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FIELD QUANTIZATION FOR ACCELERATED FRAMES
IN FLAT AND CURVED SPACE-TIMES

Abstract :

We formulate Q.F.T. for a wide class of accelerated space-times
in four dimensions and describe 1ts thermal properties in terms of amalytic
mappings. We demonstrate that four dimensional Rindler space uniquely
satisfies the condition of global thermal equilibrium, while spaces which
are asymptotically Rindler have thermal equilibrium asymptotically. We
discuss the renormalization of the quantum energy momentum tensor with
application to situations in two, four and v dimensions and specifically
refer to the genera) result for conformally flat two dimensional space
times. Covariant and non covariant regularisation schemes are presented
and compared, and we make an improvement to proposals for covariantly
regularizing the stress tensor by peint splitting.



I - INTRODUCTION

In previous publicationsnszi, analytic mappings have been used
to define a wide class of accelerated space times preserving the light
cone structure of flat Minkowski space time, Two dimensiona) Q.F.7., was
then formulated in these accelerated spaces and Bogoliubov coefficients,
relating a positive frequency description for accelerated and inertial
bases, were given explicitely in terms of the mappings. In this paper, we
extend to four dimensions a series of results stemming from this approach :
four dimensional G.F.7. and its thermal properties are analyzed in terms
of analytic mappings relating some manifold to fts global amalytic extension.
Following a description of the relevant formalism {in Section II), we give
a specific demonstration (in Section III) that the four dimensional Rindler
space {described by the exponential mapping) uniquely satisfies the condition
of global thermal equilibrium. Spaces which are asymptotically Rindler
have thermal equilibrium asymptotically. In Section IV we give a general
discussion of renormalization in a curved space time where there may be
ne unfque state singled out as a ground state, and where {(even for a free
scalar field) coupling to the curvature may force us to regard gravity
as interacting. We examine several properties of some specific regularizing
schemes which indicate how the renormalization might be effected, noting
of course, that final results must be independent of any scheme we use
1o obtain §t. A refinement to proposals for covariantly reguliarizing the
stress tensor by point splitting is given in Section V.

Generalizations of this work including rotating accelerated frames
and even non analytic mappings are given elsewhere!3l,

A. Contextual background

Before presenting our work in the next sections, we pause here
to survey the context {n which it has been developed,

White a full quantum theory of gravity {is still non-existent,
continuous effort over the last quarter of & century has demonstrated the
many difficulties encountered in repeated attempts to construct such a
theory and have also indicated some of the particular properties which
an eventually complete theory will have to possess. Complementary to these
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approaches, there are investigations for problems in flat space time which
can throw light on both classical and quantum results in curved space time :
Quantum field theory developed for curvilinear {accelerated) coordinates
in flat space in a way which can be directly generalized to curved space
time, may be useful for a physical and mathematical discussion of the full
theory.

The genuine coordinate independence which is so familiar in the
classical theory of general relativity is not a particular property of
gravity but a fundamental principle prevalent in all descriptions of physical
laws. On the other hand, the apparent difference which results from the
treatment of a quantum field theory Tn a variety of coordinate systems
{in elther curved or flat space time) is not a coordinate effect at all,
but is a consequence of the fact that physically different quantum states
are correctly described by the quantum theory as being physically distinct
"Canonical® states for different coordinate systems are physically different
{each timelike vector field leads to a separate indication of what constitutes
a definition of positive freguency)-

It seems difficult to give a sensible meaning to the question :
how should we describe quantum field theory for an {accelerated) obéerver
foltowing o parnticular world Line ? Even for an uniformly accelerated observer,
some subtle assumptions go into the handling of this question. Firstly,
although one might use a coordinate system giving the world lines for an
infinite family of uniformly accelerated observers, this system actually
refers only to acceferated faames, since there would need to be collusion
{space-1ike correlations) between observers in order to have and maintain
them as uniformly accelerating. In addition, to use standard gquantum field
theory technigques, one would impose boundary conditions such that, asymptotically,
modes appear as free waves in these coordinates. But for an anbitrany acce-
Lenating obseaver, both the coordinate system of his connected region,
an¢ the asymptotic boundary conditions we might assign for him can actually
be chosen in an infinite variety of ways. However, a perfectly well-posed
problem is : what description is there for a quantum field theory i{n accelerated
4rames 7 We associate a physical meaning to this question by describing
the boundary conditions of the quantum theory in tevms of the asymptotic
behaviour of those frames. This automatically specifies the quantum state
to be examined. In addition 1t allows us to use appropriate coordinates
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in examining physical consequences of the quantum theory for the chosen
state. Of course, these consequences are completely independent of the
coordinates used to evaluate them,

Further considerations arise for curved space, in which acceleration
and gravitation are locally indistinguishable but globally inequivalent.
On the one hand, we have just imposed a connection between the boundary
conditions of the space time and a quantum state in which to discuss physics.
We have done it by using the asymptotic behaviour of the accelerated frames.
On the other hand, in curved space, we shall have to decide whether there
may be some link between the global properties of the gravitational field
and some spacific state which may be regarded (gravitationally) as a global
ground state fn our space time, The alternative to such a normalization
is to regard gravity as essentially interacting with (otherwise free) fields
propagating fn a curved space time, These questions become unavoidable
when one tries to handle the infinitfes, fnevitably arising in theories
of field quantization.

The usual purpose for examining Q.F.T, 1n flat space 15 to obtain
an understanding about the particles which we use the fields to represent.
In curved space time, this same reason exists, with the added fact that
we can look at (limearized} curvature effects on the theory. But a more
interesting reason in the context of general relativity is to be able to
determine some non-linear effects of the coupling between matter fields
and geometry through the stress energy of the quantum fields. OF course,
one should include the quantum effects of gravitation itself but techniquely
this 15 rather difficult and it has often been felt that dealing simply
with a scalar field source first would give a guide to the treatment of
some of the difficulties. Even to consider the back reaction of the scalar
field, progress is not altogether straigthforward, the problem being that
the stress tensor for a quantum field is a formally divergent operator,

Just as it is in flat space. Whereas one has a clear idea of what the vacuum
(1.e. zero energy) state is in flat space, and therefore can give a well
defined prccedure for rendering quantum operators finite, in a curved space
time this is not the case, and there has arisen some discussion over whether

* one should use a normalization procedure, equivalent to defining some specific
state as having zero emergy or whether a renormalization of the theory is
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necessary, equivalent to regarding the curvature as introducing an interaction
between the scalar field and the geometry. With regard to normalization,

it is notat all clear how to determine which state might naturally be regarded
as having zero energy, or even whether there 1s any such state, On the

other hand, renormalization of a theory is usually considered in the context
of a perturbative expansion. However, in the case of gravitation, apart

from the infinite changes which will be introduced into the quantitfes
originally appearing in the Lagrangian, new counterterms will be required
at each level of a loop expansion about some classically valued geometry
{say Minkowski spice). Because of this the full quantum theory of gravity

is often described as being "unrenormalizable". It has also been argued

that if only the. matter fields are quantized, even an expansion to one

loop may not make sense since the quantum fluctuations of the geometry
should also be considered at exactly that level where back reaction effects
for the matter fields become significant. Nevertheless there is ample reaseon
to believe that knowledge gained from a treatment of the "semi-classical®”
Einstein equations will be useful in any perturbative discussions of the
"full" theory. In this context, some form of the "absolute” renormalization
would seem to be required, and we shal) refer to methods which have been
used for carrying this out. However, it simply is not clear that gecmetry
will respond to quantum matter in the same way as does an observer in a
laboratory which 15 accelerating. Thus, at least in any discussion of gquantum
fields on a fixed space time background, some form of normalizatfon may

be more fn order, We will make further reference to the chotces which arise
hera in section IV and ¥.

I1 - QUANTUM STATES AND VACUUM SPECTRA IN ACCELERATED FRAMES

The extension of earlier results to four dimensions is embodied
in the following coordinate transformations :

x-t=f{x'-1t") ;
x+t=gi{x'+t') (1)
y=y
1=17



" s0 that the metric takes the form
dS2 = £(x' - t') g'(x' + t') dx'Z-dt'Z +dy? + dz2

where f{g) is a strictly monotonic function, unprimed coordinates refer

to all of inertfa) Minkowski space and primed coordinates to an accelerated
space time.(Below, we shal) use u=x-t, v=x+1t, u' = x' - t*,

v' = x' - t', for convenience}. Singularities of the inverse mapping

u' = Flu) {v' = 6G(v) ) at uy and u. (v4 and v.) give the (x', t') boundaries
of the accelerated space, thus

ug = f(teo )
(2)
Vi = g(¥o0)

Here uy (vy) can take finite or infinite values. Future and past boundaries
at u = u_ and v = v. are defined by different types of singularities of

f and g, respectively and they can have {as we will see) different associated
temperatures. Amalogously, for future and past boundarfes at v = v4 and

u = us. Boundaries can be horizons or infinites. For finite uy, vy the
accelerated coordinates cover a bounded region (a parallelogram)

u=-< [X=-t] <us
vo IR+ t] < vy

of Minkowski space-time ; u = ugy and v = v; represent two event horizons.

(If f = g, the bounded region is a rhombus). There can be horizons on

u but no horizons on v and vice versa, 1n which cases the coordinates cover

an infinite strip at 45° angle with the X axis. If uy = to0 and vy = T oo
there are no horizons. Conditions (2} guarantee that the accelerated coordinates
(x*, t'} range over all values from - oo to + oo (light rays take an infinite
time t' to reach the boundaries of the accelerated space). For t'—= & oo

the world lines of the accelerated observers defined by x' = constant tend
asymptotically to the characteristic lines u = uy (v = v;) where its velocity
glven by v = [g'{v'} = f'{u'}}/[g"(v') + f'(u*)] reaches the values

t £. These conditions ensure that one can formulate G.F.T. in these accelerated
spaces in a consistent way. In accelerated spaces for which the mappings
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f{qg) do not satisfy conditions (2), self-adjointess of propagation equations,
compieteness and orthogonality of their solutions cease to hold, unless
additional assumptions on the wave functions are imposed. This can be clearly
iTlustrated by comparing the mappings

f1=°.f.£'.."‘_lg ,(«§ -BT #0) and fp » F,«e“‘“'
Yu' +§

(o, P, ¥ $ ) being real constants. Both mappings describe unfform

accelerations {fp gives the Rindler frame}. However, f) does not satisfy

conditions (2} and then solely quantum effects of Casimir type can be described

in terms of f).

In four dimensions as in the two dimensional massive case, knowledge
of f'(ten ) [g'{tca )] is also required to proceed with a discussion of
Q.F.T.. Different choices are possible. For definiteness in our discussion
here we will take f = g, u. = 0 (then u' = -oe is a critical peint) and
uy = +90 , so that the accelerated space covers the right-hand wedge of
Minkowski space-time. Then

fi(-oa) =0 | {3.a)
and we choose

f'{tog ) = + 00 (3.b}
since the Rindler space is included by this as are also non-uniformly accelerated
space-times which are asymptotically Rindler. The cases with two or zero

event horizons can be easily solved from the discussion given below.

In the actelerated space-time, the minimally coupled scalar field-
equation

D’E\{-mi”;}_’ (a)

becomes

.[i("‘)t't+gx?)+g?+az- -ﬁ‘}Y'o *

A
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where L= £1(x' - t) £1(x' + t')

The substitution
'S

’Y‘zli et Aoy e M) g o (6)

—0g Ay, A3 g 4o
yields
[ - 3%' + g;. - An 2] ‘1>(T'. t')= Q with H 2 = 1\22 + /\32 + me (7)

Conditions {3) mean that the effective mass A M 2 is zero on the horizon and
infinite at infinity preventing particle escape there. Thus we can choose
as a complete set of in-basis solutions, the functions 91" satisfying :

1im in . 1 ol ﬂlu'
A2 \Irr;ll' o)
¥ e -w
Tim Moo L Ao
i
y' > +%0

and given completely for any mapping by' 2|
; a' .
??\‘ = iJ—% j 3 eiM? 3o ( M\/qr[-_F(&)-u.]) (10)
+o0

where Jg stands for the Bessel function.
This can be also written as

i M Fis) o iaFm)
(Pq,- .ijjﬁ', ¢ *Mﬁij"?e ?J:[M,{v(j-u)]j ;
V'Z-M

in terms of the inverse mapping F = f-1,

Near the horizon, for uv — 0, ﬁigl behaves as
v o A [eil‘m' cch{a) C._m-u-']
A ——— -

C;uw-—oo } 1IT—I'_?«, )
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where S{X) ts real. (Due to the infinite potential barrier existing at
uv —» + o , the waves coming from the past horizon leave out through the

future horizon).

