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1sT,LECTURE

We face the problem of putting the quantum theory and Einstein's theory together. One has '
here the two greatest theories of the XXth century. Even though there is no experimental
motivation for the attempt to unify them, one's likely to learn something profound by making
the attempt. Cne can alse give logical arguments about why one should quantize the gra-
vitational field. One can begin by asking the question: if you don't quantize the gravitational
field, how do you proceed?

The suggestion that comes naturally and is proposed by everybody is to replace the classical
Einstein equations:

G, = kT, 1
by

Guv =k <Iuv> (2)

where <xuu> is an expectation value of the operator stress tensor of all other {quantized)
fields in Nature.

D.Page has proposed an experiment, which makes use of a Cavendish-type gravity apparatus, to
check the validity of this equation. Suppose we have a quantum process, invelving, for
example, & photon ceunter, in which individual gquantum events can produce a decision whether
the Cavendish balls are place in one position or the other. The expectation value of the
stress tensor will represent a kind of smeared out ball that is partly in one position and
partly in the other. The result of the experiment, which Page has actually performed.is that
the observed gravitational field is Eéi produced by such a source but by a source in which
the balls are either in one position or the other. 50 eq.(2) is no good (see reference (1}).

This does not yet fully settle the question whether the dynamical gravitational field
should be quantized, All it shows is that the Coulomb part of the gravitational field must
be quantized. But this part is "quantized" already by the fact that the source which ge-
nerates it is quantized. Such a situation is already well known in the case of the electro-
magnetic field. One cannot argue that the field should be guantized simply because we

have atomic physics which invelves the Coulomb field of the nucleus. The Coulomb field is not
really 8 separate dynamical entity. It is determined by the dynamics of the nucleus itself.

In order to obtain quantum electrodynamics, one must quantized also the radiation field. Si-
milarly, in quantum gravity we must quantize gravitational radiation (*). There the ex-
perimental situation is that we don't really know if gravitational radiastion exists.However,
there is indirect evidence for it, and Einstein's theory predicts it. Most theoretical

(*)} This was pointed out already by Feynman at the Conference on the Role of Gravitation in
Physics, Chapel Hill, USA, 19857.
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physicists believe in Einstein's theory. Of course, even if we do observe gravitational
radiation the issue of quantization will not really be settled in the experimental sense.
Because quantum gravitational effects do not become important until energies of grder
10lg GeV are reached it seems very unlikely that any experiment will be able to decide
this issue. So we have to use indirect arguments. Clearly, eq. (2} does not hold for the
Coulomb part of the field. If it does not hold for the Coulomb part it should also not hold
for the radiation part because, from a relativistic point of view, the two parts are in-

separable. If you want a relativistic theory the two must go together. This is an  Einstein
argument, not an experimental one,

There are some other things wrong with eq.(2). First of all quantum mechanics is no  longer
quantum mechanics because, in the expectation value, the wave function appears bilinearly.
The wave function itself affects the gravitational field. The gravitational field, in turn,
affects the movement of particles and hence their wave function. So if you write down the
complete dynamics, the Schrbdinger equation is no longer linear. The superpositdian principle
breaks down and the standard interpretation of quantum mechanics (unitarity, conservaticn of
probability, etc). evaporates. Of course, the superposition principle only breaks down very,
very slightly. So for most practical purposes the standard interpretaticn of guantum theory
will be C.K. But it would be an ugly theory. Of course, standard guantum theoTy may eventwdly

be superceded by another theory. But the new theory will be beautiful. In these lectures I
shall assume that standard quantum mechanics is both fundamental and essentially complete.

Eq. (2} has been used quite a let in recent years, particularly in quantum cosmology,
Essentially what one does is to take a given cosmological background and calculate <zuv> in
some assumed state. Because the spacetime is not flat and the curvature is changing with
time, one has a situation similar to an harmonic escillator with time-varying parameters
(mass, spring constant, etc). The oscillator gets excited by a process known as  parametric
amplification. A time-varying gravitational field (i.e., a time-varying curvature) will
excite the vacuum and preduce particle pairs. It will produce both real and virtud particles.
The virtual particle production is usually called vacuum polarization, although pehaps the
term “polarizatieon" is not so good in gravity as in the case of electrodynamics (in QED it
is a dipole polarization while in gravity theory it is a quadrupole polarization).

