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1. INTRODUCTION

1.1 MOTIVATION OF THE THEORY

While strong weak and electromagnetical interactions
have been unified, with more or less satisfactory theories, in
the last years, gravity stands appart as the more difficult
interaction to be treated in a unified frame and also to be
understand. The answers to this mistery lies in the fact that
gravity seem$ a quiet different interactions than the three
others. In fact, normaly we assume that it is the compensating
field of an external local simmetry, while all the others are
preduced by gauge theories of internal simmetries, it has a
dimentional coupling constant while all the other have dimen-
sionless coupling constants, and even at the classical level,
the Equivalence Principle shows that gravity is different: the
inertial and gravitational mass are equal, while e.g, for electro-
magnetism the inertialmass isdifferent than the electric charge.

Moreover the fact that its coupling constant = 15
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dimensional makes Quantum Gravity a non renormalizable theory.
Perhaps the solution of all these problems is Supergravity

(V. Nieuwenhuizen (1981)) or the theories where gravity is pro-
duced by the other interactions via an Effective Action (cfr.
Adler (1982)). Meanwhyle we have not a reliable Quantum Gravity,
thus, if we, spme how, want to investigate the influence of
gravity in quantum phenomena, at least on a first aproximation,
we must rely on a semiclassical theory, like those used at the
first epoch of Quantum Electrodynamics, where the electromagnetic
field was considered as a classical backgroun field,

Analogously we shall develop, in this lectures a for-
malism where the gravitational field will be considered as a
classical background field, that satisfy the field equations of
General Relativity while all others field are quantized.

In paragraph 2, we shall see if a regime exist such
that this approximation has a physical sense and in what extend
we can consider the gravitational field as a classical one. And
in the last of the lectures we shall show that this formalism

yields interesting results useful for cosmology and astrophysic,

1,2 Two WorDS OF HISTORY

The first work on the subject is perhaps the one
written by Schrldinger (1932). Much later in the sixteen the
systematic treatment of the subject began with Lichnerowicz
(1961), (1964a), (1964b) vho formulate quantum field theory
in curved space time and Parker (1968) and Zel'dovich (1970) who

studied the creation of particles by gravitational fields. In
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"this first period Quantum Field Theory in De-Sitter space was
also studied (Nachtman (1967a,b), Chernikov and Tagirov (1969)
and Castagnino (1969), (1970), (1972)) and people try to find
a particle model in curved space time (a problem that we shall
face in paragraph 5). Later on,the attention was concentrated

in the rencrmalization of the energy momentum tensor, T i.e.

uw?
the computation of its renormalized vacuum expectation value

<0[Tuv|0>re = <T,,>, that can be used as right hand side of

n
the Einstein equatipn in a semiclassical treatment. We shall
.dsvelop this problem in paragraph 4 and give the principal
authors names that work in this subject.

Then, in January 1974 Hawkings published his celebrated
paper on fhe emission of thermal radiations by the black holes,
using quantum field theory in curved spacg-time. This thermal
radiation satisfies the Thermodinamical Theory of Black Holes
(Davies 1977, 1978, Hawking, 1976 and 1977) and it was a first
prove that the formalism is basically right. This success
produced a great number of papers and alternative interpretation’
of the Hawking effect and put the subject at the first line of
Theoretical Physic research for some years.

In the eghties the generslization to non-free guantum
theories (self interacting fields'; or several fields in inter-
action ) began and it is still under research, (Rirrell & Ford
(1979), Nelson & Panangaden (1982), Leen (1983), Toms
(1982) and (1983)) and the theory was wused in more elaborated
models as Grand Unified Theory (Parker & Toms (1983)) and to
sglve the back-reaction problen (Grib, Mamayev & Mostepanenko
(r980a,b, 1984), Gunzig (1984)) but we cannot dwell in these

subjects in these short lectures
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In 1982 the first book on Quantﬁm Fields in Curved
Space by N.B. Birrell and P.C.W. Davies appéars presenting, for
the first time, the sﬁbject almost complete. The aim of these
lectures is to give a more systematic and synthetic treatment,
than those given by Birrell and Davies, focused in the two main
problems: the vacuum definitibn and the Energy-Momentum Tensor
renormalization, and in the internal relation between these

problems.

2. SEMICLASSICAL QUANTUM GRAVITY "

2.1 THE SEMICLASSICAL REGIME

In this paragraph we will define the semiclassical regime
of a completelly quantized theory in a general way. Then we will
use this definition in a model theory of Quantum Gravity, a non
satisfactory non rtenormalizable theory, hopping that the semi-
classical f&rmalism would ha#e; anyhow, some physical sense. We
will adopt the notation of De Witt (1965).

‘ Let s?ot be the total action of a field theory, a
functional of a field operator ¢i (in De Witt notation i stands
for the coordinate x" and a generic set of indices I that, even-
tually, label the field components) obtained from the classical

action S by the addition of an external source Ji:

{')The paragraph is based in a paper by Castagninoc & Paul (1984). Below eq.
{2.1.10} we shall only sketch the demonstrations because we are only looking

Ior a criterium of semiclassicity.
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. i
{2.1.1) Stot's"'Ji’

(in De Witt notation repetition of indices means integration in
all the space-time and summation of the indices}.

The generating functional is:

7L
(2'122) W[J] = elz[J] - ‘(BIA) =
- ]géeistot

usually |A> = |0in>; |B> =|0 out> . We define:

A 8L
(2.1.34) ¢ =27 =ar

as the "classical field" (the 6/6Ji is the functional derivative

that will be symbolized by a comma). We can prove: that

. <lem]a ;
._———-———---{‘) N
<BjA>
and that,
i,...1 n
(2'1'3(1) GI n‘w_—a.%—sj‘:— ]
14 1n

are the generalized Green Functions.

Then we can define the Effective Action as:

(2.1.4) rle) = Z(J1 - J¢t

The Effective Action most important property is

that:

{2.1.5) r,i = <s,i> ,



i.e. the classical field equations are 5,1 = 0 thus their quan-
tum version is T,i = 0.

It can be proved that the knowledge of I allows to
calculate the quantum corrections of the system, the scattéring,
matrix 5 and also to obtain the spectra and the band widths of
the bound state. In short all the Quantum Theory is
in F. 1If we define the base propagator of S, Gg » .as the

solution of:
k3 i
.(2.1.6) - S,ist 2 - Gi .

¥t can be proved that we can expand T in terms of S and G, as:

+

@17 Tie) - Sl v z-SW) -4 -y
-3 " '3 '
" 15 * 7 * 72
1 1 1
+’§ -I-K -l'.-d—g

In these diagrams the vertex of n legs correspond to:

. . n
2.1.8) S . . = __,iij_ ,
S TETRE *ERFYC E SR £

and the lines =------ between vertices correspond to the bare
propagator G_.

The first loop of eq. (2.1.7) can be interpretated as:
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(2.1.9) , T o= - % Tr 1n (-¢'s) ,

h order in the ¢') and the

(where GO is Gs computed to the Ot
other terms are obtained by the usual Feynman rules using the

~ bare propagator G, and the vertices (2.1.3), e. g.:

ii',.33" kk'
= Sijk GS GS s Si'j'k'

In every quantum theory where there are, at least, two
kind of particles, and where we can neglect the lines of one of
the particles in the Feynman graph of the effective action in
some circumstances, we can use a semiclassical regime, because
we can consider this last particle as classical.

We shall clarified the issue with two very simple

examples:

Y

1 - Let us consider the action:

2 _
4L 1 u o2 "
(2.1.10) 5= [ a'x (3 3, 002% + o 8] + 7 3,4,0%,

.mz

z .2 a 2.2 A4
* ¢2+]T¢1¢2+‘4T¢1} K
where ¢1 and ¢2 ‘are two real scalar fields m, and m, their
masses and o and X are dimensionless coupling constants. If
we compute the second term of the r.h.s. of eq. (2.1.7) to

one loop order we have:
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2.1.11) - + + ..

+ + + + etc,

{where — 1is the propagator of ¢y and —.-imimime the one of ¢2)
1f ¢, would be not quantized all these graphs vanish with the

exception of

and

Therefore the semiclassicity criterion for the field ¢, is,

in this case, that the mixed diagrams (which always contdin at
least one factor a ) could be neglected with respect to the
diagram which depend only on ¢4 (where there is always at least

a factor A). To do this it is obviously sufficient that

@ << A, if the masses and energies of the field quanta associated
to 01 and ¢2 are of comparative order. In this case we shall
have a semiclassical regime because in our computation we can

consider ¢, as a classical field.

:# - Let us now consider the action:

_ 2
. m
(2.1.12) s -.'I a*x {,} a)qu1;a‘-_‘¢;1 + -{- ¢§ + -% 3,_;.‘*2"“‘*2
2
m
vEdeddegd

where all is the same but the a-interaction is different now,

and o is a dimensional coupling constant in this case. Up to
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one loop order we must compare now graphs 1ike(2)

and

where the number of vertex o is twice the number of vertex A.
(This fact can be proved to any number of loops). The degrees

of divergence are 0 and 2 respectively, and in order to make
the integrals finite we can introduce a qut off 2 and integrate
over an hypercube of side & (L may be the characteristic
length of the system and also we can Fourier trans$form and take
a more familiar momentum cut off, the characteristic momentum of
the system).

As T and its diagrams are dimentionless

will be of order X and

will be of order uzzz
because o« has dimension (1ength)-1.

Then ¢2 is semiclassical with respect to ¢, when

2.2 -1/2

"R << A or £ << Aa and this argument can be used with
diagrams with an arbitrary number of loops with the same result.
Thus we have a semiclassical regime if the characteristic length
of the system is smaller than a2, e can see that if one

of the coupling constant is dimensional the definition of semi-

classicity depends on the characteristic length (or mementum) of

(D ye must alwvays compare graphs with the same number of loops i.e. of the
game power in f (Nambu 1966).
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the system. We have not a semiclassical regime for every size.

We shall use this method for quantum gravity.

2,2 FEYNMAN RULES FOR QUANTUM GRAVITY

Quantum Gravity deals with gravitons,that can be
considered as quantized propagating gravitational waves in a
curved background space-time. Thus gravitons are quantized small
disturbances, that we can studie if we separate the metric

in two pieces:

c —
(2.2.1) Spy = By * guv .
where Euv represents the wave to be quantized and gﬁv the

background space-time. This is the starting point of De Witt's
(1967 a,b) "background field method" (see also Jackiw (1974),
Abbot (1983}). The action is the ordinary Einstein action:

(2.2.2) 5 = 517 I /g R,

z . 8nG, being G the Newton's constant. If we use natural

0‘33

where g
units (c «h a1« is the Planck length: ~ 1 cm. If, e.g.,
we use the new variable h*Y = /°§ g"’ and we use flat space-time

as background(s) like Faddeev and Popov (1573) we have:

(2.2.3) Y = PV e MV ,

G’In curved space-time Feynman graph would be the same,
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and we can expand the action (2.2.2) in powers of uMV:

-]
n
(2.2.4) s-8+ I <"s;

Y 2nd their

where 8  is a form of nth-degree in variables u
derivatives. From this action we can deduce the Feynman graphs
of Quantum Graéity. But the action S possess an invariance
gauge (the group of genera1 coordinates transformation) and
the bare propagator G, is not unique. The correct theory was
obtained by Faddeev and Popov adding a gauge fixing and a
“ghost" term to the free Lagrangian. Thus, the free graviton

propagator is in momentum space:

2.2.8) Cuy o = 7 (0,01 "

wv,p0 © 07 ey ¥ Muatvp T "uwpe) 2

and the ghost propagator simply is:

W

U
(2.2.6} 6" - - Iy .
P

whyle the ghost vertex is:

k¥
2 o0
L x - Krgh - - !
ol : kv k3 .
' 1
My ]
+ ﬁp 30) ’
k1+k2+k3-'0 .
where refer to ghost and to gravitons the third-order gra

viton vertex is:
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.kz.
(2.2.8) - £ {-21- UL IPL P

Turt™aToo * Mueualpr * Twe™ Mpr *

+ "uaﬁvp“At * Ayl * “vo“uX“Aa)

Turvp o
k%“uu("pa"kr"nptnkd) + (ky kg + kakSHJnlp“oT
+ (kg kgy + Ky kg dnagnge + Myghgy) -
k!;klt(nukhpo ¥ nup"lc) - kluktclnuxnpt +
"upnlt) "-kiuk1t|“v1"pa * NypMag? -
kiK1 (ypnpr * NypMig) - kovk3 Moyt -
- kakSAnpcnut - kZu ?39 Mot ~

kZukSA NogMut” k2vk3pn11nuo -

= kaKSRinnuo -_kZpk3pnltnvo -

- kZukSlnptnvd] *

+ the sum over permutation of the pairs (u,v},(1,p),
(a,v)}.

All other details could be found in Fadeev-Popov paper.
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2.3 SEMICLASSICAL REGIME IN QUANTUM GRAVITY

Let us face the definition of a semiclassical regime
for a quantum self interacting scalar real field ¢ in a gravi-
tational background field gﬁv for the metric and zero for ¢.

The action is:

2.3.1) S'='Elz [ /ER A .
X -

2
4 2 A o4
- f,d x /-§ Iy "V 92,0 + T ¢° + 77 o)
To one loop order we get for the effective action T using eq.
(2.1.8 ):

(2.3.2) T =S (g,, =85, ¢ = ¢¢ = 0)

- % Tr In(-G¢) - % Tr 1n(-Gg)

These last terms are zero, in paragraph 2.2., because we are flat
space-time but now we are in a generic curves spacetime of
metric gﬁu and these terms are non vanishing but correspond

to the loops:

where G¢ and Gg are respectively the bare propagator of the

matter field ¢ (propagator

) and the gravitational field
(propagator .

These loops do not depend on ¢ as we can see from
equation (2.2.5). Thus both loop are of the same order, i.e., of

order one. This statement is in complete acordance with the
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. Egquivalence Principle, according to which all form of matter

and energy couple with the same strength to gravity. Being the
graviton a form of matter or energy,like the particle of the
field ¢,it is as well, a source of gravity. It follows that the
we cannot have a semiclassical theory at any scales of distance
or momentum. Thus we cannot eliminate the quantum effects

of gravitons, at least completely. Then, what can we neglect ?

The graviten graphs that follow the term (2.3.2), like

or

have in general n vertices and their integrals are of the type:
(2.3.3) K™ I att koL

These integrals are divergent, like all other integral of quantum
gravity, but they may be made finite by the integration outside
a hypercube of side £, the cutoff, or characteristic length of

the system. Integral (2.3.3) will therefore be of the order

kP2™"  because it must be dimensionless. Then if we want that

the L loop graviton diagrams be negligible with respect the 1 loop

graviton diagram of order 1 we must have k™2™ << 1 i.,e.:

(2.3.4) L »» K .

Thus we can neglect these loops if the characteristic lenght of
our system is greather than the Planck lenght.

It is ¢f fundamental importance to realize that the
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‘condition (2.3.4) do not allows to neglect the graviton 1-loop
with respect to the matter 1-loop because none of both depends
on k. Thus we have not a semiclassical theory if we neglect

the L-graviton-loop (L > 1) but a "truncated" theory, that we
shall anyhow call "semiclassical" to aveid the invention of a
new name. This semiclassical Quantum Gravity is Quantum Gravity
truncated at 1-loop graviton level and can be use if the
characteristic lenght of the system is greater than the Planck
lenght or the characteristic times or periods grater than Planck

44 s). If ones regards 10°13 cm and 10723 5 as the

time (v 107
lenght and time scales of important quantum processes (i.e.
Compton's lenght and time respectively) it seams that there is
enough place to develop @ semiclassical theory.

Beside graviton loops we have also matter loops like

that must be neglected. Can we make a more refine theory keeping
these graphs and neglected the graviton loop ? Yes, we can,
because graviton loops will be proportional to (2.3.3) and

matter loops to:
m 4 4, :
l J d- x1 LR d xL -

For a given order in £ we must compare diagrams with the same
number of loops, then an easy calculation gives that we must
compare n = 2m and that the condition to neglect graviton loops

with respect to matter loops is:

2> ka3
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a more restrictive conditiom than (2.3.4) if A = %

As we shall see in paragraph 4 the semiclassical
{truncated) quantum gravity is renormalizable.

But the l1-graviton-loop appears because we are working
in a curve background. Can we get reed of this graph if we
work on a flat background gcuv =Ny ? But as Duff proved (1975)
only in a generic curved background renormalization can be
carried on. Also other difficulties (Christensen & Duff (1930))
make necesary the consider fields propagation in a background
with arbitrary metric gﬁu‘

More over. Duff (1981) proved the inconsistency of
the semiclassical quantum gravity (in the old version with no
I-graviton-loop) by field redefinition. On the contrary semi-
classical Quantum Gravity in the new version (truncated at
l-graviton-loops level) is completely consistent under field
redefinition as Quantum Gravity itself (which is consistent
under field redefinition as all completely quantized theories)
because it is only Quantum Gravity where a regime exists that
allows to neglect L-graviton-loops (L > 1) in the computation
of the Effective Energy (ctr. Castagnino & Paul (1984)).

Finally we must mention that we have completely forgotten
the ghost loops in this paragraph, but as they have same vertex
structure as gravitons loop (ctr. egqs. (2.2.7) and (2.2.8)) the

conclusion for ghost loops would be -exactly the same.

2.4 THE MAIN PROBLEMS OF SEMICLSSSICAL GUANTUM GRAVITY

We shall demonstrate (cfr. eq. (4.3.8)) that the g“v
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ficld equation of Semiclassical Quantum Gravity (with a non
self interacting field ¢, i.e. X = 0 in eq. (2.2.1) and a
little more general geometric action), is:

1
(2.4.1) Ruu - Z'Rguv + “guu_*

(1 (2)
+ 0 Huv + B Huv

= - 816 <w|Tuv|¢>ren d

‘fcfr. Birrell & Davies (1982) eq. (6.95)) where the 1.h.s. is the
cne of Einstein Equation with cosmological constants with two
new terms quadratic in the curvature, that we shall later define,
and the r.h.s. is the renormalized expectation value of the
Energy-Momentum tensor in some gquantum state |w>.

