0,0008

3. Luther, Towler, USA, 1982 - 6,6726 + 0,0005
4. Karagioz, USSR, 1988 - 6,6731 + 0,0004

From thia table it is seen that firat three experiments contradict each other
(they do not overlap within their accuracies). And only the fourth experiment is in
accord with the third one.

The official CODATA value of 1986
G = (6,67259 £ 0,00085) - 1071 . m3® . kg~! . 572

is based on the Luther and Towler determination. One should make a conclusion
that the problem is still open and we need further experiments on the absolute value
of G. Many groups are preparing and doing them using different types of technique,
among them iz the Karagioz group (Russia) which has the installation operating
already for two years continuously [3].

There exist also some satellite determinations of G (namely G + Mearer) at
the level of 10~* and several geophysical determinations in mines. The last give
usually much higher G values than the laboratory ones.

The precise knowledge of (3 is necessary for the evaluation of mass of the
Earth, planets, their mean density and in the end for the construction of Earth
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models; for transition from mechanical to electromagnetic units and back; for eval-
uation of other constants through relations between them given by unified theories;
for finding new possible types of interactions and geophysical effects.

The knowledge of constants values has not only a fundamental meaning but
also the metrological one. Modern system of standards is based mainly on stable
physical phenomena. So, the stability of constants plays a crucial role. As ali
physical laws were established and tested during last 2-3 centuries in experiments
on the Earth and in the near space, i.e. at a rather short space and time intervals in
comparison with the radius and age of the Universe the possibility of slow veriations
of constants (i.e. with the rate of the evolution of the Universe) cannot be excluded
a ptiori.

So, the supposition about the absolute stability of constants is an extrapo-
lation and each time we must test it.

The problem of variations of FPC arose with the attempts of explanation of
relations between micro and macroworld fenomena. Dirac was the first to introduce
[4] the so called “Large Numbers Hypothesis® which relates some known very big
(or very small) numbers with the dimensionless age of the Universe T ~ 10** (age
of the Universe in seconds 10'7, divided by the characteristic elementary particle
time 10~ geconds). He suggested that the ratio of the gravitational to strong
interactions strengtha, Gmp®/hc ~ 107, is inversely proportional to the age of
the Universe: Gmp?/hc ~ T-1. Then, as the age varies some constants or their
combinations must vary also. Atomic constants seemed to Dirac more stable so
he’ve chosen the variation of G as T71.

Afier original Dirac hypothesis some new ones appeared and also some gen-
eralized theories of gravitation admitting the variations of an effective gravitational
coupling. We may single out two stages in the development of this field:

1. Study of theories and hypotheses with variations of FPC, their predictions and
confrontation with experiments (1937-1977).

2. Creation of theories admitting variations of an effective gravitational constant
in a particular system of units, analyses of experimental and observational
data within these theories [5-7] {1977-present).

Within the development of the first stage from the analysis of the whole set of
existed astronomical, astrophysical, geophysical and laboratory data the conclusion
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was made [6,1] that variations of atomic constants are excluded, but variations of the
effective gravitational constant in atomic system of unita do not contradict available
experimental data at the level
10~ = 10~ "2year~'. Moreover, in [5-7] the conception was worked out that vari-
ations of constants are not absolute but depend on the system of measurements
(choice of standards, units and devices using this or that fundamental interaction).
Each fundamental interaction through dynamics, described by the corresponding
theory, defines the system of units and the system of basic standards.

Now we review shortly some hypotheses on variations of FPC and experi-
mental tests [1]:

Following Dyson (1972) we may introduce dimensionless combinations of
micro and macroconstants:

a=e3hc=1,310" ,y = Gm*[hc = 51077,
B =CGpmic/t® =0.10°, § = Hhifm® =107%,
£=pGfH? = 21072, t = T/(e?/mc®) =~ 10%

We see that ¢, 8 and ¢ are of order 1 and  and § are of the order 10-%°. Nearly
all existing hypotheses on variations of FPC may be represented as:

Hyposesis 1 (standard}:
a, B, v are constant, § ~ 71 £~ £
Here we have no variations of G and § and ¢ are defined via cosmological
solutions.
Hyposesis 2 (Dirac):
a, B, € are constant, v ~ t71, § ~ 171,
Then & /G = 510 Yyear=? if the age of the Universe is taken as

T = 2.10' years.

Hyposesis 3 (Gamow):
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11]60 = ?m’/e.2 ~ 1073 50 €* or o are varied, but not G, 8,7,£ = const,
a~t7 b tTh

Then & fa = 107 Wyear?,

Hyposesis 4 (Teller): trying to account also for deviations of & from 1 he suggested
a! =yt

Then J3, € are constants, ¥ ~ ¢, o ~ (Int)™!, § ~ ¢
& fa = 5.10"Pyear™!

The same relation for « and + was used also by Landau, DeWitt, Staniucovich,
Terasawa and others, but in different approaches in comparison with Teller.

Some other variants may be also possible, e.g. Brans-Dicke theory with
G~ p~t7% r = (24 27!, the combination of Gamov’s approach and
Brans-Dicke’s etc. [1].

There are different astronomical, geophysical and laboratory deta on possible
variations of FPC.

astrophysical data;
a) from comparison of fine structure (~ a?) and relativistic fine structure (~ o)
shifts in spectra of radiogalaxies Bahcall and Schmidt (1967) obtained
[& Jer |€ 2.107 2 year™
b) comparing lines in optical (~ Ry == me*/A*) and radio bands of the same sources
in galaxies Baum and Florentin-Nielsen got the estimate
|& /e |[€ 107 Pyear?,
and for extragalactic objects

| afer |< 107 Myear=!
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¢) from observations of superfine structure in H-absorption lines of the distant ra-
diosource Wolf et al. (1976) obtained that

| a’(m,/m,)g, |< 21071

from these data it is seen that hyposesis 3 and 4 are excluded. The same conclusion
is done on the bases of geophysical date. Really,

a) a-decay of Uz — Pbys. Knowing abundancies of Ussg and Pyss in rocks and
independently the age of these rocks the limit

& fa |< 2.107Pyear™

was obtained,

b) from spontaneous fission of Uss auch estimation was done:
|é jor | 2,3.10" ¥yeart.

c) finally, from S-decay of Reiar to Osigr

|& fer |< 5.10 P year™

was obtained.

We must point out that all astronomical and geophysical estimations are
strongly model-dependant. So, of course, it is always desirable to have laboratory
tests of variations of FPC.

&) such a test was firat done by the Russian group in the Committee for Standards
(Kolosnitsyn, 1975). Comparing rates of two different types of clocks, one
based on the C's standard and another on the beam molecular generator they
found that |& fe < 107 %year—!.

b) from similar comparison of Cs standard and SCCG (Super Conducting Cavity
Generator) clocks rates Turner (1976) cbtained the limit

l& fe | 4.1 107 Byear™?
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All these limits were placed on the fine structure constant variations. From
the analysis of decay rates of Ky and Rejg7 the limit on the possible variations
of the weak interaction constant was obtained (see approach for variations of

8, eg. in [8]).
|8 /8 |< 107 *year™.

" But the most strict data were obtained by A. Schiyachter (USSR) from the
analysis of the ancient natural nuclear reactor data in Gabon, Oklo, because
the event took place 2.10° years ago. They are the following:

G, /G, | < 5.10®year™!, |& fa |< 107 Tyear™?
|GF /Gp l{ 2.10_‘2!}661‘_1

So, we really see that all existing hyposeses with variations of atomic constants
are excluded.

So, now we still have no unified theory of all four interactions. There is a
good theory of electroweak interactions, models of GUT which include the strong
interaction and also some attempts to create a theory of everything (TOE). As we
have no such a theory it is possible to construct systems of measurements based
on any of these four interactions. But practically it ia done now on the basis of
the mostly worked out theory - on electrodynamics {more precisely on QED). Of
course, it may be done also on the basis of the gravitational interaction (as it was
partially earlier). Then, different units of basic physical quantities arise based on
dynamics of the given interaction, i.e. the atomic (electromagnetic) second, defined
via frequency of atomic transitions or the gravitational second defined by the mean
Earth motion around the Sun (ephemeris time).

It doesn™t follow from anything that these two seconds are always synchro-
nized in time and space. So, in principal they may evolve relatively each other, for
example with the rate of the evolution of the Universe or some other rate.

That is why in general variations of the gravitational constant are possible
in atomic system of units {c,k,m are constant) and masses of all particles - in
gravitational system of units (&, A, ¢ are constants by definition). Practically we
can test only the firat variant as modern basic standards are defined in atomic system
of measurements. Possible variations of FPC had to be tested experimentally but
for this it is necessary to develop corresponding theories admitting such variationa
and their definite effects.
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Mathematically these systems of measurement may be realized as two confor-
mally related metric forms. Arbitrary conformal transformations give us a transition
to an arbitrary system of measurements.

One of the ways to describe variable gravitational coupling is the introdue-
tion of a scalar field aa an additional variable of the gravitational interaction. It may
be done by different means (e.g. Jordan, Brans-Dicke, Canuto and others). We pre-
fare the variant of gravitational theory with conformal scalar field (Higgs-type field
[9]) where Eintein’s general relativity may be considered as a result of spontaneous
symmetry breaking of the conformal symmetry (Domokos, 1976). In our variant
spontaneous symmetry breaking of the global gauge invariance leads to nonsingular
cosmology [10]. Besides, we may get variationa of the effective gravitational constant
in the atomic syatem of units when m, ¢, & are constant and variations of all masses
in the gravitational system of units (G, ¢, k are constant). It ia done on the basis
of approximate [11] and exact coamological solutiona with local inhomogenity [12).

The effective gravitational constant is calculated using equations of motions.
Postnewtonian expansion is also used in order to confront the theory with existing
experimental data. Among postnewtonian parameters the parameter f describing
variations of G is included. It is defined as

1 d(GM)
GM  dt

=fH . (0.1)

According to Hellings data {13] from the Viking mission
¥-1=(-1,2+1,6)-10°, f=(4£8)-107? (0.2)

In the theory with conformal Higgs field [11] we obtained the following relation
between f and 7:

f=47-1). (0.3)

Using Hellings data for Y we may calculate in our variant f and compare it with f
from [13]. Then we get f = (—9,6 + 12,8) - 10~ which agrees with (1.2) within its
accuracy.

We used here only Hellings data of variations of G. But the situation with
experiment and observations is not so simple. Along with [13] there are some other
data [1]:
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1. From the growth of corals, pulsar spin down, etc, on the level
|G /G |< 1071 + 10~ Nyear!,

2. Van Flandern's positive data from the analysis of a lunar mean motion around
the Earth and ancient eclipses data (1976, 1981):

|G /G (= (6 £ 2)10~ 1y~

3. Reasenberg’s estimates of the same Viking mission as in [13] (1987):
IG /G < (0£2)-107y!

4. Hellings result in the same form is

I /G |< (21 4)- 1073y !

As we see there is a vivid contradiction in these results, so, of course, further
experiments are necessary for solving the problem of temporal G variations. The
most promising are the planned future missions to Mars (1994).

According to Hellings estimations [13] after several years of observations of
spacecrafts on and around the Mars one may have the improvement of the order of
magnitude in a testing of ¢ /G.

As we saw different theoretical schemes lead to temporal vatiations of the
effective gravitational constant: '

1. Empirical models and theories of Dirac’s type, were (7 is replaced by G(t).

2. Numerous scalar-tensor theories of Jordan-Brans-Dicke type where (¢ depend-
ing on the scalar field o(t) appears.

3. Gravitational theories with the conformal scalar field arising in different ap-
proaches [6,7,14,15]. And as we see later:

4. Multidimensional unified theories in which there are dilaton fields and effective
scalar fields appear in our 4-dimensional spacetime from additional dimensions
(16]. They may help also in solving the problem of changing cosmological
constant from Planckian to present values.
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As it was shown in {16,17] temporal variation of FPC are connected with each
other in multidimensional models of unification of interactions. So, experimental
tests on & fa may be at the same time be used for estimation of G /G and vice
versa. Moreover, variations of & are related also to the cosmological parameters p,
{1 and ¢ that gives opportunities of raising the precision of their determination.

As variations of FPC are closely connected with the behaviour of internal
scale factors it is a direct probe of properties of extra dimensions and corresponding
theories.

Other windows for testing hidden dimensions are opening when one is study-
ing multidimensional models in spherically-symmetrical case. Then, as we shall see,
some deviations from the Newton and Coulomb laws are possible.

And at last quantum multidimensional models may help in solving such
problems as the creation of the Universe, its singular state, A-term, etc.

Thus, our main aim here is to investigate different multidimensional mod-
els of gravitation and cosmology based on exact solutions. Chapter 2 is devoted
to multidimensional and multicomponent classical cosmology. In 2.1 we study
Friedmann-Calabi-Yau cosmology and prove that time variations of the Newton’s
gravitational constant is an unavoidable one. In 2.2 we obtain exact solutions for
(4 + N)-dimensional cosmology and find relations between cosmological parame-
ters and the time variation of G. In 2.3 we study multicomponent cosmology with
Ricci-flat internal spaces and a perfect fluid matter when pressures in these spaces
are proportional to the density and get exact solutions also. In 2.4 we prove that
Gibbons-Maeda reduction of two-component cosmology to the Toda lattice can not
be generalized for the n-component case,

Chapter 3 is devoted to the quantum multidimensional cosmology. In 3.1
the Wheeler-DeWitt equation for multidimensional cosmology with n spaces of con-
stant curvature is proposed and some integrable cases are pointed out. In 3.2, the
Wheeler-DeWitt multidimensional equation for the gravitational theory with cos-
mological constant is solved and quantum wormhole solutions are found. In 3.3
the WDW-equation for multidimensional cosmology with perfect fluid is solved in
simplest cases.

In Chapter 4 we analyse spherically-symmetric solutions. In 4.1 we give
the extension of Schwarzschild solution for a multidimensional case. Solution with
a scalar field iz also obtained. In 4.2 we obtain the multicompenent Tangherlini



161

solution. 4.3 is devoted to solutions of system of multidimensional Einstein and
Maxwell equations and 4.4 - to the aystem of Einstein-scalar-eletomagnetic fields,
And in 4.5 we give the solutions for interacting scalar and electromagnetic fields,
study their stability and single out BH solutions.
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Chapter 12

Classical Multidimensional
Cosmology

1 Variations of G in 10-Dimensional Cosmology
of Superstring Origin [27]

The idea of time variation of the Newton’s gravitational constant originally
proposed by Dirac assumed a great importance with the appearance of superstring
theories. Predictions of these theories about the time variation of G must obey the
present observational upper bound.

| G /G| <1071 1071,

which is a gravitational test for these theories.