The functions '1’1" are orthonormal with respect to the scalar product

B S Y azt
( j:‘ = Jjg: . 5#"75)

With two event horizons conditions (3) are modified to
({0 } =0

-
_and besides the solutions 0:" s 0)1" , we would also need the solutions
01" satisfying

tin 40 = et A
W ey 400 2yTH
(12}
i
1im o‘il‘l =0 . 7"1 >0
V' -o0 1

to form a complete basis.
Alternatively, with no event horizons, one could choose
f'{¥foo} = finite constant Ci ¥ 0,
a N
i.e. asymptotically inertial frames, and then {0:\" s OA" } would describe

asymptotically massive plane waves (with effective mass not necessarily
equal in the left and right asymptotic regions).



The solutions Q?M are described for frequencies, 21. which
are positive with respect to the accelerated time t*. As 1s well known
a complete set of solutions describing positive frequencies w with respect
to the inertial time t is given by

kpk . 1 of (k1X+koyvkaZ~ Eyt)

aw JwE,
with - 90 <ky, kg, kzctoo ,  Ep= + o ky2ekp2ekg2am?20 (13)

We recall that in the formulation of Q.F.T. in accelerated spaces. the
dynamical operators are defined in terms of the accelerated creation and
annihilation operators C5 , €, * associated with the accelerated modes
§a . The vacuum state of the theory (10>} is defined by the inertfal
operators ay associated with the inertial modes Ty, i.e,

Q10> -0 ¥«

The state |110'> such that C,i\“ iin0'> =0 ,'\7‘2 » Is an excited state
with respect to the true vacuum |0>. A Bogoliybov transformation relates
Cyto Quang Qy,

o
in . 3 +
Ca Jdk[ﬂa (k) Qp + B, (k) @yt ] (14)
ot
in in
where Ao (K=<l L Wo . B, (k) KO, K> (15)
Alternatively to the solutions @1;‘ » one can define solutions bog‘t
by fixing the positive frequency boundary condition at the future rather
than at the past, thus
- out = 1 -i ﬁ y'
1im ¢,a W -] .
u'=+ -co (16)

1im 9, =0
¥'— o0

They satisfy ﬁ;‘t {u', v') = b*; D
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Analogously, we could def1ne Ca 08t nd I 0%%s such that Cao"'t|0'°“t> = 0.
Note that |0'®UD>¥ lo+'" . (Only in the Rindler frame (0'0Uty « gv1Ny

up to a phase factor). As we always deal with the in-formulation we omit in
what follows the superscript "in",

Before proceeding further it will be useful,as in the two dimensional
case, to introduce the functions

-]

N{A, 2 ecolc, Cut 10> = J a3k 8, (k) 8% (k) (17)
. L]

RCY L 2) = <0les € (05 = [Ta¥ Ak Bk (18)
R —al

R({ 2, A')and R{ X, A') describe interferences between the created
modes with different frequencies A, A'. N{ A, A') 1s the production
function. For A = A' it gives the number N( A } of A -quanta in the
vacuum |0> on the total volume. The number Ny { A ) of A-guanta per
unit volume is obtained by introducing wave packets, ie

Nv{?\)-%m SSd?\ dAa® W'( AAY WL AT AN AY)

—+ag

‘ll«.(2 is such that fd'c\ | 'Wt (2, A*)2 = 1. For instance
wi( ALAYsJ2i/m exp [-5(2 -A")2]
From eqs (10} (13) and (15), we find

Bp (k) =Bay (k1. W) $ (kp+ A2) Slkgt Az) , W=22ed2m2  (19.a)

where u,
B, (ki,M) = L S due | MF() - '} (ky*Eg)u (19.b)
Al T ]

Then, we get

o . oo LA Flupia)irFlu-ie)
N(x,z.)-[ulh, B,uk) 53.‘&.).-4—;! ﬁjﬁu du, & L 630
2 A

(w-wsrae)” (20.2)




N * PRI CiAFQupie) - 44, Flu,-ie)
R(&ﬂ.);—j Adk)ai‘(&‘)'ﬁ-mgd’um1 e

4

- £r0
( e Wy + 4-&)‘ (20:&)

alyq
- ]

The B A {k} coefficient factorizes in the product of a two dimensional
massive coefficient of effective mass M and two delta functions. N {4, A ")
and R{ 2, A ') also factorize 1in this way but, because of boundary conditions
(3),they are {independent of the mass of the field. Conversely, given
NA,D '} we reconstruct the mapping, 1.e.

‘ flu') = flub) exp (- aTi Re‘[% eldu' [ 2" A, an] 40 )
0

z' =z

l y' =y (21)

where f{uy) is an integration constant (scale factor of the transformation).

From eq. (21) we get the relation

L4 b ey - Rejda AP AN KA M Ta  (22)

a? du’

III - UNICITY OF THE EXPONENTIAL MAPPING AND THERMAL PROPERTIES OF
THE ACCELERATED FRAMES

From the above results, we prove the following theorem : each one of
the following statements implies the two others
(i) The functions B{ % . A ')} and R{ A, A'} have the form

MR LA =R (A1) S0 A1) S(A2- A S Ay~ A3
RED,D'}=0
{1i) The Bogeliubov transformation can be decomposed as a two term one,

Ca = LMD T Gy - (A 1 & (o)
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{ii1) The accelerated space is

flu') = 2T TW' | ja. Flu) = -zl?-rﬁn u {23}
whereT=[31Ny(’)i1)])1 =0 (2a)
The equivalence of statements (i) and (111) follows from eq. {16).

The equivalence of statements (i) and (i1} follows from the relation

: - 1+Ny (A1) %
Aa (k) [ Wy (7% 1) Bald

which is necessary and sufficient condition for the Bogeliubov transformation
being decomposable. This condition allows us to define a basis

Crow = | Lk M) q
e [4 + N, (]t

¢ - jwtl’h Bareh)  ay'

' +
— 4o [N‘r(m)]‘f
such that
[CL’,E;-;,] - j'd.‘h A;th) Ayoey = (44N, 000] $ %) (25.a)
(6o, Gio] -£&’k B, Buik) = Nyta) §7(a-2) (25.b)
[ B21= [0 ARG - o o (G0 ena

We see that eqs {25.a) (25.b) give statement (i).

It should be noted that the Theorem defines f(u') as given by eq. (21)
up to a bilinear transformation such that



("'u‘)=e2ﬂ'Tu' s U LU g ug {286}
Ut -y

y' and &' are defined up to a linear transformation on t', namely
y=y' +ot!
z=2z"+ 7t
j.e. up to a drifting {or uniform rotation) in y and 2 ; ¢ and Y are
constants.

A Corollaire of the Theorem is the following : If N{ A, A’) satisfies
the statement {i), then Ny{ A } is given by

1
M(R) e —— (27)
Y (e M1 1)

but the converse is not true.

We see that the parameter T as defined by eq. {24} plays the role of a
temperature. For any of the statements (i), {11), {ii1), eq. (22) is equal
to a constant of value ZT T, The theorem characterizes a situation of
global thermal equilibrium over the whole accelerated space. This situation
implies the presence of events horizons. The Rindler frame has one event
horizon (eq. 23) or two event horizons at the same temperature (eq. 26).
Note that the presence of event horizons {5 a necessary {but not a sufficient)
condition for global thermal equilibrium.

A local (or asymptotic) thermal equilibrium situation is described by the
class of mappings f{u') such that

Tim  f(u') =2 W T’ (28.a)
' oo .

or equivalently by

o MAL A =N (A $P(A-an
A —=pn! _

{28.b)
Tiw R(A,R')=0
A=



The accelerated spaces corresponding to eq. (28.2) or {28.b) have non-
uniform acceleration but for u'-—= & o0 the acceleration becomes uniform,
i.e. the systems become of Rindler type. For all these spaces Ml A ) is
given by eq. {27}, or more generally by
4
4 A +

N m=-—[—m——‘ AT ] (29)
v 2 “-4) (e’ _a)

The asymptotic temperature Ty are given by
o)

T2 e JlwawmmNam],

+ 1]
[ .

or equivalently by

T - an uLu.'[,L“Fm)] %[@:d] (31)

where a = /'m. A(XYE)  is the acceleration,

1
[Alx .w]'/*

A typical non-thermal situation is described by mappings f(u') such that

Lo :?(U-') X Pt

w'—r £ oo w' (32)

or equivalently by

Rieen N(3,2D

A A

K R(a, %) R(2.) §(32+2.) ${25+23)
?-ﬁ“' (33}

NCAD) $(2a-22) 5(2,-23)

where N{ ’Al) and R{ ‘A1) are non-vanishing finite functions of Aj. For
these spaces, the acceleration is non-uniform, particle production takes
place in a non-thermal situation and confined within a finite volume of
the space (the total vacuum energy is finite}. A1l the spaces of this
class have

T*‘O
*and (34)
Ny (A1) =0



I¥ - THE ENERGY MOMENTUM TENSOR AND ITS RENORMALIZATION

When normalization with respect to some particular state which
has been defined to be empty is not appropriate, it has become a practice
in this field to introduce a complete renormalization of the theory, essentially
by extending techniques developed for empty Minkowski space. Whatever
the problems implied by that approach, we wil) look, for the present, at
the properties of some of the schemes adopted to carry out the combined
regularization and renormalization of the theory, with an emphasis on the
point-separation scheme. This has the advantage for the task at hand that
not only is it defined entirely in and on the original manifold (as is
also zeta function regularization) but the divergences can actually be
obtained from the divergent terms of the effective action given by the
vacuum to vacuum amplitude. Thus, in a sense, the renormalization is fmmediate,
with both infinite and finite subtractions being given by those terms in
the effective action which lead to divergences. Dimensional regularization
involves an extension of the space time with extra flat dimensions and
may not be very appropriate im curved spaces where differences from
other schemes have occurred for some higher spin fields. Our explicit
representation of the fields means that point separation is an appropriate
regularization scheme to discuss here.

We first consider the Green function G{Py, Pz} and the renormalization
of <0| P2(0>. Inertial and accelerated observers define the same Green
function

G(p,P) = <ol ['Y(p,),“f(pg)]+ o> (35)

for the free fields. Inertial) observers express G in terms of the modes
LPk ; accelerated observers express & in terms of the modes 4%;

(Er( Pa) P2 S ‘th tf; (P) LF;‘f Pr) =

1]

*
‘fd,’x $, () ‘1’1{5) +

1]

(36)

+'iﬂ:.” ' eL‘z‘{Nm,ﬂ')‘t’aw.) ‘i’;(m + R e dule ]
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It can be noted that

G'(r,e) = <ol [ ’f(p.;,fsk(f,>]+|o'>=[d°z 9,100 Patp)

(37)

{5 the "false* Green function defined with respect to the accelerated state
|05. G is not translationally invariant. As well known, when one attempts
to calculate <0| ¥2|0>, divergences appear :

ol VoS - gci.’i} W1 = T o <ot ion

-al)

(38)

where

T =z@f HLNAME S « RO BE]

(39.a)

(ol¥ oy = S d' |¢&\" (39.b)

The .Q.h.s. of equation (38) is divergent; In the r.f.5, the first term

{ 3ﬁ } is finite whereas the second also has a divergent part. In fact,

in the accelerated state, the divergences of <0'| 1’ziﬂ'> are exactly those
which appear in <01 ¥ 2}05, that is they are independent of the particular
state chosen. This divergent behaviour is general for the expectation value
of any composite operator. With respect to the ¢igen modes of the accelerated
state, <0l 1k 2|05 separates into a finite term plus a term which can be
recasted as the expectation value on the state (0'>.This term contains

the infinite part. The problem is then to separate the divergent and finite
parts of the term given by eq. (39.b) and to justify discarding the divergences.
Although usually thought of as resulting from the short distance behaviour,
the divergences in eq. (3B) or in the imtegral (39.b) are actually governed

by the properties of the mode functions in the asymptotic regions of the
space time . The apparent divergence dependence on the asymptotic region
comes precisely from the fact that, whatever the asymptotic regian, we

always choose fields which, asymptotically, are "free” fields in that regions.
Thus we will always have the divergence appearing exactly in the way that

it occurs for the vacuum in Minkowski space. This allows us to substract

the divergences in the accelerated frame by following a similar procedure

to that in the inertial frames. In the inertial frame, with some regulator & ,
we would have
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ol W'y 10> = IFP (ol ¥'tey 10> + IDP<ol V) o>

were  1im IFP o] Wice) 0D & o

-+ O

v IDP €0l ¥ 0> = o0

Ea o

I1.D.P. and [.F.P. stand for the inertial divergent and finite parts respectively.
By substracting IDP <0| "Pz( & }I0> and letting &-, 0, one obtains the
{Inertial} renormalized quantity

IR0l ¥*1 0> = Jim[Col «P‘ca.o)_Ipp('o}que,[o)J“fa)o .