Equation (2.4.1) is what we could expect for a quantum

version of the Einstein Equation. Except from the two new terms

M
Huv
malizable one, that could be eliminated taking o« = 8 = 0 as

and H&i), that are necessary to make the theory a renor-

. "dressed” experimental coupling constants, it says that the
quantum source is just the expectation value of the classical
sSource Tuv'
Eq. (2.4.1) allows us to solve the reaction back
problem, i.e. to see how the universe evolves under the action of
the quantum forces, produced by the quantum field, that we take
in consideration and we use to compute Tuv' In this case, for
simplicity it is only the non self-interacting, scalar real
field ¢, but it could also be any other field of spin 1/2, 1, and
3/2‘}’. And if we want that the theory be consistent it must

slsc contain the graviton Euv as was explain in paragraph 2.3.

-(4) In this case we must use a supersymmetric Lagrangian.
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Equation (2.4.1) is also valid only for times higher
than the Planck's time, because only there eq. (2.3.4) is ful-
filled. Thus, the principal goal of our theory is to compute'
the r.h.s. of eq. (2.4.1) and to solve this equation. To do this

we have two main problems:

1 - <w|TuU|¢> is a divergent guantity in general. We shall see,
in paragraph 4,how to regularize this quantity and how we can put
the infinitie into the coupling constant of the l.h.s. of eq.
(2.4.1}, obtaining in this way a renormalized equation with

"dressed” coupling constant and a finite <y|T P> in the r.h.s.
pling uv! ¥ ren

2 - The quantum state ]¢> is hill-defined in curved spacetime.

We shall see in paragraph 3 that the vacuum definition in curved
space-time is not trivial and thus the construction of a Fock

space is not a simple problem. Using the results of paragraph

4, we shall see, in paragraph 5, that the problem can be solve

only under certain circuﬁstances and in those cases we shall

£ind the solution. We shall also realize that the vacuum definition

is observer dependent.

3 QUANTUM FIELD THEORY IN CURVED .SPACE-TIME

3.1 REFERENCE SYSTEM IN CURVED SPACE-TIME -

We shall begin by the study of problem 2 of the pre-
ceeding paragraph that will be solve only in paragraph 5. As
the notion of particles in curved $pace-time is observed dependent

we shall introduce the Reference Systems right from the beginning.
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Let the space-tike be a c¢” four-dimensional riemannian
manifeld V, endowed  with metric 8y with signature (+---)
(M,Vyesna,By, = 0,1,2,3). We shall use the same convention than
those of Birrell and Davis (1982) i.e. (---) in the terminology
of Misner, Thorne & Wheeler (1973): RGBYG = aﬁruBT — eeen;
R, * R“uav . Now let us consider a set of infinite observer in
V4, each one is just a geometrical point P, with an space-time
path x¥ - xutr), where T is the proper time. We can consider
this set of observers as an ideal reference fluid. Let u?  be the
unit time-like vectar tangent to the paths, then if the fluid
is defined in " all V, (or in a space-time patch of V,) we
have a vector field u" define in al vy (or in a patch of V,].

Of course:

w  dx®

.(3-171)_- U= I *
TRV

(3.1.23 g uu = ] .

We can use, if we wish, a system of coordinates "adapted" to

the fluid. We can use as coordinate x? any parameter of the fluid
‘space-time paths and has coordinates x’', xz, x> any system of
coordinates in a spatial hypersurface that intercept all the
fluid paths , then each one of these lines is lable by

z,xsj; the coordinates of the interception point, and each

0

(x',x
point of space-time by these parameters and x’. The components of

u! in adapted coordinates are

-1/2. i . -1/2

(3.1.3) u - (gyq) Wb e 05w, . (ggo) Bu0

The tangent space T, at x can now be decompose in a

one-dimentional space p,,in the direction of ub,and a three-
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-dimentional spacec L s orthogonal to Ox. Thercfore:

(3.1.4) T. =9 ® I s

and we can define the projector on 8, and on I, as:

(3.1.5) | Potv¥) = wu vV
(3.1.6) P.OV¥) = V¥ L ufu VY -

= -,
where:

py T Byy T WUy

¥

(3.1.7) -

and thus we have also a decomposition of the metric tensor:

(3-1-8) guu = -Yu\) + uuuv »

We can also define pgojector on tensors e.g.:

Hv BV 0B
(3.1.9) Py (%) = ¥ vVt
MYy B v L ab
Pze(t ) Y ¥ uat
uy i v o af
PBZ (") = -u L Bt

Wy o ouby uVu, %R
Pee(t ) u uu uBt etc.

‘&ctually from (3.1.6) we have:

(3.1.10) Prp (Bu) = ~Yyy
Pza(gpv) '-PBi[guv) - 0
Poolzyy) = Yy -
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We can also define two "projection-derivatives'". Theé transversal

derivative

v
(3.1.11) 3u¢ = -v Va8 .

and the longitudinal derivative:

. - v
(3.1.12) T4 = uu’ae .

Thus from (3.1.6):

“(8.1.13) 2,4 = %u¢ + 34

Also the covariant derivative can be projected. We define the

transversal derivative as :
€3.1.14) Wusv = Prp(9,8) =
= 3usv - {u':'v;l)sA ,
where:
no 1 . ) '
(3.1.15) Wvid) = g Bvgy 3y, -
= Pgguvid)

0f course this derivative could be generalized to temsor of
arbitrary ranck. The intrinsic properties of the reference fluid

can be studied using the introduced notation. From u" we define:

£3.1.16) Kuv =Vt vqu the Killing tensor ,
{3.1.17) RPQ - vpuv - the Vortex tensor |,
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. {3.1.18)' C# = u“vuuu the curvature vecteor .

Their transverse and longitudinal projections are

{cfr. Cattaneo (1961)):
(3.1.19) 2, = ﬁuv + Cu, - Cu,

(in adapted coordinates we have:

3o Yy "
(3.1.20) oy = ug [Eu(ﬁs) - '5\,(3;)1 > )

(3.1.21) K,y = kuu - Cu, - Cu,

(in adapted coordinates we have

0
(3.1.22) kuv =uwagy,, o, )

and Cu is transversal i.e. Cuuu = 0

The properties of the reference fluid could be studied

using these tensors i.e.:

i) 1If ﬁuv = 0 the fluid is irrotational or curl-free. These

i

fluid has normal hypersurfaces and the vector u” can be

written as u, = wau¢ where ¢ and ¢ are two scalar functions.
In this case it is-possible to choose a system of "adapted"
coordinates with normal hypersurfaces where:

(3.1.23) u, = (ug,0,0,0)

instead of (3.1.3).
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ii)

iii)

From (3.1.20)} we can see that, if adapted coordinates,

with normal hypersurfaces, exist, in fact it is auv = 0.

If kuv - 0 the fluid is Borm rigid (Born (1909)) because
using eq. (3.1.21} we can see that kuv could be considered

the spacial deformation tensor.

If Cu « 0 the fluid is a geodesic one.

iv) If nuv = 0, then the fluid is irrotational and geodesic, and

[3-1-

v)
vi)

(3.1

(3.1

NN
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u, could be written as uu - au¢ where ¢ is a scalar
function that could be considered as a time coordinate.
Using this time coordinate we obtain a "completelly adapted”
or "synchronic" system of coordinates with normal hyper-

surfaces where:
Z4) u! = u = (1,0,0,0

If K, =0 the fluid is rigid and geodesic and W' is a

unit-Killing vector.

If there is a generic time~like Killing-vector Ku such that:
.25) vuxv + vau =0 ,

we can take u, as the unit vector parallel to‘Ku :

.26) wWae k%K, K -'(guvKPK“)1/2 .

Then:

. 1 - -1 o
.27) Ky = V0, + \'.*\,u‘l = xuaux”._+_x“avx .



Thus from (3.1.20):

(3.1.28) iuv -0 c, = 2, log K .

Thus the fluvid is Born rigid but not a geodesic one.
Now if we define a time coordinate t such that

k¥ « dxV7dt, then

0
0 dx dt
(3-1-29) K ‘at—-aTﬂ 1

Contracting (3.1.25) with K" and X’ we obtain:

(3.1.30) %% = 0

From eqs. (3.1.29) and (3.1.26):

_ 0
(3.1.31) XMoo,

[H

and, at the point considered, we can, choose u" as in eq. (3.1.3)

then at that point:

H
(3.1.32) M-,

and from eqs. (3.1.7) and (3.1.21) we have:

(3.1.33) gf g,-0

i.e., space-time is stationary using the time coordinate t (see
an alternative demostration in Hawking & Ellis (1973)).

Two useful equation are:

1
(3.1.34) LAWY &, + ¥, -uc, .,
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and

(3.1.35) (U,v;2) = (yv; A) % {“p(kux*“vx) +
+ uv{kpk+ﬂulj N “A(qu'kuv) ,

where:

(3.1.36) Q. =98 u + 3u

3,2 QUANTUM FIELD THEORY IN CURVED-SPACE TIME AND ARBITRARY
SYSTEM OF REFERENCE

We must Trealize that ordinary Quantum Field iheory is
developed in unbounded flat Minkowski space-time and in an
inertial system of reference. If any of this three conditions
change we are faced with an unconventional quantum field theory.
We shall studied the case of unbounded curved space-time with
arbitrary (but irrotational) reference system.

We shall quantize only a scalars neutral field ¢(x).

The Lagrangian density is:

(3.2.1) L(x) = % [—g(x)]llz{guv3u¢3v¢-[m2+£R(x)]¢z 1

where m is the mass, and the term £R¢2,where £ is a dimensionless
coupling constant an R(x) de Ricci scalar curvature,is the only
possible local coupling with the correct dimemsion. If £ = 0 we

will have the so call "Minimal Coupling”, instead if & = 1/6

we shall speak of '"Conformal Coupling”, because the formalism turns
out to be invariant under conformal transformations if m=0, in

this case.
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The action is:

(5.2.2) S - I Lxdtx

and the field equation:

(3.2.3) (] + =« EREDJOX) =0
) |

where [ ] = g““vpvv is the Laplace operator. We can define an
x
Hermitian inner preduct ( ; ) in the space of solutions of

eq. (3.2.3):

{5.2.9) W) = - | 9 e0B 8, G gy /2 ar
Z

= (95.99)"

where dI¥ = n"dZ and n¥ is the future-directed time-1like unit
vector orthogonal to the space-like surface £ . If I is a Cauchy
surface (we suppose that V, is globally hyperbolic) we cam use the
Green Theorem and show that {¢1,¢2J is independent of I .

In general we can also demonstrate that there exists
sets of solutions u, (x) and u;(xJ'(ﬁhere the index i is the set
of quantities necessary to label de modes) of eq. (3.2.3) which

are orthogonal in the inner product (3.2.4), preciselly:

* W
(Uisuj) - -Gij
(uisu;) = 0

and this set is a basis of the space of solutions of eq. (3.2.3}.
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Thus we can expand the field ¢(x) as:

(3.2.6) p(x) = § [aiui[x) + a;u;(x)]

If now we consider ui{x) and u;(x) as negative and positive
frequency solutions and a; and a;' as creation and annihilation
operators, covariant quantization can be implemented adopting the

commutation relations:

3 + + —
(3.2.7) [ai,aj] [ai,aj] =0 .

e
[ai’aj] ﬁij
The vacuum state is the obvious generalization of the flat space

motion:

(3.2.8) ajJo>=-0 , W,

and the construction of a Fock space proceeds exactly as in

Minkowski space e.g. the particle number operator in mode i is:

(3.2.9) N. = ata, , etc.

The problem is however that while in Minkowski space-time and

in intertial coordinates (t,x,y,z) we have a natural basis:

the plane-wave solutions of eq. (3.2.3) exp(ikux"), in curved
space time and in an arbitrary system of coordinates we have not
such a basis . We shall see below which are the properties of
basis exp (fkuxu) obviously related with the existence of a
invariance group in Minkowski space-time: the Poincaré Group,

but- for the moment let us suppose that we have a second basis
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ujtx) ond see what problows appeur if we have two unprivileged

different basis. The field ¢$(x) may be expanded in the new basis:

- — ——=t )
(3.2.10) $(x) = ;: [ajuj x) + ajy; x)1

a new vacuum state |U> could be defined:

(3.2.11) (0> = 0 ¥j

and a new Fock space could be constructed.

The basis are related by:

vl

£y
— *
‘"or conversely:
.- - - i

These relations are known as Bogoliubov transformations (Bogo-
liubov 1958), and we obviously have:
(3.2‘14] o, . = (ﬁi’uj) ; B.

— *
= "(uiuJ-] »

(3.2.13) follows from (3.2.12) because both basis are orthonor-

mal, thus the coefficients pust satisfy some relations:

. * »*
(3.2.15) £ ik - BikBind = 815 o
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(3.2»16) ' E {uiksjk - Bikﬂjk) =0 . (5)

From expansions (3.2.6) and (3.2.10) and eq. (3.2.12) and (3.2.13)

one obtain:

= —+

(3.2.17) a; = E (“jiaj + Bjiaj .
— L] * +
(3.2-13) aj = i ( jiai - jiai)

1t follows from (3.2.12) that the two basis are phy-
sically different if and only if Bji 0, i.e., if Bji = 0
(3.2.12) could only be considered as a redefinition of the negative
frequency among themselves, the real problem only appears when
there is a mixture of positive and negative frequencies. For

example in such a case |U> will not be annihilated by a;:

(3.2.19) ai|U> - g B;i|Tj> 0,
and the expectation value of N, in state [0> is:

1z,

(3.2.20) <Ofn 10> = 3: |Bji

which says that the vacuum of, modes Ej' contain } |8 2 particles

jil
in modes u,. Thus a empty state in one basis is not empty in the

(rnis equation means that the matrices o and B commute, thus we can diago-
nalize them both, We then obtain an obvious simplification of the formulae

o, = a.5..
1

1] 1]
!ail’ = IBi]’ -1

In fact, matrices uij and Bij are hermitian (cfr. (3.2.4)).
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~others. This "creators of particles' process may be explained:

the space-time curvature, 6r the detector,if we use a non

inertial system, give energy to the field, that produces particles,
The following formulae related the state vector of the Fock space

based on |0> to the one based on |U> :

(3.2.21) I'n; Zn, ,..0> =
: 1 2
;|
= T T T, » x
kEO kT j E.j | 317 dgsees g
1 k
1 2
Ty oty Ty ety e
where:
(3.2.22) Ty > = 1,1, 0oty 570002
1 1 1 1
so "1, " is repeated 1ni times . < [> is a S matrix element
1

that can be also written in terms of Bogoliubov coefficients e.g.:

.2.23) NP -
(3 ) (U|1J1f112’ ,1Jk >

o k/f2 . .
i <B[0> § A A k even
_ 2 PP PE 1Py
0 Kodd
or
(3.2.24 To,T, T, -
( ) < 1 jzw--s Jkl‘b
ik/2<U|0> iv v ~k even
- J plpz..- pk-ka
¢ Kodd  »
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where p represent all distinct permutations of {j1"‘jk} and:

(35.2.25) Aij = -i E Bkja;k

Ancther many-particles to many-particles amplitude may be found
in Birrell & Taylor (1980). From eq. (3.2.23-24) we can see that
particles are always produce in pairs, as a consequence of the

conservation of the momentum tensor.

3.3 THE PARTICLE MODES IN THE TRIVIAL CASE AND TWO EXAMPLES

In the preceding paragraph we learn that at Quantum
Field Theory formalism could translated almost unchanged from
flat space-time and inertial system to curved space-time and
general system with the exception of the flat plane wave basis
exp i (kux") i.e. the particle model. We have also learn that
" for every basis of positive and negative frequencies there is a
well define vacuum and a particle model. Thus the problem is how
to generalize the equivalent notions of positive and negative
frequency basis, vacuum, or particle model. The generalization
could be very easy under certain circumstances, and completelly
impossible in other cases (e.g. if V, is not globally
hyperbolic). Let us begin by the easiest one,

From now on we only consider irrotational reference
systems, in fact it is a set large enough for our purpose and the

normal surfaces to the fluid paths are, in general usefull, then
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Using eq. (3.1.28) we have in this case that eq.
(3.2.3) reads:
2

(5.3.1) wh? a6 - X0« c %

1 1 A
7 guUQuuulal¢ -2 Yuvkuv#la ¢

*(mz+£R)¢=0 »

where 3 .'Y"VquV is the transversal Laplace operator.
 Let us suppose now that the V, has a Killing vector
and that the fluid is the one defined by this Killing vector,

then from eq. (3.1.23) & y = 0 and using the time coordinate

]
t we have:
. )
(3-3-2) 'a—t uo = 0 »
(3.3.3} % g““qu = g°°aou0 = 0,

and eq. {3.3.1) becomes:
0,2 u
(3.3.4) %)% 3g00 - Ko + c,oe
: 2
+ (n” + ERJ¢ = 0

From (3.1}33) we also have that é%n =0 and as Cu is transver-~
sal (i.e. uuCu = 0) we can solve eq. (3.3.4) by _

separation writting:

(3.3.5) ¢ = T(IEGD) L
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Then we have:

(3.3.6) Bt wladyFee) - TeodEly -
N Cj(x')T(t)ajE(xi) .

f @« ERGEIDTWEED =0

KE(xiJ-cj(xiJajE(xi)-(mz+sn(xi)ﬂtxi)
[uojztxi)Efii)

Ty _
TS .

- w? = const. »

Therefore the time factor is:

(3.3.7) T{t} » exp(* iwt) s

and using the + (-) sign we can define the positive (negative)
frequency solution in a natrual way: the oOne with time factor
exp(iwt) (exp(-iwt)). A vacuum, and a particle model, are thus
defined, we shall call it a "trivial vacuum” (of course the

" Minkowski vacuum is a trivial one). We shall see below, using
another method, that this vacuum has all the properties requires
to be considered a good vacuum. The transversal part of eq.
(3.3.6) yields:

(3.3.8) w2 (Xe- LJBJE - (mP+ERIE] = wiE

Thus E is an eigenfunction of the operator 055'213453J-mﬁéiﬁ)13nd

wz is the corresponding eigenvalue.
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Thus when we have a Killing vector_field we have a
rivial vacuum and the problem is solve.
From eq. (3.3.7) we see that in the case of trivial

acuum the positive frequency modes satisfy:

a—I.l-=m|.l. w >0 »

3.3.9) i 5t %5 j

ind, which is the same thing, if there is a Killing vector:

(3.3.10) ilgu; = kuug : w>0

vhere Ly is the Lie derivative with respect to the Killing vector.