Having computed <Iuv> one then tries to alter the background geometry so as to make eq. (2}
self-consistent. In some of the early work with eq. (2) only the contribution to<£uu>coming
from real particle production was computed. More careful work, done later, has included the
vacuum polarization part (see references 2 - 12).

All computations of this type have been confined to free fields propagating in a given
background. This corresponds, in the technical language of Feynman graphs to the one-loop
approximation. In loop calculations one encounters divergences. In the present context the
divergences arise from the fact that the stress tensor of any field is expressed as the sum
of products of field operators taken at the same spacetime point. Such operator products have
to be renormalized. In the renomalization process one finds that the divergences can be
removed enly by adding counter terms to the gravitational action that are not like any that
appear in the classical Einstein theory. This reflects the fact that the theory is not per-
turbatively renormalizable. Nevertheless, in certain circumstances, the terms that get
subtracted vanish. For example, if the field happens to be conformally invariant, then
<Iuv) may be reasonably well defined. A lot of work has in fact been done with conformally
invariant fields.

Expectation values like <xuv> can be expressed as functional derivatives of a so-called
effetive action with respect to an effective field {(*). In quantum electrodynamics the
current expectation value can be expressed as

> = ﬁ‘_: (3)

{*} This was first shown by Schwinger (see reference (13)).
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where W is the effective action and Au is an effective background field. <j"> has a divergence
corresponding to a divergence in effective action. In the case of QED the divergent part of
W is just
- v 4

Wajy = const . x [ Fuv F*Y d'x (4)
and by means of charge rencrmalization this term cancels out; it can be absorbed inte the
standard Maxwell action. In the case of gravity theory eq. (3) is replaced by

W
<x11\*> -7 Eﬂ: (5)

and W has a divergent part of the form
Wiy At I g1/2 dix + A% I g1/2 R a4x + R [AISI/Z(Q R » 8 Ruv RMY) atx 6

where A is a high energy cutoff. The first term renormalizes the cosmological comnstant. The
second, quadratically divergent, term, which is like the Einstein action, renormalizes the
gravitational constant. The third, logarithmically divergent term, is quadratic in the
curvature and has no counterpart in the classical theory. In principle the constants o and B
would have to be determined by experiments that go beyong standard gravitational experiments
(*). This requires a classical theory for which the field equations are of the 4th differential
order instead of the 2nd. The initial data for such equations involve derivatives up to the
3rd order and it is hard tc understand the physical meaning of such data. Another difficulty
is that things get worse when one goes beyond one-loop, In the case of twe loops the first

term in the RHS of eq. (6} becomes of 6th order in the cutoff, the second term becomes of
the 4th order and the third becomes of the 2nd order. In addition, a logarithmically di-
vergent term appears which is cubic in the Riemann tensor. The higher you go the worse it
gets, In the limit one has an infinite number of constants that have to be determined by
experiment.

Weinberg (**)} has pointed out that these constants, although infinite in number,are related
tc a set of renormalization group equations, also infinite in number. He speculates that
there may be a stable submanifold with an ultraviolet fixed point in the infinite-dimensional
manifold of coupling constants. Of course, in practice, implementing this idea would be
extremelly difficult, because even in one-loop approximation the calculations are enormous,
In my view this is net a practical or even a necessarily correct approach. I think that the

ideas of perturbative renormalization theory may be basically wrong, and that we must
ultimately go beyong perturbation theory. I shall have more to say about this in may last
lecture.

Sakharov has introduced the idea that the gravitational field may be just an epiphenomenon
of other fields through the coatributions that they make to the effective action.The inverse
of the gravity ceonstant measures the resistance of spacetime to bending, and in  Sakharov's
view this resistance arises from the existence of these other fields. In principle the
gravitational constant may thus be calculable.