L0

In the accelerated frame we follow a similar procedure {but the inertial
{ £) and accelerated { &') regulators need not necessarily be identical

oW loy = F' 4 o'l ¥ien 10>

with
o' ¥eey 10y = AFP LAY e 0y + ADPCO W er) Jo's

1 AFP o't Ve o'y < w0

Ew O

=]

1in ADP { o'l P ey o'

t'so

Whence, we substract ADP(EI'I "_PZ (£')(0'> to obtain the {Accelerated?
rengrmaltzed quantity

AR 1V (0> = éf-ino[<o'!“{"(z:)|o'>_ADP<o'W‘(5gb}to'>J

since in the Minkowski vacuum 1Renco|W2I0> = 0. Here A.FP and A.DP stand
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for the accelerated finite and divergent parts respectively ; A.Ren stands

for the renormalized value in the accelerated state. Clearly, renormalization
in flat {Minkowski} space can be made easier than it would be in general,
since vacuum expectation values of ’{}‘2 {and "I",.,.; ) are zero in the inertial
vacuum, and our observations here are also sufficient for a discussion

of the renormalization in the interacting case.

From eqs 40.a and 40.b we see that whereas field quantization lead to fdentical
divergences, renormalization has assigned different finite values to the

same operator in different quantum states. This is irrespective of the

adopted regularisation scheme. Thus <?,.,9 reg. need not be covariant (e.q.

the introduction of a cut-off in the high momenta, or ordinary "point-splitting"
are not) but <T,ydpen Should be. We refer to [4] for a critical discussion

of various proposals of regularization. For later use we note the possiBility
of evaluating <01Y210> as the'lim G{f,PY in a space time representation
rather than in a mode sum . However. for arbitrary mappings we will need

to use the modes L incalculating the divergent part (eq. 39.b) in order

to obtain a finite <0'|%2j0*>pey. It is only the convenient representation

of quantized flelds asymptotically in some particular coordjnate system

which has sometimes lead to the incorrect notion that the states associated
with these fields are coordinate dependent : of course they are not.

We now consider the energy momentum operator (for a minimally coupled field)
given by

"l’?)\; - ‘J»-W Lg"’«}*g "I’ xvat ) (32)

With respeci to eigen modes for the accelerated state. the vacuum expectation
value {0l Ty 10> can be expressed as

<ol oy lo>...z,?tﬂdi.t‘a'[ma 0Tt D+ ROM T (6,60] +

+ <l 'l:,.f 1o “)

where
(o‘l']i,[o‘) - .So\’?\ 'l;.v (¢’“ <b:) (42)
and ,/

T (€400 = 2. 90,9 - A ( 97 99 2P + w* $Y)
. 2 .
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Derivatives and indices generally will refer to primed {accelerated) coordinates.

In our coordinates defined by eq. (1}, Tup and To§ components can be
concisely expressed as

Tom (09) « b3 + 2 d0® s Afu (43,0 +
4+ ou —C)-._'d’ SE-LF + Yu m* d’?)
Toité,9) » 9,6 3,9

h
where . ‘30 .o
oy = - ﬁa = 1: = ‘.L
~afy = P'l. = -
L. -P; = f!

The vacuum energy and momentum densities are given by <0'| :f‘oui(]')v and

<0'| - fo{|0'> respectively. By using eqs (19.c}and {19.d) and performing
the fntegrals in )'2 and A'3 we see that the diagonal oo and oi compenents
can be written directly in terms of their two dimensiona) counterparts

with the modified M2 and the 22 and 33 in terms of a modified ~ ~rator
which we can write for all cases as

T (R ML) =39 0,8 4 B, b3, 0 AMS DY
with ME 2B (W Gk + Tam?) (M)
Then o

~ = ()
<°lTrtﬂU‘-'!*-'i"“)‘°> = j d,'}zJ.?t:<O\ T/"}“ c:.l’ ti)_ M/") ‘°>
where - ot

- -0
[¥3] e 1 . ¢ ,
T i 1052 AN TR0, 48 iy R T4, b 10
+ 921 -ra-t.:l (¢al’&:|jmh) N
Analogously for <O| ?oi 10 3 (fmlzb is just the two dimensional energy
density with M2 instead of m2,

For the purposes of computation , ft 1s useful to 1ntroduce the quantity
Gy = <ol ;)};@ gﬁ' 10)4@}1’3433'[140«.)‘) ¥, 2% +R¥) %t ?:34;"]*'
+ ji"l ?,.‘\", W,
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and give explicitly

H=<0\f....10>

I

&
Pi = (0\ -ﬁf‘ 10> = = 606

<ol "f‘:. loy

Ao + Gu = A6,y 4 b33 42 6]
2%

£ o} -?11. lo™ " A Ve - G'“-u-.A.(G;z_ GB__,.M:G,)}

2A.

4\3 . 1—' .
<ol Tis Joy 2)\-{600-(,,1__&(&11_(,33*,,“@)}.

where & = <0 "‘_1{2|0> is given by eq. {36)

According to the rencrmalization prescription given by eq. {40}, we have

Mol T 10> = <ol Tuyfos = AP Lol Tovios

=4&Hd'adfa' (N T (935 4) +RONT0E)
+ AFP fda T (47 ) (44)

It is implied here that a regulator ( €') is introduced and the £—» 0
limit is taken after substraction,

A - Applications

By way of application, we consider the explicit evaluation of
our formalism for the example of Rindler space ; which as we have shown,
has unique thermal properties globally. The mapping which gives rise to
Rindler space is given by

faby o | % i=%kD



(1 and & -1 are unrelated length scales)

s0 that 22!

s &7 gl gleain o - Uare

The explicit solutign of (8) satisfying boundary conditions (9) can be
found by evaluating {10}, or in this case, directly : i

il '}:'3.‘ + A )
LRI E) ()

, —ishe o-
§ o () MK, (Ane)
\ {45.b)

Vor, T (4%k)

where K, {z) is a modified Bessel function. Then, from eqs (19} and (20)
{or equivalently (19) and {18} ) we find
i/

A P Tlande) e ™R [ hE
B"*(‘k'M)=ma{\!—: b)) { :2.)

A (kM) = ™7 B, CR,M)

N(_) }-) S{z) (A=2") (47.a)
R(AN) = o (47.b)

Since the full field is given by (45.a) we have immediately
3{?" "'“'A "‘V‘n ) .rw;- -L);w; 3 3 '\yag lk}qs Thus, for examp'le.

in Ggz we have

:.'R.,j[&m S-2 e atr i d ) w 2Ry Jn,jda_.la ) Wi, -

(e'"“h‘ 4) ? e (™% 4

bAT ld.a, F’Ll’l (Mhde 'ﬂ‘}" *-f (Me**) K, /{He“"') = 0.
o



366

This last result following since Lhe 21 and 23 tntegrals are finite
and the ?2 integral is odd ; recall from {8) that M depends on ’Az and

%3. Similarily, we find that the corresponding term in the expressions
for Goa and G23 2lso vanish. And, since K., = K., we have in Gp

1 #*

2Re {[drdx SE20ea b9 R, [da i (O ¥¥a =0,

(e‘:w.\‘/-(_ 4 ) ¢ e2®/e_ )
where the integrals are all finite but the integration result is purely
imaginary. The same result follows for this term in Gy and G13. Thus we
have shown in particular that each <ﬂ,1> (component of the Poynting vector)
is zero, in accordance with the global thermal equilibrium properties enjoyed
by Rindler space time. The same is true for the vacuum expectation yalue
of the angular momentum operator L mY o L_. dv (x* Tovo xv For ).
This cannot be considered, however, as characterizing an isotropic therma?
radiation for the Rindler vacpum, Rindler observers have a preferred direction
namely their spatial direction of acceleration. In Rindler space, <:|:oo>
is a constant up to a dependence in x' through v'g_a; = ore °CX', One could
regard the gradfent 9x1<f00>§x- as defining a preferred direction
of the thermal vacuum. On the other hand, the response of a uniformly accelerated
detector model with a directional discrimination has been found to be
non-isotropic!571. It is not possible to construct an accelerated flat
space time for which the vacuum is spherically symmetric and in global
thermal equilibrium. The mapping

T4t X (TEE) ; Y=v' , ©6=9' (48)

{r. ¥ .© , being spherical type coordinates} yields to
2. 2dT! 2, z2dr' , 2 z
ds* = xte (' -db’) L e enhat' dQe ¢) .

The vacuum spectrum Ny{7\ } is Planckian with asymptotic temperature

of /21, but there is an asymptotic (rather than global) thermal equilibrium
situation in this case.
It is useful at this point to consider the case of two dimensions, for which the
solutions to the wave equation and Bogoliubov coefficients are given directly
by egs (45.b) and (46) withM=m ; Nand R are given by egs. (47) with

’)511. Thus, we have for G
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&= AFFY&A, wth i $F P
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- Appj A covh s me ™)K, (me™) )
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The point of recons1der1ng the massive two dimensional case is the following :
we find that a naive regularization scheme suggests a renormalization which
(surprisingly) leads to a sensible physical result. We can examine this
outcome rigorously enly in the two dimensional massless case but particular
computations for four dimensions show that a class of mappings exists for
which a similar result might be proved. The special features we have used
in two dimensions apparently need only be partially present in four dimensions.
A simple evaluation of <f°o> for any f{g) in the massless case can be obtained
from a space time representation rather than from a mode sum for G. Point
splitting is a natural choice of regularization in that case. For the purpose
of this section, we will use ordinary peint-splitting ; a fully covariant
regularization is given in the next sectionm.

The same kind of separation in eq. {38) between finite and infinite terms
occurring in the accelerated frame can be observed if we consider <0l'Y210>

as Tim G{P1.Pz) in a space time representation. The square length
Pd*?z
G‘:(X,-X;}l-{ta-t;)li Aw Bv , ( Aw = W-Uy A,rd'g'\l'q-"rl)
1 1 [} 1
is expressed in terms of the mapping f,g as o2 = [flug)-flup)] [glvi)-glv2)] .
In the inertial frame, when Au 0, Av—p 0, o2 diverges as

-4
(Au &) [n the accelerated frame, when Au'—s 0, Av'— 0 (Au' zu')-u'p,
Avt 2 vty - vy

fun) = foww ¢ ;‘(u'a} Aw' & }"(u’z) _A}u_?'j",_fm%%j!.f
vy = 9uvi) + g'tvly AV +3“(v;)%"+3"' %"4....

and then '

e A La-apda yby Aw™J[1-Gq A+ by Av?]

Au' By ;'3'



g L;: ( z _;_ gm 1

i‘..
2. Jff

= 4 bo= A 9
Oﬂr - i 7 3— 2 [ o (9|) %31' ]
In the limit Au'— 0, A\r'._.p 0. O -2 separates in a finite plus an
infinite term as

LA (LA -op . AL 8 e
U=;‘g,‘[ Auw vt A b.u.']+ [ +l)3'5u_.+;‘j

Even to have a well determined finite part here. one must be careful to
specify how the limits Au' = (dx - Ae') =0, 4v' = ( Axt + Q)0
should be taken. But this simple calculation shows how a purely divergent
quantity acquires a different finite term depending on the "renormalization™
scheme chosen {here expressed in curvilinear coordinates). Particularly
illustrative of this is the evaluation of <0IT ., 0> 1in the massless

case. In two dimensions we have

G(pa;PE)H - A -J/Y\ [(RA—UtJt.Vd""rt)“l:tj

4w _
= - A - $2)(9.-g2)~-5E. 1 (50)
A Lh - 009 g0 &
and
QIZG = (Du-' duls + D, I )G =
—-A [ S"::Elz -+ 2: Ei- 1]
(_ff ':ﬁz )‘J_ (34 "3:) “ {51)
heve J:L. g;{u_,'.:) 5 g, = g.ﬁr:;) s U=42,
In the Timit u'y —» u'p , wWe have
._g'i.g_li_ = .i._ ___[ 3-"' _ 3 (E}ll
(fi-f) bw » ¥



Then
-0 G-z_‘_i.ﬂ_ A ___L_gj_ | j:-.!.‘. u}z}
b JEx JIi.t B &
+Ot.6u.J + o4},
On the other hand,
-0
DG = -LI”L:.‘[_ ef-?lduo' cadv? 4 (4 (53)
* qr v 2 ( +€ )= qr du't dzr”')

and we see that the divergent part appearing above is the whole of the
operator for the accelerated state. Thus a substraction of the divergent
part is equivalent to a normalization with respect to the accelerated state.
50 we have

AFP <ol Too 10D = <01fo,i0>-<0'l'foolo‘> =
___ﬂ{[}." .3 }_")‘] +[ﬁ_ %lﬁ_l‘]} (54)

247

3 1 4
In the Rindler case : f v e ¥U’, g = eX¥', each (g} term gives - X~ ,
=2
50

2z
AFP (ol Tpolod = 2= = T
-2417* G
corresponding to the energy density of a Planckian gas at temperature
T= ®&/2W . We can also show how this result emerges from a mode sum
representation. If we take point splitting Tn the time direction for simplicity,
we obtain :

- A o 12 in€d i
<0l Teo 10 = _'2_“(?3 S‘ dAre coth A =
-]

i _"L",_
.‘zrr n" [4 iz, w )+ ]

where

It
Il
1
p
,{q
+
AN
L™
)
~—

-ig&
iz, gr.r.)
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1
Then - _ _4_ A + i......