The easiest examples of all the formalism, of this and
the preceeding paragraphs, is the study of Quantum Field Theory
“in Minkowski space, but in Rindler coordinates (Fulling 1973).
Let us consider. the two-dimensiocnal Minkowski space with metric

2

(3.3.11) ds? - el

- dxz

and the following coordinates transformation:

(3.3.12) t = a”'e®® sinh an

x = a"} e3¢ cosn an .

a = const. > 0; -o ¢ E,n < =« , The metric becomes:

(5.3.13) ‘as? - e a2 - ard

The coordinates-(n;g) cover only a quadrant of Min-
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mowski space i.e. x > |t| in fig. 1. Lines n = const. are
straight lines while lines & = const. are hyperbelae:
(3.3.14) x2-t? « a"%e28% | const,
We can consider,all these hyperbolae like a non-inertial reference,
fluid each one of their points being an uniformly accelerated

observer, because they have a proper acceleration ae~?%, The

cbservers proper time is:

(3.3.15T N

The system (n;£) is known as the Rindler coordinates system

(Rindler 1966, see also Born (1909)) and the portion x > |t]

as the Rindler wedge (R). A second Rindler wedge x < [t]| may
by obtained reflecting the first one (L).

If we consider n as the Rindler time we see that
metrics (3.3.11) and (3.3:13) are two static metrics belonging
to two diferent fluid, an inertial ome, coordinates (t,x), and
an accelerated one, coordinéte (n,E).

But we must realize that n could be considered as a

time only in the wedge R and we must change its sign in the
region L, if we want that the tangent vector to the fluid lines,
for grouwing n, would point towards the future. Also if we compute
the tangent vector to the reference fluids we can find that both
are Killing vector fields, thus both fluids yield trivial vacua.

Thus we have the ordinary Minkowski basis:

(3.3.16) u = (anw)~1/2 ilkx-wt) ©
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where, in the m = 0 casc that we shall study, v = |k|], -» < k < =

and the Rindler basis:

(3.3.17) u = (4mo)~1/2 glkEeiun

where the upper sign is valid in the region L and the lower
sign in the R region, due to the "time reversal" in L with res.

pect to R. Therefare really the positive frequency base is:

(3.3.18) R, - (4m)~ /2 gikEedon o

=0 in 1L,

(3.3.19) Iy, = CAmiy~H/2 oikEedon o
=0 in R

The first set is complete in R while the second set is complete
in L, so both sets form a complete basis, and this basis could
be analytically continued into the regions F and R(ﬁ);

The field may be expanded in either basis:

-

(3.3.20) = (3,4, + a‘iy)
= 1 Gl v 0
or
(3.3.21) o= 3 (aéL]_Luk . a;[L) Lu; .
. [T

al::R) R . +(R) R - )

3

yielding two different Fock spaces and two different vacuum

states, The Minkowski vacuum |OM> such that:

(3.3.22) . ak]ou> -0 ¥k .

(E)Uamg its Cauchy data and coutmumg the golutior to all Minkowsaki space-
-Ptl“
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and the Rindler vauum |OR> such that:

(3.3.23) af [or> « alM [or> = 0 vk

Using the formalism of paragraph 3.2 we can them reach to eq.

{3.2.20), that in this case, it turns out to be:

(3.3.24) <om|EoR) o (aR) gy
" (eZ'I'Tm/a - 1)"]

Therefore Rindler observers will detect particles of
mode k in Minkowski vacuum, with precisely the Planck radiatien

spectrum at a temperature:
(3.3.25) T = a/Zwk3 .

S0 we see that on.accelerated observer detect a thermal bath of

radiation in empty flat space-time. The mecahnical agency that

moves the particle detectors of the accelerated Rindlef fluid

gives the necessary energy to produce this radiation bath. We

refer to Birrell and Davis (1982) for a camplete discussion of

particle detectors, that we can not give here, that, in fact,

proves that temperature (3.3.25) is the ore measured by the detector,
Thus we conclude that, if we Pass from the inertial

referehce system of Minkowski space-time to a non-inertial refe-

rence system particles appear, produced by the force that move

the detector of the non-inertial reference fluid.
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Now, let us give a complementary example (Bernard and
Duncan (1977)), both system of reference will be inertial but
space-time will be curved. Let's consider a two-dimensional

Robertson-Walker universe with metric:

Z Y]

(3.3.26) ds? o at? . a%(t)dx?

Introducing a new parameter, the "conformal time":

: t
(3.3.27) ~n= [ o
we can writte eq. (3.3.27) as:

(3.3.28) ds? = a?(n) (@n?-ax?) =

= C(m) (dnl-dx®)

where C(n) = az(nJ is the conformal scale factor that justifies
the name of n . Thus the line element is conformal to the one of

Minkowski space time.-Suppose that:

(3.3.29) Cin) = A + B tanh o7, A,B,p = const,

and let us consider the comoving reference fluid i.e. the one

with space-time path given by x = const t, n variable. In curved
Space-tiﬁe there are not inertial reference systems, but we can
consider as locally inertial, their natural generalization, the
ones with geodesic fluid lines. We shall also call theses sys-
tems inertial; then the comoving fluid of our example is an

inertial system. Besides:

187



(3.3.30) . C{n) ~ As+B when n + tw .

(see fig. 2) thus the metric is asymptotically static in the
far past and the far future with,Killing vector field,and
we have two trivial vacua there., In fact, in this case things
are completelly clear because in the far past and the far
future space-time turns out to be the Minkowski one and refe-
rence system are really inertial. We can separate the variables
as:

ik

(3.3.31) u (n,x) = @0 /2 X ),

and substitute (3.3.31) in place of ¢ into the field equation

(3.2.3) with £ = 0 and metric (3.3.26), then one obtains for

xk(n):
42 2 2,
(3.3.32) . :I""z Xk(n) + (k"+«C(nim )Xk(n] = 0 ¥
n .

which has two independent normalized solutions:

(3.3.33) ui“k(n,x3_= (4nmin)"/2

exp{ikx-iw_n-(i w_/p)1lnlZcosh(pn)]} x

x SF (1+Giw_/0), iw_/p; 1-iwg /p ;

H % (1+t8nhpn15+_m -+ (4"“in)-1/2 elkx-iuwjnn

and

uout -1/ o

{3.3.34) K (M,x) = (dmw q)
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exp(ikx-im;n-(iw_(p)ln[2cosh(pn}]}xI
*x B, (1¢(iw_/p), iw_/p; 1+(iw°ut/p) :

i % (1-t8nh0nnh++, -+ (4nuout)'1/2 eikx‘i”outn

where w; - [k2+mz(A—B]]1/2 .
(3.3.35) Yout = [kz+mz(A+B)]1/2 *
’ 1

wy =7 logue 2wy

¥While (3.3.33) satisfies eq. (3.3.9), in the far part, and
therefore is the "in" basis, (3.3.34) satisfies the equation
in the far future beeing the "out" basis. Clearly uld and

k
out in

uy are not equal, in fact, u can be obtained from u°“t

via aBogoliubov transformations:

(3.3.36) w %) = oy wB¥ (nsx) 4
L |
+ 8 WY

where coefficient ¢« and g are:

iw, w
_ ® I (1-—3B)r (. i-0Ut,
out.1/2 p p

w
in : + PRt
r{ i-—-p}I'(1 5 )

i

“in -moﬁt
Sout, 172 FU-——ITU—=)
{3.3.38) Bk = (min ) g Tu_ .

From eq. (3.2.12) we see that the Bogoliubov coeffici-

ents are.

(3.3.39) o “kskk" Bkkl = Bk G-kk'
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and using all the formalism of paragraph 3.2 we can reach to

eq. (3.2.17) that in this case becomes:

(3.3.40) <0, INg*lo; > = |8y )2 =

sinh mo_/p
51nh(nmin/o)51nh(nwoutlp)

Thus if the universe is empty in the far past the system state
vector is [Oin>. As we are working in Heisenberg picture (Oin>
will be always the s$tate of the system. Nevertheless the

expectation value of the ocut-basis particle number opperator

Nou t out aillt

X = ay is different from zero,.

Thus in the far future an unaccelerated inertial
reference system will detect the presence of particle, even
if the universe is empty in the far past.

In this case the particle creation is a consequence
of the curvature of space-time,and the universe expansion give

the energy for this particle creation.

3.4 GREEN FUNCTIONS

In this paragraph we shall introduce the Green Functions
and restudy the problem of the vacuum definition using this
new language.

Lichnerowicz (1961-1964) showed that in every globally
hyperbolic manifold V, there exists two elementary kernels

Ei.(x) = Ei(x,x') that satisfy the equation:
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3400 C[] e m e EREL = (o7 P s

with support in E“(x'} and E™(x') respectively i.e. the casual
future and the casual past of x*. These solutions are unique and
6(x,x'} is the Dirac § on the manifold. This elementary kernels

have the property:

(3.4.2) E*(x,x') =« E"(x',x) .

We shall call propagator to the differences:

(3.4.3) G(x,x') = E¥(x',x) - B'(x',x}) ,

which is also unique, cbviously antisymmetric:

(3.4.4) G{x,x') = -G(x',x}) ,

and from eq.(3.4.1) it satisfy:
(3.4.5) (O, + 2 + ERIG(x,x") = 0

Now, let I be a Cauchy surface of V4, and ¢£(x) and $£(x)
the Cauchy data on L ; then it can be proved that the solution
of the Cauchy problem (eq. (3.2.3} with Cauchy data'¢£ and 52)

is:

(3.4.6) ¢(x*) -.[ [6(x",x)$,(x)

I
- ¢z(x]nu3uG(x',x)] dzx ,

where n” and 42 are defined after eq. (3.2.4). Using the inner
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product defined in this equation we can writte eq. (3.4.6) as:

(3.4.7} p(x') = i(G(X',X),¢£(XJ)x. *

where the subindex x means that we have perform the integration
over this variable. From eq. (3.4.6) we can obtain the following

properties by means of simple derivation and inspection of the

results:

(3.4.8) G(x,x') =0 if x,x' e ,

(3.4.9a) a3 6(x,x') = 7% 6, xx) ifxxt e,
{3.4.9) n"aun“a;ctx,x') =0 ifx,x* e,
where (yfllzsx (x,x') is the Dirac § on the Cauchy surface ¢

with metric Yuy From the first equation we can see that for a
x' fixed the support of G(x,x') is contained in the emission
of x' i.e. E*{x') U E"(x')} which alsoc follows from the defi.
nition (3.4.3).

Now, it is straightforward to see that the propagator
" G(x,x') has all the properties to-be considered as the commuta-

tor of the scalar field, thus:

(3.4.10) [¢(x),¢(x?)] = -iG(x,x")
and also
(3.4.11) <0f[¢(x),¢(x")1| 0> = -iG(x,x")

In flat space~time G(x,x') becomes the usual A(x,x')}.

Now, from (3.2.5) and (3.2.6) we have that:
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(3.4.12) (uj.’} - a'j ,
(uj,0) =-a} ,
thus:

. * *
(3.4.13) $(x) -J): (uj.ﬂuj(x)-(uj_ﬂuj (x) =

" '(J{ u, (x’)uj' (x)-uj (x')ui(xl.“*'ux' T

Comparing with (3.4.7) we obtain:

(3.4.14) G(X,x') = i § u;_(x)uj(x')-uj(x)u;(x') .
i.e. the expansion of the propagator in basis-ui. Also, using
this equation and eq. (3.2.6), eq. (3.4.10) follows from eq.
(3.2.7). As G(x,x') is unique and{ui}U{u;} is an arbitrary or-
thonormal basis expansion (3.4.13) is invariant under Bogoliubov
transformations. This can also be seen by direct computation,
(cfr. Castagnino (1978)) and also that we can use, in formula
(3.4.11), an arbitrary vacuum and we allway obtain the same
and unique G(x,x').

From the beginning of this paragraph and paragraph
3.2 we can conclude that,up to here, the generalization of Quan-
tum Field Theory to curve space,in arbitrary reference system
is simple and straightforward and we have found exactly the
same formalism. In fact, we have deal only with the canonical
formalisms, ( embodied in equations (3.2.6), (3.2.7), (3.4.10)
and (3.4.14)) that we have demonstrated it is invariant under

Bogoliubov transformation and therefore unambiguous.
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The real problems begins with the vacuum definition
or the particle model that are related with another Green Function:
G](x,x').

As G(x,x') is the generalization of the usual A(x,x')
to curved space-time; Gt(x,x’J is the generalization of ﬁltx,x‘J.
As we shall see the subspaces of positive and negative frequency
solutions are determinated by G,{x,x'). Naturally we ask for

Gl(x,x'J the same properties A1(x,x') has, namely:

{3.4.15), I - G1(x,x'J must be real,
II -  6,(x,x*}) = 6 (x',x) ’
I ~ (Dx+m2+ga)cltx,x') =0 , .
IV —  G(x,x") = -i(G, (x,y)3G, (x",¥))
Y

These equations are the natural generalization of the properties
of A](x,x'), of flat space-time, but it is evident that they
alone do not define GI(x,x'}. In fact, IV may be considered a
unique boundary condition, on a Cauchy surface £ . Thus,
differential equation IiI, with only one boundary condition,
cannot define G1(x,x') entirely.

This is why we must look for other condition on G1(x,x'J.

Meanwhile , let o, be a wave function define as:
(3.4.16) $(x) = i(GI[x,x'),¢(x'))x,

We shall call "ip" to this linear mapping:

(3.4.17) ipp(x) = ¢,(x) .

From condition IV we have:
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(3.4.18) - [9(x)]y = -4ix)
or:

(3.4.19) pop =1

Let us now define a new inner product:

(3.4.20) ‘@1:@23‘ = ("131’4’2)

From II we have that this product is also Hermitian, and that
p is a self-adjoint operator for both products (,) and <,>.
The product <,> is the generalization to curved space-time
of a simmilar product of flat space-time (cfr. Schweber (1962)
p- 57) that it is positive definite, thus it is natural to
ask that G1(x;x') would also satisfy:

V "The inner product <,> gives a positive norm" i.e.:

(3.4.21) <p,9> Z 0 3 <pi¢p> = 0 =t g = 0

Conditions I to V were define by Lichnerowicz (1964a)
and they are possibly the minimal set of conditions that GI(x,x')r
must satisfy. If GI(x,x'J satisfy condition I to IV we can
define a decomposition of the space of solutions of eq. (3.2.3)
in a subspace of positive frequency solutions and a subspace of
negative frequency solutions, that oan be found using two
projectors that can be written using operator p: If ¢ is a

solution of eq. (3.2.3) its positive frequency component ¢% and

its negative frequency components ¢~ are:

(3.4.22) ot = (14p)  , ¢ =4 (1-p)e
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If we define a basis u; in the positive frequency
subspace it is easy to see that u; is a basis in the negative

frequency subspace and that:

(3.4.23) G, (x,x') = E ui(x)u;(x) + u;(x)ui(x') »

is the expansion of Gl(x,x') in this basis. In fact it can be
seen that this G1(x,x’) satisfies eq. (3.4.16) and it also has
all the properties from I to V. Thus G1(x,x’) defines a decom-
pPosition in positive and negative frequency components, and
viceversa.

It is also easy to see that Gy {x,x') is not invariant
under a Bogoliubov transformation, thus there are infinite
G, (x,x'),each one corresponding to a different decomposition,
because there are infinite vacua or infinite particle models.

The invariance of eq. (3.4.14) and the non-invariance
of eq. (3.4.23) explain why it is easy to generalize the cano-
nical formalism and why it is so difficult to generalize the
notion of vacuum.

Finally if |0> is an arbitrary vacuum,using the
 positive and negative frequency solution corresponding to that

vacuum it can be proved that:

(3.4.23a) G, (x,x') = <0f[{¢(x),(x"I}]|0> ,

vwhere {;} is the anticommutater. But now G1(x,x') is not the

same if we change the vacuum to |U> # [0>. We have:

(3.4.24) Gy (x,x") = <0[{$(x),s(x")}|T> ,
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where GT(x.x') # Gl(x,x'J is a new kernel that correspond to
vacuum |T>. '

If we have a vacuum in the far past |0; > and a vacuum
in the far future loout>,as in the last example of paragraph 3.3,

we can also define a Feynman propagator:

<0°ut T (x? i9(x')) ]Oin>

(3.4.25) G = (x,x') =
’ <Uout|°in>

It can be proved that G = (x,x'} satisfies:

»

(3.4.26) { []x LN ER(x}]Gp = - 8(x-x") (—g)‘rlz

(for detail see De Witt and Brehme (1960) and Friedlander
(1975)) as in the last example of paragraph 3.3 and that it can

N a * .
be expanded in the basis u, up as: (if 'Oout> - Ioin>J
. ' 020 *en
(3.4.27) iG(x,x') = 8(x =x"Ju, (Xu; {(x'} +
F _ k k
+ e(x'U-xQ)u;(x)uk(x'J
thus Gp is also non-invariant if we change the basis.

Thus we can say that we have:

i) G(x,x'} a no-vacuumn Green Function becauyse it is vacuum-

-independent

ii) G](x,x'J a one-vacuum Green Function because it depends on

the vdcuum

We choose, (cfr.eq. (3.4.23a))

iii) GF(x,x') a two-vacuum Green Function, because it depends eoff
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two vaccua if we want it to propagate positive frequency
solution to the far future and negative frequency solution

to the far past.

Now we are ready to rephrase the vaccum problem in
Green Functions language. For example Rideau (1965) proved that
conditions I to ¥V plus Poincaré invariance in Minkowski space-
-time define an unique GI(x,x') precisely Al(x,x’J. Thus plane
wave model is the unique Poincaré invariant model in flat
Space-tinme.