Michael Duff (15) has pointed out a difficulty in Sakharov's idea. Suppose you have a field
in an external gravitational field, i.e., in a given spacetime geometry. If you try to
calculate <qu> in this setting you will get different answers depending on how you define
the field. Suppose you have a scalar field, It can equally well be represented by a  scalar
¢ or by a scalar density ¢, related to ¢ by

3=g% : (7)

{(*) Actually o and B satisfy renormalization group equations that relate them to a choice of
length scale introduced in the regularization procedure.

(**)See his article in reference (14).
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You can write the action either in terms of ¢ or in terms of $. Depending om which form you
take for developing the quantum theory you will pet different answers. There is no reason
why a scalar field should be more fundamental then a scalar density, so you cannot decide
which is the "true" action (similar phenomena occur with vector fields). Duff shows that if
you also gquantize the gravitational field, that is, if you add graviton loops to the other
loops, then you'll get the same answer with either formalism. This may be regarded as another
argument, albeit a technical one, for gquantizing the gravitational field.

I shall conclude this lecture by comsidering one other irsue that is sometimes raised.
Suppose we accept that the gravitational field must be quantized. Is it possible that a
fundamental limitation exists, arising from the very process of measuring the gravitational
field, that prevents some of the predictions of the quaﬁtum formalism from ever being msted?l
A similar gquestion about the electromagnetic field was raised many years age by Landau and
Peierls., Bohr and Rosenfeld (16) showed in that case that the answer was negative.at least
if one is permitted to ignore the actual atomic constitution of matter. Years later a  Bohr-
Rosenfeld type analysis was carried out for the gravitational field (B.S.DeWitt (17)). Again
it was found that the quantum formalism is in principle fully testable with, hewever, one
fundamental qualification: any attempt to measure a field average over a spacetime domain
smaller than the Planck length will yield a result that has no prediction value whatever{The
rest of this lecture consisted of a resumé of the article cited below and the reader is re-
ferred to it for details).

ZND LECTURE

In classical electromagnetic theory waves propagate linearly and the superpesition principle
is valid. In guantum electrodynamics, because of the presence of the electren-position field
this is no longer true when high field intensities are reached. One photon can scatter
another. Although the cross sections is very small, if the waves are of sufficiently great
intensity (we assum¢ the wavelength to be much longer than the Compton wavelength so that
there is very little pair production). they can scatter each other at a classical level,
This scattering arises from the presence of virtual particles and is due to vacuum pdarzation
in the scattering region. The field equations that these high intensity waves satisfy are
no longer linear. They deviate from Maxwell's equations.

How does one obtain these non-linear equations? Suppose we have an external electromagnetic
field that is switched on only for a finite period of time and extends over only & finite
region of space (i.e., it has compact support in spacetime). Consider the probability an-
plitude that if the initial state is the vacuum, the final state will also be the vacuum. I
am going to take Schwinger's point of view and work in the Heisenberg picture in which a
"state"” is a time-independent quantity. In speaking about the vacuum-to-vacuum amplitude
{sometimes called vacuum persistence amplitude) I must distinguish the past or "in" vacuum,
which is the state in which no particles are present in the remote past, from the future or

"out” vacuum, which is the state in which no particles are present in the remote future.
These two vacuum states will be denoted respectively by

{in vac>
and
|out vac> .
- - .
The vacuum-to-vacuum amplitude is
<out vac | in vac> = ei¥ (8)

Remark: the vacuum-to-vacuum probability, which is the square of this amplitude, is given by

|<out vac | in vac>|2 - e~ Im¥ [¢)]
If the imaginary part of W differs significantly from zero then the field, even if initially

in the vacuum state, will not remain a vacuum field in the future. There is a finite pro-
bability that electron-positron pairs get produced. Conversely, if there is negligible par-
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ticle production then W will be nearly a real quantity. Note that W always satisfies
ImK > 0.

W is a functienal of the external field Aixt, which is a c-number:
LI R v (10}
Let us assume that there is no external current H-vector. Then Au must be regarded as a

sourceless field propagating in from infinity. At infinity it is an infinitely weak dassical
field.