(ol Teo lOoD> = T3¢ &2 a4 m
and

kA
* . w7
AFP Lol Too lOo> = <
The same calculation in four dimensions starting from
4 : .
Gt?\) P:.) = A = _4' ""4"""'"
fr Lo'-"‘l'ﬁﬂa‘-f Ba*) g A

D Af Ag . byt s b2t ,  Atdg=(f-£.)(9,-94)
Aﬂ} =(s-%e)

A =(®a-22)

leads to

Go b [Ag [ v hp 4190, A (Mt iy A
BuGo S lh L FRY A (ot 2]
How

GQ;:. = 2y, duy + Ovh P | +_A-£-( %-'33‘ + Oay 31.;)

<.ﬁ)o\>= —A‘P;’:vzg)"zG'

Taking the Timit dy'» 0, dz2'— 0 first :

$, 624 4 [acjl.)o:: s S ]- A 1 (55)
art A} Aj- AJf" Aj" 'ﬂr"(df ﬁj)z




m
and then u'y) ~= u'y {v'y —»v'g), straight-forward but lengthy calculations

[ expansions to the 4th and Sth derivatives of f(g) must be now included] ,
give

ADP Coltolr -2 .ﬁ__['u(a B-R%)aw (bea R+ E-KB)Au’]
w
+ (same term in O v' )
‘5":1:'<01100l0?== [(°-+ 3)3 +(b- C)A +(¢—D)J (56)

where

a.%[%-%%P]

(124)

c.(—a)[—f—v -%%4.24(_%_}_;_ [5:) ]

Kah , B=(A"-8) , T=24B-C ,Du(8%24C-D)

L —45;&“' 1(%)°]

[49;" -—.’}—.]

S Al ek - 45T

C '%'[.gg'_‘: .%f (£ugn5:}?lgm) ]
e
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In the Rindler case, these eqs give

¥
o = «12 ‘ L. &% , ¢ = o'Ya2
Ae o . Buadthz » €0 , DsZd
ii = 0 ) i; = - °‘t/'f2, ) és =0 , jj::.é_ of 4
go
AFP 01;001‘3)': 4 3 /AT =
< In:"(-i % +c-.D)
4
= A_ .2‘:_ = m T ()
art 240 30

corresponding to a Planckian density energy at temperature T = -5— in
four dimensions. im

In the two dimensional case. the finite part of D12 & is

”Eaffrr{'g_ __( ) B %}-ﬂ'[ %E'_%(%')"] » where each

factor is related to a Schwarzian derivative which, 1ike the measure in

. (20) is invariant under homographic transformations : fow(af+b)(cfrd)~1.
But, from Davies and Full1ng!8| or our covariant point splitting result
later in this paper, this is just the negative of Avem. L0 IT.:,Q jo'>=
= {o'[Tealo") —-<o/ Too 1 OO - Thus we knowthat the subtracted
divergence is exactly am expectation value with respect to some state,
which happens to be {(homographically equivalent to) the accelerated state,
and that we have therefore normalized the Minkowski vacuum with respect
to this state. In four dimensional case we stumble upon a similar result
for the exponential mapping without beingable to find the general class
for which it is true.



B - Y Dimensions :

For massive fields, calculation by dimensional regularization
is often very instructive. We shall first calculate <T:,A > in generic
space time dimfnsions and then consider dimensionalities of interest. We
analyze now <T{u,‘ > as a function of the space time dimension.

The Green function in V¥ dimensions is given by

c{,vk &ihx _ m-i_x K_g,_a[?"l '__~X‘+i.£_.|

G'(X) =

T — (58)
@MY R it (2m) 7% [m];--l
where
Xf-=-x,'-...x4'-+ ..... +)(‘:. and Kzﬁ-L-E ML,
2 SmiTa Ry
By using
Iytz)= £\ 1. z 1
I‘(A+1)( ) [ (11»1)( ) z.(a+4)(;|+z) 2']
we have
Yo
= m x* y
o) 4w/ re-ple Mr‘7. st oL 8 R

£ M2 (Y[ 44 amix® 4 mTX 4 O(XY
4% % 2 (u=v)  g(4-v)(-v)
By computing

WG, m” (1.2 qua l"(-‘i-:')x")-%
> U‘ “_)vh_ 1)%—;— t ____2- J/:_ ( .
[(1 V) Gur = Y (2 V) EaXa 'rn"[)( gua +(2- v);x;
xv.
[ xYq, ) Sl R '
* 7 [("__jj-_ﬂ + I a]} ’



k)
Da"G(x)- m? T(-7) + r({--4)x*)' [1amts®
Gmr 2 "—:}F(%_ - quﬂ

we obtain

T 0> = i [309- %_,\_(QD—m")]G'(X)

LT (=) > < Ty

here

(Tn("-—-o)>-—- Cy) e [1"%)(%"4)501 (61)

£ %:..: (x5 -Lﬂ:ﬁr(%—q){{i vl(j,,.. v)(,xa)_
Y &8

I [Go- (29 fer -t NuXn 4 3 Xt x* 9.3 }
2 (n X2 + R )
x X 4 4 -.("'—?')j £14- 9)«--.9] 162)

Let be now V—s d = 2,4. We have

vV = &’L +* (“"A')
d-
S e RCCUDY PR

y 'l yw df2

_ 1-dp 2 _ .
f'(q.._yi)g -1 [_—_—cl...-v C-] +o(v-d}

G- = -2 (s g 04 +o(r-d)* ]



He get

v-1 ‘{l-rt)
< T/‘-]\ (X:O)> o L in- 9»3

V1, v %

(63.)

e
{ Talx=0)> (%)zﬂ?a[ = &g.u__&) (63.b)

v 4
and
N Y2 'l.
CPotny = B2 g [ 2, hgestey] - (-
V-2
P!,? [ _;p;_{ c:xa +mt Xci(:a]

), B gua [

()t

- And

- Aa(EE) ] e

[(._ + 2m® )7..: [ﬁ + AmT o mY ))5-&]
@t X" X 2xt

Now, if VY is used as a regulator, we take ¥ negatwe and X = 0. Thus,

in dimensional regularisatfon <T..a > is given by eq. (61) and its expressions
for ¥— 2, 4 are eqs (63.a) (63.b). If we use X as a regulator, then

T {x)> is given by eq. (60} and its expressions for YV 2, & are

<-;‘.\f¥)2-’: j:_rr{ ?,. L; «mxa.)l 2 z +": 'm_&_‘T} {65.a)

(-;"[”2._:%%?3“1‘”} ) 9;:,.._:.,;3_&{.‘__%

X

+hm* Keds o' Yuda | .
x'( x‘ x‘l- 55.5)

The poles at ¥ = 2, 4 appearing in the X = 0 and X # 0 terms (63) (64)
mutually cancel .

It can be noted that eq. (61} is only valid for m # 0. <Tua > as given
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by dimensional regularisation does not include the m = 0 limit. This is
s0 because for X = 0, the only term contributing to G(X} comes from
r‘)"z-' {X}. The m = 0 contribution is contained in the Ii—d {X) term
which vanish at X = 0. To include the m = 0 term, <Tﬁ" > must be defined
for X # 0 and point splitting is Yequired.

¥ - COVARIANT POINT SPLITTING REGULARIZATION

There is a very natural form of the regularized operator which
suggests itself here. In keeping with the efforts of other authors, it
embodies numerous properties expected from the classical definition. It
can-be easily built up piece by piece to reflect the symmetry, conservation
and conformal tracelessness of the classical expression and by construction
has the property of being parallelly transportable between the separated
points which give rise to its definition. Somewhat surprisingly. in one
way or another, it differs from the corresponding quantity used by other
authors in the field, but only by terms which are odd in the separation,
i.e. whose sign changes under parallel transport. Whatever the value of
using it for a renormalization may be, it would seem worthwhile to record
our regularized tensor here and to give some arguments for its adoption.

Constructing the tensor

From the point splitting point of view, Just as the Green function
is the fundamental object from which to construct quantities such as <f2>,
we seek some analogous object for(‘l}.v) which preserves the Lorentz covariance
and, where applicable, the conformal invariance : also, we seek an object
which is formally conserved in the coincidence 1imit, the final reselt
automatically being conserved, since renormalization takes place in the
Lagrangian. However it is a little difficult to Implement conservation
for our regularized tensor unless the tensor itself is regular in the
coincidence Timit,

The classical expression for the stress-energy tensor of a scalar
field has terms Mke auy V(Y HX), Fip (0Y5 5 () and "P;,.,v(x)'f/m
occurring in 1t, where the (regular) By MY DE Quy 5 Ruy Rauv Quv



(contractions of these terms also appear). In the quantum theory, since
these terms represent products of field operators {or their derivatives)
at a point, they are divergent {T1-defined). However, terms such as
oo, L M5y 00 Vot Y, Y0 Yixy
"-PJ.F.V,(K'} "’V(x) are clearly well defined and will be suitable for use
in building up a regularized quantity. In addition, there is an {essentially)
unique object, the geodetic bivector of parallel displacement, gav’ ,
which allows the indices expressing dependence at one point to be translated
to the other, so that a properly tensorial quantity can be defined, Whatever
other properties the stress-energy may have,since this parallel tramsport
is needed for the definition of our regularized tensor, it would seem most
useful to have a definition which is favariant under such transport between
the separated points : i.e. = ' PR

j/..v {X, X') = j,u.‘u jvv ;Z.a.'b" (XJ X')
We can think of this as a “symmetry" under X 4o.s X's terms lacking this
symmetry would vanish in the classical expression obtained from the coincidence
limit). Thus

‘\I:.» (x) ")!’},(X) — ffﬂ«“'“/j-ﬂ"(x'”,({v’x)*3,,”"'&’..-3“/#?”‘“’)]

Va0V EX) — L[L 0900 + G297 4, st 910))
and

By (X) Yixy Vex )-+_J£ [ @y (X) + ,j;" g J Gty rxu]’ibrxr'fé;?

In the first twe cases, the symmetry under S o is preserved, in the
third case no symmetry whatever is used in the construction. The contraction
terms in the regularized tensor follow unambiguously from these definitions,
which Tead to an explicit preservation.of the vanishing of the trace in

the conformally fnvariant theory. Thus, in a curved space time, with

ﬁuvg RMV_ %j"‘“’R R G— = ["'P(x,)_, '\]}sz)].,.

and conformal coupling 3 , we will consider



K 7))

) M yom’
e (4-2)(‘}v "y g G )
G,Pa‘ '}_[G"P*’j 3 G;,«w]-
r2 (-3 37 9;.,»' - 5
? [ Y My
+ij”v[G’f 'l'G'f: ]‘I‘i—-i 1-3"3‘"% ]G-
B
A wm® g“" G
& {66}
In the expression given by Brown and Ottewill 191, the operators occurring
in the first and third terms of eq. (66) are not distinguished. In ref. |10l,
Wald does not apply point splitting to the Einstein tensor. Dowker and
Critchley!11l, sp11t the Ricci curvature and V¥, but not the scalar

curvature and V2 VY. Christensen!12!, uses the conformally coupled field
equat1ons

Vixy, L w (LROG +ome 4 | “P(x) o (2RO m VY

to partially remove these second order operators (so that tracelessness

in the conformally invariant case becomes independent of the field equations)
_but he makes no distinction between the scalar curvature at the two points,
tandetas!13! fully removes the 1 G (and [ 'G) terms. Davies and Fulling!7|

in fact remark that some asymmetry between X and X' may be introduced into
the regularized temsor by use of the field equations. In his examination

of the scheme proposed by Adler et al.}14l, Hald shows that a certain regular,
boundary dependent Green function used in their analysis, is not symmetric
and does not satisfy the wave equation in both X and X'. Using his proposal
for the regularized energy momentum tensor, he finds that their renormalized
tensor is not conserved and suggests a modification to correct this fault

at the expense of introducing an anomalous trace. Although our proposal
alters a number of the features used by Wald in his amalysis, it will not
spoil his results concerning conservation since he applies his regularized
operator only to a non-divergent quantity,and it turns out that the difference
we would introduce vanishes idemtically in the coincidence 1imit. However,
our proposal introduces additional direction dependent finite terms which
pould in general Tead to additional OOR terms in the trace {even with respect



to Wald's work, but not that of Christensen} and would spoil conservation

if there is anyone who has genuinely established conservation for his
renormalized result ! Hltimately. the residual effect of our proposal partly
depends on one's handling of direction dependent ferms.