More generally if there is a Killing vector or, what
is the same, the metric in adapted coordinates, is stationary
(and we suppose the fluid irrotational to make things easier)

if Yj is a basis of solutioh of equation (3.3.8) i.e.:

0,-2 i 2 2.
(3.4.28) W7k, C 3 - 0BV = wiiyg

a basis of solution of eq. (3.2.8) is:

-im-xo i
(3.4.29) w =K, e J 15(x } ,

where Kj a normalization coefficient. This are the functions

that we have considered as positive frequency solution because
=iw.Xx

they have the factor e / as in the flat space case. But

now the G,(x,x’) that correspond to that basis reads:

—iu.(xo-io Dox L
(3.4.30) 6, (x,x") =} C.C! x [e Y, (MY
j 3l J J
. 0 =0
lw, (X =X") « . i
+e 7 Yj(xl)tfle] ,



and the kernel turns out to be invariant by translations along
the Killing vector field, i.e. xo - x°+ﬁx0, *0 -+ i0+dxo. Thus
as the particles model is embodied in G1(x,x’) we have
proved that the trivial vacuum model is the one that correspond
to a GI(x,x') invariant under translation along the Killing
vector field. As this generalized the corresponding properties
of A,(x,x’} of flat space-time we can be more confident that

our trivial model is the correct one.

3.5 ADIABATIC  VACUUM

Even if we are convinced that the trivial vacuum is a
good physical vacuum we realize that it is too restrictive
because in the general case we do not have a Killing vector
field. Thus we must try to find other criteria to study the
vacuum problem, the Minkowski 1imit is one of them. The
success of the Quantum Field Theory in Minkowski space-time
leads us to think that there must be some kind of approximation
to that concept and that in slowly varying universes the particle
motion must have some sense. In fact, we live in an expanding
universe and we speak of particles in everyday Physics. Thus
some sort of Minkowski limit must exist, and this limit must be
a necessary condition that we must impose to the theory.

To make the ideas more precise let us first study the
case of a Robertson-Walker universe, in the comoving frame of
reference, and then let us generalize the results to more general

geometries (paragraph 3.6).
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“The. metric of a spatially flat'’’ Robertson-Walker

universe is:

2 2

(3.5.1) ds? = at? - a?(e) (dxledytiazd)

A basis of solutions of the field equation (3.2.3) is given by

the functions:

(3.5.2) u (6,0 = ) 32 ol EE £ty

and its complex conjugate u;, where fk(t) must satisfy the

equation:

(3.5.3) to. 323 K, 42 R) £, = 0
.5. kY 3G (;7 +m o+ £ k" s

and where k% - k.k. Now we propose the following expression for

fk(tJ:

. .
exp[-iI Wk(t')dt']

{3.5.4) £,(t) =
5 k [ A 1Ve

where W and A are real functions to be determinated by (3.5.3).
Note that this procedure involves no loss of generali:
we have simply written fk[t) in terms of its argument and ab-
solute value. Now if we Empose the orthonormality conditions
(3.2.5) to the functions up  we obtain W = A; with this choice

L ]
Uy, Uy becames an orthonormal basis.

(7)1n the spatially curved case  we would speak of static limit,



In order to satisfy eq. (3.5.3) W, (t) must be a

solution of the equation:

(3.5.5) wewl/ T
% 3 .. 3
= ;z- + M + ER - 2’ (H + '2' HJ »

where H = a/a is the Hubble coefficient. In the flat or the
static case (cfr. eq. (3.4.28)) a = const. and we would have:

2
(3.5.6) N 52)1

/2
If the space-time is slowly varying, then the derivative terms
will be small compared to wi, 5¢ we have a zeroth order approxi-

mation if we substitute:

(0)
(3.5.7) wilew

in the integrand (3.5.4). The solution of (3.5.5) may be appro-

ximated by iteration using Wﬁo) as the lowest order i.e. it

can be computed with the W.K.B. method, and we obtain:

(3.5.8) Wy = wy [ —-1} (E-%)-—l-"z+
Wy
2 ¢ 2.4 :
+ % (HZ + %) EI + %-EL%F-+ P | »
Wy Yy

where H = a"é is the Hubble coefficient and R is the curvature

scalar R = 6(ﬁ+2H2). Thus we find a solution uy if we substitute

W, in the integrand (3.5.4) and an independent sclution taking
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the complex cunjugate u;. These solutions correspond to a vacuun
that we shall call the adiabatic vacuum. We can find other

solutions and other vacua by a Bogoliubov transformation i.e.:
p— *
(30 5 tg) uk = Cf.kllk + Bkuk .

Is it, in some sense, the adiabatic vacuum a privilegeted one ?
To see this we can take the Minkowski limit introducing an
adiabatic parameter T and replacing everywhere t by t/T (we
shall take, of course, T = 1 at the end of the calculation).
Then thé adiabatic limit or Minkowski limit is obtained when

T + =, The introduction of T changes:

a~+a, a' - % s H ~+ ¥ ’ R =+ l% » etc.
' T

Thus equation (3.5.8) becomes:

(3.5.10) Wy mw {1eHl-zGE-HE +
T wy
2 2 4
R S YR NN 016 PR FAL S5 S
Wy Wy T

Thus a factor T'2 appears for each iteration in the
W.K.B. procedure (a term with a T™" factor will be called a
term of adiabatic order n). When T + =, W, + w,, and u ~ e~ lukt
thus to the proper positive frequency solution of Minkowski
space-time, while ﬁk-of eq. (3.5.9) becomes in the limit T » =«
a mixture of positive and negative frequency solutions of Min-
kowski space-time. Therefore, the adiabatic vacuum is privileged,

it is the only one with the correct Minkowski limit.

It seems that we have solved the vacuym problem but

202



it is not 50(3)_ In fact,(3.5.8)is a power expansion and
therefore an analytical function of its variables at the point

where the expansion is made e.g. on analytical function of yal

1. 0, or an analytical function of k'1 at X~! = 0 etc.

at T
Eventual non-analytical solutions of equation (3.5.5]; in these
variables ,cannot be computed by this method, therefore solutions
(3.5.8) is not completely reliable: it certainly does not
contain non-analytical term that there might exist. In.fact,
these non analytical terms exist and they can be found in the
examples where we have on exact solution, they are precisely
the responsible of the particle creation which is measured
by |Bk|2 which in fact it turns out to be a now analytical
function of k";as we can see in the two examples of paragraph
3.3 (cfr. eq. (3.3.24) and (3.3.40)) where |Bk|2 ~n ek,

Thus -the adiabatic vacuum is only a hint, not a solution.
What is exactly the adiabatic vacuum ?

From the two examples of paragraph 3.3 we know that
Iﬁkli+m + 0. This fact has a very simple physical meaning: it is
much easier to éreate particles of low energy (or mass) then
particles of high energy. In the limit, no physical force can
create particles with infinite energy so logically IBRIZ + 0
when k + =, Thus in the limit of very high energies we must have
a unique positive frequency solutions (or a unique negative one)
and a unique hight energy vacuum, this is precisely the adiabatic
vacuum.

All positive frequency solutions must go asymptotically

(B)In the second example of paragraph 3.3. we have two trivial vacva , which

one is the adiabatic vacuum ?



to the adiabatic positive frequency solution eq. (3.5.4) with
eqy (3.5.3) where k + =, this is so because they all are the
adiabatic solution, plus non-analytical terms in k-1 that + 0
when k + =, faster than any power of k", this can be seen in
all the examples in the literature<9).

Thus the adiabatic vacuum solves the problem completely
in the high energy limit, but the real problem is not there,
because particle creation occurs more frequently at low energies.
Anchow, the adiabatic vacuum prescribes a common behaviour for
all positive energy solution in high energy regions, being
therefore very useful.

In the next paragraph we shall generalize this idea to

moye general geomtries.

3.6 DE-WITT-SCHWINGER GREEN FUNCTION

Particle creation for high energies is very weak. This
can alse be explained in a geometric way. The universe expansion
‘creates particles. Hight energy particles have short wave lenght
and therefore in such a range the universe seems almost flat, or
better it seems much flatter than in the case of a low energy
particles with big wage lenght,i.e. high energy particles "see'" the
universe almost flat and are insensitive to the curvature of space-
-time, low energy particles see the universe curved and are sensitive

to the geometry. Then for high energy the universe "is flat" and,

(%)

° Really in almost all, as we shall see in paragraph 5.



a1 fact, flat universe do not creates particles;thus there is

weak high energy particle creation.
Then high energies correspond to short distances, and

we shall try to find a Green Function for short distance i.e.
in the neighbourhood of a point (Bunch & Parker (1979)). Let x'
be a fix point, that we take as an origin of Riemannian normal
coordinates (Schouten (1951)). Then a generic point x will
have Riemannian normal coordinate yuand the metric tensor can

be expand as:

1 a8 _ 1 a B8 Y.
(3.6.1) g =y v 3R LT " BRgey YT Yt
1 2 A a B vy, &
+ Ruuvﬂ;yd M )11 RuuBAR yosd7 YT e

where LI is the Minkowski metric tensor and the coefficients are
all evaluated in x', i.e. y* = 0. Now let us define:

1/4

(3.6.2) % x,x') = (-2) T IGRIx,x')

and make the Fourier transformation of this kernel:

(3.6.3) Fexxy = @m™! J i g oy,

where ky = n“BkayB. Then the k-space can be considered as a kind
of momentum space localized at x'. GF must satisfy eq. (2.4.26),
thus we can deduce the equation that must be satisfied by ﬁaF(k)
and we can solve it by iteration up to any order in k. Up to

order four we have:



(3.6.4) R R Y S DR
vy i G- E)R;aautkz-nzj'z -
- 4 agga®f kw2,
+ [(% - E]Z Rz + -§ a.lh](k'z-lillz}m3 + eus .

where 3, = alaku and:

1 1 1
(3.6.5) %ap =7 ¢ - PRap * 170 Rjep -
1 A U T
=70 Roggn” -~ Ry Ry *
1 K A ] Ak
* 50 RagRen a0 B oRaues

We must be sure that Gp is a time ordered product,
thus we perform the K’ integration algeng the corresponding
contour as in flat space-time. By the way we can also expand
G, or any other Green Function simply changing to the correspon-
ding flat space-time contour and using an homogeneous field
equation if it is the case. In the case of Gp we can use also
the method of replacing m? by m%-ic and analogously, with
the other Green Functions, we can use the cérresponding tricks.

Substituying (3.6.4) into {3.6.3) we get:

4 .
(3.6.6)  GL(x,x') = I d’k g-iky
' (2r)

x [aoix,x')éaltx,x')(- ;ﬁz) + a'Z(x,x'j(;;a--z)z]x(kz-mz)-1

where:



(3.6.7) a,(x,x') =1 ,

and up to order 4:

l .
(3.6.8)  3,0,x') = FLIR - 3R y* - g a®yE

LI NSL LI SN

(3.6.9) aztx,x')

with all the quantities on the r.h.s. evaluated in k', i.e.

yu =0 {IOJ_

Now we can use the integral representation:

LINT0 L]

2 " 15 (K2-mP+i€)
(3.6.10) (k%-m J ds e
0

and use this formula in eq. (3.6.6). We can then interthange the
order of the integrations, and performe the Kk integration, to

obtain (we neglect ie}:

om -

(3.6.11) QF(x,x'] = -:i.('fhl]-2 [U i ds(is)_z x

x exP{-imzs + (Tg-;}] Flx,x':is) ,

where:

(3.6.12) ox,x') = 3 yy®

is one-half of the square of the space-time distance between Xx

and x' and the function F has the follewing expansion:

- (10)

Note that a, is the term of adiabatic order 2i.
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13.0.13) F(x,x';is) = aolx,.x') +
+-gi(x;x')is + az(x,xF)[is)z + ..

Finally, we can write Gg in normal coordinates if we use all
these equations. In generic coordinates the factor (-g)'1/2
(of equation (3.6.2)) becomes the Van Vleck determinant (Van
Vleck, 1928):

(3.6.14) Bx,x') » -[gx)gx1"1/% x

-

x detlauavc(x,x')] T

Thus, in generic coordinates, we have:

D

(3.6.15) Sx,x') = -i a3 x,x1y(amy 2

G

[ ids(is)'2 exp[-imzs + nglF(x,x';is) ’
0.

known as the De-Witt-Schwinger-Green Function because it was de-
rived by De Witt (1965,1975), following the work of Schwinger
(1951a,b) for flat space-time.

Eq. (3.6.13) could be written:

(3.6.16) F(x,x';is) = | _aj(x,x')(is)j ,
3=0
and the a; may also be found by a recurrent relation (De Witt

(1965), Christensen {1976)). If we substitute (3.6.16) in

{3.56.15) and perform the integral we have:

A‘/z{x,x') ?

a.(x,x") x
(ant)® jeg 37

(.6.17)  cho(x,x') = LB
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2

x (- 2pI V2 B ntey)
am

where, if we remind we have neglect the ie, really we must

substract iec from o, Using the well known representation of the

AF(x,x') of flat space time as a Hankel function we get:

(3.6.18)  6PS(x,x") = aV¥x,x") x

x § a;(x,x") (- ;ﬁz)j apla)-

Analogously:

(3.6.19) 6, x) » 812 (x,x") x

< Jayoax Lol
where A1(x,x') is the corresponding kernel of flat space time,
and in the same way we can obtain all the curved spiace-time
 Green Functions from the flat space-time ones,

But again, if we compare (3.6.19) with (3.4.23) or
(3.6.15) with (3.4.25) we could imagine that something is
wrong. In fact (3.4.23) or (3.4.25) depend in the vacua we
use (G1 is a one vacuum function, GF a two vacuum function) while
(3.6.16) on (3.6.15) are really geometric constructions where
we do not see any trace of the vacua. The answer is the same
that the one we give in paragraph 3.5 for the same kind of
problem: the integrand of the De-Witt-Schwinger-Green function
in its integral representation (3.6.15) is a expansion in powers
of g, =an analytical function at 0 = 0, We could add non-analy-

tical terms, that '"cannot be seen" with an expansion at ¢ = 0, i.e.



they = 0 when o = 0 faster than any power of 0(11). These non-
-analytical terms do not change the local behaviour of Gp in the
coincidente limit ¢ + 0 or x -+ x', but they do change the
boundary condition for large o . Thus we can considered the
different vacua that we can use in eqs. (3.4.25) or (3.4.23)
as different boundary cenducting for large ¢ while when o +~ 0 we
always use the same local structure, the one of Ggs or G?S.

Now, using the expansion (3.4.23) or (3.4.27) we can
compare the results of paragraph 3.5 and 2.6. In fact, if we
work in Robertson-Walker universe the adiabatic Gp and G,
obtained by the eqs. (3.4.23) or (3.4.27) with the adiabatic
base uk,ui coincide orderlby order with Ggs and G?s {Birrell
(1978), Bunch, Christensen and Fulling (1978}, Bunch and Parker
(1979)) we shall prdve this statement in paragraph 5.6. The
same thing happens in Bianchi I type universes (Castagnino
& Nufiez (1984)). The above reasoning completes our understanding

DS DS

of the adiabatic vacuum: GF or GI also define the adiabatic

vacuum and the expansion in powers of 71 or k!

coincide
with the expansion in powers of o, and we could call the
order of the terms in either expansion, an adiabatic order.
Therefore the adiabatic vacuum is the unique high
energy vacuum that we need to explain why there is a decreasing
production of high energy particles and it is also the unique
vacuum with the proper short distance structure. Other vacua
can be obtained changing the low energy behaviour or the long

distance behaviour.

(11)
There ate also uon analytical terms in s when 5 -+ 0.
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But, which is the short distance structure and what is
the reason te have a unique short distance structure ? If we
expand the flat space-time bI(x,x') in powers of the distance

squared (x-x')2 we get (De Witt (1965)):

: 2
(3.6.20) £ (x,xt) = B (e .
. L z m-(x-x')
_ Y PR
+ [y- 1log 2 + log n + % logltx-x')zlll% + !—§§isil~¢04&;];[
2 2 N

1 m®{x-x') a
R S S LR §

- + ) =awa }0
27 4 22.4%.6 Z°% '

Thus the A, expansion shows a quadratic divergence plus a
logarithmic divergence plus regular functions terms when

%ﬁ; starts with a %o$arithmic divergences and then has
Tegular funcgi?ns terms; E%E%;z starts with a regular terms,

etc, Also %EQI?I is a zero and the following derivatives are
zeros of incrzasing order when x +~ x*. It can be shown (Castagnino,

x + x',

Harari & Nunes (1983)) that the only curved space-time Green
Functions with the same short distence structure when x + x°'

:?S , aGJIJS/am2 : 3G?S/(3m2]2

(i.e., ;.. have the same diver-

gencies, regular terms and zeros than a,, aalfymz 4 32A1/(3m2)2;
.)] are the De-Witt-Schwinger Green Functions. So these Green

Functions are singled out as the unique with the following

properties.

1 - They have the correct adiabatic behaviour for high energies.
2 - They have the same behaviour when x + x' than the correspon -

ding flat space-time Green Functions.

The second propertie has also a physical base: the

Strong Equivalence Principle, that states that in evéry space-time

n



point there exists s system of cuﬁrdinates where inertial-gravi
tational forces vanish. In this system space-time behaves local-
1y as if it were flat. Then it is reasonable that G?S and Ggs
(and in fact all the good G, and GFJ must behave 1like 4, and bg
when x + x* (this is the best version of what we have called
perhaps too presumptously, the Quantum Equivalence Principle
(Castagnino & Weder (1981), Castagnino, Laura, Foussats &
Zandron (1980)).

High energy bahaviour and short distance structure are
two different features of the same physical phenomenon and the

De-Witt-Schwinger Adiabatic Vacuum Green Functions: Ggs or

G?S are the only ones with both of these properties; for

these reason they are so impotent. All other Green Function(lzl

have the same properties, but they contain non-analytical terms,

reflecting the vacuum ambiguity explained in paragraph 3.4.