Here we consider the “Friedman-Calabi-Yau” (FCY) coamology based on
the ten-dimensional SO(32) - or Eg x Es — Yang-Mills-supergravity theory [18]
with Lorentz Chern-Simons three-form, intreduced by Green and Schwarz [19] for
anomaly cancellations, and with the Gauss-Bonnet term, introduced in (20]. These
additicnal terms have a superstring origin [21]: they appear as the next to leading
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terms in the o/-decomposition (o' is the string parameter) of the Fradkin-Tseytlin
effective action [22] for a heterotic string {23] (see [24])). The supergravity action is
a leading term in this decomposition.

We prove that in the FCY cosmology with the dilation field ¢ = (t) the
solution of equations of motion with the constant radius of an internal space (ae(t) =
const) does not exist for all equations of state of ten-dimensional matter,

It should be noted that, in the open-universe case of the FCY cosmology

with p; = ps = 0 (p3, pe are pressures, see (2.1.9)) and () = const, Wu and Wang
calculated the present value of ¢ /G [25] and got the estimate

(G /G = —1.107 "% (y1) .

We take the action of the model as {25]
9 -
§= [ dayTglom R~ Sk iy — <2 (o™ )’
—Zv_af‘[ﬁtfﬁ?ljv + (Rinpq — 4By — B} + SF , (1.0.1)
where garn and ¢ are the metric and dilation fields, Fary and Hpynp are the Yang-
Mills and Kolb-Ramond field strengths:
F= %FuNdzMAd:N=dA+AAA,

where A = Apde™ is the one-form with the value in the Lie algebra ad g, ¢ =
SO(32), es ® e (ad g is the image of the adjoint representation of g,
ad g =3 ¢ for any semi-simple Lie algebra g¢);

H= %H,mpdzﬂ Ade™ Ads” = dB — wyy +ws, , (1.6.2)

where B = %BMNJ:M A dz¥ is a twoform, wyy is the Yang-Mills Chern-Simons
three-form:
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wy =%tr{Al\ F- %AAAI\A), (3.2)
and wsy, 13 the Lorentz Chern-Simons three-form:
m:tr(ul\ﬂ—%w/\wl\w). (3b)

In (2.1.3b) w = wprdz™ is the spin connection, which is the one-form with the value

in §0(1,9):
war =|| whw =1 e Varek liC $0(1,9),

ey is the basis (zehnbein) which diagonalizes the metric

A B
GMN = EMONTIAB »

i| nag ||= diag(—1, +1, ..., +1), £} is the curvature two-form:
Q=devtwAw

Sp in {2.1.1) is the Fermi part of the action [18], which is not essential for us because
we ate interested in solutions with zero Fermi fields.

The action (2.1.1) and the energy-momentum tensor Tyn lead to the fol-
lowing equations of motions [25]:

1 9 4 - !
Run — 59unE = 5x'p Y} HupqHy® - gomnHpgs) +
g L
+961V3 (o~ HaroRER) + 5o~ [BrewOne — 59mn(Bre)’] +
1 1
+ﬁuztp'3“(tr FMPF§ - IQ‘MN tr FzPQ) -

1 1
-—Enztp_aﬂ[igu,\r(.ﬁzmﬂ - 4R}Q + B*) — 2RRyn +
+4RupRY + 4RupngR™Y — 2RIP° Rupos) + w*Tuw (4)
I e B (5)
DM((PSﬁFMP) + QES(P—NGFMNHHNP) =0, (6)
8V M) + 60~ (Omep) + 6x*e~ P Hiynp + (7

- 1
+xp m[ﬁ"’ Fiyn + (Riynpg — 4Bun + B =0.
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Let us consider the ten-dimensional manifold

MUP=RxMixK, 8)
where M} = 5%, R®, I? for k = +1,0,—1, respectively, and K is the Calaby-Yau
manifold, i.e. the compact, complex three-dimensional Kihler Ricci-flat manifold
with the SU(3) holonomy group.

Let the energy-momentum tenoor be
T = Tunde™ @ dz" = p(t)dt ® dt + palt)a3(t)g™ + pe(t)as()e'? ,  (9)
where g{* and ¢'®) are metrics on My and K, p(t) is an energy density in a three-
space, ps(f) and pg(t) are pressures corresponding to Mj and K.

The system {2.1.4)-(2.1.7) on the manifold (2.1.8) with the source (2.1.9)
and the following ansatz:

910 = —dt @ dt + a3t} + af(t)g® (10)
H=0, (11)
p= 'P(t) ) (12)
A = ad(7 (&®)) (13)

leads to a cosmology model, which we call the “Friedman-Calaby-Yau” (FCY) coe-
mological model. In (2.1.13) w(® is the spin connection on K corresponding to the
basis e/®*, which diagonalizes ¢!®); 7: SO(6) — ¢ is the enclosure of the Lie algebra
S0{(6) (in the case g = ey @ €4, 7 may be defined, for example, with the aid of the
decomposition [23]: es = SO(6) @ Vi). It follows from (2.1.13) that

F = ad{ (0®)), (2.1.13a)

where % = dw®) + w®) A w®. From (2.1.13) and the trace identity (which is not
difficult to prove)

sctr{ed(r(X))ad(? (Y))) = r(XY) (19)

for all X,Y € SO(6), we have
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L ! 29800 1 1A du®) = o®
way = A tr(CAAF + LANdA) = tr(Z®@ A QO 1 10O A do®) = ul® . (15)
30 3 3 3 3
In the basis ("4} = (dt, a3(t)e®), agi)e(®)), where £!®)° is the basis on M
diagonalizing ¢®), it is easy to check that
war = W) +wi3 + £, (16)
where dfs = 0 and w{) = tr{w® AN - JwI AW AW, ™ is the spin connection
on M} corresponding to ¢®, From (2.1.2), (2.1.15) and {2.1.16} we have
H=dB+uJ+fs. (17)
It follows from {2.1.17) and dol? = df; = 0 that for every domain 1 C M'® with
H3(), R} = 0 there is some B such that H = 0.

The spin connection w'® on K obeys the identity
D (WOJ0EO™ = ¢, ' (18)

In (2.1.18) Duu(w) = Vi + [wWm,.]- The identity {2.1.18) is equivalent to
VO gloman _ g
and is valid for any Kahler Ricci-flat manifold [26]. Equation (2.1.6) is satisfied

identically due to (2.1.18), (2.1.10)-(2.1.13) and {2.1.138) (Dy = De(A) = Vi +
[An,-]); (2.1.5) is satisfied owing to (2.1.11).

Equations {2.1.4) and {2.1.7) in the ansatz (2.1.10)~(2.1.13) may be rewritten
in the following manner:

3a3*(k+ a3) = (9/16)p2 ¢" +a7p + As, (2.1.40)
a3 (k+ &2 +2a3 d3) = —(9/16)p~ ¢* —x’ps + Bs , (2.1.40)
a3 (k+ & +ay ds) = —(3/16)p~2 ¥ —(1/3)ps +

2%9™*a3 Gy (k+ &3) + G, (2.1.4c)

@ -0 19" 43037 3% —4x2p a73 Gy (k+ 62) + De =0 (2.1.7a)
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In (2.1.4a)-(2.1.4c), (2.1.7a) Ag = Bs = Cs = g = 0 when aq4(t) = const. Equations
(2.1.4a)-(2.1. 4c} and (2.1.7a) are obtained from (2.1.4} and {2.1.7) using the Ricci
flatness of K and the equality

R}e} . R(ﬁ)ﬂr’mﬂx %t!‘ Fm“F"g(s)"‘"g{s)"" ,

which follows from (2.1.13a), (2.1.14) and the relation

RO = O

It follows from (2.1.4)-(2.1.7) that
InT*¥ = 0. (19.a)
Relation (2.1.19a) in the substitution of (2.1.9}, (2.1.10) is equivalent to
? +3a37 d3 (p+ pa) + 605" ds (p+pe) =0 . (19.b)

In order to close system (2.1.4a)-(2.1.4c), (2.1.7a) we add two equations of state of
the ten-dimensional matter:

Fi(t; p,p3,ps) =0, i=1,2. (20)

It is naturally to demand that for an ordinary matter
p>0, 320 ' (21)

Suppose that there is a solution of (2.1.4a)-(2.1.4c), (2.1.7a) with a4(t) =
conasl,

Case I: p(t) = const for all £. In this case it follows from (2.1.7a) that

da(k+ a3)=0. (22)

But from (2.1.4a) and (2.1.21) we get
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E+d3>0. (23)

Then we find from (2.1.22) and (2.1.23) that d; = 0 and, using (2.1.4b) and (2.1.-21),
we get the inequality

k+a} <o,

which is in contradiction with (2.1.23).

Case 2 ¢(lg) # 0 for some {y. From continuity of % {t) it follows that ¥ (t) # 0 at
some interval (&,)) 3 to. Differentiating (2.1.4a) we get

—6a3% dg (k+ a3) + 6037 a3 83— (9/8)p 2 @ (P—o™ ¢) =KD . (24)

The subtraction of (2.1.4b) from (2.1.4a) leads to

2a3%(k+ & —asia) — (9/8)p™ ¥"= k¥(p +ps) . (25)

Multiplying (2.1.25) on 3a5' &3, adding the result to (2.1.24) and using (2.1.19b)

we obtain

~(9/8)p™2 # (p— ¢~ ¥ +3a31 d3¥) =0 . (26)

At the interval (a,b), @ () # 0, so at this interval
G- ¢ 1303 ay=0.
This equality and (2.1.7a) result in the relationship (2.1.22) for all

t € (a,b). Repeating the subsequent arguments of case 1 we come to a contra-
diction.

Thus in the FCY cosmology the solution of the equations of motion with
ag(t) = const does not exist. But

G = const a;°
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(it follows from (2.1.1)). So we prove that the time variation & is an unavoidable
one in 10-dimensional cosmology of the superstring origin [27]. Of course, in other
models we may find solutions with ain(t) # const (zee below).

If we do not apply conditions (2.1.21) then we may obtain the result ag =
const. These cases are:

lp=const, az=const, pg=const, p3=0, p=0 k=0,
2¢=consl, pp=ps=p=90, k=-1, aa=t+c,
3g#comat, p<0, pa<0, pe<O.

We see that all these variants are unreasonable in the modern epoch from
observational point of view.

2 Solutions with Perfect Fluid in (4+N)-Dimen_
sional Cosmology [28]

Support for time variations of fundamental physical constantes especially of the grav-
itational conatant G comes from many modern theoretical schemes: unification the-
oties, modified theories of gravitation, e.g., scalar-tensor theories, etc. [1]. Corre-
sponding experimental data on G are still controversial. Evidently, more tests of
G variations are needed, both astronomical and laboratory ones. Much is expected
from joint missions of space crafts to Mars in 1994.

As we saw multidimensional cosmological models [27] also provide a possi-
bility of time variation of G. In these models G is not a fundamental constant since
it depends on the internal space scale. Ita time variation leads to varying (.

When the contribution to the gravitational field equations from the Gauss-
Bonnet term (see [25]) is negligible compared with that from the Einstein one, then
gravity is governed by the multidimensional Einstein equations and the cosmolegical
problems are reduced to ordinary 4-dimensional equations with a contribution from
a Ricci-flat internal apace.
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We consider here a more general problem, namely a (4 4+ N)-dimensional
cosmology with an jsotropic 3-space and an atbitrary Ricci-flat internal space. The
Einstein equations provide a relation between G /G and other cosmological param-
eters. In particular, for a spatially flat universe {k = Q) the present observational
upper bounds on ¢ /G taken in the form

16 /G | 1107 (371)

lead to the following bounds upon the density parameter f:

0850512,

Some (4 + N)-dimensional theory is considered in an epoch when all the
higher corrections to the action of gravity are megligible. It is described by the
standard expression

Sy =5 j Vo /gR 1)

where x? is the fundamental gravitational constant. Then the gravitational field

equations are
T
M _ _ 2pM _ oM
Rp = —«*(Tp PN+2)s (2)

where T is a (4 + N)-dimensional energy-momentum tensor,
T=TY,M,P=0,..,N+3. For the (4 + N)-dimensional manifold we assume the
structure

MY = R x M x KV, (3)
where M7 is a  3-dimensional space of comstant curvature,

M} = 8% B3 L3 for k = +1,0,~1, respectively, and K™ is a N-dimensional
compact Ricci-flat Riemann manifold. The metric is taken in the form

gundaMdz? = di* — aX(8)gf(2*)da’dr’ — BP(t)gN)(y")dymdy" (4)
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wheret,§,k=1,2,% m,n,p=4,..,N+3; gg), N} a(t) and b(t) are, respectively,
the metrics and scale factors for MJ and K¥. For T} we adopt the expression

(TM) = diag(p(t), —ps(1)6}, ~pn(1)6}) - (5)

Under these assumptions the Einstein equations (2.2.2) take the form

3 Nb x3
T-|-T_.N_—_‘l_—-él-*(.N'l'1)!’_3333_"\(pﬂi']1 (6)
2% @& E N &b x?

o2 & a T m[p (V= L)ps = Nowl, ®

-3

b b
3+(N—1)§+

3ib_ o

el m[ﬂ —3ps + 2pn). (8)

The 4-dimensional density is

P9t = [ d¥y /g r () = s (), ®)

where we have normalized the factor b(t) by putting

Lﬂy@:l.

On the other hand, to get the 4-dimensional gravity equations one should put
8xG(1)pW(t) = x%p(t). Consequently, the effective 4-dimensional gravitational
“constant” (¥(t) is defined by

BxG{t) = x*~N(t) (10)

whence itz time variation is expressed as

GG =~Nb/b (1)
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Some inferences concerning the observational cosmological parameters can
be extracted just from the equations without solving them. Indeed, let us define
the Hubble parameter H, the density parameter {} and the deceleration parameter
g referring to a fixed instant ¢, in the usual way

H=ala, Q=8xGoW/3H*=r?pf3H?, ¢q=—-aifd . (12)

Besides, instead of {7 let us introduce the dimensionless parameter

9=CGJGH=—Nah/ab. (13)

Then, excluding b from (2.2.6) and (2.2.8) we get
N-1

s 9 —9t4a Anyit=10 (14)
with
Ay = ——(2N +14+3(1— N)vs + 3Now]
N.v—N+2 3 Nl
where

va=pslp, wvn=pnfp, p>0.

If g << 1 and §2 << 1, then either g is also small and equals

g=q— AN,vQ (15)

or (if N > 1) it is comparatively large and is described by another root of the
quadratic equation (2.2.14), namely g = 3N/(N — 1}. Note that (2.2.15) for ¥ = 6,
vy = vg = 0 (30 that Ax,. = 13/8) coincides with the corresponding relation of Wu
and Wang [25] obtained for large times in case & = —1.