The total quantum field is the sum of Aﬁxt (which ﬁay be regarded as a background field) and
a quantum remainder ﬁu' Let us introduce the so-called "Schwinger average" of any arbitrary
operator B:

def <eut,vac|@|in,vac>

¥ <out,vac|in,vacs (11)
Define
<out,vac|(AS*Y + A J[in,vac>
n <out,vac[im,vac>
Aﬂ is called the effective field, It depends in a cne-to-one fashion on Aext‘ Therefore

instead of regarding W as a functional of AEXt we may alternatively regard it as a(differem*)
functional of Au:

WS 928 r A s)

It is pessible to show that the effective field satisfies the equations

5T
sru = 0, (14)

These are the nonlinear equations which, for high intensity fields, replace the Maxwell
equations of the classical theory. To obtain their explicit form, even only approximately,
one must carry out difficult calculations and perform renormalizations, ' turns out to have
the structure

T =5+5% (15)

where S is the classical action functional and I is the part of I' that describes purely
quantum effects. When I is set equal to zero eqs, ({11} reduce to the usual Maxwell equations,
which are local partial differential equations. The presence of I converts eqs.(l1l) to non-
local equations which, in certain presentations, take the form of integro-differential e~
quations. \

Another relation that may be derived is the following:

5W
ext
GAH

<au> = {16)

Here a“ is the 4-vector current operator and <j¥> describes the vacuum-polarization-plus -
pair-preduction generated by the external field A:xt. By taking higher functional derivative
one can obtain alsc other useful Schuringer averages. By suitably probing the vacvum-to-
vacuum amplitude in this way one can in fact, obtain all physical amplitudes. Lopsely
speaking, one mey say that the vacuum'already contains a complete blueprint for the field
dyanmics.

(*) When an external source is present W and T are not numerically equal but are connected
by a Legendre transformation,
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instead of going into the calculation of W at this stage I shall consider a simpler problem
in which, by varying the physical background, one can produce nontrivial physical effects.
The most famous of these is the Casimir effect (see reference 18). While computing van der
Walls forces between very close molecules (forces that arise due to charge density fluctua-/
tions), Casimir found that the interaction energy can be expressed as a sum of terms, one
of which does not depend on the internal structural details of the molecules. Its presence
implies that an atractive force must exist between any two paralel plane conducting surfaces
in a facyum. In order to derive this force, let us first consider just one conducting surface.
Consider the electromagnetic field in the semi-infinite space outside the conducter. If the
conductor is perfect, there are sufficient boundary conditions as toc sclve Maxwell's e-
quations by decomposition into mode functions. Instead of the conventional decomposition
into plane waves one has a decomposition of the form

-iW,t iW, t

. A T A" A
Fo i (ay u, e +oay uy, © ) (7
with Wy > 0, where the uiv are monochromatic refiected waves characterized by the index A.
If the normalization of the uﬁv is chosen appropriately then the coefficients a,, ay will

satisfy standard commutation relatieons for annihilation and cretion operators:

Capoap] ~ sup (18)

Associated with these operators there is a vacuum state vector defined by

a, |vac> = 0, for all A. (19}
The existence of operators satisfying these equations depends, in the present case, on the
fact that the whole field system is invariant under time displacements. When invariance
under time displacements dces not hold one cannot define a unique vacuum together with

particles states, and the whole concept of "particle" becomes somewhat ambiguous.

Consider now some vacuum expectation values outside a plena conducting surface. The value of
the electric field E is zero because the field is still a collection of harmonic oscillators.
However, the mean value of the square of the fields strength, E , is not zero. Actually it is
not well defined because E being the product of two field operators taken at the Same
spacetime point, contains the usual quantum fleld theoretical divergences. However,we can ask
for the difference between the mean value of § in the half-space vacuum and the mean value
of B2 in the Minkowski vacuum:

2 2
“B >conductor ~ R *Minkowski (20)
this also is non-zero. The difference could in principle be measured by performing a Lamb-
shift experiment in the vazinity of the conducting surface. _
\
Another important quality is the mean value of the stress tensor,
AR R I Y | (1)

<x"“>, like <§2>, diverges. How do we renormalize it? In classical mechanics the energy zero
point is arbitrary. In Einstein's theory the energy zero point is absolute. <I”“> must
vanish in an empty Minkowski space time if quantum field theory is to be consistent with
general relativity. This fact yields an unambiguous renormalization.