4 STRESS TENSOR RENORMALIZATION

4.1 DIVERGENCIES IN THE ACTION

In the preceeding paragraph we have seen that only
the trivial or stationary vacuum and its particle model has,
more or less, the same intuitive physical value than the flat
space-time vacuum and its particle model: the plane-waves. When
there are not Killing vectors we have neither a reasonable vacuum
nor a particle model. The intuitive reason is also obvious,

~ yacuum and particle model are global concepts, and we have

- (lz)That will define the "Strong Vacua™ as we shall see in paragraph 5.3.
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radically change the g}obg}ustructure of syace-timc gnd referontce
systems: from flat téle;rvﬁa_and from inertial to accelerated. But
we know that, while.glbﬁﬁl structure changes radically in General
Relativity local_structufe docs not. In fact, the tangent space.
-time ;f the curved manyfold is dlways a Minkowski spacé-time, '
local equation remains the same, with the substitution of covariant
derivatives in place of ordinary derivatives, etc. Thus we can
imagine that it would be better to build Semiclassical Quantum
Gravity using local concepts instead of global ones.

A local objects of great interest in General Relativity
is the Enérgy—Momentum or Stress-Tensor Tuv(x). It is a point
function thus a local object, it is a the density of flux of
momentum and energy, and it is the source of Einstein Equation.

At the quantum level its expectation value <Tuv> = <wiTuv|¢>
(where, |y> is the quantum state of the universe) is the r.h.s.
of the field equation (3.4.1)} that we must solve in a real
cosmological problem.

For all these reasons we shall study <Tuv> in this
chapter. The problem is that it is a divergent quantity. In fact, if
we make the corresponding computation we shall find the same diver-
.gency that we find when we calculate the energy of a free field in
flat space-time. In that case we can eliminate the divergence intro-
ducing normal ordering or, which is the same thing, taking a infinite
energy origin, because we only measure energy differences. But now
we are searching the total value of the energy density, because
it is one of the coordinates of <Tuv> and <Tuv> is the source
of the Einstein equations, and we cannot take on arbitrary zero
peint energy, as in flat space-time where all the points are

alike,because in curve space-time a different zero point energy could
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exist in every point of it. Thus we must relay in the generic
renormalization methods of Quantum Field Theory adapted to

the case., Of course we must try to obtain a method with some
of the characteristics of General Relativity: it must be in-

variant under a general change of coordinates, Vu<T"v> = 0 etc.

We shall follow the method of paragraph 2.3 and
quantize a non-self interacting scalar field on a curved back-
ground. The geometric action must be a little more general then
the one of eq. (2.3.1) if we want the theory to be renormalizable.
Besides the usual terms -2A and R we must add tle quadratic

terms like:

(4.1.1) g Lg%, 5@ _pevg |
Wuip
H = R Ruvlp .
But, the generalized Gauss-Bornet theorem (Chern (1955),(1962))
states that:

(4.1.2) [ a*x(-g 01w ) RWVAO ¢ RZ LR RV

uvip
is a topological invariant,called the Euler number, so its metric
‘variation will vanish identically, thus we can drop H and use

only H(l) and H(ZJ. Then, the action is:

(4.103) S-:Sg+5m

S 7 | 0" (g Geany o) 4 s Pyate

S, = %-I(-g)1/z[_gpvap¢ao¢ syl 1 a4
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where the B stands for *bere" céupling constant and Sg is the
geometric action and Sa the matter action. Now we use the back-
ground field method and the gcuv as classical field for v
on zero for ¢ and use eq. (2.3.2) where we do not consider the
Gg i.e. the graviton loop; that eventually can be taking inte

account when the spin-2 field will be studied, thus we have for

the effective actionflsh

4.1.4) r=S(g, = gcu“, 6 =0) + W

W - % Tr {In(-G)]

where W is the matter effective action and G¢ = GF-is the Feyman

propagator computed in the universe quantum state |¢> :

(4.1.5) Gplx,x') = <y|T(4(x),4(x" ) |y> .

Now we must compute the last term of eq. (4.1.4) . We must remember
that in De-Witt notation G is 613 where i and j are jindeces

that label the coordinates x and a generic set of indices if

we are working with a set of fields or fields with spin # 0.

But now there is only one scalar field, then to make more evident

the matrix nature of GF we can write it as

(4.1.6) Gplx,x") = (x{Gg|x") .

where we interpret G; as on operator which acts on a space of

vectors (x) normalized by:

(13) '
" In fact, you can verified that <¢> = <0iu|¢loin> =0,
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(4.1.7) x]x') = 6% x-x)1-g 1172

The trace of any operator M written in this formalism is:

(4.1.8) tr M = J a*x [-geo /2 M, -

. [ atx g1 2ex[M|x) .

Now we know how to calculate the trace, but we must also know

how to manage the legarithm in eq. (4.1.4). For that purpose we

1

write Gg = -K"' and compute the inverse using an integral re-

presentation:
(4.1.9) Gp = K7 - i I e iks gg
0
From eq. (3.6.12} we know that 625 can be written in such
way if:
{4.1.10) exp(-isKDS(x,x']) =

= i(4ﬂ)-zﬁ1/2(x,x')exp(-imzs + %) x

X FDS(x,x';is)(is)"z

where we have explicifically put k’% and FDS, and FP5

is given

by eq. (3.6.13) and we can add non analytical terms if we want
to.

Now, returning to equation (4.1.9) and assuming K has

a small imaginary part (that could come from the imaginary part

of mz) we can use the integral representation:
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(A.1.11) 1' expl-iks)(isy™! ids =
A ,
NS VNN

Where E;  is the expénential integral function, that for small

walues of its argument has the following expansion:

fa.1.%2) Ei(x) =y + 1n{-x) + 0(x) ;

where vy is the Euler's constant. Thus:

(4.3.13) e 1K (i5)7Tds = yo In(iAK) +

+ O0(iAK) = -y = 1In(iA) - In(K) + O(iAK) .

Letting & - 0 we have:

(4.3.14) n (-Gp) = -1n(K) =
I_f e-iKS (is)-l 1d5 ’
0

plus an infinite constant independent of the metric or the field
¢ that obviously can be ignored. The De-Witt-Schwinger Green
Functions is the one obtained by the power expansion (3.6.13),
thus a general Feynman Green Function would have non-analytical
terms in that expansion, i.e, it would have the same integral
representation (3.6.15) but with non.analytical terms, thus

8 DS

we must change k% + x and FP® + F where the generic F is

F=F%4+ non analytical terms in (is).

Then the matrix form of eq. (4.1.14) would be:
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(4.1.15) (x{1n(-Gp) |x') =
a , 2
= - GF(x,x Jdm ,
mz .
where the integration with respect to n? produces the factor

(is)'] we need in eq. (4.1.11). Using now eq. (4.1.8) to compute

the trace we get:

i
(4.1.16) Wa- 3 Tr [1n(-G¢)] =
-3 [ a* 1g001"? 1im [ an? Gptx,x)
x'+x 4 2
-1 I ) dm? [ a*x 1-g01"7? Gpx,x")
Thus the contribution of the matter loop to the action (4.1.4)

is a new piece for the Lagrangian density(14%

(4.1.17) o pe ) = (g1 g =
. -2 1 im [ dn® 65 (x,x") ,
x+x' mZ
‘and:
(4.1.18) W = J;{,eﬁ. a’x E.J -g0012 L g, atx

Now, the new piece is divergent as we suspected. If we return
to eqs. (3.6.13) and (3.6.15) we can see that L. g¢ diverges at

the lower end of the integral because the damping factor o/28

(lé)Really Leff should be called ﬁ::; because it is the matter éffective

. Lagrangian density.
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vanishes when x + x', while the cﬁnvergence in the upper limit
is gﬁaranteed by the term -ie , which is always added to nl.
This divergence in the lower limit happens even if we have new
non analytical term on F, in fact, this terms vanishes faster
than any power of is and it causes no trouble when s + 0.

Therefore the divergent terms are:

1/2.. .
_ s A (x,x')
{(4.1.19) Liy:. = - 1lim ———=rs X
div X" +x 32w

X Io -qé exp - i(mZS_ - %)[ao(x,x')' i-.
5 .

a,(x,x")is + a_,x)E]

where.coefficienté ag, 8 and a, are given by egqs. (3.6.7) and
{3.6.9).

The remaining analytical terms B35 84 eey and the
non-analytical ones, are finite when x + x'. Thus only the three
first analytical terms cause divergencies and this divergencies
are of a pure geometrical local nature. In fact the quantum
state of the universe [¢>, or what is the same, the large scale
structure of GF or its boundary condutions are embodied in the
non analytical terms.

These divergencies are the same that the one we found
in <Tuv> as we shall see in paragraph 4.3. Thus the renormal-

ization of the action produces the renormalizatioen of <Tuy> -

4,2 ACTION RENORMALIZATION

We have demonstrated that the action is divergent, now
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~we shall see how the divergencies can be absorbed in the bare
coupling constant obtaining a renormalized action. We must work
with infinite quantities, and this can be done in different
ways. One of them is dimentional renormalization, i.e. to write
the theory in n variables and see the divergencies that appear

when n + 4. Repeating the computations in n variables we reach to:

“.2.1) - L tn 8%@xn § ( | 9y x
. wke off = x:z. m— jzo aj X,X )

2
L]

. L. 2 g
J-l-n -i(m"s - )
x I ts)” % e T
0

ds

plus the non analytical terms, and it turns out that the first
%n+1 analytical terms are divergent as ¢ + 0. Treating n as a
variable that can be analytically continued throughout the

complex plane and taking the limit x + x' we have:

(4.2.2) L

1 -n/2 %
eff = 7 (4 I 200

J-
. 2
d j-18  -in‘s
x J (is) Z € idd =
0

' n
.,. -3
- 3 (am2 PADIS @hH? " rg-B

where aj{x) = aj(x,x'), plus the non analytical terms. But this
L,¢; has not the correct dimension (length)'4 when n # 4, then
we must introduce on arbitrary mass scale y and write (4.2.2)
as: '

: 1 -n/2 m.n-4 .
(4.2.3) Lyge = 7 (47) )

- 1 aj(x)m4*2j r{g-3p ’



I'(Z) has a pole in Z = 0,-1,-2,... thus when n + 4 we

shall have three divergent terms for j = 0,1,2:

(4.2.4) T = srnegy Gog ¢ Y) ¢ Om-4)

L TP e R v v 0m-a

1

rez-% =2'E‘ﬁ' Y + O(n-4) ]

Thus, as the non analytical terms are convergent we have (Bunch

1979):

2
(4.2:5) . Lysy = ~@n™2e 0l @y
i
4 2
5 4m ao Zm a; ia ; (15)
n(n-2y - n<Z 2 4

where we have used the expansion:
(4.2.6) @™ o1 v le-n ('“2) o(m-0)%)

el u = zin- . n ;"2' + - N
and we have neglected terms that vanish when n + 4.

Taking the coincidence limit of egs. (3.6.7), (3.6.8)
and (3.6.9) we have:

(4.2.7) aO(x) = 1 s
(4.2.8) a,(x) = (- R
(157

'~ From this equation we see that Ldiv haa a convergent term.
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: 1 aBy$ 1 (14
(‘12.9] az (XJ - m RUBYGR - -1—8-0' RG’.BR -

-t d-00dr.3¢-0% R,

thus Liiv is a purely geometrical expresion. Now writing:

3 2
dm 1 1 o5
(4.2.9A) A = (L el v+ m@n1
@) -2y %2 u?
{4.2.10) B ' - O (el v+ m@p1}
ks = + Y + 1In
n "2y 72 z
.21 Ce—pm (e J v « 1n(E;)}} ,
(4m/ & M- -

using eqs. (4.1.1) we have:

(4.2.12) gy = - A+ B (G- E)R-Cx

- e BB Sl G- R g¢-02

 Now we can drop the term | | R hecause it is a total divergence

and substitute H by:

(4.2.13) H=-H{) , 4@ ,

using eq. (4.1.2) thus:

(4.2.14) Lyjy =- A+ B G- §R-Cx

: x lgg HP v (3 - 0% - 5 at
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Thus adding and substracting Lyjy from eq. (4.1.4) we have:

4.2.15) T = [ @ -2 x

A .
x {- (A+ Eig;] + [TB%CE + B[% - IR

[+ § ; B
* [Ts?g;-l-{-lz (%- E)z -T}o-} Cl H“) +

8

+ [Tﬁ?gg + é%] H(Z)

* Legr - Maiv -
From eqé. (4.2.9A), (4.2.10) and (4.2.11) we can see that A,B,C

diverge when n + 4, but now we can define the new renormalize

physical coupling constants:

' Ag A

'(402.16) ’ "(A + W‘IT B) &= - X_Gﬂ »
Ced - 1 1 1

(4.2.17] '1"6?{'.‘; + B(E - E] = Tﬁc ’

' *B [ 1 2 3 o
(4.2-18) m + {2‘(’6 - E] - m ]C - m »
BB C B
[4.2.19) ‘ m; + BU = Tm L]

and we obtain the renormalize effective action (when n » 4):

4 1/2
(4.2.20) rren = I d’x (-g) x

x {E%E [-2A + R & aH(1) +.BH(2J] + Leff - Ldiv} »

“which is a completely finite expression because all the coupling
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constants are physical finite constants G, A, a, B and because
we have taken away all the divergencies of L, .. substracting .

Now it is evident why we need to have the terms nill
and H'®) in the Einstein action. They are necessary to Temove
the divergencies from the term a,(x). Any how the experimental
coefficients a and B could be very small or even a = B = 0,
then the Einstein theory could be recovered.

The remainder renormalized matter Lagrangian shall

be called:

(4.2.21) Leen & Legs = Laiv ,

and it turns out to be:

. 1 ® = ] J' .
(4.2.22) L =1y [ a. (x) (i8) x
Ten 3244 Jo st J
imzs
X e ids + non analytic terms.

This expression could be integrated by parts three times

and using eq. (3.6.13) we obtain:

= 3
1 : 9
(4.2.23) Leff = = Em JU 1n(15) —.—3 x

.2
X [F(x,x";is) e?®™ ] d(is) +

3

1 I . 3 « f a2

+ In(is) {[ap+a, (i5)+a,(i5)“]
6412 10 a(isys 01 2

2
e~ 157y ids

Tht second integral in the r.h.s. is finite thus its terms could
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be added to the constants A, G, o« and B and the function F of
the first integral is F = S, non analytic terms. Thus we have:

(4.2.24) Lpen = - =7 I In(is) x
' 64r 0
3 2
x —2 [F(x,x;is)e™ "™ ] ids
3(is) )

About constant y we can say the usual things, if we choose a
value of u we could measure constants A , G, o and B . If we
change u, these constants also change, and the analysis of the
rescaling of y leads us to renormalization group equations.
We could use other renormalization technigues:

— The generalized g-function (Dowker & Critchley 1976 a,b, 1977a).-
=~ The pointISplitting method (Christensen 1978, Adler, Liberman

& Ng 1977) etc.

All these techniques yield the same results(lﬁl

5,3 RENORMALIZATION OF THE STRESS-TENSOR

Let us now compute the field equation. The classical
field equation (8 ; = 0) could be obtained from action (4.1.3)
1

derifating with respect to variable Byuy®

C(4.3.1) 2 85

-7z = 0
(-g) Gg”v

Calling, as usual,

2 6Sm

(4.3.2) (TSW-Z sgu“ = TuU »

(la)At least for spin zerc fields.
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it leads to the classical field equation:

: 1 (12 {(2)
(4'3';)- Ruv -7 Rguv + ABguv + uBHuv * BBHuv =
= —BnGB Tuv »
where:
uv (-g) sghv

' 1 2
- ZR;uv - Zguv D R - -2- SHVR + ZRKI.IU »

and
(4.3.5) Hﬁﬁ’ -‘(.'_?; ﬁ[ (-g)'/2 @ g4y .
=R, - 78, OR-0OR, - 78, R, +
+ ZR“BRaBuU - |
« 2 -OR, - 78, IR+ RSR -
- % guvRaBR;B *
The quantum version (I ; = <§ .> = 0 ) could be obtained through

.1 i
eq. (2.1.4) using the effective action (4.1.4}):

1 (1) (1) _
(4.3.6) Ruv -3 R 8y * ABguv v apg Huv + Bp Huv =
2 W
.= =816 — »
B p)T7Z gg¥

ahd using eq. (2.1.4) we have:
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e 2 oW
(‘ls.?) _—172 — (T > -
(-g) ﬁg"v Ld

Thus,in fact 6 the divergencies that aflict W are the same of
<Tuv> and the quantum equation is:
ISR (C

"B

1
{4.3.8) Ruv - Rguv + ABguv.+ oy

= -81Gy <Tuv> s

i.e. eq. (2.4.1). The renormalized equation is obtained subs-

titutingrLgee for L. in (4.1.18) and calling:

1/2 4
(4.3.9) Ween --I.[-g(x)] Lien d'x ’

W
: . 2 ren
(4.3.190) <T . > = ,
_Tuviren (_8)1[2 Ggp“

and then obtaining:

(4.3.11) Ryv - 5 Rg,, + Ag,, * el , ar®

a =BG <Tuv>ren .

This equations could also be obtained directly from

action (4,2.20) i.e. T = 0, Really this equation is the

ren,i
one we need to know teo sclve the cosmological problem; thus a
short-cut to obtain <TW>ren directly will be welcome. This
procedure can be deduced from all the just developped theory.

We can write eq. (4.1.19) as:

227



(4.3.12) Lyjy = 5 lim I , dn (x,x")

where Gglv(x,x') is only the divergent part of Ggs(x,x') i.e.

the terms 85, a4, 8y. ThUS'equation'(4.2.21] could be written:

(4.3.13) len =7 Lim [, an? [Gp0rx-6f x,x001
and also eq. (4.3.10) becomes:
(4.3,14) "Tuv>ren = <T v - <Tuv div  *
where:
- 1/2 4

(4.3-15] wdi"lf = I [‘g(I)] / Ldi\' d'x »

_ LY
; 2 div
(4.3.16) <T >.. =

pv div (_nglz_Ggpv

Thus we obtain the following recipe "construct <Tuv> from

div

G (x,x') and <T from 6" (x,x') and sustract". But

uv>div
‘the procedure is almost impossible because to perform deriva-
tives like (4.3.10) or (4.3.16) W or Wyiy Wust be known for
all possible geometries, an impossible task.