If ¥ = 0, then in addition to (2.2.14), one can obtain a separate relation
between g and {3, namely,
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N-1
—N—g*—g+1—n_o (16)

(this follows from the Einstein equation £} —~ R = —#?T{, which is certainly a
linear combination of (2.2.8)-(2.2.10)). Furthermore, excludmg {1 from (2.2.14) and
(2.2.16), we get

N-1
W(AN.y —2)93 +(1 —Any)g+ Anp—g=0. (17)

The present observational upper bound on g is
lgl1<0.2 (18)

if we take in accord with [13] | /G |© 110" (y!) and H R 510" (y ') =
50(km/s.Mpc). Using (2.2.16) and (2.2.18) we get the crude estimate

0850512 (19)

independent of N. In the case of dustlike matter (v, = vy = 0) (2.2.17) and (2.2.18)
vield the following estimates on ¢ for N = 1,6, 0o, respectively:

g=1, 15542175, 185¢%22. (20)

The above relations refer to a fixed instant, e.g., the present epoch. To
answer questions concerning model evolution, it is helpfu! to solve the field equations,
Here we consider the general solution of (2.2.6)-(2.2.10) for the case k =p3 = vy =0
{dustlike matter)!. The solution is

a(t)= Ai*(t+T)°,

{ sty = B+ TY, (21)
o(t) AN +2){sH(N+ 3T +T),

1 Equations {2.2.6)-(2.2.10) can be solved exactly st least in the following cases: i} & = 0,25 and

vy axe arbitrary constants. ii) k = 0,%1; 1 = 1; vy is an arbitrary constant. iii) & = 0,£1;2vy =
31y — 1; vy is an arbitrary constant.
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where A > 0, B > 0, T > { are constants, 0 > £ > oo, and

o

{;} N+3(:|:3Nr+1), {H} N+3(:F3sr+l)

= \/(N +2)/3N,s = 1. (Equation (2.2.21) is the general solution of (2.2.6)-
- (2.2.8) up to the choice of a direction and a reference point of time). Solutions like

(2.2.21) were first considered in [29].

Time dependences of a and b for the case 7' > } and N > 1 are plotted in
fig. 1,2. One sees that the cases s = +1 and s = —1 are highly different.

For H and £} solutions (2.2.21) give

a, 8
H=t+isT 22)
and
AN+ 2t +T)
2= N +3)[a(t+T)+ 82 (23)

It is easily checked that for s = —1 the density parameter on the expansion
stage (a> 0) is {t > N, = (N +2){N +3)/6 > 2. In the case T = 0 which is common
for the branches s = 41 and s = —1,{} = f},. These cases are unacceptable due to
(2.2.19). See fig. 3.

So let us discuss the remaining branch s = +1, T > 0. The parameter
{}(t) monotonically increases from 0 to ), while the product H(¢)t monotonically

decreases from (\/N(N +2)/3+1)/(N+3) to 2/(N+3)if N > 1, and H(t)t = 1/2
if N = 1. For the parameters ¢ and g we have

_ lofa—1)(t + T)* + 20B(t + T)t + B(8 - 1)¢*}
[t + T) + pt?

(24)

and
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#t+T)+ Pt

= NE+D)+p

(25)

So ¢ monotonically increases from ({/3N(N + 2)— N —2)/(N ~1) to 3(N +1) when
N > 1 and ¢ = 1 for N = 1(g > 0). On the other hand, g monotonically decreases
from 6N/(3N +/3N(N + 2)) to —N. (This follows from (2.2.24) and (2.2.25)). At

the moment ¢ = t = 1(/3(N/2)/N — )T weget @ =1,¢ = (2N + 1)/(N +2} and
g=0

Consequently, the model based on solution (2.2.21) with s = +1, T > 0
may be considered as one of the candidates for a realistic cosmological model in the
dust-dominated era. Besides, this model has also one more attractive feature. The
scale factor of the internal space has a minimal value (when it is constant and so
the effective gravitational constant is alse constant.

3 Perfect-Fluid Type Solution in Multidimen-
sional Multicomponent Cosmology [30]

Here we consider (1+ No+ ... + N, }-dimensional cosmology (n, No, ..., N, € ) with
n + 1 Ricci-flat spaces. For the “perfect-fluid” matter with the density p > 0 and
the pressures

P = (1 - hv)ﬂ H (1)

where k, are constants (v = 0, ..., ), satisfying
' A(R) #0 (2}

(with A{A) defined in (2.3.10}), an exact solution of the Einstein equations is ob-
tained. Note that the n = 1 case was previously considered in ref. [31] for all 4.,
=01

Let us consider the manifold
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M=RXMOX...M“, (3)

with the metric

n
g=-e"0dt@dt + 3 Uy, , (4)
w=0

where n € A and M, is an N,-dimensional Ricci-flat manifold with the metric
9> ¥ = 0,...,n. For the energy-momentum tensor we adopt the expression in the
“perfect-fluid” form

(Tg") = diag(_P(t)$P0(t)6::$ ...,p“(t)ﬁk:) s (5)

where k,,£, =0, ..., N,; p > 0 and the equations of state (2.3.1) are assumed.

We put 7 = 7.0 _ N.A. in (2.3.4) (the harmonic time is used). Then the
Einstein equations RY — 264 R = k*T} for the metric (2.3.4) on the manifold
(2.3.3) with the energy-momentum tensor (2.3.5) and the state equations (2.3.1)
have a rather simple form and are equivalent to the following system:

(VZ:_;N» 3.,)2 —gm Bl=2%p ezp (221\',&,) , (6)
By = Fpexp (221\(,&,) bu(h) (EN - 1) o, @

u=0,...,n; where p > 0, k? is the gravitational constant and

bo= Bu(R) = 5" Noby +hy (1 - f;;v) . )
=l v=0

Let us introduce new variables y,,:

Xo = gthvﬁu P Xi = bo(h)ﬂa - bl(k)ﬂﬂ B (9)
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i=1,...n, Egs. (2.3.9) may be written as x = S8, where the matrix § = §(h) is
implicitly defined in (2.3.9). A straightforward calculation gives

A = det S(k) = [b(R)]* 1A' (R) , (10}
where
A =Ah) = z“:b,(h)k,N,, (11)
p=0

and b, (k) are defined in (2.3.8). From eqs. (2.3.7) and {2.3.9) we have }; = 0 or
equivalently

Xi= C.’t + D.‘ + (12)
where C;, D; are constants, f = 1,..,n The conservation law
VmTM =0 gives

p=Aexp(Y N(h,—2)8.), (13)
v=0

A > 0 is a constant. In the non-exceptional case (2.3.2) considered here, the map
(2.3.9) may be inverted,

B=87"x. (14)

It may be checked that the matrix §-! = S-!(RY in (2.3.14) has the following
components:

_ b _ h;N; _ k
Sl:—A.—” SO:'I'__,A,’v SWI=E’
1 bhgNg L

S5 = e (Eh m> 1

- z 1
55" = | 22 Nuhuby Yk (15)
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n>1and S5t = Noho/A' forn =14, =1,...,n.
The quadratic form in the left-hand side of eq. (2.3.6) may be expressed as

S K B,8,=3 K XX, (16)
w=0 u=Q

where K = (K,,) = (N,N, — N,8,,) and
K =(5YKks? an

Calculations give for (2.3.17)

Ko = i: (i:Nv"l) + Rﬂ-’=0s
A vzl
K.-J- = % NiN; — Nii; + % (1 - gNy) h.‘.N.‘flej] ’ (18)

n > 1 and Ky = —NoM, /A’ for » = 1;i,§ = 1,...,n. Then from (2.3.2), (2.3.6),
(2.3.12), {2.3.13), (2.3.16) and (2.3.18) it follows that

Xo=C + D ezp(xo), xo# const (19)

(the assumption xo = const leads to A(h) = ), where

C oA (.% cikijcj) (gm - 1) "

D =244 (gm - 1) . (20)

The system of eqs. (2.3.6) and {2.3.7) is equivalent to the system of egs.
{2.3.12), (2.3.13) and (2.3.19) (this is not difficult to prove). Sclving (2.3.19) we get

xo = n{C/D SWzVT(E - )]}, A,C>0,
=M4/Dt-1)), A >0,C=0,
= ta{~C/D H[VEE - )]}, A'<0,C>0, 1)
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where i, is a constant. Note that the quadratic form in (2.3.20)
C = C(C;) is positively defined if A’ > 0 and has the signature (+,—,...,—) for
A’ < 0. This follows from (2.3.18), (2.3.20) and from the fact that the matrix K
(and hence K) has the signature (+,—, ..., —}. The latter follows from the relations

n n n " 1/2 »
Z Klﬁvﬁﬂﬁvn"‘g_zz? vZ = [(;Nv_l)lsz ENvﬁw
v=!l =0

=0 =1
n n /3
5= [N.'-1/ ( _E Nv) (EN,)]
x 3 No(By - Bim). (22)

¢ = 1,..,n. So the solution obtained here is given by egs. (2.3.4) and (2.3.13)
with v = ¥ N8, and f = (8,) = 5y, where 571 is defined in (2.3.15) and
X = (x,) has the components {2.3.12} and (2.3.21) with C and D defined in (2.3.20).
The integration constants A > 0,fy and I} are arbitrary, the constants C; are
arbitrary, when A’ > 0, and obey the restriction C' = C(C;) > 0 (see (2.3.20)), if
A'<0,i=1,...,n (A’ is defined in (2.3.11)).

To illustrate the general solution let us consider the dust case: &, = 1,
v = 0,..,n. In this case the solution in the proper-time parametrization with
0 < 7 < 400 has the following form,

g= —dr ® dr + gdi(f)g{v)u
a, = A[r(r + T)[Y Zoma (s /(7 + T)}*,
polr)=2 (g N, - 1) / (g N.,) Br(r+T), (23)

where A, > 0, T > 0 are constants and a, are constants, satiefying the constraints

..)::o Ny, =0, g_N,aﬁ —1- (,é N,) o (24)

1 §°
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v =0,..,n;n €N, (One may also consider the case n = oo in (2.3.23)). Note that
apecial cases of solution (2.3.23) were considered in ref. [20] (N = ... = N,, = 1)
and (n =2).

4 On Reduction of Multicomponent Cosmology
to Toda Lattice [35]

Toda lattice equations {32] occur in many areas of physics and in gravitation as
well [33,34]. Gibbons and Maeda [34] suggested a reduction of a multidimensional
cosmology with two spaces of conatant curvature to an open Toda lattice. Here we
try to apply their approach to n spaces.

Let us briefly review the relations of ref. [34]. For the metric

g= —eo:plzi NGt @ dt + za: 2Bt gt

izl i=1

(the harmonic time is used; we slightly change the notations of ref. [34]) on the
maunifold

M:RXMl)(Mg,

where the manifold M;(dim M; = N;) with the metric ¢/ is the space of con-
stant curvature (i = 1,2). The vacuum Einstein equations reduce to the system of
Lagrange equations for the “Toda lattice”-type Lagrangian

3
T = %Z i qf + Zz: R (1)

i=1 =t
and two constraints

i#.ﬂi =0, 2

=1
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13 3 &
Felyoud -3t =0, @
i=l =l
In eqs. (2.4.1}-(2.4.3)

.M LM (1)
M="30N 1) T2 BTTeN )

(#: is scalar curvature of ¢*). The identification between two systems is reached by
the use of the following relations:

G -5 =26~ 25 Nifi, i=1,2. ®)

=l

Let us try to generalyse the relations (2.4.1)-(2.4.5) for n-component case,
n > 2. Consider the metric

g= —e? T N @ dt 4+ 3 Mgl (6)
i=1
on the manifold

M=RxMx..xM,, (7)

where n > 2, dimM; = N,, and (M;,¢'") is the space of constant curvature,
(i = 1,..,n). The vacuum FEinstein equations for the metric (2.4.6) on (2.4.7)
are equivalent to the system

hid n 2 " .

E= ZM ﬂ? - (EM ﬁ.) + one'”i“ Ly Mifi _ 0, (8)
=l =l i=l

0ie_m+2 E;-l Njﬂi + Mﬁ' — 0- (9)

where ¢ = 1,...,n. The system (2.4.9) i a Lagrange one; the corresponding La-
grangian is



n n 3 n »
L=YN.§ - (): N; Bj) SO M T aakio > (10)

i=1 i=1 paact
Here 8; = R{g"),i = 1,...,n. In the variables

ai=2-23 Nif; , (1)

i=1
the Lagrangian (2.4.10) may be rewritten as

- if:; & - m (): N a,) +3 560, (12)

i=1

In o-variables the system (2.4.9) is equivalent to the system of Lagrange equations
for {2.4.12) and (2.4.8) is equivalent to the constraint

EN a.) ﬁﬂ;e'“‘ =0. (2.4.8%)

=1 T 4 ,_1 N 1 (l:ll

Consider the hyperplane V, in A"+1:

n4l
V.={¢lge B™, Z;mq.-=0}. (13)
‘+

o = Giv1 — i i= 11 vary 12§ (14)
from the hyperplane V, (2.4.13) to B™ is a biective one if and only if

ndl
Y B #0. (15)

=1
If there exists a set g = (1, ..., fins1) satisfying (2.4.15) such that for all x € ¥,

3 2 n+l
EN&'(“‘?—I - ui)’ m EN (uu-i-l - ui)] = 2,221 F.f“,‘ ; (16)

=1
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then using (2.4.8%), (2.4.11), (2.4.12)-(2.4.14), it is not difficult to check that the
system (2.4.8)-(2.4.9) is equivalent to the system of Lagrange equations for

1!l+'l

E’"' q +Eﬂe" it (17)

l—'.l. =1

L=-

with two constraints: (2.4.13) and E = 0 (% is the energy functional for I).