Many properties of cI”“> can be inferred without calculetion. We note that:

aT
1 - " is conserved: —&* = 0,
.axu

2 - In the special case of QED, it is also traceless: x: -0,

Other properties are conveniently described by introducing a speclal coordinate system based
on the fact that the conductor defines privileged directions in both space and time. The

space coordinates are oriental so that the x° axis is perpendicular to the plane x!x? of the
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conductor (see Figure 1). The time axis x0 is
criented so that the conductor is at rest.

It is clear, by symmetry, that <1uu> can de-
pend at most only on x>. Furthermore there
can be no energy flux in any preferred di-
rection. This means that <{io> = 0.For similar x?
reasons off-diagonal elements like <I12>,
¢213> and <I23> must vanish., That is to say,
<xuv> must be diagonal and independent of xo.

x1 and x2. FIGURE 1

Moreover, because a perfect conductor remains a perfect conductor in any state of motion
parallel to its surface, the vacuum stresses in its vicinity must look the same no matter
how rapidly one is skimming over its surface. That is to say, the ether always keeps its
relativistic properties, and hence <T"> nmust be invariant under Lorentz transformations
that correspond to boosts parallel to the {xl.xz]-plane. This means that the first three

rows and columns of <T"V> must be proportional to the metric tensor of a {2 + 1)-dimensional
Minkowski space, namely diag(-1,1,1). If to this inference, one adds the observations that
'1‘1]1'I = 0 in the case of the electromagnetic field, one concludes that <T*V> has the form

<t"Vs> = £(x¥) x diag (-1,1,1,-3). (22)

But that is not all. The form of the function f(x3) too may be deduced. For thus one invokes
the conservation law <T”U.v> = <Tuu>.u = 0. In particular

o= <T>, = - 3£(x%) (23)
which implies that f is a constant, independent of x3. Now <T"Y> has the dimensions of energy
density, The only fundamental constants that enter into the theory are h and c. To get a
constant having the dimensions of energy density one needs also a unit of length, mass, or
time, No natural units with these dimensions exist in the present problem. Therefore one can
only conclude that £ = 0 and hence <T”“>\- 0 in an infinite half-space.

This conclusion is, in fact, confirmed by explicit calculation. The Green's function for an
infinite half-space is readily constructed from the Minkowski Green's function by the method

of images. <T"Y> is then obtained by appropriately differentiating this Green's functicn
and bringing into coincidence the spacetime points on which it depends, The result, of
course, diverges and must be “renormalized” by subtraction of the correspending Minkowski
result. This is equivalent to subtracting the Minkowski Green's function from the half-

space Green's function, Although the resulting "renormalized" Green's function does not it-
self vanish it nevertheless yields <THY»> = 0.,

All the above arguments concerning the form of <T"V> hold equally well for the slab manifold,
except that there is now a natural unit of length - the separatioen distance, a, between the
parallel conductors. In the region between the conductors, therefore, we expect

<t™™Vs = f(a) x diag(-1,1,1,-3). (24)

The form of the function £(a) may be determined by considering the work required to separate

the conductors adiabatically. From the infinite half-space analysis one knows that the
conductors experience no forces from the outside. There is an internal force, however, of
amount 3f(a) per unit area, tending to pull them together, If the conductors are moved a

distance da farther apart an amount of work dW = 3f(a)da, per unit area must be supplied.
This must show up as an increase in the energy per unit area. E = - af(a}. Setting dW = dE
and integrating, one immediately obtains

£(a) = A/a’ {25)

where A is some universal constant.
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The form (25) may alse be inferred by dimensional analysis. The only combinatien in which h,
¢ and a can be united to yield an energy demsity is hc/a4. We shall henceforth set h = ¢ = 1,
The constant A is then a pure number.