It is much easier to construct <Tw> from G(”[x‘.x')

directly, in fact it can be proved (Christensen (1976)) that:

(4.3.17) <T,> = lim D Lx6¢ M (x,x )
x'»x

where Du“ is a differential operator precisely:
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(4.3.18) T = um g 3G -0 x

) (1) 1y g1 o
* Gty G ¢ B - 60T gy -

'ZE (G(I) " G(1)vl) +%£guvx
1y »p (1) p’
x (G o * G ! } o+
* %E (Ekmz)cti)guv + %5 Ryy - 'IZ Rgyv) X
x g1 .4 n’g,,6(1 1.
Then we can compute:
div
4,3.19 «T = 1i D v {X,x')G (x,x') ,
( ) uu d1v x.+: (1)
and use (4.1.14) to obtain <Tuv ren Details of this method

- could be obtained in Christensen (1976,1978) Davies, Fulling,
Christensen & Bunch (1977), and Adler, Lieberman & Ng (1977,
1978).

Perhaps it is northwhile to give a heuristic explanation
of the normalization procedure. Let us consider again Einstein
unrenormalized equation (4.3.8), its r.h.s. is _sncB<¢|Tw(x)|w>
where |y> is the quantum state of the universe and it is infinite.
Then one can say that if we would know a “local vacuum" |0>x at
X we can compute x<0|Tuv(x][0>x and if this quantity is also
divergent we can say that in fact, these divergencies are unreal
because the vacuum expactation value of TMl obviously must

vanish . But we know a very convincing local vacuum; if is the
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adiabatic vacyum related with Ggs(x,x'), thus 'b;x- is the

adiabatic vacuum and we know that:

(4.3.20) x<o[Tw|n>x = <T ,>giv * <Tuy’conv ,

where (Tpv>diV Jv Cony

by the remaining term a;, a,,.... Now if we substract (4.3.20)

is produced by the terms ag, 34, 8, amd <T

from (4.3.9) we have:

1 1 (1)
(4.3- 21] - -G-E; {R].l\’ - 2- Rguv + ABg]JV + GBH ,' +
+ BBH(Z)]'- ‘Tuv>div - <T

>
uv_ cony
- <¢]Tuv]¢> - x<o|'rw|n>x ,

and taking into account the structure of (Tuv>div we get;

(4.3.22) - g (R - I Rg T o) o ay(2)y

WY uv

- <T, > conv = <w|Tuv|w> - xcﬂ[Tuv|0>x .

‘This is a completely logical equation:

- in its r.h.s. we have a convergent stress tensor with a
reasonable property: it vanishes when [y> = |0>  i.e. the
local vacuum

- in its 1.h.s. we have a generalized finite Einstein Equation
where we add an infinite set of geometrical terms originated
by 4z, 84 ,..., that in fact could exist in Einstein Equatian
and could be derived from a generalized Einstein Lagrangian

with terms higher than.Rz.



But as (4,3,22) is difficult to manage because it

has infinite terms, it is easier to substract <T from

uv” conv
both sides. Then we arrive to eq. (4.3.11) a field equation

i
with exactly the same physic consequences than (4.3.22). In this
way the origin of the renormalized Einstein Equation (4.3.11)

could be easily explained.

4,4 UNIGQUENESS AND CONSISTENCY OF THE RENORMALIZATION METHOD

As several manipulations of the preceeding paragraph
are not completely rigorous, from the mathematical point of view,
some one could question their consistency. Thus we can check
these results using a different technique: we must simply try
to see what ‘Tuu>ren make sense in the r.h.s. of Einstein field
equation (Christensen (1975) Wald (1977,197% a,b), Castagnino
& Harari (1984)). Preciselly we could state a set of reason-
able axioms, that ‘Tuv’ren nust satisfy, and see if we find one,

and only one,<Tuv>ren that satisfies the set.

These axioms are:
(1) Covariant conservation
(2) Causality
(3) Standard results for "off-diagonal" elements

(4) Standard results fer Minkowski space.

Let us see the meaning of the axioms. (1) is simply:

uv
(4.4.1) vt e 0,

snd it is imposed because the 1.h.s. of Einstein Equation is di-
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vergentless; (2) the causality axiom says that for a fixed

point x, <Tuu(xJ> depend5 only in the causal past of x i.e.

ren
E7(x). In our case the causal past of x is the geometry

of space-time inside the past null cone of x and eventually

the quantum state of ‘the universe, if this state is defined in
the far past. <T"“(x)>ren depends only in those elements, so we
can change all other features of the problem, e.g. the geometry
out side the x-past null case, and <T”“(x)>ren must remain
fixed. As all the equations of the theory are invariant by a
time inversion the.same statement must be true with past change
by future; (3) is the condition that as <¢|T  [¢> is finite
for <¢|y> = 0, thus |[¢> # |¢> , for this quantity we must obtain
the usual value; (4) means that when we particularize the geo-

metry in the one of Minkowski space-time the normal ordering

procedure should be valid.

Now we can prove that if «<T satisfies condition

uv’ren
(1, (2), (3) it 1is unique,within a local conversed tensor,
i.e. a divergentless tensor that depends on the geometry at x
only.

In fact, if <Tuv> and <?u“> are two renormalized

energy-momentum operator whose expectation values satisfy

axioms (1), (2) and (3), then we must show that:

4.4,2 U T T
(4.4.2) w = Tuy = Tay »
is a local, c-number , divergentless tensor. From axiom (3)

the matrix elements of qu between orthogonal states must

vanish because:



a3 T = ¥ 9>

Besides calling Ivt> = 2'1/1(]$>t|¢>] as;

(4.4.4) 4n+|quln_> =0 ¥ LAPLE R
we have:
(4.4.5) <¢|uw|¢>=<¢|uu=\’|¢> ¥,

From these equations we obtain that: i

(4.4.6) U =w. I,

where u v is a c-number tensor field and I the unit operator

of the states Hilbert space.

Now LA must be a local tensor because from eq. (4.4.6)

we have:
(4.4.7) <°in|”uu(X)|°in’ = u (%) ,
(4.4.8) <Ooutlul_-l\?[x)loout> = uyy{x) '

But from axiom (2) and eq. (4.4.7) uuv(x) can only depend on
the past of x and from the same axiomaml eq. (4.4.8) it can only
depend on the future of x, thus uuv(x) is a function of the past
and the future of x i.e. only the point x.

Finally from axiom (1):

(4.4.9) v“uuv =0 q.e.d.
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Tﬁus <T a+ Satisfying axioms (1} to (4), is unique, witi

pv’re
a local conserved tensor that more likely belongs to the 1.h
of the Einstein Field Equation accordingly to the spirit of
paragraph 4.3,

0f course one would like to know wether or not the
renormalization prescriptions of the preceeding paragraph satisfy
the axioms {1)-(4) and see if we can give an explicit expression
of the local temsor Uyye We would like also to know if the
Lagrangian term that gives rise to u,, are contained in the
primitive Lagrangian (4.1.3) i.,e, if the theory that yields the
u ~term is a renormalizable one. We will answer these questions

Hv
in the next paragraph.

4,5 HADAMARD RENORMALIZATION

Let us start with eq. (4.3.19) and let us introduce

the symbol:

(4.5.1) (M7« 1im M x,xN

x+x'

From Christensen's generalization of the Synge's theorem
(Christensen (1976)) which can be applied to symmetric biscalars,

we know that:

(m 1 (1) '
(4.5.2) CRLR I CLL ,
{1) 1 1
(65 vl = -t6¢ J.u'v] t7 61,
(1) (1)
[G ;ul‘,n] = [G ;u\,] -



Therefore, with these formuias eq. {4.2.19) reads:

1
(4.5.3) ‘Tuv> .- {61;uv]

s . 11
__‘(e_.s.) [DG1] guv+7(z-5)[61];pv +*

et € - POIGT g, + (6] x
3 1 2 1

x [I & - 3’)(1‘1 + £R) gt ZER;N} +
* Now we can use the technique of eq. (4.3.15), but now
we realize that perhaps the choice of GDS is too particular.
Can we find different renormalizations if we change G?s 7
We can suppose that there exists a class of different "local” Gy
that can be used in the renormalization. Of course they must
satisfy a minimal set of requirements e.g. conditioms (3.4.15)
and a reascnable divergent behaviours, a behaviour similar to

the one of 6i(x,x') of flat space-time when x + x' 1i.e.:

(4.5.4) 8 (x,%") vileno + R,

where o is half the square of the geodesic distance and R(g) is
a regular function when ¢ + 0. Elementary sclutions of the field
equation with these properties are call Hadamard solutions

{ c€r. Hadamard (1952), Garabedian (1964)) that can be written as:

X ) 2

(4.5.5) Gy (x,x') = —’}:—— + v 1n

o+ W},

where A(X,x') is the Van Vleck determinant (cfr. eq. (3.6.11)),

v and w are regular functions of x and x' when x + x', and u is
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a mass scale to make the product uzu dimensionless. If we expand

v(ix,x') and w(x,x') as:

(4.5.6) vix,x') = ] v (x,x?) o,
nx=0
{ » '} = w ( ax’) n »
wix,x nzﬂ o (x o

from the field equation (3.4.151II) we obtain:

(4.5.7) vgevito av-al2galsh

where V = m2 + ER ,

LIS =
{405-8) Vn + 1—1-+—.|- Vn-o;u =
1. =172 1/2
* ety (VW - 47T L v,
mz1)
ea 1 ;
{‘3509] Wn + el Wn uo;u -

= gty (Vg - 07 E 0 @R 0

Zn+1 1 Mg
T N+l Yn T n(ns1Y Yo © n n21)

Thus in eq. (4.5.5) A(x,x’)' and v(x,x') are univecally deter-
minated by the background geometry, the only arbitrary function
is wolx,x'). Every choice of that function determinates the

complet w(x,x')} through eq. (4.5.9)[171 We shall suppose that

17)Thus the infinite part of G, is fixed and we have the temptation to use only
this infinite part to built Lgi, or Gdlv(eqs (4.2.5) or {4.3.12}) but it does
not work,we need finite terms to make! <Tyv’ren;” = 0 (cft.eq (6.2.9)t0(4.2.12)),
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the indetermination in <Tuv>ren is originated in this indeter-

mination. For instance, the flat space-time kernel 8,(x,x"):

H%I).VZm o ]

(4.5.10) 4, (x,x"') = %; In{
2nla

can be shown to be the lladamard solution characterized by:

(4.5.11) Wy = m® (2y-1) , W oop? U8

where we used a superscript "M" to denote a '"Minkowskian" value

M

and y is the Euler constant. The v, on wﬂ, satisfying the

recurrence relations (4.5.8) and (4.5.9), are:

2
(4.5.12) vﬂ -z @™y, n!(ns1)1 ,

2
e i2 @™ (log 2 s ¥ne2) + $e)l/mt

where ¢(n) is the derivative of the logarithm of the I' function.

All the arbitrariness in any Hadamard solution is com-
pletely contained in wy(x,x"') (except for changes in the mass
$cale u). In other words, changing wol(x,x') we can find
different local G,(x,x') and obtain different renormalization
that we shall call Hadamard renormalizations.

But, even so, wo(x,x') is not completely arbitrary
because to satisfy eq. (3.4.15 II} w(x,x'} must be symmetric.
Also, as it was proved by Wald (1978), Gl(x,x') and thus

wix,x') must be symmetric if the vacuum expectation value of the

(18)
We shall use this last equation in all massive cases.
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energy-momentum, constructed after them, is expected to be
covariantly conserved. liowever covariant conservation does
not strictly recquire a completely symmetric w. Indeed, taking

into account that in the construction of «<«T from Gy, at

>
v ren
most second derivatives of G, appear, it would be enough for

<Tuv>ren to be conserved that the follewing properties would be
satisfied:
(4.5.13) (w, (x,x")] = v, *,0)]

[W;uv(x;x')] = [w;uv(x’.x)] ’

[w;uv“(x,x’)] = [w;uvv(x',x)]

The quoted Christensen generalization of Synge theoren

reads: .
(4.5.14) [T 1] =

..v']

m ;H
Repeated use of this equation and the anticommutation rule for

covariant derivatives allow us to transform conditions (4.5.13)

into the following relations between [w,], [wo,u] and [wﬂ'uv]:
(4.5.15) (¥g.4) = 7 gl o

B_ 1. ¢
(4.5.16) o;ap); = 7 1 (J¥el;a =
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=100 vglyg * 77 Ry vgl,°
+ 3 € - PR [wgl - ¢ [0 + (€ - DIRY x

x twgliy v Vg

Now, as we are looking for all possiblé local solutions
at x,[wg] and [wo’uv] an only be functions of the geometric
quantities defined at x. The dimension must be that of mz for
[wol and m4 for [w

0 uv] and alsoc the Minkowskian value
»

(4.5.11) must be obtained in the Minkowski limit.

Thus it can be shown that -the more’ general expression is:

(4.5.97)  Iwgl =W+ AR v 5T v (3-2C) (TR }

: ' 2 .2 1
(4.5:18)  [wp. ) = -mf AR« omd) (5 - 2L
1 0p 1
*CRR,y + (3 A+ CpmCpIR, m2C, (R7PR g0 + 3 IR,

where:
(4.5.19) T- 180 (RepTeRepTE-RepRep) sy-pREle-h On,

and A, C, and C, are arbitrary coefficients. _

All the terms of eqs. (4.5.17) and (4.5.18) are inde-
pendent, as can be shown using Bianchi identities and Gauss-Bonnet
theorem (in the sence used in eqs. (4.1.1) and (4.1.2)). Now if
we introduce these expression in (4.5.3) with adequate arrangements

of the terms we have that,up to the fourth order:
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2
(4.5.20) 160° <P >a00

= n? (£ - PR, - 7GR ¢
9 1 1
e9E - Ivy) g, -9, T+

2

1- 1 (1)
+m A GI..W 5 [C1-(E - -s')A] H

uv

5 (2)

- 02 uy + divergent components.

_ 1
where Guv = Ruv ~3 guvR'

This is the generic <‘1'w>div that must be substracted
from <Tuv> {cfr. eq. (4.3.15}) 1if we want to perform a generic
Hadamard renormalization. The particular case of a De-Witt-

-Schwinger renormalization is obtained with the cheice:

(4.5.21} A

-4 i C=3C=-57 -

where M 2y = 1n 2 .,

Then we obtain:

2 <T >DS

(4-5’-22) 167 By div

- enlg - PR, - FREL ¢
+9(E - vyl g, - 78, T+
e - polt e ndIG - FuE - PEx
(1) _ M (1) _ gop(2)
x HUV - m (HU\-’ -3 Hu\J ) +

+ divergent components.
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Thus the difference between two different Hadamard renormalized
tensor (e.g. the difference between eqs. t4.5$20)]and (4.5.22))
taking into account that the divergent component that comes
from terms 2/0 and v 1n uzo of eq. (4.5.5) are'th; same it

results:

2 (1) (2)
(4.5.23) uuU = am Guu + b I-iml + C HH“ oy

where a, b, ¢ are arbitrary constant.

Therefore we have actually find the local, c—number;

divergentless tensor u, of paragraph 4.4. It is, in fact,

v

divergentless because <Tuu>div of eq. (4.5.20) (and also
DS

“Tuv’div

through eq. (4.3.13) from a symmetric kernel Gy(x,x').

of eq. (4.5.21)) is divergentless because it is obtained

Now if we move Uy from the r.h.s. of Einstein Field
Equation (473.11) tg the 1l.h.s., constant a,b,c must be added
to the coupling constants G, o, 8, thus they remain undeterminated
being only then final coupling constants the ones that must be
determinated by a set of experiments. Therefore all the Hadamard
renormalizations yieid the same physical result and we obtain
the sare conclusion as in paragraph 4,3 with the G?S Green function
In the massive case that we have studied we have taken
the scale ¢ » m, thus we can ask what the scale would be in the
massless case. Of course in this case the scale remains arbitrary
but there is no problem with a change of scale uw + u' either.
In fact the change in the kernel is giﬁen by:

' A2 ot
(4.5.24) Gy = G -2 v 1 &)
™

pL 3|



We can deduce the change in <Tuv> using eq. (4.5.3) and compute
the difference G| - G;. The result is:
2 ' 2

(4.5.25) 16n <Tuv> = 167 <TU“> +

1

+ lrpg (31{53) - an',)) -3 -t Hﬁ] .

s (8- P aie,)

Again the ambiguity is proportional to Guv’ HﬁlJ'and Hﬁil and
it is absorbed by the coupling coefficients. So if we added to
axioms of paragraph 4.4 the foliowing one: (5) "The renormali-
zation must be an Hadamard one", the theory turns out to be re-
normalizable because Uy is given by eq. (4.5.22).

Finally we may verify that the renormalized <Tw>ren
computed using Hadamard renormalization satisfies axioms (1) to
(4} of paragraph 4.4. From eq. (4.3.15) we know that <Tuu>ren is

defined using eq. (4.3.18) by a kernel:

(4.5.26) G = Gy - G

1 ren 1 1 div *

" where G, is the primitive and divergent kernel, G, ,;  the
Hadamard kernel eq. (4.5.5) up to the four order, and G1 ren the

renormalized kernel. Then:

- It clearly results that G satisfies axiom (2) because the

1 ren
two pieces G, and G1 div are both causals G1 because is a
computed from ¢(x) using eq. (3.4.23) and ¢(x} propagates
causally and because G1 div is a pure local object when

x -+ x'.
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- Axiom (3)

one used in eqs.

- (4.5.27) < |T

.

By

can be proved using a similar proceeding than the

{(4.4.3) to (4.4.8). Let us compute:

I1'I> -

- ren

1
"7 {wlTuvleren - % <¢|Tgvl¢>r3u -

A )

=z i:g. Duv(G¢ren - GQren) -
1 .

=7 um DG, - Gy -

- % <¢]Tuv|w> - % <¢|Tuv|¢> -

- <$;(T“u“ﬂ_)

q.e.d.

Thus we have obtained the standard results for the off-diagonal

elements simply using the definition (4,5.26).

~ In Minkowski space G,
.obtain the standard

(4) is satisfied.

becomes A1 (cfr. eq. (4.5.17)) thus we

results of Minkowski space-time and axiom

+

- Final‘y both terms of the r.h.s. of eq. (4.5.26) yields diver-

gentless tensor, because both satisfy the field equations and

they are symmetric.