In flat space time, with % = 0, from eq. (66) we have

j,uvz {3 G_,,,a-v 3/“ G,ﬂv“‘j gﬁr (r,j’o‘ j“VG'}

In the coordinate system defined by eq.{1}, we have

j»v '—'(-A, A ’ 1, 4)

- s; :
' 0 A -5l o
I AT B LN C P AT
o 1 4 A, ' A,
b 0O A,
- --‘.':If L [ :
jﬂ 4 s R o j"’ A h..: °
M, 2L A A % 7 A

»,,,g.’(;,'gug:;l) T P flu
SER-FR) Aglh gD

s k=4,2.

with
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Then

”~

jm, { (Gio' * G )'l‘ 5( Gort e Gy )+ A ha (le'+("33'*m G%
2A,

O0f course, we could take the expectation of this with respect to any state.
If we choose, say, the Minkowski vacuum [0>, the operator G would become
just the Minkowski Green function. If we choose an accelerated state [0'>,
G would become the Green function for that state.

As an example, we consider the two dimensional massless case referred to
earlier {as then, we will for convenience use the Feymann Green function
rather than the symmetric one). For the accelerated state we have

G"___-_f_. -fﬂ\ [ﬂu,! B,nr‘] , (A&b': lb:..w',, , ﬂnr:,tg'.'p‘,‘,)
4 |
and then
<0lljno|0'>='i.[_&._4__ + _ﬂ':_ 4 J
4w . (au)® 3':, (dv‘}"

_0__ s we expand

Using 2 .
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. to cbtain

(ailulo }’E E [%%— W”J-ﬁf"—iﬂ?—)}

+
[}
ot G 9 .
ﬂl.l.. 1 j‘
from our previous expression

Y S O A Y LA L L

the divergent part can be written as

i

which can be substracted by a renormalization of the cosmological constant

to give

As mentioned earlier, this is the negative of the result of our naive
subtraction scheme for the Minkowski vacuum. Using this covariant method
instead, for the Minkowski vacuum, and expressing the result with respect
to accelerated coordinates we would have

<ol Joo 10 —.;1?{ i + ﬁ j )
w* v

and obtain
Rtm<0]’j'°°|0> = O

.L
Pt

R«(o‘ii.lo'>--£|ir_r{[.4z% L‘L)] [c’g
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¥1 - CONCLUSIONS

We have extended, from fwo to four dimensions, a previous description
of accelerated frames using amalytic mappings. For a treatment of the divergent
operator products arising in quantum field theory, we show that in a normalization
with respect to a natural ground state specifled in terms of these accelerated
frames, the coordinate mapping {(and its inverse) relating the accelerated
frames to global inertial coordinates, plays a distinguished role. As in
two dimensions, the exponential mapping is uniquely singled out as giving
rise to a situatfon indicating global thermal equilibrium, and asymptotic
properties of mappings are directly related to therma) properties fn the
asymptotic regions. Me do not attempt to settle the question whether norma-
lization may be more appropriate in curved spaces, but as a unique way
of indicating which state to use for a normalization has not yet been developped,
it seems that to discuss the back reaction problem a renormalization may
be essential. In this context we propose a new regularized energy momentum
tensor using covariant peint splitting, and discuss its properties and
relation to previous proposals.
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SEMICLASSICAL QUANTUM GRAVITY IN TWO AND FOUR DIMENSIONS

A full guantum theory of Gravity is still non-existent.
There exists what is called a "Semiclassical Quantum Gravity?
This refers to different approachs and approximations :

i) Q.F.T. in curved =pace-time, in which matter fields
are quantized on c¢lassical gravitational backgrounds, one of
the first important examples being the Hawking radiation by
black-holes ; this is also of conceptual and practical inte-
rest in early Cosmeology and Inflation.

ii) Semiclassical Einstein equations, in which quantized
matter fields react back [through the expectation value of
the energy-momentum tensor) on the geometry (the so-called
*back-reaction problem"}; important problems being the reso-
lution of the last time evolution of black holes due to the
reaction of Hawking radiation and the reaction of particle
production in the early-time evolution of the Universe.

iii} Semiclassical approximation to path integral of gra-
vity and matter fields, developped in the context of eucli-
dean gravity with instanton and partition function metheds
(Gibbons and Hawking), recently combined with the Wheeler-
Dewitt equation of tanonical quantization and applied to Cos-
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melogy for the problem of initial conditions and ground sta-
te (Hartle-Hawking wave function).

tOne of the well known examples in previous approachs is that
of the thermal properties of black-holes : first suspected
a{ the very classical {and purely formal) level, properly
found atsihe level of Q.F.T. in curved space-time, then reco-
vered ats. the three-level from the path integral of gravity
and matter fieldsl-.

Here we report our recent work in connection with the
above mentioned problems ;:
1) We show that Semiclassical Quantum Gravity in two dimen-
gions is exactly sclvable. The general sclution of twe dimen-
sional semiclassical Einstein eguations is presented and ana-

lyzed in terms of analytic mappings. The connection with the
Liouville theory is derived.

2) We investigate the role of discrete symmetries {in parti-
cular, the antipodal identification map) and the modificatien
of the space time topology for Q.F.T. in curved space time.
We analyze the implications for Antipodal Identified Black
Holes, at the level of Green functions, Fock space and Ther-
mal properties. (Work in collaboration with W.F. Whiting

from Worth-Caroline University at Chapell-Hill).

3} We investigate the vacuum fluctuations (% and the energy
momentum tensor <f“,> of massless fields of spins O0,% and 1
near static distorted black-holes. We give a complete geome-
tric invariant descripticn of these quantities near the event
horizon for both the Hartle-Hawking (thermal) and the Boul-
ware ('"non-thermal®") wvaccua. (Work in cellaboration with

V.P. Frolov from Lebedev Institute of Moscow),

1. SEMICLASSICAL QUANTUM GRAVITY IN TWO DIMENSIONS ARD
LIOUVILLE THEQRY,

The general sclution of semiclassical two-dimensional
Einstein equations is exactly found. It is given by a cons-



tant curvature metric parametrized by solutions (*Wave func-
tions") of a zero energy Schrodinger equation. Global, ther-
mal and topological properties of the universe are analyzed
as a function of its quantum matter content including the
graviton contribution.

1.1- Two dimensional field theories are useful in the under-
standing of mere relativistic four dimensional thecories and
are in some cases, exactly solvable. Semiclas=sical approa-
ches are helpful to get explicit (not merely formal} results
and a gualitative understanding to quantization. Because of
the difficulties to guantize Gravity, a semiclassical two di-
mensional treatment of the problem is interesting. Recently,
two dimensional gravity has raised interest, mainlf in conne-
ction with Polyakov's work on strings |ll., The ectazssicat Eins-
tein equations do not describe the dynamics of the gravita-
tional field in two dimensions because j fElldxz iz a topo-
logical invariant and because is q: ={) for a classical matter
source. It has been proposed that Liouville theory which in
geometric form reads R+A =0, (A= const.) could governs the
dynamics of two dimensional gravity [2!. In this paper we
consider semiclassical Einstein equations in two dimensions and
derive Liouville theory as one of the dynamical equations of
the gravitational field, the other equation involved appears
to be a Schrodinger's one. The trace anomaly <i:>#0 for a
quantum matter source allows for a non trivial dynamics of
the semiclassical Einstein equations in two dimensions. Semi-
classical in this context means that matter fields 3 ineclu-
ding the graviton are guantized to one-loop level and coupled
to (c-number) gravity through the equations

Rﬁy.— 2R %A~v + r\gasv = 8O <:‘1i~v(£$,3“92>(1-1}

<;;,> is the expectation value of the stress tensor operator
i,g of quantum matter filelds, renormalized in such a way that
is covariantly conserved V'<ﬁ,,>=0.

BEgs (1) for g,y are highly complicated and need to be treated
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within some type of self consistent framework. (ﬁ_u) depends
on the geometry and on the choice of the quantum state |>,
that is on the choice of the boundary conditions of matter
fields. Therefore (f},) is not a local geometrical object.
In two dimensions, the semiclassical eqs {1.1) reduce to

!\?_,, -t T (1.2)

~
which are non-trivial because <T;“>#O. The metric can be al-
ways written in the conformally flat form

ds2 = clu,v) du dv {1.3)

where u=x-t, v=x+t. The geometry is uniguely characterized
by the curvature =scalar

R4 3% nC o 4C7[CC. ). 0

<£,,> is uniquely determined by the trace anomaly value
L - -

CTUD> = =7 (2am)y* R (1.5}
and explicitely given by !3!
<T’\'J> = 9,9,4 - T(!I'R)‘{R.Spf 3 Fy

2 ! e
Cluwd = =¥Yamy* Ve 2. (vE )"t ¢ Utwy ausa
. z -4 F

(Tw>- -Y(-izrr)‘rc,' Iv(Vc ) + V(v) .év)
<Tuv>- -¥{4gre)! R. Cgu.v . (1.6c)
Pu.y is any conserved traceless tensor taking into account the
dependence of <f;w> on the gquantum state of matter fields.
It represents the non local part of <I,,>:Puu=ﬁ?u).9vv=q(v).

Pyv=Pyy=0. U and ¥ are arbitrary functions of the indicated
variables. The coefficient 7 takes into account the spin{s)
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dependence and the number of degrees of freedom of the fields.
The total value of ¥ is discussed in sectionT4. The semiclas-
sical egs (1.2) give
<Tuu> = 0 , <Tvv> = 0 {1.7a)
R+A=o0 . R = e N7 {1.7b)

Eg.(1.7b) is the Liouville equation in geometrical form. In
terms of the conformal factor C it reads

b 2ud mC ¢+ A C  _ o (1.8)

or 4 duv ‘b + A -'Q.ﬁ‘b = 0 ,Ca. 94’, Paconst.

As it is well known, the ganeral solution is

(b- P-a S g'tu} 3"{\!) (1.9)
[+ + /ey Hwr3n }®

Here f and g are not totally arbitrary functions but deter-

mined in terms of U and V by eqs {1.7%a) :
3 d, (\@—‘)-‘ - Az Yy -? ﬁ'{u.) - O (1.10a)
\15- &y (ﬁ')'l -2 ¥ \T(v; = © (1.10b)

That is to say, the solution to the back-reaction problem
in two dimensions is determined by a constant curvature me-
tric (eq.1.3)

o £'(w) §'(v)

= (1.11)
{1 - (R/8) £{u) g(v)]2

parametrized by scolutions of a zero-energy Schrodinger equa-~
tion

2 ~F _ -1 ™~ - _
as X i) 12%% © Uiw) X fu)y =0 f{1.12a}



a2 x a¥l Vv % =
2 X (v) - 1209 V(v) R (v) = 0 (1.12b)

- o
By giving the “potentials™ U{u) and V{v}, i.e. by specifying
the guantum state of the matter fields, egs (1.12) determine
the "wave functions®

Xg = (£ 7L , Xy = (ygn 7t (1.13)

To know the geometry configuration as a function of the gquan-
tum state of matter fields, we consider the transformations

u = fiu) . Ve = giv) {1.14}

k

The 0{2,2) group of bilinear transformations is the invarian-
ce group for both Liouville equation (1.9) and the Schrodin-
ger eq.(Ll2). The first term of eq.(1.12) is the Schwarzian
derivative (p[£]) of £ : b[£] = V' a2 (Fp~E- 2 (E5)%. un-
der the M&bius or bilinear transformations, f becomes a new
function, but D[f] is invariant, determinying the same vacu-
um state of the filelds. Eq.{l.14) can be considered as the
mapping relating some manifold covered by the coordinates

u, v to its global analytic extension (realized in the coor-
dinates uK,vK). These are monotonic increasing functions

satisfying the conditions 141,
Ugs = £{to0) ¢ Vg = 9lten) t1.15)

uK+(uK_l can take finite or infinite values allowing for one,
two or none event horizons in the space time. Same considera—
tions hold for the mappings g. In particular, f = g. Proper-
ties of the Schrodinger egs (1.12) can be derived from the
asymptotic properties of these mappings. At an event horizen,
f'(-w) = 0 and the “"wave function" is X=@ there. On the contra-
ry at the infinity, if for instance £'({+m)=+m, then ¥(+@)=0 and

Tl +w)=+o. In particular, the values =0, V=0 in eqgs(1.10),

detergine fi{g) as
X = const, f={(fu+f) / (gu+5) {1.16)



with (4f-pd) = 1 and &, B, 0, b, constant parameters in ac-

cordance with the invariance properties discussed above. The
corresponding vacuum state (I)K) can be considered as a re-

ference or "minimal”™ vacuum at zero temperature, respect to

which, states corresponding to non-zero potentials U and G:

appear as excited or thermal ones. A constant potentialﬁ?u)
—U0 such that UO/( >0 (fig. 1) gives

i

T=ae-%u , £ = (202)-1 e2%u (1,17}

where A is a normalizing constant (we will choose Aﬂjzii'll
and 4%, is the zero-energy transmission coefficient

¥ - vVvixrt g (1.18)

The solution £ has been choosen in order to have f as an in-
creasing function. The mapping
W
uk=e2* 0 gu r Ve £ Y@,
iév K K
vK=e2 -w g L , V § + ®

{1.19)

defines an event horizon at up Vg 0 (uv = - @) and garries

an intrinsic temperature

pe R1® - V12 (an !t T, {1.20)

as it can be seen by putting t = iT (u = x - i¥ and s0

0<TS /4§ . On the contrary, if {ﬁ;/r) < 0, there is no tran-
smission coefficient (abecomes imaginary) and no event hori-
zon is formed. The geometry does not carry an intrinsic tem-
perature in this case. More generally, each positive discon-
tinuity in the "effective" potential ﬁ;/( gives rise to an
event, hor1zon in the space time, the transmission coefficient

% -

Iir' playing the role of the "surface gravity"
horizen

®=2% of the horizon.
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U
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Constant effective potential {Uy/§)>0 correspoﬂ?ing.‘;g_;hgrgg_{o—
energy Schrodinger eq{l2) . The wave.function Ae~ M A=v1207"1C0,,
determines a mapping uK={ 28a2r3e280 ¥is the trace anomaly factor.