Thus, we have a reduction of n-component cosmology to the Lagrange system
of “Toda lattice”-typ€ with two constraints when there exists the set of “masses”
satisfying (2.4.15)-(2.4.16). Unfortunately, this takes place only for n = 2. When
n > 2 there is no g = ({1, ..., bns1) satisfying (2.4.15)-(2.4.16). The outline of the
proof of this proposition is the following. Suppose that there exists g = (1, ..., fins1)
satisfying (2.4.15)-(2.4.16), then from (2.4.16) py # 0. If we put in (2.4.14) us =
v = Upgl and

u+1

= E Bitj 3 (18)

S

then we get from (2.4.14) the system of three equations on 4, 4; and B, = Pty

Solving it by the condition of (2.4.15), we find
N(Na—1) 1-N, Ny(N3-1)
202N +N-—-1) 7 2 ROy A 19

b =

where N3 = THIN; # 1; in the N3 = 1 case the solution is absent (note that

for N3 = 0 we have (2.4.4); this solution is unique). Putting vy = ... = tp41,

and u; from (2.4.18) in (2.4.16) we reduce (2.4.16) to the system of six equations
bl

on gy, pa,p3, 5, = p_pi. One of these equations (the equality on coeflicients at

i=4

uguy-terms) is the following

M (1+”)§?-(m[1"1(1+ =) - i)

x (ME 4 Ny) = 2ok, (20)

But eq. (2.4.20) is in contradiction with eq. (2.4.19). This contradiction proves our
proposition [35].
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Thus, it is impossible to generalize the Gibbons-Maeda reduction prescrip-
tion [34] for n-component case with n > 2, and therefore ancther approach (or some
modification of ref. [34] is needed for studying integrability of multicomponent cos-
mology.
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Chapter 13

Quantum Multidimensional
Cosmology

1 On Wheeler-De Witt Equation in Multidimen-
sional Cosmology [52]

Recently a growth of interest in investigations of Wheeler-De Witt (WDW) equation
[36-38] for multidimensional cosmology is denoted. (We should note that the Hartle
and Hawking paper [39] played an essential role in stimulating the new activity in
quantum cosmology. This fact is connected, on one side, with a great attention to
more-dimensional field theories: supergravity and superstrings, and, on the other
side, with the consideration of the quantum cosmological models, containing more
than one scale factors [40-42).

In quantum multidimensional cosmology we hope to find answers to the same
problems as in 4-dimensional one: singular state, creation of the Universe, cosmo-
logical term nature and value, possible “seeds” of structure formation, variations of
conatants etc,

Besides, quantum cosmological models may open the way to the “third quan-
tization” scheme which allows us to come from quantum mechanical approach to
the quantum field theory one.
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And, finally, quantum cosmological scheme is adequate mainly for the de-
scription of the Early Universe and as far as we believe in some unified theoties
of fundamental interactions then we had to use some multidimensional variants of
quantum cosmology.

There are some technical problema of quantum cosmology such as boundary
conditions and operator ordering.

It is well known that one of the main problems of quantization is the operator
ordering one. In [43-47] the operator ordering problem is solved in favour of the
following covariant form of WDW equation.

(-34161 +aRiG] + V) ¥ =0, (1)

where ¥ is the wave function of the Universe, ¢ is the metric on the superspace
[36], A[G] and R[G] are the Laplace-Beltrami operator and the scalar curvature,
respectively, constructed from G, V is a potential and a iz a constant. The term
aR[G] in (3.1.1) is responsible for an operator ordering ambiguity (and for renormal-
ization, when it i3 needed, as well). The Laplace-Beltrami form of WDW equation
was considered previously in {36,48].

Here we consider multidimensional cosmology with rn > 1 spaces of constant
curvature and obtain the WDW equation (3.1.1) with

a=(n—-2)/8(n-1). (2)

In this case eq. (3.1.1) is invariant under the conformal transformations of G and
¥, induced by the choice of gauge. Such form of WDW equation was discussed
earlier by Misner [48].". In our case the WDW equation has the simplest form in
the harmonic-time gauge (H), because in this gauge the minisuperspace metric Gy
ia flat. The metric Gy is diagonalized. It has a pseudo-Euclidean signature. In the
case of Ricci-flat spaces the WDW equation is reduced to the d’Alembert equation.
When n = 2 and one of the spaces is Ricci-flat, the WDW equation is reduced to
the Klein-Gordon one.

Let us consider the metric
15uch form of WDW equation was also discussed in [49)
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where the manifold M; with metric g(;) is a M;-dimensional compact space of constant
curvature. Substituting the metric (3.1.3) into Einstein’s action

1 1 -
=co [ dig Rt [ vz g
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where the second term is the standard Gibbons-Hawking boundary term [50], we
get

5= [aL | (5.2)
with ’
L=§e=p [—1+iN.-ﬂ" [i;Ns(ﬁj)’— iN:' ﬁ’) +
+ Lezp [—1 +Y N S teapl-2] (5.b)
i=1 =1

In (3.1.5b) 8; = Rlg(;] is the scalar curvature of g5}, = 1,...,n (usually, the metric
9y is normalized in such way that 8; = k;N;(N; — 1),k = 0,£1) and

p= (f[ V-') /<2,

i=1

where V; is the volume of M;. The system of Einstein’s equations for the metric
(3.1.3) on the manifold (3.1.4) is equivalent to the system of Lagrange equations for
L (3.1.5b).

The Lagrangian (3.1.5b)may be written in the following manner:

1= (EN-26, 68 -v), 6)



190
where

=l i=1

V= —%czp [2 i Njﬂj] iﬂ;ezp{—?ﬁ'] (N

is the potential, Gy = M6;; — N;N; are the components of the metric
G= G{jdﬂi ® df’ (8)

on the minisuperspace R™ and A is a Lagrange multiplier

N=e$p['y—z“:N;,8i .

=1

The Lagrangian (3.1.6) is a degenerate one. Its degeneracy is connected with an
invariance of the action under the gauge transformations

B0 = B, N~ N,

where k is an arbitrary reparametrization of time (k € Dif fR).
Let us fix the gauge in (3.1.6):
N = ezp[-2f], (9)
where f = f(#) is an arbitrary smooth function on the minisuperspace R". Such
a gauge we call the f-gauge. Then it is not difficult to check that the aystem of

Lagrange equations for L in the gauge (3.1.9) is equivalent to the system consisting
of the Lagrange equations for

v =Lclp 8'F -vi(p) (10)

and a constraint

E' =Ll BF +vi(s) =, (11)



9

where

G = exp2f1G, VI = exp|-2f]V.

Introducing generalized momenta x, = %gi = uGY, £ one may see that this system
is equivalent to the system of Hamiltonian equations for the Hamiltonian

H = f;(af)“(ﬁ)m,- +VI(8) (12)

with the constraint

H =0, ' (13)

where (G/)#(8) = ezp|—2£(8))G¥, and
o = 8 1

N 1-Y3, N (14

In (3.1.12) x; are the canonical conjugate momenta.

At a quantum level the constraint (3.1.13) transforms into the WDW equa-
tion

2 =, (15)

where W/ is the wave function in the f-gauge and A/ is an operator correspond-
ing to (3.1.12). Standard quantization procedure using change from =, to #, =
—13/08*(h = 1) leads to nonsingle-valued definition of A due to factor ordering
problem. As it was shown in [44] for quantization of a simple Lagrange system with

Lagrangian

t= %‘1,3(3) 38

and correspondingly with Hamiltonian
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1 o)
h = 7" (2)paps,

where 7 = 7ap(2)}dz® ® dz? i3 a metric in a configuration manifeld, in order to
ensure the independance of quantization procedure from the choice of coordinates
one should use the following form of the operator A:

b= —38(1) +aR(),

where A(y) and R(vy) are the Laplace operator and scalar curvature for metric 7.

Then, in our case the demand of covariance of H/[G’] under general co-
ordinate transformations in the minisuperspace leads to the following quantization
prescription:

Py 1 al
A = ——A|G)+ —R|G'] + V¢, 16
% G*] p {G'] (16)

where the constant o’ fixes the operator ordering ambiguity in the f-gauge.

1t is natural to claim that WDW equation (3.1.15) has gauge-covariant form,
i.e. the WDW equations (3.1.15) in f;-and- f;-gauges are equivalent for all f, and
f1- This takes place if and only if (3.1.15) is equivalent to

H¥ =0 an

for all f, where
A=48 If=0|'l' =w |s=0 -

We call the f-gauge with f = 0(y = %, N;#°) the harmonic-time gauge. (In this

=l

case Alg))p = 0, where p(t,y) = ). It is natural to put

¥ = explbf]¥, af =a, (18)

where b is a constant. Then, using (3.1.18), it is easy to prove that the equivalence
of (3.1.15) and (3.1.17) takes place only when
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b=1- (19)

[T

and 4 is given by (3.1.2) (n > 1). For these values of a and b

H = ezp[-2flexp[bf)H exzp[—bf].

The coeflicients a and b are the well-known ones in the conformally covariant theory
of a scalar field [51]. (Note that the n = 1 case ia an anomalous one: there is no b,
satisfying the gauge-covariance condition when n = 1).

So, we obtained the WDW equation in the conformally covariant (gauge
covariant) form. Note that in the n = 2 case a = 0 and ¥/ = ¥ for all f; the ¥
function is gauge invariant.

We may also consider the case n = 1 cosmology with homogeneous scalar

field. It is not difficult to show that in this case eq. (3.1.15) is equivalent to the
WDW equation considered in [42], where the ambiguity parameter [39] is p = 1.

Let us consider the harmonic-time gauge. In this gauge the metric Gy =
G! |y—0= G is flat and the WDW equation (3.1.15) becomes

) a a —_
( 2“0' a5ap )w_o, (20)

where G* and V are given by (3.1.14) and (3.1.7), respectively.
It is easy to show that

n-1
G=-d®d:"+ Y drf ® d7,

=t
where

{ z‘.J = [(E?'l ) /3 N; ] 3=t NiP, (21)

= [ (z:;..- N;) (Epaina 05)) " S N8 - 89,



1949

i=1,..,n—1. Thus G has a pseudo-Euclidean signature, z° is a “time” coordinate.

The WDW equation (3.1.20) iz an integrable one at in the following two

1) 4, = ... = 8, = 0. In coordinates (3.1.21) eq. (3.1.20) has d’Alembert’s
form
8 2 nel 8 T
[— (@) +§($)]w=o. (22)

Equation (3.1.22) describes, for example, the evolution of Bianchi type-1 Universe
(n=23, N; =1,i=1,2,3), which was studied in [42].

NDn =2 8, #0, #; = 0. In coordinates z = x(z(B}) where z = 2(B) is
given in (3.1.21) and z = z(z} is defined in the following manner:

% + 2! = explas(2” + 2Y))/ax,

where

Nay/
ag = (N + Na)V? [(N, FN - (F:) ’] ,

the WDW equation (3.1.20) takes a Klein-Gordon’s form
AN LAY
[- (@) + (Q) + #331} V=0, (23)

with masa m? = —u?8,. Here z% is a “time” coordinate. For &; > 0 we have a
tachyon. Equation (3.1.23) is relevant not only in the case of the Kaluza-Klein
cosmologies, but it describes, for example, the Bianchi type-Itl Universe [42] (¥, =
2, N2 =1, 6, < 0) and the Kantowski-Sachs Universe [11 42) (M, =2, N; =1, 8, >
0).

2

Here we obtained the WDW equation for multidimensional cosmology [52)].
The WDW equation has superspace covariant form and the demand of the covariance
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of the WDW equation under the gauge trausformations fixes the operator ordering
ambiguity parameter uniquely. The WDW equation has the simplest form in the
harmonic-time gauge, because in this gauge the minisuperspace metric Gy is flat.
The diagonalization of G’y shows that Gy has a pseudo-Euclidean signature. Two
integrable cases were considered. If all spaces are Ricci-flat the WDW equation is
reduced to the d’Alembert equation. When n = 2 and one of the spaces is Ricci-
flat the WDW equation is reduced to the Klein-Gordon one. The solution of these
equations may be found anywhere.

Let us introduce the scalar field into this medel: ¢ = @(t}.

Then, the total action will be § = § + S, with

Se = f dz | g ' [—%9“" pdop - ulp)| , | (24)

where u(yp) is a potential of a -field.

Putting (3.1.3) in (3.1.24) we obtain S, = fdt L, with

L,= e b ezp (—7 + E N8 ) —& pu(p)exp (7 + ngﬁu) . (25)

M

Combining (3.1.5) and (3.1.25) we get

L=L+1, N[—M’“(G,w BB +x o) - (V“‘" “e”"{zzN"ﬂy})]

with lapse function A defined earlier. So, we see that introduction of a scalar field
changes the minisuperspace, its metric and a scalar field potential in such a way:

R L B G G =G+ st @ do,
V oV =V + &2 uu(p)ezp (2 ) Nvﬂ') -

=0

Now, if we take f = f(8,¢) on a minisuperspace B**? we obtain in f-gauge:

By =
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where H is obtained from A7 substituting f — f and n —» n + L. In harmonic
(f = 0) gauge we have:

1 8 a 1 & _
-5 (" ora + 437) *"’] ¥=90

For all §; = 0, u = 0 (minimally coupled scalars field) this Eq. reduces to the
d’Alembert equation in coordinates (z*,x¢). For n =0, u =0, fp # 0, it leads to

a Klein-Gordon form:
2 5 \?
()3l
with y° 3 y' = [No/(No — 1)]'2ezp[f%(No — 1) £ 5], o° >[4 |-

Here we present the explicit form of the solution of WDW-Eq. for §; #
0, ; =0, : =2,..,n and a scalar field as a source of Einsteins eqs. [53].

The WDW equation in the harmonic time gauge v = ¥0, Nif* and the

minisuperspace metric 7 takes the form:

T 2
—2uHY = ( o & & + .u‘ale’w') ¥=0 (26

_37+W+'"+W+$

wherep = &  and @ is a minimally coupled massless scalar field, x4 = [I2, Vi/x2, Vi
is the volume of M;, x? ia the gravitational constant (without losing generality, we
can put g =1),

¢ =(M-1)/M

and we use the coordinate transformation

@’ = (N -1+ i:Niﬂ‘,

=2
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2 IN‘-I)”’ LI
1= (_L N;f,
k MXIaN; ,gz i

i (N = 1)N; )”’ N NAF B 2 _
"= (Arl E;"zl sz?:i+1 NJ‘. ngm(ﬂ, I3‘) 1=4y.,0 1.

It was shown in [52] that equation (3.1.26} is covariant under the coordinate {rans-
formation in the minisuperspace and conformal covariant under the conformal trans-
formation

G- =G
¥ o ¢ =y

1
UosUl=e®'y= ~5ths

The conformal minisuperspace metric G/, is the Milne-type one

d5'= e [~(d°P 4 (') + oo+ (@) = —(d D) + 2 1 an(d v (@)

i=1

where

'\‘i " .
= 1=1,.,n

The equation for the scalar field ¢ with the mass (=6 )2 in the Milne universe
(3.1.27) coincides with the WDW equation (3.1.15) and reduces to equation (3.1.26)
after the conformal transformation ¢ = [ezp(1 — n/2)gr°|¥. One may use this fact
to investigate the WDW equation since the theory of the scalar field in the Milne
universe is well known. Sclutions of the WDW equation (3.1.26) are obtained by
the separation of variables

¥ = $o(0%).. Uas (W) (28)

where

W(F) = e = ,..,n—-1
Ua(p) = %
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and ¥, satisfy the equation

dﬂ
(—W +6, 82"’0) Py = e¥q (29)

where ¢ and arbitrary numbers v; are related to each other

€= Ev:‘

il

The solutions of the equation {3.1.29) are

| 8 |
Cs‘ﬁh (geﬂ')

where € is the modified Bessel function I or K in the case & > 0, or the Bessel
function of the first, second or third kind in the case 6; < 0.