Thus ouf understanding of the renormali-

zation of Tuv is complete.
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5. VacuuM DEFINITION AND STRESS TENSOR RENORMALIZATION IN
ROBERTSON WALKER UNIVERSE

5.1 [INTRODUCTION

From the preceeding paragraph we can see that nowadays
we have a satisfactory and acceptable renormalized version of
the stress-tensor. Thus problem 1 of paragraph 2.4 is comple-
tely solved. On the other hand we only have a very limitated
set ofrreliable vacua, the trivial ones (cf. paragraph 3.3)
that appears when we have a Killing vector field (or at least a
field that behaves like a Killing vector on a Cauchy surface).

For problem 2 we only have a beginning of a general
solutions. Anyhow almost ;11 the book of Birrell and Davies,
that is a sample of the state of the art wup to 1982, is based
in these two ingredients, and in fact a lot of things could be
done . But it seems necessary to try to enlarge the set of
possible vacua. We shall see that we can only do it based on
the satisfactory solution of problem 1.

In this paragraph we shall study the problem in
Robertson-Walker universes and in its comoving frame, because it
is the most important model for cosmological evolution, and
we shall take into account two features of the renormalized
stress tensor.

1 - Ultravicolet renormalization eliminates the diver-
gences that appear when k + » by the Susstraction (4.3.14)., Thus
we are forced to state that the divergent parts of GF(x,x'], or

G1(x,x'): that is defined by the vacuum, must be the same that

244



the one of GgS(x,x'J or G?S(x,x'), if we want a finite diferen-

ce.(lg) A stronger statcment would be that the local structure

“of GF(x,i') or Gl(x,x'), i.e. its analitical terms, would be

equal to Ggstx,x') or G?S(x,x'), that as we know are the most

accurate local copyiﬁ?ap(x,x’)) or 8,(x,x') of flat space-

)

-time®®) This would be a reasonable interpretation of a

"Quantum Equivalence Principle”; the local behaviour of the
Gl(x,x'] defined by the vacuum must be the same that the one

of G?S(x,x'), the best curved space-time version of flat space
ﬁ1(x,x'1. Thus we have a weak and a strong criterium that we

can impose to the vacuum.

2 - But there is another, less studied feature. If we
want to define a vacuum at a time t, (i.e. at a Cauchy surface
Eto; tst, of Robertson-Walker upiverse)} and in coordinates
adapted to the comoving frame of reference and we know how to
renormalize the stress-tensor for every quantum states, we can
compute the energy vacuum expectation value for every candidate

vacuum |0t > (from a set of vacuum related with the comoving
0

frame):

0
(5.1.1) <0, [H[O, > = ] <0t0]T 0l% >ren 9°
0 ] £ 0
Thus we can use the standard notion of vacuum as the state that
minimizes the energy. Only in this way we interpret other
states as linear combination of many particle states and we

construct a reasonable Fock space and we reach a logical decom-

(19)y, this case all terms that do no yield to divergencies can change.

(zo)ln this case only the non analytical terms can change.
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position of the energy momentum tensor in a Casimir term and
a term due to the particle creation (cfr. paragraph 5.7),

We shall see that these two criteria are not compatibie
in general, and this incompatibility originates the well known
vacuum ambiguity in curved space-time.

We shall find a method to bound the degree of ambiguity

and to single out the good vacua.

5.2 ENERGY MINIMIZATION

Let us go back to paragraph 3.5 and work in a spatially
flat Robertson-Walker universe with metric (3.5.1), with a few
mirror changes we could also consider a non-flat spatial geo-
metry but as this change has not a physical relevance we studied
only the flat case. We shall work in the inertial comoving
reference fluid only. The space-time paths of this reference
fluid are the 1lines x,y,z = const, t = variable. This fluid is
irrotational and geodesic and coordinates t, x, y, z are com-
~pletely adapted, the vector uu‘is giving by eq. (3.1.24) but

as the spatial metric is:

2
(5.2.1) Yo =2 ) d

1A

with le\-' =0 if u or ve0O and du\’ = & if U,V .1,2’3

uv
we have:

(5.2.2) iuu -23d, 4 0
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thus , the fluid defines a Killing vector field only if a = U
i.e. in the static case, in this case only we shall have a
trivial vacuum (like in the in and out case of the second
example of paragraph 3.3). Now from eqs. (3.3.1), (3.1.24) and
(5.2.2) we can obtain the field equation in this universe,
make a variable separation as in eq. (3.5.2)} and reach to eq.
(3.5.3) for the time factor f(t).

The classical energy-momentum tensor is:

, 1 Ap. |
(5.2.3) T].N = us+y—:nu {(1-28) 3u¢3“¢ +(2¢ --z-)guvg al¢ap¢_

' 21 .2 2 -
- 250V,3.9 - ZE g, 0488 - £ G 6" + 7 m7g o]

where Gu“ is the Einstein tensor. Its T00 component is:

1 2 2

3
12,2 2.2 2
+ 5 m9% + 3EH%9C - " _E 8 (¢3;0) ,

j=1

where j = 1,2,3 and H = a/a is the Hubble coefficient.

Now we can use eq. [5.1.1)'to define the vacuum
espectation value of the energy and try to minimize it at an
arbitrary time. Preciselly, using spacial simmetry of the
Robertson-Walker metric we guess that we can define a vacuum
at every time i.e. at every Cauchy surface t = const. The vacuum
would be the quantum state that minimizes the energy at that
time. But first we must realize that we can minimize either
the classical energy or the renormalized energy with the same

result. In fact, from paragraph 4 we know that we renormalize
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substracting a geometrical local quantity that it is independeni
of the quantum state of the system.

Then let us write the field equation solution like
eqs. {3.5.2) and (3.5.4) with an arbitrary Nk(t) = Ak(t) to
obtain an arbitrary orthogonal basis. The Cauchy data at time

t would then be:

(5.2.5) up = (212)"% exp(-ik.%) x

T
x (@)% expe-i Io Wy dt)
(5.2.6) by = - (2na)"3/? exp(-iK.X)

t
x ()72 exp(- 3 [0 W, dt) x

W
k .
x [3H+ morind

where Nk and ﬁk are arbitrary. The vacuum expectation value for
a vacuum [0> that corresponds to the negative and positive
frequency solutions from these Cauchy data and for a volume

(zna)>  is:

(5.2.7)  <D|H|0> = ] «0[1%[0> do

I; (27a)>

3
1 . oa 1 *
- -2- E ukuk + -'z -E Bjukajuk +

a j=1
+ mzuku; + E {6H(ukﬁi+u;ﬁk) +
luwu? - 2 T 13, (uydul)edy (hed uy))
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Now we can write this quantity as a function of Wy
and W, using egs. (5.2.5) and (5.2.6) and minimize (5.2.7)

taking the Wy and ﬂk derivations to be zero, then we obtain:

(5.2.8) WE -yl - eetee-m ',
h @? + K512 ang:
where Wk = \m + 2 and:
- ME (21)
(5.2.9) WT . 3H(4E-1)W, ,

-and the energy vacuum expectation value at this minimum reads:

(5.2.10) <ojnjo> « 1 ) Wieo .

We can see immediately that the method works in flat space-time,
because for H = 0 we have W, = w, and ﬁk = 0 and the positive

and negative frequency solutions turn out to be the usual ones

exp + i(k.x + wkt)

We can also compute the energy for a many particle state fn>

such that:

(5.2.11). n = <n|Nk[n> = <n|aiak|n> ,
in this case we obtain:

(5.2.12) <n{H|n> = E n, WiE s 3 1 Wi

(21 = Minimal Energy.
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The second term of the r.h.s. is divergent equal to
(5.2.10), and independent of the gquantum state e.g. we can see
that it is independent of the ny- I1f we renormalize this term
substracting a local quantity we shall find a finite and local
component of the renormalize energy,known as the "Casimir"
component. The first term is a finite component for a quantum
state with a finite number of particles and can be considered
the energy of these particles. In the important cases £ = 0

‘"and £ = 1/6 it becomes:
{5.2.13) _ Enk W,

Thus, we can see that the Energy Minimization coipcid

with the criterion commonly known as Hamiltonian diagomalizatio
Ithat states that the renormalized energy must have the form
(5.2.13) and  so it can be interpretated as the energy of

the particles of the state |n>.

Hamiltonian Diagonalization is strongly criticied in
the literature. In fact, there are possible different definit.
of Hamiltonians (Fulling (1979)), the created particles could
be infinite (Castagnino, Verbeure & Weder (1975)) and the
uncertainty relation prevents an instantaneous definition of
the energy (Parker (1969)). But we shall only use the Energy
deduced from the Stress-tensor integrated on the Cauchy surface
where we want to minimize this energy and define a vacuum,
therefore there will be no Hamiltonian definition ambiguity.
Also,as we shall see, we shall only consider the vacua as re-
liable when there is a finite mumber of particles created among these

Finally, the energy is,of course,determinated up to
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some uncertainty because the uncertainty principle states that:

(5.2.14) ' ABAL A ) .

We can make the follgwing heuristic reasoning. At

-1/2 the radious of curvature, because

1/2

cannot be greater than R

only in a neighbourhood smaller than R™ space~time can be

considered more or less flat (more precisely At must be smaller

than (Rmax)-1/2 = (R

component of R

y~1/2 being R the maximum

puip max uvip max

WVAD at the considered point). In fact, we can
measure the energy in a more or less flat patch where we can
neglect the energy of the created particles. In our units

Aw ~ AE, thus we need that Aw < w to have a reliable definition
of positive and negative frequency solution of ffequency w ,

thus we have:

(5.2.15) w > r1/2

Thus Vacuum Minimization gives reliable high freguency
definitions and we immediately see that the range of good
definition is complete in flat space because R = 0, or in
asyntotic regions, where R » 0, In fact, we can only use this
principle for all frequencies if R = 0 but this will be the
case, not only in flat space-time but in some sSpecial kind of
singularities, as we shall see,

Therefore all the objections to the Vacuum Minimjzation

method have been analized.
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5.3 THE STRONG VACUUM

Now let us consider the criterion.1 of paragraph 5.1
in its stronger version: the local analytical structure of.
G1(x,x') must be the same structure of kernel G?S(x,x'J or
the adiabatic¢ Green function. From eq. (3.5.8) we know that the

Wy, and the ﬁk that correspond to that the kernel are:

DS 1 1, R 1,2 R
(5.3.1) W = w1 - 3 (6 - D) ;—2; NGRS
cwi o suft
_w4k T "Ek
(5.3.2) Weo = -wy » ImPH -} (6 - L) R -
-l -bra Lo oo o By n?.
Z [3 2% B B

cr-prirsd el by Lo
w
X
+ 13 uimt o) w? 4 By ulu . B ww'y 1.
w
X

*)

Now, Cauchy data from eqs. (5.2.8), (5.2.9) are different
than the Cauchy data from eqs. (5.3.1), (5.3.2). If we consider
that criteria 1 an& 2 of paragraph 5.1 are both physiéal
reasonable criteria we must arrive to the conclusion that we
have a realiable vacuum only when both criteria coincide, we

shall call such a vacuum on Strong Vacuum,

Let us clarified the issue with some figures, that are

(k)
DS = De Witt, Schwinger.
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merely qualitative. In figurc 2 the behaviour of both “28 and

wﬁﬁ. are shown in the important cases £ = 0 and £ = 1/6. We

see that both curves + k/a when k » = and near k = 0 Wﬂs
is not defined, because we do not know if De Witt-Schwinger

expansion converges for low k. The shaded area reflects the
ambiguity in the vacuum definition because in a strong vacuum

Wﬁs = WEE and the shaded area must desappear.

In figure 3 we have plotted eq. (5.2.9)
Ygin

ro .

5.3.3) W, - 3H (46-1) W = 0

that must be fulfilled to obtain a minimal vacuum in the case

£ =0 for Wﬁs and ﬁﬁs . It can be seen that these functions do

not satisfy eq. (5.3.3) in general, that ﬁﬂs + SHWES + ZHk/a
when k + =, that also here, the curve is undefined for k + 0
and that we have also a shaded area.

Ir figure 4 we have the same picture but in the
case £ = 1/6 where the only but important difference is that,
condition (5.5.3) that it is now ﬁﬁS +HH£S, vanish when k + =,
Therefore the coupling £ = 1/6 shows a better behaviour than
coupling £ = 0 because in fact, we have that at least both curves
converge in figure 3 and 4 when k + =, giving a reasonable
vacuum with the correct ultraviolet behaviour for the energies.Going
back to the reasoning of the last part of paragraph 3.5: "the
vacuum must be well defined for high energies and must coincide
with the adiabatic vacuum"™, we conclude that most likelly,
coupling & = 1/6 is the good coupling. There are other reasons

that justifie this statement, therefore we shall only study the

case £ = 1/6 from now on.
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Anyhow we shall have an strong vacuum eonly in the
cases where the shaded areas vanish (or it is only reduced t
non analytical térms that of course we can add to WDS]-e.g.

1 - When a = const., then H = 0, R = 0, etc. and we
have the static or Minkowski vacuum, a trivial vacuum, in fact

the most trivial one.

2 - But we could have a = const only between t, and
t,, then we have a Killing vector there and a trivial vacuum, the
only one that we can consider in this paragraph, this trivial
vacuum is also a strong vacuum.

Thus, probably all trivial vacua are strong vacua. Is
the set of strong vacua bigger than the set of trivial vacua 7

In fact it is, because we can add the following examples.

5 - When t+« and H-+ 0, R +0,...,etc. This happens in an
adiabatic flat region, it is the adiabatic out vacuum for the

far future,that appears in most universe evolutions.

4 - We can imagine a universe such that at a time
t =ty we have H = 0, R = 0, ..., etc, we have 2 strong vacuum

there (e.g. in evolution a = t“, at t = 0 for o > 1).

In fact in both examples 3 and 4 we have a local Killing
field i.e. the field u" tangent to the comoving fluid behaves
as a Killing field at the far future in example 3 and at time
ty in example 4. Thus we have a strong vacuum every time we have
a global Killing field or when the field u" behaves like a
Killing field at a Cauchy surface. We must remark that in all of
these cases as R = 0 eq. {(5.2.15) allows to measure all frequencies.
But, are there strong vacua unrelated with Killing

.

vectors ? In fact there is a very important example:
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5 - When m =0, £ = % for every evolution and for
all times we have a strong vacuum because shaded areas vanish.
This is‘the conformal vacuum that we shall study in the next

paragraph.

Finally we must remark that there are other reasons
to believe that the strong vacuum is a reasonable concept. In
fact, it seems that the only method to define a vacuum in curved
space-time is to find the quantum state that has as many proper-
ties of flat space-time vacuum as possible. Calzetta & Castagnino
(1983,1984) analized a set of properties of flat space-time
trying to generalize them to curved space-time to single a good
vacuum, them Castagnino and Mazzitelli (1984} find two properties
that can be generalized to curved space-time. The first one is
based in the Wick trick; we pass from a Lorentz space to an
euclidean space making the change t + it. In euclidean space
these is a unique Green Function that must correspond to a unique
Feynman propagator in curved space-time. The second one is based
in the addition of a term ie to the squared mass to single out
the right Feynman propagator.

It turns out that the strong vacua are endowed with
these two properties (the proof is done in Robertsen-Walker
universe and in Bianchi Type I universe) this fact improves the
base of the strong vacuum concept.

Also as the Cauchy data of a strong vacuum coincides
with the ones of the adiabatic vacuum all the analytical terms
are the same in all the strong vacuum that may exist in a Robertson-
~Walker universe. Thus between two strong vacua the |B|2 of the

created particles is always non analytical, like the thermal
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spectra of the examples of paragraph 3.3. Thus the total num-
ber of created particles is convergent and als¢ the created
energy etc, i.e. criterion 1 of paragraph 5.1 fixes a common
analytical part for both vacua while criterion Z defines the

non analytical part that produces the particle creation. In thi¥
way the divergent particles creation that aflicts Hamiltonian

Diagonalization desappears completely.

5.4 THe CONFORMAL VACUUM

We shall call a conformal transformation to a map
from one Riemannian manifold of metric guv(x) to another Riemannia

manifold of metric Euu(x) such that:

- 2
(5.4.1) guu(x) - gpv(x) = (x)guv(X) »

where Q(x) 1is a real, non-vanishing, continuous function. From

such a transformation we can find that:

: _ P L FP _ pP -1 P L 5P - po:

(5.4.2) ruu Tuv ruv + 0 (.sun;\_j + 6 ﬂ;u £,,8 nu) .
v LA =20V _aq=1/n~1 pv

(5.4.3) RY + R = a™RY -207 (7)), 8" +

1 =1,.2 pa .V
+'2'9 (ﬂ_);pcg 611 ’

2 3 -4

g a. g ,

R + 60 sy

= - L
(5.4.4) R+ R 2 a’uvg + 68

If we define a conformal change of the field like:
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’

(5.4.5) 0(x) + s} = N{x)P(x)

the massless field equation with conformal coupling £ = 1/6 turns

out to be invariant because:

£5.4.6) (O+fme+» (J+3i0 7=

=3

=2 (O« g R

Examples of conformally flat space-time are all two dimensional
space-time and the spatially {lat Robertson-Walker universe because
a conformal transformation exists that changes these space-time

in Minkowsky space-time. In fact their metric may élways be cast

" 'in the form:

(5.5.7) g,,x) = 2 n,

$8 it can be proved in the latest case generalizing egs. (3.3.26),
{3.3.27) and (3.3.28) to the four dimensional case,

Thus if we take the confermal invariant scalar field

f .equation (m « 0; £ = 1/6):

(5.5.8) (Os+gRe=0 ,
under the ceonformal transformation:

-2

(5.5.9) Bay * My = 00 B,
we obtain:

= = _ _uv -1 ..-
(5.5.10) (1% =n"22,@"¢) = 0 ,
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as R = 0 in Minkowski space. Now in Minkowski space we can use

the familiar positive and negative frequency solution:

-ik x"
(5.5.11) A ) = [20m3)TVEe TV

where K0 - w. These modes satisfy eq. (3.3.10) with respect to

the time like Killing vector 3x0 of the Minkowski space:

(5.5.12) L 0 Gk(xJ = -i.ﬁk(x)
x = -

Now as ¢ = ¢, we have a mode decomposition of the Robertson-

-Walker field g as:
(5.5.13) 0(x) = 2(t) § [a,F, ) + afu, (x)1
k =X £X

~and it is natural to define as positive and negativa frequency
basis, of the Robertson-Walker theory to {nﬁktx)} u {ﬂuk(x)} R

the vacuum associated with this base is the conformal vacuum

0> defined by ak|0> = 0. This is so because in this case,
both the geometry and the field equation are obtain by conformal
transformation from the Minkowski case.