Fig. 1.b

Space time diagramm corresponding to the potential of fig.(l.al..

The zero-energy'transmission coefficient (# is twice the surfa-

ce gravity of the horizon (M) ;T=r~13 the associated temperature.

Up=Xp—ty . v+t are "Kruskal”® {global} type coordinates, u=v-t,
,v=x+t are of "Schwarzschild's" type.



1.2- Global properties of the semiclassical geometry,

It is convenient to rescale coordinates (gq=R/8)
!

U= JIQIuk ' U= f{u)

{1.21)
¥ = qulvk . Vv = glv)
1 1
such that ds2 = = ——— dU aVv (1.22)
(¥)  igl (13 uv)2
=2 £ gliv) gy gy (1.23)

lql  (13f(ulgiv)@

The sign -(+) correspond here to g>0 {g<0) respectively.The
case g>0) describes a semiclassical de Sitter geometry. By
defining

(St

u=e B o= flu) (1.24)
(5;15)

vV=oe8 H = f{v)

where r* = r 271 b, Llzy =~ n)/(xy + ] . =k J1al' ., the
metric (1.22) can be written in the stati¢ form

as2 = -(1 - r¥/ryy) at? + (1 - ri/rgp)-l arz (1.25)

which has an event horizon at r=rH=J;/3A. {See fig.(2)).
% a;b 1P=81, (1= ?/3t is the Killing vector such that
t$1=1 at r=0) defines the aurface gravity as

o = Jf\eff /3 = EWIVE o .

His twice the “transmission coefficient® eq.{1.18) for
304\/(16!]. The temperature is T={2E)‘1x=(2lﬁ'1431\/)‘ invol-
ving besides A\ the trace anomaly coefficient ¥. The case

q<0 describes a semiclassical anti-de~Sitter geometry, obtai-
ned from the above situation by the analytic continuation

rﬁt—i r,. The mapping (1.24) becomes
iE=E 1 (525
U=e rH R ¥y=e rH (1.26)

3
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for real time t and ccordinate r*/rg=-arctgi{r,/r}. The metric

i=s real
L1

2
as? =_(1+r2/rﬁ} dt2+ — 9 yithout event horizon.(1.27)
(+) {1+r2/r 2)

The geometry does not carry an intrinsic (real) temperature

(T becomes imaginary). The mapping eq.(1.26) in this case is
not strictly increasing, which js associated to the fact that
{AdS) is oscillatory in time and not globally hyperbolic.

Uv=-1 (r=0)

.

UV=+1 [(r=o) T

Pig. 2
GlobalStructureofthespace—timeforthecase(hff))O.These—
miclassical geometry is of the de-Sitter type with one event hori-
zon and intrinsic temperature T={Aesf/3' sAef =97/ For (A/7)<0,
the geometry is anti-de-Sitter.




1.3- Instantons.

The analytic continuation t=iZ(Zreal) maps the metric
{1.22) onto a definite positive metric

as? = (93, 9 @ ) as ai : (1.28)

{7} 2 E {37)

Here 8 = X +iT, ¥ = X -itT. sz |q|'1ﬂ,..[1 +8 3] is
the solution of the Euclidean Licuville equation. Por ¢>0
Eq.(l.28) is the projective complex line {(€Pl):1/2 VIql is
the curvature radius of the space.

We can consider ¢Pl as a gravitational instanton 161 of two
dimensional Gravity : complete, non singular and definite
positive solution of the semiclassical Binstein equations
in two dimensions. The Euler number is given by

}( = u:)-lj {9°R d2x + (28X)-1{{F K day (1.29)
M M
and the euclidean action is

T=a1 (/(-1 -AD Al=ta)-1 | J5 a2« (1,30)

g and ¢gare the determinants of the metrics over the manifold
M and over its boundary aM , respectively. K is the trace of
the extrinsic curvature. ?ﬁ- 1 and f = [} for flat Minkowski
space :;( =0 and f =-1/4 for flat Rindler space. For the cpl
instanton, /'( =-1 and f=—1/4(2+’6?6).

1.4- Cosmological configurations and "critical dimensions™.
The cosmological constant K=6N’U’ in the Liouville eq.
{1.9) is modified with respect to the classical one by the
trace anomaly factor ¥ of eq.(l.5). The character of the so-
lution depends on the sign of A/¥. Vector fields in two di-
mensions do not contribute to Y. FPor'§ fixed by eq.[1.5), the
scalar contribution is positive and that of gravitons is
negative. Therefore : I} If signA¥ sign¥, i.e. A>0 and¥<0
{graviton dominated universe} or A<0 and ¥>50 {matter dominated



universe}, the geometry has R>0 with one event horizon.II}If
sign A=sign ¥. the geometry has R<0 without horizon. This
means that for a given sign of A, the presence or absence of
event horizons depends on the number of matter fields., The
Dniverse could change from an Anti-de-Sitter to a de-Sitter
phase {(or vice-versa). The graviton contribution iz crucial
here to arise these possibilities. This contrasts with the
standard classical situation (in four dimensions} in which

R and the presence or not of event horizon only depends oni.
If N (the number of matter fields)pe then the Hawking tempe-
rature T»0 and the semiclassical geometry is flat even if
A#0. If¥ =0 the dynamics is not determined by the semiclassi-
cal Binstein equations. In ref.7 the Liouville equation has
been derived in the semiclassical context but the graviton
contribution so crucial to this problem has been overlooked.
The total value of ¥ as calculated in refs. 8 and 9 {denoted
¥igkr) and ¥ (cp) following notation of ref. 10} is

Yicrr)=(No-1+N% - L2 N3/2), Wicp)=(No-1-Ns+N3/2) (1.31}
{ } o P (CD)

Here, the graviton interacts with Ng massaless flelds of spins
s, s(3/2.[The graviton contribution tofwas also obtained

egual to -1 in ref.tlol]. In the context of quantized strings
111, the trace anomaly coefficient for a theory with N matter
fields coupled to two dimensional gravity was obtained equal

to (11

-r(P) = N -26 for bosons, (1.32)

ﬁPl = N =10 for fermions {with supersymmetric coupling]}

We denote it ﬂp; because of ref.{l). (See also refs. 1l1-14
for a review). These values were calculated at the one loop
level in the conformal gauge g,.,=e¢ Mjmv . The "critical 4i-
mension® 26(10} in eg.(1.32) is only the ghost part (Faddeev-
Popov determinant) of the graviton contribution. It does not
take into account the quantization of the conformal factor



fthe Liouville field &) that remains fixed. This should explain
the difference between the valuea 1 in eq,(1.31} and 26(10)
in eq.(1.32). The value of Tthat should be considered in the
Liouville egquation (9) of two dimensional gravity is that gi-
ven by eq.(l.31) and not that of eq,(1.32). Understanding in
connection with the gquantization of the Liouville theory in
this context desserves future investigation. It would be in-
teresting to connect the results found here with those obtai-
ned from a semiclassical limit of the Hawking "wave fgnction
approach” 15land the Jackiw model 1161,

More details about this work are given elsewhere 117,
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2. Q.F.T.RNDTHEAETIPODALIDENTIFIChTIONOFBLACKHOLES.

The antipodal points (U,v,8,') and (-U,-V K-€ %) of
the Schwarzschild-Kruskal manifold, usually interpreted as
two different events (in two different worlds) are conside-

Yed here as physically identified {(to give one single world}.
This has fundamental consequences for the Q.F.T. formulated



on this manifold.The antipodal symmetric fields have {global-
ly} zero morm. The usual particle-antiparticle Fock space de-
finition breaks down. The antipodal symmetric Green functions
have the same periodicity B=8¢M in imaginary (Schwarzschild)
time as the usual {non-symmetric) ones. (Identification with
"conical singularity" whould give a period ®2). In any case,
no usual thermal interpretation is possible for T=wl (nor
for To=2/ or any other value) in the theory.In the light of
these results we discuss "0ld" ideas and more recent ones on
identification.

The formulation of Quantum Field Theory in non trivial
{curved or flat) space times has given new fundamental fea-
tures with respect to the usual understanding of Q.F.T. in
trivial (Minkowski flat) space time, i.e.:i) the possibility
for a given field theory to have different alternative well
defined Fock spaces (different “sectors" of the theory);(ii)
the presence of "intrinsic” statistical features ttemperaturq,
entropy) arising from the non-trivial structure (geometry,
topology) of the space-time and not from a superimposed sta-
tistical description of the quantum matter fields. Relevant
examples are Q.F.T. on the Rindler manifold and its analytic
mapping extensions {1-3},black-holes and cosmological (de
Sitter) space-times (4-6),

However, it is known that each given space-time M with
metric g satisfying the Binstein equations, admits, in prin-
ciple, different possible associated topologies. {Einstein
equations being purely differential, fix the local geometry
but not the global topology of the space-time). Results i)
and ii) on Q.P.T. in non-trivial manifolds refer to a parti-
cular choice of the space-time topology. (even if that choice
could be considered as the "most reasonable” one}. Our aim
is to investigate the modifications to the above results
when space time topologies, different to the usually consi-
dered ones are allowed. Important though a modification of
the spatial topelegy is, it merely influencies the spatial
part of the positive {negative) frequency basgis and the va-
lue of the vacuum energy {Casimir effects) but fundamental
changes to the features (i) and {ii) above referred would



not be expected. Recently,we have shown that more drastic con-
sequences appear from a modificatien of the space time topo-
logy. We consider space times of the form W=M/ where[ isa
discrete subgroup of isometries of M without fixed points:

M is non-singular and it is obtained from its universal co-
vering M by identifying points equivalent under [ . Por the
relevant examples we have in mind, we will restricts oursel-
ves to the particular interesting case in which I is the
antipodal transformation on M :

J: P(X) ., P (2.1)

The antipode P(X) of the point P(X) is defined as having its
light-cone parallel to that of P. Thus, we are adopting the
so-called "elliptic interpretation®™ {7} of space-time, con-
sisting in deeming antipodes to represent the same world-
point or event. Such an interpretation applies to cosmology
{7.8) as well as to black-holes 9-13), wWe discuss Q.F.T. on
Schwarzschild space time with this identification. We find
that :

(i) the usual Fock space construction breaks down in
the identified space because, even at the classical level,a
complete set of positive (negative) frequency basis can not
be constructed : eigenmodes have zero norm ! {on global sec-
tions). It means that quantum creation and annhilition can
not be defined and no vacuum Fock state exists. |In the usu-
al theory (without identification) there are different well
defined possibilities (and thus an ambiguity) in choosing a
positive frequency basis, but such an unity normalized basis
always exist].