The solutions (3.1.28) are the eigenstates of the quantum-mechanical opera-
tors [1,s = —(3/8)3/dv', i=1,...,n—1; [« =1, = —(5/£)3/Bp with eigenvalues
(1/€)v,,, where £ = 1 for the Lorentzian spacetime region and £ = i for the Euclidean
one.

2 Exact Solutions for Models with Cosmological
Constant

1.In this and the next section we investigate several models of classical and quan-
tum multidimensional cosmology with the aim of finding exact solutions and their
applications to main problems of cosmology. We start from the study of the cos-
mological constant role in multidimensional scheme and find classical and quantum
solutiona of the wormhole and tunnelling types. The scalar field generalization of
the solutions is alsc obtained.

The quantum wormholes were defined by Hawking and Page [54] as solutions
of the Wheeler-DeWitt (WDW) equation with boundary conditions: (i) the wave
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function is exponentially damped for large spacial geometries; (ii) the wave function
is regular when the spatial geometry degenerates.

The given approach may be considered as a quantum extension of the clas-
sical wormhole paradigma (see, for example, {55-58] ). We remind that classical
wormholes usually are euclidean metrics that consist of two large regions joined by
a narrow throat (handle). They exist for special types of matter {55,59-64]. Macro-
scopic wormholes may ensure the evaporation of BH and the microscopic ones may
be used in solving the problem of the cosmological constant.

In {65,66] the quantum wormhole solutions were obtained for the cosmolog-
ical model with n (n > 1) spaces of constant curvature, when one of them has a
non-zero {positive) curvature and the space-time is minimally coupled with a mass-
less scalar field. We note, that when the scalar field is absent, the WDW-equation
for this model was proposed in [52)].

Here, we first consider the cosmologial model with = (n > 1) Ricci-flat
spaces and non-zero cosmological constant A. For A < 0 we found a family of
quantum wormhole solutions with a continuous spectrum similar to the approach
used in [67] and also in [65-66]. Solutions of the WDW equation in four dimensions
with A # 0 and conformal scalar field as well were first found in [38] and {37]
correspondingly (see also [1], where the solution with a minimally coupled scalar
field is also described). They also satisfy conditions [54] for quantum wormholes.
Formally even DeWitt’s solution with dust has a quantum wormhole behaviour
though it is rather questionable to apply solution with dust at small scales.

2. The model. We consider the cosmological model with the metric

g = —expl2y(})jdt @ dt + i ezp[2x'())g", {1)
=

on the manifold

M=RxM x...x M, (2)

where the manifold M; with the metric g is a Ricci-flat space of dimension N;, i.e.



Rmen.' [g{i)] =0, (3)
i=1,...,n; n>2 Weput

1=h=) Ne' o

i=1

in (3.2.1) (harmonic time is used). Using (3.2.3) and (3.2.4), we get the following
non-zero components of the Ricci-tensor for the metric (3.2.1)

Roo = =3 NfE' — b + (Y], )
Rmiﬂi = g{n.“iiezp(zxi - 2"’)! (6)

The action of the model is
! 3
S=33 ] d®zlg|} (B — 24) + S, ()
where «? is the fundamental gravitational constant, A is the cosmological constant,
D =14 Y%, N; is dimension of M and Sgy i3 the standard Gibbons-Hawking

boundary term [50]. It follows from (3.2.5), (3.2.6) that Einstein equations (corre-
sponding to the action (3.2.7))

1
Bpw — ERQMN = —Agmn (8)

for the metric (3.2.1) with 4 from (3.2.4) are equivalent to the following set of
equations

E= -;—G,‘j."':iij +V =0, (9)
W= — ﬂup(zh) =0, (10)

D=2
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i=1,...,n. In (3.29)
Gi; = Nibis — NiN; (11)

are the components of the minisuperspace metric,

V = Aezp(2h) (12)

is the potential. (We note, that Roo — 1 Rgoo + Agoo = —E.) Equations (3.2.10) are
equivalent to the Lagrange equations for the Lagrangian

L= %G.—_;i:'&f —V=uy, (13)

This equivalence follows from the relations

ddL 8L _ .,
E@—%—Gﬂ,u, (14)

¢t =1,...,n, and non-degeneracy of the minisuperspace metric [30,52].

Equations (3.2.9), (3.2.10) are easily solved [68,69]. After an appropriate re-
definition of the time variable the metric (3.2.1) may be represented in the following
form

g=—dr@dr+ E ai(r)g®, (15)
ai(r) = Ai [smh(f )/ Vel [tanh( )/\/'1"" (16)

where v = (D — 1)7?, A: # 0 are constants, ¢ = A/[A| = £1
T = [(D - 2)/2/A(D - ]2, a7

and the parameters o; satisfy the relations

i No; = O,i N,—(a,—)’ =1—-w (18)

i=1 i=1



Remark 1. In [30] Einstein equations

1
Bun — ERQMN = &' Tun (19)

for the metric (3.2.1) were integrated even for the »perfect-fluid” matter, when
pressures in all spaces are proportional to the density : p; = (1 — Ad)p, ki = const,
i=1,...,n, p > 0. We note that in the case by = 2,pi = —p the solution from
[30] coinsides with the solution (3.2.15)-(3.2.18) with the relations A = x%p > G and

p = A = const imposed.
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3. The WDW equation. The WDW equation for the model in harmonic
time gauge (3.2.4) reads as follows:

(3690; ~ w*V)¥ =0, (20)

where ¥ = ¥(z) is a wave function of the Universe, V is the potential (3.2.12) and
8; = 8/dz'. In (3.2.20)

Gime s (21)

are the cornponents of the matrix inverse to the matrix (Gy;) (3.2.11) and p =
T, Vi/«%,V; is the volume of M;. (We suppose that all V; < +oo; in other cases
the parameter y should be introduced "by hand” as a parameter of the theory.)

The WDW equation (3.2.20) can be easily deduced by a procedure similar to
that of Ref. [52]. Tt is also in an agreement with a general scheme of [49]. Without a
loss of generality we put & = 1 below. The minisuperspace metric G = G;dz* @ dz*
(3.2.11) was diagonalized in [30] (see also [52])

n—1

GC=-d@d"+ E @ dz*, (22)
=1
where
£ =g N, (23)
i=1
2 = {N/EZ]? Y Ny(2 -2, (24)
Feitl
t=1,...,n—1, where
¢=[(D~1)/(D - E =Y N, {25)

Jumi

(we remind that D =1+ T, N}).



The WDW equation (3.2.20) (¢ = 1) in variables (3.2.23), (3.2.24) takes the
following form

18 9

(= 6:0 3zo E A hr 2A exp(2q2)]¥ = 0. (26)

We are seeking the solution of (3.2.26) in the form

¥(z2} = exp(ipD)®(2"), (27

where 5= (P1,.. ., Pa—1) is & constant vector (generally from C*~1), # = (2',...,2"),
5z : piz'. The substitution of (3.2.27) into (3.2.26) gives

-z }’—2Aexp(292°)]‘1’ E® (28)

where E = g = T pf. Solving (3.2.28), we get

&(z°) = B,(V=2Ag'e?'), (29)

where v = ivE/q = i|pl/q, and B, = L, K, is modified Bessel function. We note,
that

n
v=expgs’ = H a:-v‘ (30)
i=1

is the volume scale factor (a; = e').

The general solution of Eq. (3.2.26) has the following form

W)= ¥ [ FCalF)e” Buye(v=2Aa ), (31)

B-*IK

where functions Cp (B = I, K} belong to an appropriate class.
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4. Quantum wormholes[68-69]. We restrict our consideration by real
values of p;. In this case £ > 0.

If A > 0 the wave function ¥ (3.2.27) is not exponentially damped, when
v — 00, i.e. the condition (i) is not satisfied. It oscillates and may be interpreted
as corresponding to the classical Lorentzian solution.

For A < 0, the wave function (3.2.27) is exponentially damped for large
v only, when B = K in (3.2.29). But in this case the function & oscillates an
infinite number of times, when v — 0. So, the condition (ii) is not satisfied. The
wave function describes the transition between Lorentzian and Euclidean regions.
(If E < 0, we have an analogous transition for A > 0 and the Euclidean region for
A<()

The functions

Vilz) = P Kyqy (V—2Rg "), (32)

may be used for constructing the quantum wormhole solution. Like in [65] we
consider the superpositions of singular solutions

. 1 f4ee ;
bale) = - [ dkbuae)e ™, (33)

where A € R and i is unit vector: (7)* =1 (7 € §"!). The calculation gives

v—2A
q

¥5,4(z) = ezp|—~——¢"*" cosh(} — ¢77)]. (34)

It is not difficult to verify that the formula (34) leads to solutions of the WDW
equation (3.2.26), satisfying the quantum wormholes boundary conditions.
These resulta can be easily generalized, when a massless scalar field mini-

mally coupled to gravity is included. In this case the action (3.2.7) is modified by
the substitution § — § + 5, where

So= [ dslglii-50" gty (3)

Then, the minisupermetric (3.2.22) of the model is changed:



G — G+ xldp @ dyp. (36)
If we define 2" = xp, then all formulas of this section are valid with the substitution
n—n+l

Remark 2. We also note that the the functions

¥z = e Hn () expi- ELE CT) @

where
1 -
2° = (2/4)'*(—20)"/* exp(g2°/2) cosh(5477),
2t = (2/)"/}(~2A)"" exp(g="/2) siah (59 5%),
m=0,1,..., are also the solutions of the WDW equation with the quantum worm-

hole boundary conditions. Solutions of such type were previously considered in
[54,65,66]. {They are called discrete spectrum quantum wormholes.)

2.1 Model with a Perfect Fluid [70]

Now we consider another cosmological model with the metric (3.2.1) on the manifold
{3.2.2), but in this case metrics g are Einstein spaces of constant curvature,

Ruini[g® =X g, i=1,.,n; n2>2 m

stress-cnergy tensor is taken in the form:

TH = 3 TH, @

a=1

where



Ty = diag(—p®(t), 5L, .., KDL,

a=1,..,mand

VT =9

with o = 1,...,m — 1 (when m = 1 relation (3.3.4} is absent}.
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@

(4)

So, the material content of the model is a multicomponent perfect fluid with
a conserved stress-energy tensor of each component. We remark that (3.3.4) is also
valid when o = m. It follows from V, T = 0 due to multidimensional Einstein

Equaitions:

- —6NR = &*TH.

Equations of state for each component are taken as
pi(t) = [1 - A2 (x()e"(t),
with

SV WL AT
B (x) = N 3x.-¢ ()

i =1,...,m, functions ${(x) are smooth,

a=1,..m.

Now, non null components of Ricci-tensor for metric (2.1) are the following;

Boo = — 3" Nl ¢ +(%Y),

=]

R = 530X+ (24 X (52 Nix'— 1)ezp(2’ — 1)

()

(6)

m

(8)

9

(10)



Here we also use the harmenic time gauge with y = ~o.

Using (3.2.4) and (3.3.9-10) Einstein equations for metric (3.2.1) and stress-
tensor (3.2.6-7) are equivalent to the following system:

26 XX +V =1, (1La)
N+ Pexp(2x' — 2n) =

&2 exp 2x°. E[p(a) (D—2)""(p' - Zle'Pga))], (11.b)
1=—1,..,n

Here D =1+ %, N, is the total dimension,
G.‘J' = Ngﬁ.‘,‘ - N,‘NJ‘

are components of a supermetric and

=—= EA‘N exp{—2x" +270) + &° E ' Yexp(2v)

|=ll a=1

is the potential.

Relations (3.3.4) may be written in the form

P YN (P 4 = 0 (12)
i=1

for a € {1,...,m} and due to {3.3.6)-(3.3.7) are easily integrated:
P(t) = Aaexp|—2Nix (1) + ¢ (x (1)), (13)

where A, = consi..

Using (3.3.13) it is easy to see that Eqs. (3.3.11b) are the Lagrange Eqs.
corresponding to the Lagrangian
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L= %G‘.-,- X' -v (14)

where the potential is of the form

V=V(x)= —%i XN, ezp[—2x* + 270(x)] + &* En:l Asezp(3“)(x)).  (15)

=1

Eq. (3.3.11a) plays the role of the constraint:

E-= %G.-,- X% 4V =0 (16)

We see that as usual the energy is equal to zero. In quantum approach the
multidimensional Wheeler-DeWitt equation in the harmonic gauge is as in {52]:

%(G‘faia,- + V¥ =0, (17)

where

G =

Z&
-+

(18)

(%)
!
2

and g* is a dimensional parameter.

For simplicity let us consider a particular case

=0, i=1l.,n m= I,hsl}(x) = h; = const.

We introduce the following notations:

U = N.‘h.‘, u‘ = G‘jﬂj, (19)
u’ = G‘ju;uj = Z“:N.'(fli)a + ﬁ(i Mht)z (20)
i=1 ‘

=1

Let u® < 0.
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Remark 1. In isotropic case h; = k : 4® = A?5=1 < 0. When k = 0 we
have p; = p that is a stiff equation of state. For A = 1 we get p; = 0, i.e. dust; for
h = 2 one obtains p; = —p - the case of the cosmological constant.

The minisupetspace metric Gi;dx ® dz' is diagonalized by the linear trans-
formation

2 = oz’ (21)

So,

neviv); = Gi; with n* = diag(—1,1,...,1) (22)
It is easy to check that for u* < 0 there exist a matrix (V;*) satisfying (3.3.22) which
has the form

of = w V-l (23)

Then in z-variables the Wheeler-DeWitt Eq. transformas to

(O, — 2Aezp(2¢z°)|¥ = 0, (24)
where
A= (xp)PAy, 29 =V—d, O, =9 — o 9 (25)
L k) x 3 naz&’
We search the solution of (3.3.24) as
U(z) = exp(ipz)$(2°) (26)

Here p = (p1y oy Pn)y 2= (zla ey zn_l)? pz= E::ll ptz

Substituting (3.3.26) into (3.3.24) we get

[ (5)" — 2% A eap(202°)| ¢ = 269 (27)



2m

where ¢ = Y17} p?.