Precisely: the metric of Robertson-Walker universe

can be written as:

(5.5.14) as? « a(dn? - ax? - ay* - az?)

where n is the "conformal time" eq. (3.3.27), thus the time
factor of the positive and negative frequency solution is

. mfit.
(5.5.15) a e a
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If we put m = 0, £ = 1/6 in eqs. (5.2.8), (5.2.9) or (5.3.1),

(5.3.2) we obtain:

o=

(5.5.16) W, = oy =

: a
(5.5.17) Wy = -Ho, = - > k

and we can verify that k/a is a solutions of eq. (3.5.5) in this
case and that f, is precisely proportional to (5.5.16). Thus
in this case criteria 1 and 2 of paragraph 5.1 coincide and
give a Strong vacuum that it is the same one that we obtain using
a conformal transformation i.e. the confermal vacuum.

This coincidence of three reasonable criteria make
the conformal vacuum a universally accepted one. It is also

the most important example of non trivial strong vacuun.

5.6 G?S AND 6D ARE THE EQUAL IN ROBERTSON-WALKER UNIVERSE.
THE MINIMAL VACUUM

To renormalize the stress-tensor in Robertson-Walker
universe and to introduce the concept of Minimal Vacuum it is

necessary to know G?S in this universe. Then let us demonstrate

that Gfd constructed with adiabatic solutions, is G?S as we
promised in paragraph 3.6. Thus let us return to paragraph 3.5
and let us try to solve eq. (3.5.5) that we can write as:

3 ﬂk z

1 "k 2 2 1 3 .2
(5.6.1) -z'w;-sz'l;) +Wk-wk- (E-IJRd-z-H

not with an expansion like eq. (3.5.3) in inverse powers of Wy
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but in a expansion in the metric and its derivatives, like those

of paragraph 3.6, The reason is simple: we need to know G?S_up

to the fourth adiabatic order to renormalize i.e. up to the
fourth order in the metric derivatives.
Thus we must know all the geometrical independents

variable built from a. The second order ones are:

2 1

(5.6.2) wy o= H H ay -ER ’
the fourth order are:
(5.6.3) By =B, B e ®l , 8 adulr

1 . 15
B4=EHR > 85=ER +

All other fourth order variables can be written as a

function of these B , e.g.:

(5.6.4) Bg = BN

- 281 + 83 .
B, = Hi =88, - 48, + 8, |,
88 = H = - 4381 - 482 * 3283 - 484_+ Bs .

= By - 28y ,

&
]
Te

LR =)
|

Big = H" = 4B, + 8, - 485
Therefore cur expansion will be:

2 5
(5.6.5) W (t) = wp () [+ n§1 Ao, + nz BB, + ...l

If we substitute eq. (5.6.5)} in eq. (5.6.1) and solve this equation



for each adiabatic order independently we fihd:

. im Sm
(5.6.6) A =-3%5 43 ,
Wy Yk
2
1 (6E-1) 1 m
A = - » . etc.
2~ I X K;‘i
The final result is:
(5.6.7) W (6) = w (e) (1w b [} 6-1)a) -
Yy
-;1-;{ [1} mz(u.l-raz) * % [65-1]-2 By + % (6£-1) x

x

[% m2

+*

ay + % {9€8, - (2-396)8;.

+
SALW

1 1.
(155 + '4')34 + " BS} ] -

+*

+

m4
W

- 3% U (848 + § (75E.39)8,

L3

6 8
*%54*‘2‘%% (B,+85) ‘l}%ﬂﬁﬁil * e
w B}

X X

We shall also need the expansion of W:

¥y 1 .2 - 1.

{(5.6.8) W; = -H + ;-2- [m“H + (65-])(“0‘.2 + Gz)] -
k .

m? 1 1. n? 9

o [(6€ «+ ?)HGZ + gz uz} * ;5 I H(ct1+u.2) -

k k

5

1 6
T Hﬂ.l * cwws .

E
e

281



Now we can find G?d(x,x') from eqs. (3.4.33), (3.5.2),

and (5.6.7), it will be sufficient for our purpose to take

t =t'
(5.6.9) M x,x") . —] J &3 o1F (X=X
tat! (Zna)
6
-{2n+1)
X [ .
nEO A
i 1
with Ao =1 , ﬁ1 - (6§-1)u2 .

ay = A nfegeap) o 367 8,

¢ 3 6610885 + 5 B4 v 3 Bg)

fy = - 3 utay - 1 n? [0156-128, + (45E-3)65 +

+ (158 + %]84 + ‘} Bs] Il
A = -} m? [E%. (8,+8,) + %(105&35)83 . % -7 S

231 6 1155 m3

Ag = - “3z 7 (ByeBg) 5 Kg = yzg ™Ry

It is easy to make all the Fourier transformation of this
equation,from the equation of the flat Al:

.3
1K.
e T

Yk

_ 1 32
(5.6.10) 8,(3) = [ a3%
1 (Zna)°>

where G = % azrz. 4, is an Hadamard solution in flat space-

262



-time and its expansionm is:

4
+ (mz + %r T+ ...) In T + &g + O(E)_.

Qilea

(5.6.11) 3:;241 @) e

where 6g - mzlln(mZIZ) + 2y = 11. If we use now:

zn

=(2n+1) 3 .n.1
(5.6»12) wk = (zn_.l)(zn_s)x'-.xsﬂ' (" ;;2’) ("m_k‘J »

' we can write each one of the integrals of eq. (5.6.9) as deriva-

tivs of a,(ﬁ)' and eobtain:

(5!60]»3) 8"2 GiM(x’x'] =
tet’

+1n 7T {m2+[65-1]uz +

alles

+*

4 2
T [%r + (6E-1) %r uz + % m2 (u1+u2) +

Foenie, .. by, e84 58

+

4
1 2 M1 n?
. f Vi 35)]+0(0 1} . 0t 02 + (66-11(1n 1r+2Y}u .+
11 2, 1 38 48
+ = [3(68-1) 52 + (& - ) (38, 5) +
m A L
+ 1!5' (81‘83)] + O(E) .
Now we can write a generic Hadamard kernel in Robertson-Walker

universe using all the formalism of paragraph 4.5 and eq.(3.6.9)

for this universe, i.e.:
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(5.6.14) o = -t 4T e THT + 3 TG - u2yr2 +%EZH2 . ees

Then we have:

4
(5.6.15) gncti®d o, x') =2, 1n Gt (68-1)ayeT 0

t=t'
m? 12 1 2

+ 66-1) 5 ay + g m(ag+ay) + ¢ (6E-1)7 B, +

¢ (G- D(ByrBy + 38, + F B + 0FT 4

+ [woj + % ay + 0(o) .

If we compare eq. (5.6.13) with eq. {(5.6.15) we can see that

G?d(x,x‘) is on Hadamard solution characterized by:

, 2

(5.6.16) [wol‘&d =M .61 an %o+ 2vdoy 4
1A 2 1 ol 1
m

that is precisely eq. (4.5.17) with eq. (4.5.41) thus up to the

order considered [uﬁd] = [mBS] and G?d(x,x'] and G?S(x,x')

coincide when t = t'. Analogously we can make the computation of

the time derivatives of the kernels, that defined the corresponding

Cauchy data on the surface t = t' and we shall find the same

coincidente, thus G?d(x,x') = G?S(x,x') even if t # t'.
Alternatively we can use a theorem by Davies, Fulling,

Christensen -& Wald (1977) that assure that every propagator

that is an Hadamard structure on a neighbourhood of a Cauchy surface

ig is a the same Hadamard structure everywhere. The ceoincidence of

G?d(x,x') and G?S(x,x'] if t = t' both beeing Hadamard structures



means that both kernels are equal in all space-time.

Now we can use G?d(x,x') given by eq. (5.6.9) up to
the fourth adiabatic order to renormalize,

We can now compute the divergent part of the

adiabatic stress-tensor:

< 3
i div a°k 1 .
(5.6.17) <T > = J w .
00°Ad (2“}3 7"k
{1 1 1
. + =z [- ?(65-1)0:1] *
7] .
: k
1,1 2 1 2 :
+ ;E [- 7 (6E-1) m 4y + g (6&-1) (82-263-234)] +
+ O(N-G)} = 1 Jm dk k3 x
k 4t lo &t

x {1 az"m 1 a4 1 4
+‘k—z["2‘"z(6£'l)ul]+?[—§m -

3 651y nlag)s Je6e-11%08,-285-28,) + 00N},

. 3
div 4’k )
(5.6.18) <Ti5°ad = 34 J (27a)> 2 L
D nd 1 2
X g+ = -3 -7 681000 - yopl] +
w
'k

e - 3 6e-vmliag - F o)+ oy 6517 x
w
k

x (B,-2B,+4B,+28)] + °‘“i6) .

Now we can define the Minimal Vacuum, it is the vacuum that

minimizes the energy (criterion 2 of paragraph 5.1) and produces

an energy momentum tensor with the divergencies of these
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last equations (criterion 1 of paragraph 5.1 in its weaker
version).(ZZ}It is in fact, the minimal condition that a vacuum
must have, it must be a minimum of something (Hajicek (1976)),
most likely the energy that the stress-tensor defines in its
Cauchy surface and it must produce a renormalizable stress
tensor by the ordinary renormalization method i.e. by the subs-
traction of (Tpu>AC of eqs. (5.6.17), (5.6.18), otherwise
it would be useless.

We shall see on important example of minimal vacuum

in the next paragraph.

5.7 MINIMAL VACUUM IN SCALAR FIELD THECRIES WITH CONFORMAL
COUPLING

Let us consider the scalar field theories with conformal
coupling & = 1/6 in Robertson-Walker universe, from paragraph
5.3 we know that this coupling has a better high energy behavior
than the minimal cne £ = 0, thus we shall consider that the
former is the real physical coupling.

From eqs. (5.2.3), (3.4.13) and (3.5.2) we can compute
the vacuum expectation value of the energy momentum tensor in

a basis fk’ fi that correspend to that vacuum:

3
(5.7.1) <T00>=%J,(.g_.z;.3 {Ifklz (wi""}HZJ +*
na

Z 1 X - -«
o [E]° - 7 uck £+ FEOY

(22)1.e. We can choose arbit:&ry la;l&.,..,_and the nen analytical terms.



(5.7.2) <Ti-j> - 3 Gij {Toh « T )}

where:
(5.7.3) T - - n? I._——x‘*s‘ Ik .
{2Zna)

We shall call lﬂ> the vacuum state that minimizes the energy
at time t = 1 and let fkT)(t), (TJ(t) be the time factor of
the corresponding positive and negative frequency structioms.
We can find an easy expression for <0|TW|0>T writing

(1) .
fk (t) as:

t
iI w (') dt?

£(0
(5.7.4) (t) - o (T, t) *
k /26, (0)

1 t L] I
-1 I w (t')dt
+ Bk(":,t,) e

Zo (6 '

and its derivatives as:

. t
1I Wy dt?
(5.7.5)  ELV(0) = fu (o (T, ) S -

Yiw,

. t
' 'II w, dt’

- Bk(Tst) e ) + % H fET)(t) ’

#ka

if we know f(T) and f( } we can compute &, and Bk from system
(5.7.4), (5.7.5). From the Cauchy data that minimize the energy
at 1, eq. (5.2.8) and (5.2.9), we can obtain the values of 2,

and Bk at t = T :

267



(5.7.6) o, =1 , B, = 0 .

Besides the normalization condition that the basis must satisfy

to be orthonormal (i.e. eq. (3.2.5)) in this case is:

(5.7.7) %;fk - =i,
and yields:
(5.7.8) lak(;,t)l2 - |Bk(t,t)|2 -1

Also from system (5.?.4), (5.7.5) and eq. (5.7.7) we can deduce

that:
[t t

il e At i J wydt’

(5.7.9) & e ! K P B e k -
t t
2 1J w dt? -i[ w dt"
. _Ezﬂ (a, © kT, B © k ) .
ka

Also, if we compute Ek from eq. (5.7.5) and we use eq. (3.5.3)

for £ = 1/6 we obtain:

t t
N iJ w dt! . -1J wkdt
(5.7.10). a, € - Bk e =
) t . t
alH 1[ w, dt’ -1I wkdt'
n —z't:i— [Gk e - Bk 14 ] -

From these last two equations we can see that the field equation

‘is equivalent te the system:

t
. . 2 -ZiJ wydt
(5.7.11) oy = 23 8, © k
Zwk



t
' 2 21] ardt
(5.7.12) . Bk = E—% w e K
Zwk
The last equation yields:
2 t
: 2 i J w dt?
(5.7-13) LR, (o8 e ).
w N
k

2
=‘I':|‘ad? |Bk(T.t)I L}

Now, from egs. (5.7.1) and (5.7.2) and eqs. (5.7.4), (5.7.5)

and (5.7.13) we obtain:

. 3
(5.7.14) T‘OIT00l0>T = I —Q—L—z % Wy {1+2|Bk(1:,t)|2 1
_ {(2na)
(5.7.15) <0|T, . |0> =15”.I d3x LI
T T ijt 7 = 3 %ij (zn333'7 k

2 .
x {{(1 ~ &z)EI'ﬁZIBk(T,t]]z - % g—t— |Bk(T;t)|2} .
W
k

These expressions are, of course, divergent and must
be renormalized. We shall use adiabatic renormalization, so
we shall substract from these expressions the stress-tensor
for the adiabatic solution {eq. (5.6.17) and (5.6.18)) computed

up to the fourth adiabatic order, that reads:

e div d 1
15.7.16) <Tye>ag * I _.IL:,, 3 w0 - Pog
(2wa)
. 3 2
div 1 d°k 1 R
(5.7.17) <T, >9%W. 1§ I w1 -8y Cp..,
ij"Ad 3 Yij (Zna)3 7%k “E ij

where:
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1
(5.7.18) P ow - -l 3a, - x
00 Z 771 T Sgs0nt

x (=38, + 38, - 68; - 6B,) ,

2
. ]
(5.7-19) Pl] = 61) '[- -2-;;;2' (31-20-2) -

1

- (- 5B, + B, + 2B, + 48, » 2B:) } .
2880m° LI 3 4 S

We can immediatelly see that the divergences of eq. (5.7.16) and

(5.7.173 cancel the ones of eq. (5.7.14) and (5.7.15) all

being of the form I dsimkfzsl thus the minimum energy vacuum

at T produces a renormalizable stress-tensor, and therefore

it is a minimal vacuum.

The renormalized stress-tensor T<0]Tw|0>ren
(4} .
T<0]Tuv|0>1 -<T,>Ad reads:
(5.7.20) 0|1 [05T"= P, + -935—3 [ B, Cz,t) |2
e R uv T 00 (2na) Wl Pt
o »
Ten 1 d .
_(5.7.21) t‘UITij|0>t 'Pij +x 5ij [ E;;;fz
) .
2 1d 2
< w 1O - -:lz)]Bk('t,t)[ - A ek ()
k

Now we can study the nature of the terms that appears in the re-
normalized stress-tensor. Let us compute the stress-tensor at

time 1t where we have defined the vacuum. From eqs. (5.7.6)

(23;
‘In fact, all the divergent components muat be contain in eqs. (5.7.16}

and (5.7.17).
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we have:

iy ren
(5.7.22) LT SO T T ITAS TS AN

At t = 1 we have the vacuum state |0>_, nevertheless

L<0|T  |0>Ten

uv # 0. Thus the quantum vacuum |O>T in curved space-

-time is the residence of a non vanishing stress-tensor that it is

called the polarization tensor. The presence of a tension in a

quantum vacuum in a nen-trivial situation is demonstrated by the
Casimir effect where an atraction appears between two perfectly
conduct{ng plates because space is not unbauded, even if theré

is not field nor matter between the plates. Thus the polarization
.tensor puv belongs to this kind of phenomena. From eqs. (5.7.18)
and (5.7.19) we can see that it depends on the geometry of
space-time at time t = 71 only. Thus at every time t we can write
eq. (5.3.22) as:

(5.7.23) P e)|0>3°"

" = t<0 leN

i.e. Puu_is the stress tensor at time t, if we put the vacuum at t.
The second component of eqs. (5.7.20) and (5.7.21) is
the stress-tensor of the particles created between t and t. In
fact, if there is no particle creating (if H=0; a = 1, B = 0 is
a solution of the system (5.7.11) and (5.7.12)) as in the mass-
less case this term vanishes. Thus the minimal vacuum concept
allows us to find a canonical decomposition of the stress-tensor
in a polarization term and a matter term, both with a physical
reasonable base, the Casimir effect for the polarization term,

and the classical notion that matter produces a stress-tensor,

for the matter term.

an



At this point we have all the elements to constructla
Quantum Field Theory in Robertson-Walker unvierse (aﬁd to for:
a Quantum Field Theory in a General (eometry}. If somewhefe in
space-time there is a Minimal Vacuum we can build a Fock space
there. If we have a Strong Vacuum or a Trivial Vacuum we can
do the same thing and we shall have a greather confidence iﬁ the
physical meaning of the construction. If there is no Minimal
Vacuum in the whole space-time, we cannot build any Fock space
and the implementation of a standard Quantum Field Theory is
impossible, because we cannot construct a complete set of observ-
ables that allow us to interpret the ket of the space of state
in the usual way: the vacuum, the one particle states, etc.
If we have at least one place where we can define a Fock space
we can define there a physical initial condition and write and
solve the semiclassical Einstein equation (4.3.23) and compute
the universe evolution. If this evolution produces a second
Minimal Vacuum (or Strong or Trivial Vacuum) at another time
we can build a second Fock space and study the scattering
problem between these two Fock spaces (as in the second example
of paragraph 3.3).

Thus the two problems that we formulated in paragraph

2.4 are solved and the main lines of the picture are drawn.
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