{ii) the usual thermal features in this context are des-—
troyed.The space-time identification considered here does not
manifest itself as a mere changement in the value of tempera-
ture [a "naive" consideration could lead to a modification of
it by a factor two} but the usual notion of temperature in this
context {i.e. the inverse imaginary time pericdicity of the



Green functions) doesn't apply. The zeroc norme fields here
do not allow us to describe any thermal properties in the
normal way. Similar results to ours have been racently dis-
cugsed independently by Gibbons (16,

In Schwarzschild space-time, the antipodal transformation
Jleg.2.1) without fixed points takes the form :

J: (U,V,.50 (-u,-v, 5L} (2.2)
Here U= X - T r V=X+T
L= (e:? |

= xr-e: W+w )
are global {Kruskal) type coordinates, related teo local
{Schwarzschild) ones by

X=(E£- 1% er/du cash IL)

I : M 44M
= (E- ) M i (Y

2M 4M

K= (1 -5 )% 2/ o (&
- ‘ M an

T=(1-% )” car‘/‘IIM cosh (E)
M M

12,3}
X = = %—1)” er",'m cosh (&1)
III
{ T o= (1) M ginn (Y
2M aM
X = -{1 - 5y 7/ e (Y
- { 2M aM
T=-{1 - £}';’ er/4M cosh (El'
2M 4M
The inverse transformations are ):2—'1'2"{2£ —1)er/2nin I,OD,Inl,N.
M
au tanh -} (i) in 1, TI
t = X
4M tanh 1 t,—ﬁ—) in@T, ¥

Egs.(2.3) can be written in a way as



0= e
I
o ar
V=oe
with
U=X-7T u=r« -t ar 1
V=X+T ' Vs +t f T

and
re = r + 2M jm(—z— - 1) »
™

in region I. Similarly, for the corresponding exponential
mappings in regions I, I, W :

g = _exu
r
I v aM_.::,‘=r+2mljm(l.-z;;“)
- = e
‘ U= -e R !M
I s, =x + 24 Im(E - 1)
v=—e*v * M
b {Te
U=e j‘ i,
b iv-—e'w Pyt a1 -2

Eqs(é.Bl displays the "double-universe" nature of the Rrus-
kal Schwarzschild geometry (fig.3), usually referred as an
n"eternal black-hole". Two Schwarzschild coordinate patches
{I,I) and (II,¥) are needed to cover all of space-time.
There are two (past and future) T =0 singularities (corres-
ponding to Tt+JTI§7‘and T= —J1+x21 and two exterior (r>rﬂ)
asymptotically flat regions corresponding to X>|T| and
X<|T). For M.0, aach of these Kruskal regions, becomes all
of Minkowski space-time. (The dynamic space time of a black
hole formed by gravitational collapse, only has one future
horizon and one exterior region).



Fig. 3

Kruskal extension of the Schwarzschild manifold. It is sym-
metric under reflections UgU, V,-V and consists of four re-
gions : (I} and {I0) are isometric regions in which r>2M :
(the timelike Killing vector ¥ =35t is future directed in I
and past directed in IN). (I} and V) are isometric but time
reversed regions in which the r = 0 physical singularity e-
volves.

In the usual (conventional) interpretation, {1%:20)ap-
tipodal points P(X) and F{X)} of Kruskal space are physically
distinct events which are causally disconnected. Every point
mass (would) splitt the universe in two : the real world (I)



am

and its mirror (inaccesible) copy (IH). A Kruskal space isa
wormhole, connecting two distant regions of ordinary space.
In the elliptic interpretation, antipodal points P{X}

and P(X} are physically identified. They are considered as
different representations in Kruskal space of one and the
same Schwarzschild {and ultimately Minkowski) event (r.t,
©,P). Thus, there is only a single one world with only one
singularity and only one exterior region and no wormhole is
needed, The price of this more "economical" picture is that
M is not time orientable. There is a breakdown of the global
distinction between past and future in the interior region
e<ry. However, no problem does not arise for r)rn.

| Now, we wish to consider fields on the identified space-
time above discussed, which are symmetric under the action of
the antipodal operator J (eq.2.2). Thus we define

'\k‘,s - Vo o+ Ve (2.4)
2

We will build up these symmetric fields from fields with ar-
guments specified in the right hand wedge. These building

blocks will be either positive or negative frequency compo-
nents with an inner preduct given by the usual Klein-Gordon

Vv.e, - —iS"!' Y] aL,.
37 = 37 éﬂﬂ’ﬁé: - 15“ b Y f?i )

one

(2.5}

taken over the right wedge. Each of these fields (whether
positive or negative frequency on the right wedge) can be ex-
tended to be a positive or negative frequency field on glo-
bal space-like surfaces. But in the inner product defined on
the original {full) Hilbert space, our symmetric fields de-
fined by eq.(2.4) have zero norm in global space-like surfa-
ces. This is so because on a global space like surface, time
orientation has been reversed in the left hand wedge, rela-
tive to the local orientation in the right hand wedge.



Our identified manifolds have non trivial {multiply con-
nected) space time topology. Instead of choosing symmetric
fields on these manifolds we could equally well have choosen
antisymmetric fields, that is fields which change sign under
the antipodal map J on the global manifold [see e.qg. ref. (16]
This would give a situation some what analogous to the twisted
fields considered by several authors some years ago (21,22},
However, previously, it was only the spatial topology which
was non-trivial and the problem of zero norm states never
arose.

This propérty of the symmetric field theory can be un-
derstood in terms of ita projections on separate halves of
the global (e.g. Kruskal) manifold. Although our symmetric
tields have zeroc norm on global space like sections, they
have positive (negative} norm on the half space to the future
[past] of the past horizon (fig.4). Particles and anti-par-
ticles can be well defined on each half space but with con-
jugate roles. Thus, from a global point of view, all distip-
ction between particles and antiparticles is removed by the
identification.

We define now the symmetric Green function

65 x) = < ¥ 0 Vo x> (2.6)

and express it in terms of the Green function for the ordina-
ry fields operators

G {(X,X") = <"Ptx) "Ptx')> {2.7)

Here < > stands for expectation value in the ordinary Fock
states of the ordinary field, ie j0>. Thus,

G g (X, X") = % [G(X,X")+G(X, X' }+G{IX, X' }+G(IX,IX")) (2.8)

It is necessary to indicate rather carefully what are the
properties of the symmetric Green function GJS' Toe do this,
we use Schwarzschild's type coordinates u,v covering the
right hand wedge introduced in section I, {egqg.2.3), ie



Pig. 4
A decomposition of the identified manifold into separate hal-
ves on which the symmetric fields have positive and negative
norm respectively.

o AL
U=e un=x-t
o 3
V=o=e v=x +t

It is clear that the Green function G is unchanged if t_,t+ip
where P.aﬂ', and G o similarly has this property, ie

G{t.t'+iP LU} = G(t,t': L)) (2.9)
GJs(t;t'tiP 1) = Gyt 8) {2.10)

{FPor the Schwarzschild black hole, P=8ﬂl).
In addition, we have

S Y v,
Gygltst’ + . 180 = G (t, e 50 {2.11)



but
N1 .
GJS(t.t > ;4 # GJslt.t : £1) {2.12)

The singularity structure of GJS is clearly demonstra-
ted in fig.(5) where the orientation in the sphere must be
carefully respected.

If G satisfies eq.(2.9}, then Gyg
If we had not mapped to antipodal points on the sphere under

satisfies eq.{(2.10),

J, ie if instead of J, we were taken
Iy (0, R) = (-U,-V,.00) (2,13)

we would have had a conical singularity {(at U = v = Q) in
our spacetime and the corresponding symmetric Green function
[GJOSJ would be unchanged under tt+i P/z. ie

t'+i—2ﬁ';.0.1 =G

Usually, in {euclidean) Q.F.T. one can regards G satis-
fying eq.{2.9} as a thermal Green function at temperature]41
However, even though our symmetric Green function GJS is pe-
riodic with periocd P {and not PB/2), this does NOT mean that
we can interpret it as a thermal Green function at tempera-
ture -'(or at any other temperature). Qur zero norm fields
do not allew us to construct any thermal properties in the
normal way.(And the same results apply to Gjog satisfying
eq.(2.14)]).

(t,t* 80 (2.14)

GJoS(t' Jos
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Fig.5

The complex (t-t') plane. The crosses (x) indicate the posi-
tions of the singularities of the usual Green function G(X.X)
where X and X' have the same orientation on the 2-sphere; they
are repeated in the imaginary direction with period @{. Cir-
cles (0) mark the singularities of G{X,JX') where in their
spatial dependence, X and X' lie on opposite sides of the
2-sphere;these have the same period P, but are shifted with
respect to crosses by #/2 in the imaginary direction.Crosses
and circles then represent singularities of the antipodal
symmetric Green function Gyg{X,X') and the arrows indicate
the different spatial orientations of the points X and X*.



The main result in this section which we weuld like to
emphasize is that the discrete antipodal symmetry of the cla-
sgical Schwarzschild-Kruskal manifold can not be implemented
without problems at the level of gquantum Fock space. One can
not construct {lecal) Fock states symmetric under the anti-
podal transformations by a guantum operator acting on the
usual {(non symmetric) states. In particular, there is nc anti-
podal symmetric vacuum state. We can however, implement this
symmetry on the field operators in the space configuration
and work on the usual (non-symmetric) Fock vacuum state (it
is not necessary for the vacuum of a guantum theory to have
a symmetry of the classical manifold). In that case, an anti-
podal symmetric Green function (Gjg) can be defined (eg.2.6)
and expressed in terms of the Green functions G of the ordi-
nary theory.

For the antipodal identification map J{eqg.2.3) without
fixed points, if the ordinary Green function Ghasperimﬂﬁ.
then 63g has the same periodicity For the antipodal map Jo {eg2.13
with conical singularity, Gyog has period $/2 In any case,the
important result here, is that the zero norm states of the
theory do not allow us to interpret, as in the usual way,
T=l4§ {nox To=2/{b } as a temperature of the theory.

From the results presented here, it is clear to us what
is the precise context in which the results of refa(l7,18}
arise. The actual framework of refs.(17,18) is that of QFL
in curved {(and non guantum) space time. Identification of
e¢lassical space time has been {implicitely or explicitely)
adopted, precisely, the identification map J, (the presence
of conical singularity is not a relevant criticism here).
The bras in the right hand wedge of space time were implici-
tely identified to kets in the left hand wedge. A factor 2
for the quantity To=2/8 (twice the usual T=1/(# ) was found.
However, usual Fock space, non-zero norm states and an ope-
rator projection relating the usual states to the identified
(symmetric) ones were assumed to exist (and used) for the




theory. The quantity ‘1‘0-2/0 was interpreted as a temperature.
All that is not consistent. The factor 2 for To found in refs
(17,18} is correct (within the above precise context) but its
agsumed derivation and interpretation there, are not correct.
While such conclusions might still hold in the full theory
of gquantized Gravity, a framework for determining this does
not exist in refs (17,1B). (nor here !}.
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QUANTUM FIELD THEORY AND THE ANTIPODAL IDENTIFICATION
OF DE-SITTER SPACE. ELLIPTIC INFLATION.

Abstract : The elliptic version of space-time is obtained by deeming
antipodes to represent the same world point or event. We invesatigate
the consequences of this identification for Q.F.T. as formulated in
de Sitter space and its implications for inflation. Antipodally sym-
metric and antisymmetric fields and Green functions are described.
We calculate for these fields the expectation values of the square
of the field operator and stress-tensors in the family of de Sitter
0(1,4) invariant vacua and study limiting cases of interest. In the
inflationary regime the antipodal identification gives for <Y{<> a
value which differs in a factor 2 from the ordinary Bunch-Davies
value. The modifications introduced to <T,v> vanish in the conforma-
11y invariant case. The antipodally identified theory also allows a
better understanding of the massless and minimally coupled ordinary
theory (without identification). We found new vacuum states which
are 0(4), 0(1,3} {(and E(3}) invariant and calculate the stress-ten-
sors for them.

Tt is known that a given local spacetime geometry with metric
g satisfying the Einstein equations admits in principle different
possible associated global topologies ; however most of our present
understanding of Quantum Field Theory in a given non-trivial mani-
fold refers to a particular choice of the gpacetime topology. {Im—
portant’ though a modification of the spatial topology is, fundamen-
tal changes to the known features on Q.PF.T. in non-trivial manifolds
would not bhe expected). Spaces jﬁé , locally identical toUMa but
with different {(large scale) spacetime topology can be obtained by
identifying points in .}‘3 equivalent under a discrete isometry with-
out fixed points. The field theories as formulated in the spaces)@
and-jz% are essentially different (1,21, In de Sitter space the sim-
plest such identification is to identify the antipodal points (the
antipode P of a point P is defined as having its light-cone without
intersecting that of P). This is an old idea first proposed by



Schrddinger and called the "elliptic interpretation® 13!, Por black
holes, it has been shown recently by Gibbons |ll, Whiting and one of
the authors |2l, that the antipodal identification destroys the ther-
mal features and the usual Fock space construction. Here we investi-
'gate the antipedal identification for Q.F.T. in de Sitter spacae and
its consequences for inflation. The high symmetry of de Sitter space
allows us t0o go Further in the understanding of the antipodally iden-
tified field theory because all the relevant quantities (Green func-
tions, vacuum expectation values of the fielad operator and of the
énergy-momentum tensor} can be exactly known. From the Antipodally
symmetric theory we also cobtain new results for the ordinary (non
antipodally symmetric) one.