Its solution is

#(2°) = B,(V—24¢4'e*),

v=1iv2/q=1|5|/q B, = L, K, are modified Bessel functions.
General solution of the WDW-equation has the form
U= T [d5C0n(0)e B,y (V_TAg ") (28)
I

B=K,

As in the previous case of A-term we also may single out solutions of the quantum
wormholes type:

V=24
2

Wy = eap [— e ch(r — g3m)| (29)

where 1 € g™}

Note: In a classical case the corresponding solution has the form (see also {39]):

= ([T )™ )dr @ dr + 3 a¥(r)g®,
iml

=1

where

ar) = A, (ak(r:/T))" (th(rr/ﬂ))“i,

r

with

r=yA/A|=VEL, £ =%t

and parameters o satisfy relations:
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hil .
Y wat =0,

=1

hid ;o 4
E G.-,-a‘or’ = —$. (30)

f,5=1

Now we change from the multidimensional cosmological solutions to multidimen-
sional spherically symmetric ones.
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Chapter 14

Classical and Quantum
Spherically-Symmetrical
Solutions in Multidimensional
Gravitation

In previous chapters we studied mainly cosmelogical solutions of multidimensional
models. Their basic feature was the prediction of variations of the effective grav-
itational constant with time. Ounly in very particular cases it is possible to have
G = const.

Here we give extentions of some spherically-symmetric solutions of GR to
the multidimensional case and see that extra dimensions lead to cardinal physical
effects — to deviations from the Newton and Coulomb laws, to variations of the
effective gravitational constant with range [72,73}.

Scalar and electromagnetic fields and also their interaction will be studied
within these models. We analyse the stability properties of obtained exact solutions
and show that only multidimensional BH solutions are stable,

Quantum analogues of these solutions are also obtained, wormhole solutions
are singled out. So, we shall see that there are several manifestations of extra
dimensions properties which in principle may be tested in our 4-dimensional space-
time,
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1 Generalized Schwarzschild Solution in Multi-
dimensional Gravitation

Similar methods used in the previous section may be used also to obtain exact
solutions in a spherically symmetrical case when all the internal spaces are Ricci-
flat.

So, the problem is to find solutions for the metric of the form

g= —™dt @dt + e* IR Q dR +

+ *Polulgn? + Z g2hilw) 96) . (1)
i=1 .
on the manifold
M=RxBxS*xM x-- xM,, (2)

satisfying vacuum Einstein Eqs., where M; are Ricci-flat manifolds of dimension N;
with metrics g(;), £ = 1,...,n,d0? is a canonical metric on 52, u is a radial-type
variable connected with r by the relation r = ¢®). Denote vy = f_,, N_, = 1,
No =2. Let a = ap = X)__, 8, N, (u is a harmonic radial variable). Then Einstein
Eqs. Ryn =0 will be (4’ = £A):

n

2 (=8, + af, — (B7IN, =0,

r=—1
By = e, ®)

Solving (4.1.3) in variables z = £y — ap we get:

}‘3!'=A|'E+-Di! i=—1,l,---,ﬂ.
Bo=—tn f — S (A& +D)N,, 4)
w0

ap = —2n f — E(Avﬁ‘{' Dv)Nv;
D
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where
(VB
s { 2 220 .

In (4.1.4) ¥ = £(u + up}, € = £1, vy, A;, D; are arbitrary constants, i = —1,1,---,n.
B is defined by

2B = (Z A,N..) +Y N A2 (6)
V0 VO

(3_ means summation over v : ¥ = —1,1,- - ,n}. If we redenote constants
V0

G = emi’ ai\/.§= —A‘-‘ t= 1,--.,33;
Caep-l’ ‘“/_=_A-11 ) (7)

L=2/B (— 3 D.,N,)
vy

and introduce a new variable R:

= _Evion"”" { l—c"‘g ? B>0
R=e¢ X 175, B=0 (8)

then (4.1.1) and (4.1.4) will give more familiar form of a spherically symmetric
metric:

FAL L _“"E:-: aN;
9——c"'dt®dt(l—§ +dR®dR(1—E) +
l—o—E" L a; N n &
+d*R? (1 - £) IR P (1 - £) ; (9}
R & F

R > L, where constants L > 0,c,¢1,- -+, ¢, > 0 are arbitrary and g, a,, - - -, a, obey
the relation:
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(a + Z“:a.-N.v)2 +a’+ ia?N.- =2 (10)

=1 =1

solution (4.1.10) for n = 1 was considered earlier in [74,75]. When L = 0 solution
(4.1.10) is trivial: 4-section is flat and g;) are constant. For L > 0 and

a-l=g=---=@a,=10 (11)

this solution is a sum of Schwarzachild solution with gravitational radius L and
tensor field %, cigy. If L > 0 then a > 0 corresponds to attraction and a < 0
describes repulsion.

Now let us study the problem of a horizon in this solution considering the
4-section of the metric. For L > 0 the horizon exists at R = L only when (4.1.11)
holds.

Really, for a light radial geodesic ds§ = 0 we have:

L)-a-;z:.i 3

c(t—tn)=f:odz(l—f—t (12)

Relation (4.1.10) is equivalent to the identity:

(a+-;-ia.-N.-)a=1—%zn:a?N;—%(ia.-N;)a. (13)

=1 el =1

If not all ¢; =0(i = 1,---,n) then due to (4.1.13}

1

22:;.-1\& |<1, (14)

=1

|a+

and so the integral (4.1.12) is convergent for R = L, i.e. radial light ray reaches

surface R = L at a finite time. If ¢y = -+ = ¢, = 0 then due to (4.1.10) a = 1.
When ¢ = 1,4y = --+ = a, metric g, coincides with the Schwarzschild solution
having a horizon at R = L. lf ¢ = 1,81 = -+ = @4 = 0 then integral {4.1.12)

is also finite for R = I and so the horizon is absent. 80, B = L is a horizon only
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when scale factors of internal spaces are constant and 4-section of the total metric
coincides with the Schwarzschild solution.

Solution (4.1.9) is easily generalized when a scalar field (minimaly coupled)
is taken into account.

Then the action of the model is

= %fdz lgtt (}% —g””t?pﬁoaylp) . (13)

which leads to equations of motion

Run = x> OupBng (16)
Ap=0, (a7

with A-Laplace operator for metric g.
Solution of Eq. (4.1.17) in u-coordinate is:

@=0u+D, (18)

where ¢ and D are constants. In r-coordinate we have
L

¢=%q tn (1~R)+D, (19)

where ¢ is a constant scalar charge, metric g is given by the same formula (4.1.9) and
instead of (4.1.10) we have the following relation between constants a, a;,- - - @n, ¢, &:

n 2 n
(a + Z a.'N.-) + a? + EG?Ni + Ezqz =2, (20)

=1 =1

It is easy to prove that if the scalar field is present the horizon for B = L exists only
when

q=31=---=an=0,8=1. (21)
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So, when a scalar field is present there is no BH solutions in multidimensional
gravitation,

One may get restrictions on constants, or properties of extra dimensions, if
we use the postnewtonian approximation and compare it with the known data from
experiments in the Solar system.

It is known that postnewtonian metric may be represented via PPN param-
eters as:

Goo = 1 — 2U 4 28U% 4 O(U*),

Foi =0| (22)
% = — "J'(l +27U +O(U2))) i!j = 1’2?3-

where 8 and 7 are taken from classical GR tests or Viking data analysis.

In order to compare our metric with (4.1.22) we make transformations to
isotropic coordinates in 4-section. Than the spacial part will be conformally-flat:
R=r(1+ Ljar).

dsfn = A(r)dt* — B(r)(dt* + r1d0?),

2o 3-20=12b
Alr) = (_-—; ;iﬁ:) , B(r) = (1+ L/ar)* (i ; iﬁ:) .

23

b=, a:l;

Expanding (4.1.23) into series over L/r at large r and comparing (4.1.22}
with (4.1.23) we get:

B=1, ¥=1+bfa, 2Gm =al. (24)

Using data of {13] on 7 we obtain:
ba=~y—1=(-0,7217) 10" (25)

It is seen that (4.1.25) is satisfed when a;,---,a, are rather small. For n = 1 we
have:
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' 1
a;Nl = (—0,7 + 1,7) . 10_3, arxl-— Eﬁ]Nl. (26)
Another generalization of the Schwarzschild solution may be obtained if one intro-
duces presures in internal dimensions (n = 1 for simplicity):
RY, — %6{'}13 = —k'TH, @n

Tg = diay(p,ﬁ, 8,0,,—p,--- - P)-

in the metric

ds? = e Wdy? — 2ol gy? _ PMa? _ Vg2, (28)

As it was shown in [16] BH may exist in this case with changing internal scale factors
and nonull pressures. The horizon takes place for ¥ — oo and is characterized by:

B — const, p — const, e* ~e ™™, ¥~ (29)
and constants k,m and g, are connected by:
(—Gm + Ny /2 + N(N + 2udfa = k. (30)
m is a total mass.
at infinity (u — 0):
ef ~ 1fu, e ~1ju?, p= mu, v —Gmu, u — 0. (31)

2 On Black Holes in Multidimensional Theory
[76]

In a previous section the Schwarzschild solution was generalized for the case of n
internal Ricci-flat spaces [77]. It was shown that a horizon in the four-dimensional
section of the metric exists only when the internal space scale factors are constant.
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Here we consider exact static, spherically aymmetric solutions of the Einstein equa-
tions in {2 + d + N, + --- + N,)}-dimensional gravity (d > 2) with a chain of »
Ricci-flat internal spaces. We show that as in the case d = 2 a horizon is absent in
all nontrivial cases. Finally, we consider a formal analog of the solution for the case

of p-adic numbers [79].

We consider the Finstein equations

Byn =0 (1)

on the D-dimensional manifold

M=M xM x--- M, (2)

where

dim M;=N;, D=2+d+}_N,;, i>0,
=1

M, is (2 + d)-dimensional space-time (d > 2) and M; are Ricci-flat manifolds with
the metrics g),i = 1,---n. We seek solutions of (4.2.1) such that M, is static,
spherically symmetric (O{d + 1}-symmetric), while all the scale factors exp (3;) of
the internal spaces M; depend on the radial coordinate u, i.e., the D-metric is

g = — ezp[2y(u)]dt @ dt + exp[2a{u)ldu B du
+ expl2B(}d0 + 3~ eepl28 ()t ©

where d{¥3 = go) is the standard 5% metric.

If we denote vy = B_1, Ny = 1 and § = fy, Ny = d and choose the harmonic
radial coordinate u such that & = 3_5__, A:V; then the Einstein equations (4.2.1)
can be written in the form

Ru= 3 (-6 + a8, - BN, =0,

i==~1
Roo = ezp(28_; — Za)ﬂ: =0,
Rt = giopue[d — 1 — B, exp(28, ~ 2a)] = 0.
Ry = —Q(i)mmsﬂ:cz?@ﬂi - 2“)! =1 ,n (4)
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This set of equations is easily solved, so that the metric g(5 after and appropriate
redefinition of the radial coordinate {(u =+ R = R(u)) may be written in the following
way,

g=—c1—¢(L/R)* "t @ dt
+[1 — e(L{ RSV letb+-DI0-NdR @ dR
+ [L - e(L/ Ry CH-VU-DR1d0;
+ Y 6l - e(L/R) g,

=1

£ =41, (5)

where L > 0,R > 0 and R > L for e = +1; L, ¢ # 0 and ¢; # 0 are constants,

b= f;a.-N.-, (6)

i=1
and the constants a,a;,- - -,ap satisfy the relation

(e 48 +({d—1) (a2 + z“: a?N;) =d. (7)

=1

In the case d =2 and £ = +1 this solution coincides with that of ref. [77].

Let us consider the (2 + d)-dimensional section of the metric (4.2.5). In the
case L = 0 the metric is flat, while for L > 0 and

g—l=a==a,=10 (8)
it coincides with the Tangherlini solution [80].
Now let ua prove that a horizon at R = L(L > 0) takes place only in the
case (4.2.8) for ¢ = +1. Indeed, for the light propagating along a radius from a
place with R = Ry towards the center the coordinate time interval is

t-to=1 [ a1~ (L/RYP (9)

where,



1 fa+b+d-2
I\—E(Td—-——a) (10)

Relation {4.2.7) is equivalent to the identity

(@+b/dy =1- d%_):;a;w,- - g(d— 1). (1)

Let us ¢ = +1. If some a;(i = 1,- -+, n) are nonzero, then by (4.2.11) a+ b+ /d < 1
and from (4.2.10) A > —1, hence, the integral ({4.2.9} converges at B = L. This
means that a radial light beam reaches the surface £ = L in a finite time interval,
i.e. it is not a horizon. When ¢; =0,¢=1,---,n, then a = +1. For the Tangherlini
case @ = +1 we have a horizon (A = -1}, and for 6 = —1 (A = 1/(d — 1)) the
horizon at B = L is absent. Evidently, for ¢ = —1 the horizon at B = L is absent
too. This completes the proof.

At present there is more interest in considering the physical models with
p-adic numbers [79] instead of real ones. This interest was stimulated mainly by
the pioneering works on p-adic strings [81,82). Recently a p-adic generalization of
the classical and quantum gravitational theory was defined [83] and some solutions
of the Einstein equationa were considered [83,84]. In this section we consider the
p-adic analog of the solution (4.2.5). Let us briefly recall the definition of p-adic
numbers [79,85]. Let p be a prime number. Any rational number a # 0 can be
represented in the form ¢ = p*m/n, where the integer numbers m and n are not
divisible by p. Then the p-adic norm is defined as follows: | 6 [,= p~*. This norm
is non-Archimedean: | a + b |,< maz({| a |;,]| b |,). The completion of @ with this
norm is the p-adic number field Q,. Any nonzero p-adic number a € Q, can be
uniquely represented as the series

a=p*ap+ap+ap® +--), (12)

whereag=1,---,p—1,and a;=0,---,p—1 for i > 0.

The definitiona of derivatives, manifold and tensor analysis in the p-adic case
are similar to those of the real case. The power p-adic function is defined as follows,

(1+2); = expp{aliog,(1 + )]}, (13)



where | 2 [;< 1 and | @ §p} 7 {p< §,. Hete §, = 1 for p # 2 and é; = 1. The definition
is correct, for the functions ezp, and log, are well defined on the disce {| = |,< §,}
and {| z — 1 |,< 1} respectively [79].

il

Let us consider the p-adic manifold
Qp x Qp x 5% x My x -+ M, (14)

where (5%, g()) is a space of constant curvature

Rf,u 9‘(#)9_5;) - 93’}9}”

and (M;, g(;)) are Ricci-flat manifolds.

For R 3 0 and
L gy in(1,1 =2 -1 15
|§|p < min(l, /lailp)’ 1= —&—1,""",R, ( )
with
_a4bt+d—2 _at+b-1
az———""—'l_d y @y =4, do——'—‘""'-'l_d N

the metric (4.2.5) on the manifold (4.2.14) is well defined. Then the Einstein equa-
tions for the metric (4.2.5), (4.2.15) on the manifold (4.2.14) are satisfied identically,
when the parameters a,ay,---,a, € @p obey the restriction(4.2.7).

This can be easily checked using the identity

[(1+2)°] = ol +2)°/(1 4 =),

| z |y, | @ [p| = |p<< 1 (the verification of (4.2.1) in the p-adic case is just the same as
in the real one).

In the d = 2 case this solution was considered earlier in ref. [84]. It was
pointed out that there is an infinite number or rational solutions of (4.2.7) in this
case. For example, we may consider the set [84)
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—2N k£ [B2N (M +2) - 1]

e A AT I

,a=0i>1,

In the p-adic case there exist pseudo-comstant functions ¢ = C(R) such that
C'(R) = 0 but C(R) is not identically constant [85). Such functions may be used
in generalization of well-known solutions of differential equations. In our case there
is also a possibility for the constants ¢,¢1,---,¢q and a, a4, -+, a, to be replaced by
the pseudo-constants (of course, the restriction {(4.2.15) should be preserved).

There is another possibility to generalize the solution (4.2.5). We may sup-
pose that the components of the metric gan belong to some extension of ¢,. It
may be the quadratic extension of @, or even {};, which is the completion of the
algebraic closure of (J; [79]. In this case the constants in (4.2.5) may belong to the
extension of Q,.

The solution (4.2.5) can be also generalized on scalar-vacuum and electro-
vacuum cases. The last generalization for d = 2 is considered in the next section.

3 On Charged Black Hole in Multidimensional
Theory [86]

Let us consider the action

1 1
S = jdpz\/:-; [WR - ZFMNFMN ' (1}

whete Fay = S Ay — OnAp is the strength of the electromagnetic field A, R is a
scalar curvature of the metric garndz™ ® dz™¥ and & is gravitational constant. The
field equations, corresponding to Eq. (4.3.1), are

TuFMN = ¢, (2)

Run — (1/2)gmn R = K [FunEgy — (1/4)gmnFpg FFO). (3)



Let us consider the D-dimensional manifold

M=M"x M x-- x My, (4)

where Mén is 4-dimensional space-time manifold, M; are Ricci-flat manifolds with
the metrics g(;) and

dmM;=N;,, D=4+ N, i=1,-,n

i=l

We are interested in static, spherically symmetric (O(3)-symmetric) solutions of Eqgs.
(4.3.2) and (4.3.3) on the manifold (4.3.4), and so we consider the following ansatz
for the metric

g= —e1dt @ dt + Lt VBl gy @ dy

+ 2l g0? 4 Y Milvlg (5)
i=1
and for A,
Ap = @(ﬂ), Ai= 9, i= 1,2,3. (6)

In Eq. (4.3.5), d? is the standard metric on §?, N_; = 1, No = 2 and u is a radial
variable.

From Eqs. (4.3.2), (4.3.5) and (4.3.6) we have

QO' = Qeiﬂ—i, (7)

where Q is a constant. Using Eqs. (4.3.5) and (4.3.7) we find that Eq. (4.3.3) is
equivalent to the following system of equations

e ) (®)
3 -+ B~ (B | Ny = Qi S, ©



1— g¥h=tagl = kQ2e’&+°ﬂ-l-’° (10)

Ak Qa P 1 _1....
ﬁl_k2_De L] ""“1$ 1y : (11)

where a = 30__, N, B,. Solving Eqs. (4.3.7)-(4.3.11), we obtain

9=~ filudt ® dt + (fi(u))/® 7 ) Mty @ du
+ (fn(u))”(a’mf,(u)e"E?_, Ni(Aw+Di) goy? (12)
+ i FHE-DY At D) i
i=1

and

o= k,lq(cip ;)mdh[(clg :)m(u-ul)]+cp,. a3y

In Eq. (4.3.12)

filu) = L/ QPR? [(C;D : 1f2 (u _ ul)] ,

Faw) = Ca/ab®[/C(u — ua)),

where D;,p,,u1,u2 and @ # 0 are arbitrary constants and the constants €y, C; and
A; obey the following relation

20, =Ch + (E N; A.) + g N; A2 {14)

i=1

For N; — 0,D — 4 we have the well-known Reissner-Nordstrom solution

g=—(1—-Lir+ Q¥ 2r*)dt @ dt
+(1— Lfr + BQ*2r) dr @ dr + rd03, (15)
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¢ =@Q/r+ Const. (16)

In our case (D > 4) the Coulomb law (4.3.16) is modified by the presence of internal
dimensions. The dependence of the potential ¢ on the radial vaniable r, where

2= f;“a_D)(u)f;(u)e_ZZ?-l Ni{Aut+Ds) gy an

(see Eq. (4.3.12)), may be found by substitution of u = u(r) from Eq. (4.3.13).

Note that the solution (4.3.12)-(4.3.13) may be generalized also on p-adic
and D =d+ %, N; (0{d — 1)-symmetric) cases.

4 Scalar-Electrovacuum Multidimensional Solu-
tions

Multidimensional gravity as an approach to field unification can be traced back to
the famous works of Kaluza and Klein [90,91]. Today’s increased interest to thia field
is largely stimulated by studies in superstring theories [92] whose field-theoretical
limit typically containe more than four dimensions; in such theories gravity is de-
scribed with reasonable accuracy by multidimensional Einstein equations. Studies of
their solutions can lead to predictions of direct observational manifestations of extra
dimensions. Thus, cosmological models predict variations of the gravitational con-
stant (7, so that observational constants imply certain limits on model parameters.
Another possible window to the multidimensional world is opened by analysis of
local effects which could be sensitive to spatial variations of extra-dimension param-
etera. This section discusses some effects of this sort, in particular, those connected
with electric charges of isolated bodies.

We consider exact, static, spherically symmetric rolutions of the Einstein-
Maxwell-acalar equations in (4 + Ny + - - - + N, )-dimensional gravity with a chain
of n Ricci-flat interal spaces [89]. Qur approach differs from that adopted in some
papers on multidimensional black holes in that any solutions, not only black-hole
ones, are sought. Consequently, the place of black holes (if any) in the whole set of
solutions, as well as the properties of all spherical configurations, become clearer.
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Basic equations. We consider the Einstein equations

Rjy = —«'[Tig - &3 T/(D - 2)] 1)

with the energy-momentum tensor (EMT) TH(M,N =1,---,D); T = TH) in the
D-dimensional manifold

f
M=M%xM x-xM,, dmM;=N; D=4+3 N, 2)

i=1

where M) is the ordinary space-time and M; are Ricci-flat manifolds with the
intervals daf,), i = 1,---,n. We seek solutions of (4.4.1) such that M is static,

spherically symmetric, while all the scale factors ¢ of the internal spaces M; depend
on the radial coordinates u, i.e., the D-metric ia

n
=1

ds} = e10)dt? — W gy? — P42 (3)

where d)* = d8* + sin? 8dip? is the standard 53 metric.

If we denote ¥ = f.1,N.; = 1,8 = $o, No = 2 and choose the harmonic
radial coordinate u such that

a= Y AN (4)

==1

the Ricci tensor components RY, can be written in the form

Ry = —¢™v;
Ry=—e 3" N8/ + 87 -8, 3, NiB}Ji

i=-1 J=—1

B=R=c¥-ecf, )
R:=0(.N> 3 p=0,---,3)
R, = st p]



where the indices a;(b;} refer to the internal subspace M;(M;).

The electromagnetic field Fayrnw = Sy ANy Ape with the Lagrangian Lo =
—(1/4)FMN Fyyn is assumed to be Coulomb-like: Ay = 83Ao(u). Then the D-
dimensional Maxwell equations Ay F¥M = 0 give:

F® = g/\/g = qe™*%, g = const(charge) {6)
g = |detgpn] = ezp(2a + 2 i N:58) = e*. {(n
i=—1

The corresponding EMT is
Tﬁ{m) = —FNFRu e+ i—&ﬁFPRFpn =

= @ diag(L,1,1,:-,~1) ®

Its trace is proportional to (D' — 4).

Besides, we admit existence of a minimally coupled scalar field ¢ (or even
a multiplet of such fields which would not make our task more difficult) with the
Lagrangian L, = ¢Vin/2. The field equation V¥V = 0 with = o(u) due to
(4.4.4) gives

@ =0, ¢ =c=const (scalar charge). 9

The scalar field EMT is

w Lo o 1. )
Tif = Pomup " — §6§,¢ Powp = 3¢ 2e? diag(l,—1,1,--+,1a). (10)

The general solution. With (4.4.5), (4.4.8) and (4.4.10) some combinations of the
Einstein equations with the EMT T3] = Tyf(.,,) + Thi(,) are easily solvable, namely

B+ A1 - T/(D=2)) = e[y — Q%M = 0; (11)



B+ (D-3Ri =™ +(D-3)]=0, i=1,--,n;

Gi+G=e™(a —f - ) =0

1 n
Gl +8T =—e P 4 - 3 S N+

f=al

-6

2
+%(‘_§IN‘;€;) -C*4 2%'2(328”:0

where

C = re/VZ Q= ng(D -3} (D -2V

(12)
(13)

(14)

(15)

and G = ~R6L /2 + R is the Einstein tensor; in (4.4.12) there is no summation
over g;. Equationa (4.4.11)-(4.4.13) form a set of (n + 2) equations for (n + 2)
variables A_; = 7,60 = 8, /1, - -, Bn while (4.4.14) is their first integral leading to

a relation among the emerging integration conatants. We obtain:

(4.4.11) = ™ = Qa(k,u +u;); h,u; = const,

(44.12) = By = ~9f(D - 3) + hau + Li;; ki, 1; = const;

(4.4.13) = 7 = s(k,u + wug); k,uy = const;

(4.4.14) — Esign k = 2%"_26 hosign h +

141 (B’ + EN.-h?)

i=1

where

and we have introduced the function

a~lginh az for a>0;
s(a,z) =4 z for a=0;

1

a~'sin az  for a<O.

(16)
(17)
(18)

(19)

(20)

@
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The constants u; and 1; are inessential; one can make them equal zero shifting the
origin of the coordinate u and rescaling the coordinates in the subspace M;. The
resulting form of the D-metric is

ot = Mt — om0t [ _dul L oal
D 8k, u) | $*(k,u)
D ST AR (22)

i=l

e = Qs(h,u+ ).

Combined with (4.4.6) and (4.4.9), (4.4.22) completely describes the static, spheri-
cally symmetric, multidimensional scalar-electrovacuum configuration. The solution
contains (n + 3) essential integration constants: the charges ¢ and c (or their “ge-
ometrized” versions ) and ('), the extra-dimension factors h; and the mass m which
can be related to A and Q:

Gm® = M* = Q¥+ k% sign h. (23)

where G is Newton’s gravitational constant. The constant & is determined by
(4.4.19) while u, is found from the requirement that the time ¢ should be the proper
time for an observer at rest at spatial infinity u = 0:

e = Qs(h,u) = 1. (24)
The factors e** = 1 at u = 0, so that the real physical scale of the extra dimensions
is hidden in ds?‘-).

Special cases. Let us point oul some spacial cases of our solution.

a) To “switch of” the scalar field and get a purely electrovacuum solution it is suf-
ficient just to remove the term C? in the constraint (4.4.19) for the constants.

b) K, instead of ¢, we “switch off” the electric field, i.e., put @ —+ 0, we obtain:
e " =Q s(h,u+u)—e™ (>0 (25)

leading to the generalized Schwarzachild solution described in [77]- To restore its
specific form given in [77] one should re-denote



ho Ay Rf(D-3)+hi— A (i=1,---,n). (26)

As in [T7], after the further substitution

1 2k ] a
u——-—ﬁln(l—f), Ay =—ka, Ai=—ka;(i=1,---,n) (27)

the metric is brought to the following convenient form:

5 = (1 — 2k/R)"dt® — (1 — 2k/Ry~*"*dR® + (1 — 2k/ R)R?dQ?)

- 'g(l — 2k/R)%ds(,; b= ‘%;N;ai. (28)
New constants a,ay,---, 6, and C satisfy the relation
(e +82+a®+) Nal +2C7 /K =2 (29)

i=1

If & = 0, then the 4 dimensional section of M, M4} (described by the firat
line in (4.4.28)) is flat while for k£ > 0 and

a—1l=a1=+-r=a,=10 (30)
it coincides with the Schwarzschild solution.

¢) In the general solution with @ # 0 one cannot “freeze” the extra dimensions, i.e.,
make B;(4) = const(i = 1,---,n) by a choice of integration conatants. Hence
the Reissner-Nordstrtém (RN) solution and its scalar generalization [93,94]
are obtained from (4.4.22) only when all the extra dimensions are eliminated
(n =0,D = 4). To get the familiar form of the RN solution corresponding to

k=h, hsign h=M?-Q?, (31)

one should just transform (4.4.22) to the curvature coordinates putting
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r =} Q1 s(A,u4 uy)/s(h,u). (32)

Properties of the Solution. Charged black holes. Our solution is
defined in the region from u = 0 to either u = 00 (if A > 0}, or 4 = e = x/ |
h | —ty (if & < 0). The value u = 0 corresponds to spatial infinity or the physical
space-time where the metric ds?; is asymptotically flat since

&= 1; e —oo; |f o1 - (33)

(the latter condition provides the proper radius-circumference relation for remote
ccordinate circles).

In the case A < 0 the value u = u,,,. corresponds to a central repulsive
singularity of RN type (¢f — 0, ¢” — 00), with an infinite electromagnetic field
and a finite scalar field. The extra dimensions are also singular, unless &, are chosen
specially to aveid this.

For A > 0 the limiting value of u,u = oo, corresponds to an attractive
apparent singularity (e? — 0) which can occur either at the centre (if ¢ -+ 0), or
at a certain sphere (if ¢ — r* < oo}, or in a “cavity” beyond a neck (if ¢ — oo
at 4 — oo), depending on the values of the integration constants. Indeed, near
4 = 0o, e? behaves like

exp{{h/(D - 3) — k — Blu} (34)
and can tend to any nonnegative value including infinity since B = ¥, N;A; can have
any value and either sign.

Let us find out whether the apparent singularity at ¥ = oo can be an event
horizon for the physical metric ds3. Recall that event horizons are invisible for
external static observers, hence we seek such configurations that the integral

= f e du (35)

expressing a light signal travel time, diverges at u = vo.



It is helpful to pass from k; to A; by (4.4.26), so that the relation (4.4.19)
among the constants takes the form

2k* =2C’+(F-h)’+h’+ij.-A§, F—.-Z“:N.-A.-, (36)

=1 i=1
or, equivalently,

(h— B2 = B = C* ~ B b~ (1/2) 3 NeA?. (37)

=1

On the other hand, when ¥ — o0,

e ~ exp[2u(h — B/2 — k)], (38)
so that the integral (4.4.36) diverges if k — B/2 > k. By (4.4.38) this is possible
only if

C=A=B=0=h=-hf(D-3); k=h (39)

Thus the scalar field is excluded while the extra dimensions do not become trivial.