The {discrete) antipodal symmetry is implemented here at the
level of the field operators on the space configuration but not at
the level of the vacuum states on the Fock space (there is no Fock
antipcdally symmetric vacuum state). The vacua of the theory are
taken as the usual Fock vacuum states {it is not necessary for the
vacuum of a quantum theory to have a symmetry of the classical mani-
fold).

In order to understand the possibility of the "elliptic inter-
pretation" of de Sitter space, let us describe some interesting as-
pects of the ordinary interpretation.

X=n

geodesic normals
X =const.

—_ t1=0“|1 =0) !
—t,=const.

Bl

>
1]
(=

Fig. 1 Fig. F
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de Sitter space is an hyperboloid embedded in a five-dimensional
flat space (two dimensions are suppressed in fig. 1}. The Penrose
diagram (Pig.2) allows us to notice that :

{i) the antipodal points P and JP are spacelike separated in
de Sitter space and

{ii) the interiors of the light cones of P and JP do not inter-
sect.,
Therefore, it is obvious that an observer & moving in de Sitter spa-
ce, cannot, during ite history :

{i) meet both P and JP

{ii) receive a message from P and from JP

(iii) receive a message from P and send a mesasage to JP.

v° 0

future event

horizon
The hatched region iz the set of
points obeerved by § during its his-
tory. The non-hatched region is the
set of antipodal points of the points

-LLam Y =

obsarved.

N

All the events that have been observed by & during its history are
the points inside the future event horizon. The set of this points
cover exactly one half of the manifold. The other half ia the set

of the points outside the future event horizon. It is made up of

the antipodal points of the points inside the future event horizon.
Consequently, the "elliptic interpretation®, destroys the notion of
event horizon and an observer in de Sitter space can observe during
its history all the events. The resulting manifold is non-simply-
connected. Furthermore, it is space-orientable but non-time-orien-
table because the antipodal transformation J reverses the direction
of time. If we identify P and ¥, the future light cone in P is identi-
fied with the past cone in ¥, but one cannot continuously do such

an identification of past and light cone over the whole manifold.
This is related to the fact that J is not in the same connected com-
ponent of the 0(1,4) group as the Identity but it is an element of
,the disconnected component Gp which containg time reversal.

J is an inversion in R5 :

J: xa ., - xa (a'= l,...5)
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In the different known coordinate systems on the hyperboloid, J ta-

kes the form

J‘(t.x; G,Lf) — ("t;x_%; w-e ,K."l-'f_)

F (t,v,e,49) — (T+ffz, r, rm-o, x-rt{’.:)
J-(U,V,e,‘f)_* (—U, -V, -0, J'C"l‘-?)

Jg stands for the Euclidean versjon ( £ = £"( ) of J in "static coor-

dinates®, where [3 = 2m /N -
We consider (scalar) fields on the identified (elliptic) space

discussed above, which are symmetric {or antisymmetric) under the

action of J, ie

(,PJ'S = T‘__; [ CP(X) + $CIx))
q)a.a = T“_i [ 4’(){) - Ct’(Jx)_]

The corresponding Green functions are defined by

Qxx) = = iib oo b oof 1< .
L[ Gxoxy v G (x, Ix w6 (rx, X « G, (Tx, Tx1)]

(Similarly for Gyz), where

G&.(x'x') = wh 2 G (x, x) ¢ sinh 2g G;(X,TX')

and
G (X, xy. G, La‘x,o'x')

Thus

Groix,x) = e [Gxx) 4 Glx,3x)]

ol

GJ'A. (X, X9 = e’u [ G'(X,X') - G'(X, J-X')J
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The real parameter ¢{ labels the one parameter family of @e Sitter
invariant vacua. In particular we will take & = 0 in order to have
for Gyg(Gya) the Hadamard form, but even in this case, Gys and G3p
have both singularities (at X = X' and X = JX') and both with the
same Btrength. ]

The modes i ¢.,, R i associated to the fiedls ¢ have zero norm
on global spacel?llce sections and as a consequence there is no Fock
state vacuuam |03g> (10ja>) which is J-symmetric (J-antisymmetric).
Therefore

Gy (%, %) -,aé <oxs | § ‘13()0 qng'J_Zg | Ors >

We calculate < JS
We obtain TA

CPLS = (P> £ LoD

> and the snergy momentum tensor ( T Iy, >
JA

(T .,,$> (Twd = LT
<Py - m:-cmw [ e - IR

< > m< [o'ml +(i-€—)RJ%m}

(.‘-l T woxy

<¢ ) and <T y> stand for the usual (so called Bunch-Davies or
euclideari4!) values of the ordinary theory. (5 p and ¢ TP,.,B
stand for the new terms introduced by the elliptic theory. Here
V= (% - %)l’ , 42 = m® + R, m® is the mass of the fields, &
is the cogplinq and R = 12 Hz, (H = yN/3), We study limiting cases
of interest

M2 << HZ  (inflationary)

M2 >>» H2  (massive)

MZ = 212 {conformal invariant)
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In the inflationary regime, we find

<¢;s> - 2 (e ’( <¢‘>=39: n‘n'-)

<: 1;'ﬂJS‘> = .jéi- <: T;uv :) ; ( <:1;»§>‘.i§1_lizaha

454 13 240 K

The J-symmetric theory allows good inflation. On the contrary,
for the J-antisymmetric theory for M2 << H? we find

(B = o
<-1;"’TA> = = ‘E‘} <T/"’S

which does not satisfy the fundamental hypothesis of inflation 51,
However, the J-antisymmetric theory allows a better understanding
of the massless and minimally coupled (mZ = 0, 32 = 0) ordinary
theory (without identification). Gya{X,X') is not infrared diver-
gent. We find new wvacuum states which are 0{(4) and 0(1,3) invariant
[together with E{3} (6| these are the maximal subgroups of G¢{1,4)].

We obtain

<Py 4 <<b‘>m) £ >0m-7‘ (¢ >o(m

g ots,u) |
and |
e T0D Towd = (TS5 =<T
T N 0(4.~)+ K €i3) T o4) < ’N>°“:3J

Similar results hold for the J5 and JA-theories. This is a
manifestation of the fact that the 0(1,4) invariant Green function
is infrared divergent in the massless and %= 0 limit and
there is no Pock state which is 0{1,4} invariant in that case. There-
fore, the correct values of <%u¢ > for the massless minimally coup-
led field are those corresponding to the E{3), 0(4) and 0{(1,3} vacua
and not to the limiting case of the 0(1,4) vacuum which does not

exist in such limit.
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More results and detailed derivations are given in ref. 8. The J-
symmetric field theory in the "elliptic” de Sitter space applies
equally well to other scenariecs of inflation as the Starcbinsky
model |91 and the models of quantum creation of the universe as
proposed by Vilenkin £10l, Linde |51 and Hartle-Hawking 111l_ This
will be discussed elsewhene!lZ),
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3. GEOMETRICAL INVARIANT DESCRIPTION OF QUANTUM EFFECTS NEAR
DISTORTED BLACK-HOLES.

We investigate the contribution of massless fields of
spins O0,% and 1 to the vacuum polarization near the event
horizon of static Ricci-flat space-times. We do not assume
any particular spatial symmetry. Within the Page-Brown "an-
satz® we calculate <¥%IeN and <T.w>Y®R pear static distorted
black-holes, for both the Hartle-Hawking (|>y) and Boulware
{|>p) vaccua. Using Israel's description of static space-ti-
mes, we express these quantities in an invariant geometric
way. We obtain that <||h>ﬁen and <Tuy>If" near the horizon
depend only on the two-dimensicnal geometry of the horizon
surface. We find <YHJ®N=1/48R* Ko, <ToO>fei=(7g+12P}Ko2 -
o2V Ko . Ko is the Gaussian curvature of the horizon and
of £ are numerical coefficients depending on the spin of
a field. The term in {2)JAR, is characteristic of the dis-
tortion of the black-hole. When the event horizon is not dis-
torted, K5 is a constant and this term disappears.

Quantum effects near black-holes are of particular in-
terest by several reascns. Knowledge of the renormalized
vacuum expectation value of the stress—energy tensor [{T.uy
{x})>TeN] that can be considered as a measure of the vacuum
polarization, is crucial in order to determine the gpace-
time evolution of an evaporating black-hole. As a first step,
one usually considers the situation when the space-time geo-
metry is given, that is one deals with the gquantum field
theory on a given spacetime background. Such an approxima-
tion is expected to be rather good when the mass M of the
black-hole is much larger than the Planckian mass mp ={{c/G}‘5
In this case, one can use the one-loop approximation in which
the contributions of different physical fields to <T,,,>ren
are summed additively and may be considered separately. The
contributions of massive fields (with mass m) contain the
factor & =mp4 /m2M2, The presence of a small parameter £
{for A= h /mc«2GM/c2) and the fact that the contributions of
massive fields are essentially local allow to study them in
detail |1ll, The contributions of massless fields which are
essentially non-local are much more complicated 12!. Here

we investigate the contribution of massless fields of spins
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O,% and 1 to the vacuum polarization near the event horizon
of statie Riceci-flat space-times. We do not assume any par-
ticular spatial symmetry for the geometry. A rather simple
approach for calculating <Tuy{x)}>If€D in static space-times
has been proposed by Page 131, His approximation has been
shown extremely good in the external spacetime of a Schwarz-
schild black-hole [4-6l, Another approach which gives for a
confarmal scalar field in the Schwarzschild metric the same
approximation expressions as Page, has been proﬁosed by
Brown |7-8}. These approaches are based on the possibility
to abtain <T,¢>Fe0 in the spacetime of interest from that
calculated in an appropriate conformally related spacetime
where trace anomalies vanish. We analyze within Page's appro-
ximation, the influence of an external gravitational field
on the vacuum polarization near black-holes. Such a field
arises when there are massive bodies outside of the black-
holes. Their gravitational field changes the metric near the
event horizon and distorts the black-hole |9-1ll, 1In the ca-
se of the scalar field‘? there is also of some interest the
investigation of <{2>ren which describes the quantum fluc-
tuations of this field. As it is known, these expectation
values depend cn the choice of the vacuum state. We deal here
with the Hartle-Hawking (| >y) and the Boulware (]>g)} vaccua
corresponding to a thermal and to an empty state at large
radii respectively. (|>g is pathological at the horizon in
the sense that <T,s>E®" and <f25;en diverge there). We ex-
press these four dimensional guantities in an invariant geo-
metric way. We obtain that <{2>§en and (1};>§en near the

horizon depend only on the two dimensional geometry of the
horizon surface. We find 1121

1
<fe>xy = Kg
* aan?

<To%>g = (M+ 12P)x°2 -o{ (23 Ky

and
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-
(.?2:‘3 = - xo + Ko + 0(X) , (x.'i)uip)

482 x 48
Y ol v
<7, ¥>p = 2 &=— (P-=) diag (-3, 1, 1, 1}
» B xz P 3 g r ' r /..

Ey is the Gaussian curvature of the horizon surface and % ,

P are numerical coefficients depending on the spin of fields
The term in (2)JA Ko is characteristic of the distortion of
the black-hole. When the event horizon is not distorted, Ko
is a constant and this term disappears.

In a number of cases, the formulas obtained here coinci-
de identically with the exact values of (?2>H and <Tw.y>g- In
particular, it happens for 2>y and <Tuy>y of the electro-
magnetic field at the horizon of the Schwarzschild's black-
hcole and for ¢P2>n at the pole of the event horizon of the
axially symmetry distorted black-hole. The reason for this
as well as the reason for the remarkable accuraly of the
Page's approximation in the case of the scalar field till
now remain unknown.

For the Schwarzschild black hole the values of <gp‘>ﬂ
{s) at the horizon, in the Page's approximation are

1 'y
<T¥>g = ——L — giag (3,3,1,1) ., 8=0
d 19202 (2m) 4 *
<TY >y = ———t— diag (-1,-1,8,8)7 , 5 = %
96012 (2M) ¥ ”~
<ty = ——L1—— aiag (-41,-41,28,20)) 5 = 1
480r2 (2M)¥

and the exact asymtotics of <T;f>3 near the horizon are

~ -his} 4 : - Y
<TY>p = mzaeo F{s) diag (-3,1,1,1),7 ,

where
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- N 240
7
Fla) = j dx x (x +s ) _J 17 , B=X
o exp(amx)-(-1)3 1920
37

480
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