By (4.4.40) the condition that e” has a finite limit at u = oo (see (4.4.35))
is fulfilled automatically.

With (4.4.40) and (4.4.23), using again the substitution (4.4.27) for u, one
obtains the following expression for our metric (4.4.22):

, _ (1-FR)a (l_l_M—k)’"-"[ldR’

= R

dap__(._.HMTﬂg_

—p + R0 + Edsf,.,] {40)
R =1

This expression generalizes the RN black-hole metric to space-times with
an arbitrary set of additional Ricci-flat spaces.

In case Q = 0, (4.4.41) turns into the Schwarzachild metric with trivial extra
dimensional since M = k. This confirms the conclusion [77] that Schwarzschild black
holes have no nontrivial multidimensional generalization (within our choice of dsjy).
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For D = 4 (4.4.41) is just the RN metric; it is brought to the usual curvature
coordinates by a mere shift R=r— M + k.

The extra-dimension scale factor in (4.4.41) is nonsingular and smoothley
D~
grows from 1 at K = co to (1 + %)31( * at the horizon R = 2k.

Concluding Remarks

It is of interest that the 2-parameter family of black holes was selected from
the (» + 3)-parameter family of solutions {4.4.6), (4.4.19), (4.4.22) by the single
requirement that the boundary u = oo should be invisible. The other essential
features of the resulting metric, namely, that the boundary is a sphere of finite
radius and that the extra dimensions are nontrivial but nonsingular, are obtained
automatically.

The black-hole solution (4.4.41) is a very special case of (4.4.22) (2 versus
(n + 3) parameters); the same is valid for black holes obtained under other assump-
tions. Thus, very strong arguments should be drawn in order to show that real
collapsing bodies can form black holes if a multidimensional theoty of gravity holds.

Among the observable local effects of extra dimensions there are standard
poat-Newtonian relativistic effects whose values can differ from those in general

relativity.

- Charged multidimensional solutions lead in general to the modification of
the Coulomb law. Really,

E =|E |= (FO'Fy)'/? = g |ea:p( Z“:N.-ﬁ.-) , (41)

i=1
which for large r may be written as

E= Irl[l_l(g ;M+)":Nh) (l,)l | (42)

For the BH case:

E_|"'|[1—1D 4(M+\/M”+Q’)+0(:—,)]. (43)
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So, we see that deviations from the Coulomb law depend on the number of dimen-
sions, total mass and charge of the system and also on the range.

5 Multidimensional Model with Interaction of
Scalar and Electromagnetic Fields. Stability
of Solutions [95]

Now we pass to a more complicated system of interacting fields which arise in a
field limit of superstring theories. We consider D-dimensional space-time Vp with a
chain of Ricci-flat spaces Mi(i = 1,---,n).

The Lagrangian of the system is:
L=RP 4 gMY ooy — e FMN Py )

and metric

ds}) =3, dz*dz" + ¥ e**)ds], (2)

=1

where ) is a coupling constant and §,, is a 4-metric Lagrangian (4.5.1) may be
transformed to 4-dimensional form from D-dimensional metric gy to 4-dimensional
metric §,,. Then scale factors a;(z) become scalar fields in V4. But it is more
convenient to use conformal transformations

T = &, T =3 Nia(e), 3)

after which in the anzatz:

¢ =(z*), Fu = w(T®); Fyn =0npu M,N >3

Lagrangian (4.5.1) is becoming as

7= RW 4 EE "D + 3 Nianon™ + p¥p,, — el tlav pabp (4)
¥
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where B corresponds to metric g,,. Metric g,, will be represented in a standard

spherically symmetric form:

ds? = g defde? = e¥dt? — e du® — e*PdNt.

(5)

We point out that static solutions is better to seek in a D-dimensional metric with

Lagrangian (4.5.1). Metric (4.5.4) is more adapted to stability studies.

Field-Eqgs. corresponding to Lagrangian (4.5.4) are:

20a; + 03 +eX tPépefp  — g,
Op + ael 3¢ pofF , = 0,

Va (ez +lap Fa,ﬁ‘) =0,
1
Gy + 35U + T NS} + S0} + Samepy _ g,

where (7}, is 4-dimensional Einstein tensor,

1
Su@) =" pu— 560700 ;
El = —2F"F,, + 65F"PF,4/2.

Here we also suppose that ¢ = p(u), A, = 62 Ao(t), Ou =0 and

a(u) = 28(u) + y(u).

(6)

M

®

(9

(10)

We remark that u is also harmonic in D-dimensional metric ?Ou = 0 due to (4.5.3),
(4.5.4) but not in the metric F,,. Solution of (4.5.8) with coordinate condition

(4.5.10) gives

F% = g ezp(—2a — Y ~2ay),q = const,

(11)
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and (4.5.9) leads to

Gl+Gl =47 ~ P =0,

klshku (k> 0),
e T =s(k,u)={ u {k = 0),
Elsinku (k> 0),

where k = const. From (4.5.6), (4.5.7) and (4.5.9) one gets:

1
a; = hiu — va_(w + ACw),

p= C—.Au‘ d 2AN+w,

2v = 2N, (w + ACu) + Bu,

with function w(u) defined by

e = @Qs(h,u +u;); h,us = const; Qalh,m)=1

and h, h; and C are constants of integration; other constants are defined by:

N=D-3=1+Y N; B=) N,

A+1+N(N+1)/N, Q@ =¢*/Ny, Ny = (N +1)/(2AN).

The final form of D-dimensional metric is:
CTUN-2Bu [ o2
Ak |[Ew) |

dsh = Fdt? - dﬂz] — e FIN Ee”“'"ds?,
i

where

¥ = {w + ACu)/A.

(12)

(13)

(14)

(18)

(16)

(17)

(18)

(19)
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Constants of integration are related due to (:)-mmponent of (4.5.9) by the following
equality:

2k*signk = 2N, h¥signh + — & <+ B+ Z N:hY. (20)

This general static spherically-symmetric solution has (n + 3) essential integration
constants: scalar charge C, electric charge ¢ (or ), “charges” of extra dimensions
h; and mass m which is defined by the expansion u — ¢ (r — ©0) and is connected
with C,Q,h:

AGm + XC = (Q* + h3signh)'/?, _ (21)

Coordinate u is defined in the region [0,00) if A > 0,u; > 0 or up to %y, > 0 in
other cases. Scale factors e* = 1 for u = 0.

Here are some properties of the solution:

a) when A = 0 we obtain the solution for linear scalar and electromagnetic fields,
discussed in a previous section,

b) scalar field iz “switched of” when A =C =0;

c) elimination of an electromagnetic field is done for @ = 0. Then we get the
generalized Schwarzachild solution after transformation

_ 1 P AN . a
u——ﬁln(l—i"), —a - ; k= k( F)’ {22)

d) when extra dimensions are absent we obtain the solution [96]

e) in a general case there is no any choice of integration constants when extra
dimensions are frozen out, i.e. a; = const for @ (or ¢)# 0. The behaviour of
metric coefficients for u — oo is:
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—h+4 20 —~h+AC —-h+AC
Brv[—A-N——B—k]u, ¥~"_‘4‘_u, 0‘.”[ AN +hI]u| (23)

so they may be finite or infinite. Calculations show that the solution has a naked
singularity at ¥ = tmer OF 4 = 00 in all cases except:

hi = —k/N; h=k; C=—Me(N +1}/N, (24)

when the sphere # = oo is a horizon and the integral [ exp(a — +)du for the light
travel time is divergent. Then,, only two independent integration constants
remain: m and Q; r = € and € are finite. Using (4.5.22) we get more
familiar form of the solution:

s _ (1—2k/R)d? _ ayan | 4R
4k = "I p/R)A (1 +p/R) 1-2k/R

p=A(Gm—Fk) =@+ kK — k. (25)

+ R+ ds,?] ,

It is a generalized Reissner-Nordstrom solution and is reduced to it when D =
4,A=0.

We point out that (4.5.25) is a special case of general metric (4.5.8) (2
parameters instead of (1 +3)). So, there must be strong arguments that within the
frames of multidimensional theory real collapse may lead to formation of BH. And
such situation really arrises when we investigate stability of static solutions.

Here we shall again demonstrate one of the specific for multidimensional
systems potentially observable effect-violation of the Coulomb law. Due to (4.5.11)
E = (FOF 10)*/% and for our solution:

E=(lq]/r)ezp(— 3 —2)p), (26)
So, it is seen that the deviations from the Coonlomb law are due to extra dimenstons

and also because of a scalar-electromagnetic interaction.

For the BH case (r — co0) we have:
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E= '% {1 _1 [(Gm k)-—-— +2)*(Gm + k)%%l +0 (r‘—,)} 27)

Stability Problem. Let us investigate small perturbations from static configura-
tions:

6@(“;”! 6(1.‘(11,1‘), ‘sgpv(“’t): 6F,,,(u,t), (28)

which preserve spherical symmetry, i.e. monopole ones. Then dynamical degrees of
freedom are restricted by the scalar field and scale factors o; which in 4-dimensional
representation behave as effective scalar fields. We take for simplicity only one
internal space:

=D—4=N—1>0, No=Ny=:-+=0. (29)

Perturbed metric functions ¥ (u,t) and & (u, ) are taken in the form:
7 (u,) = 7(6) + 5x(u,t); & (1,t) = ofu) + Sol, ¢), (30)

Similar relations are written for @ (1, 8), 0 (1,t) =# {u,t) and F‘,‘, {u,t). Perturbed
Maxwell field is defined by A¢ (u,t).

Integrating (4.5.8) we get

recrfl o

F Faﬁ 2q2 --4)’:9—2(!\'—1]#/'_4, (31)

where ¢ and r are not perturbed (we analyse only dynamical perturbations but not
changes of constants). From (4.5.6) and (4.5.7) we obtain Eqs. for du and &¢:

48— by’ — p (64 — b))+ 2u b = —ww (32)
N+17°

r6@ — b’ — ¢ (67 —ba’) + 2 Sa = 20¢%e™w, (33)

w = 2Abp + (N — 1)bp, (34)

where o', 1", and ¢ are atatic functions. v and 8o are defined from (4.5.9).
(;)-component of Einstein Eqs. is easily integrated over i:
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28’60 = M-l #ou+ @ bp + Flu), (35)

2

and difference of (g) and (:) components gives:

20'(80’ + 64') = (N? — 1)u'8p + 2480 (36)

Taking 6 and &7 from (4.5.35), (4.5.36) and putting them into (4.5.32), (4.5.33)
we get coupled wave Eqs. for 84 and by:

riép — b + —— 3 —1 ( r'“ ) Su +( ) S = g e®w, * {(37)
. N2 rp {Pf.ui f 24]282"'
4 _ H = — .
g —du” + 7 ( = ) 6p+( &g 1Y (38)

Qur static system is unatable if there exist growing at t — oo physically allowed
solutions of Eqs. {4.5.37), (4.5.38). We define solutions as physically allowed if

fup—=0, bp—0 if u—o0 (39)

at space infinity r — oo and
| énfu|< oo, |&pfe|< o0 (40)

at singularities and horizons. We also eliminate energy fluxes from outside but it
only limits constants of integration.

We study the stability of solution when system (4.5.37)-(4.5.38) reduces to
wave Eqgs. with one unknown function:

1. dilaton field is absent: A = 0, = = 0,

2, extra dimensions are absent: g =§u=0,N =1,

3. some combinations of (4.537)-(4.5.38) lead to equation with one unknown func-
tion.
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One may show that case 3) is realized for

W =Ky K K=——-. (41}

= ! A or
TN+ N1
that is the case of a BH solution. Let us consider each of these variants.

1. Separating variables in {4.5.38) and transforming 4 and u to normal Liouville
form according to:

Sp = eMy(z)/r, z= —jr’(u)dﬂ, | (42)

we get Schrodinger-type Eq.

yee + {07~ V(z)ly =0 (43)
with effective potential
1\ N1 {u?  2Q°N ,,
Viz)= = (r—z) + 3 (7) +T¢: (44)

Our static system is unstable if there exist physically allowed solutions of
(4.5.43) with 27 < 0 (negative energy levels in Schrodinger Eq.). It is shown
in [95] that asymptotic form of the potential V(z) for u — umqs is

(N+LEN+1)

TN + g Lt o) (45)

Viz)=

i.e. have negative values. So, the system is unstable and this instability is of
a catastrophic character as | {1 | is not limited from above.

2. The same result is obtained aiso for N = 1, g = 6p = 0 [95]: also catas-
trophic instability. Let us now consider perturbations of multidimensional
BH described by the system {4.5.37), (4.5.38) under the condition (4.5.24).
Introducing linear combinations of perturbations of w in (4.5.24) and

v=MN+1)5u - bp, (46)

it is seen that (4.5.37)-(4.5.38) leads to two independent wave Eqs.
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M0 =0, r'O -’ 4+ Hzlu=0, (47
2 N+l #'3 ! 2g%e
H(z) =[N —1+2) (N+1)][ RS (48)

Now we pass to normal form similar to {4.5.42):
v =eMiy(2)fr w= e (a)/r, z= —fr’(u)du. (49)

For y(x) and z(z) Schrodinger-type Eqs. ate obtained:
Yar + [0 — Vil@)ly = 0 20 + 0] - Vi{a))z = 0. (50)

with effective potentials

1Y 1
v1=;(,_—,); V=¥ + SHE. (51)

They may be written in explicit form via B (4.5.22):

R—-2k

Vi= v4(R + p)?

{PN+R(R - 2) + (R + pN_){(2k + pN: )R + 2kpN_1}, (52)

R(R — 2k)
AN(R + p

[‘N_+2k +i(2R+p+pN.,)(2k+pN,.)], (53)

H(z)~ AN (R+pN_)?

where nonessential constant coefficient is ommited. A,p, Ny are defined in
(4.5.17), {4.5.25) and N_ =} + Ny, so that

r = R(1 +p/R)™ = R"-(R+p)™+. (54)

It follows from (4.5.52} and (4.5.53) that ¥ > 0 and V; > 0 when R > 2k. Boundary
conditions (4.5.39)-(4.5.40) are fulfilled so positivness of V] and V; means that solu-
tions of (4.5.50) with (3 < 0 and 02 < 0 are absent. So, multidimensional BHs are
stable against monopole perturbations. Other types of multidimensional spherically
symmetric solutions are strongly unstable. This means that a lot of BHs may be
present at the Early Universe if it is described by some multidimensional model.