A evalution of A requires explicit computation. Again the Green's function can be constructed
by the method of images and again the "renormalized” Green's function is obtained by sub-
tracting off the Minkowski Green's function. The remormalized <T"V> no longer vanishes. The
antecipated form (24),(25) is confirmed and A is found to have the value 12/720. Within
expected errors this value is in agreement with experiment.

It will be observed that the energy density in the ether between the conductors is negative.
It is a tiny energy, too small by many orders of magnitude to produce a gravitational field
that anybody is going to measure. Yet one can easily comstruct gedanken experiments in which
the law of conservation of energy is viclated unless this energy is included in the saource
of the gravitational field. It turns out that the energy density in the quantum ether is
often negative. The quantum theory therefore violates the hypotheses of the famous Hawking-
Penrose theorems concerning the inevitability of singularities in spacetime, which imply the
ultimate breakdown of classical general relativity.

3RD, LECTURE

Topolegical Effects: in the Casimir effect the energy density between the plates is negative
The same is also true if the electromagnetic field is replaced by a massless conformally
invariant scalar field. In order to introduce fermion fields it is convenient to replace

plate boundary conditions by periodic boundary conditions. The vacuum energy density for
bosson fields is again found to be negative. For permion fields it is found to be positive!
With periodic topologies bosons seem to be associated with negative energies and fermions
with positive energies.

There is alsc another type of topological effect (De Witt, (14)), Consider a real scalar
field. It may be regarded as the cross section of a fiber bundle in which the £iber is the
real line R. If spacetime is not simply connected the fiber bundle may be either trivial
or nontrivial. Suppose 3-space is periodic in the xs—direction. Then the fiber bundle may
be twisted, which implies that a scalar field must satisfy antiperiodic boundary conditions,
Similarly fer spinor fields. In this case it turns out that what is negative in the untwised
case becomes positive in the twisted case and viceversa. E.g., twisted fermion fields have
negative vacuum energy.

So far we have confined our attention to plane boundaries. What happens when the boundaries
are curved? Consider first the case in which the boundary consists of two non-parallel plane
conductors joined along the line of intersection (see fig, 2)., The curvature may be regarded
as concentrated on this line. The method of images, as always, is available for construction
of the Green function. The renormalized <x”“> is found to depend on the intersection  angle
and to vary as the inverse of the 4th power of the distance s to the intersection line:

<I°°> . const (26)
s

In the case of the smocthly curved conductor
(see figure 3), one finds that for points near
to the conducting surface,

{xoo> n - Const (27)

8% T )
where T, is the radius of curvature. As the
conductor is appreached, the energy density

tends to minus infinite ou the concawe  side
and to plus infinite on the comvex side. The
inverse cubelaw eq. (27) actually Tepresents FIGURE 2
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a breakdown of the perfect conductor approximation. 4
The real energy-momentum tensor begins to depend an

the structure of the conductor. Note that, as in
our earlier examples, it is possible to define a
precise vacuum in these cases because there is a
prefered time direction for which the conductor is
at rest and every thing is stationary. FIGURE 3

Suppose we have a plane conductor undergoing acceleration perpendicular to its surface. Can
we define a vacuum in this case? In the previocus case, the curvature of the boundary of the
relevant incomplete spacetime manifold was purely spatial, In the present case the manifold
boundary processes a curvature in time. If the acceleration varies in time the conductor
will emit or absorb photons, but if the accelerations is constant then an equilibrium can be
ostablished on the concave side of the motion {see figure 4), In this particular case there
is a Killing vector field. It is possible to find a system of coordinates in which the
Killing vector can be expressed as:

K= 2/21 (28)

In terms of this new variable 1 we can decompo
se the field into positive (e'i"T) and negative
(et¥h energy components. There will be

coefficients associated with each energy com-
penent which satisfy the usual commutation re-

lations and are identified as creation and

annihilation operators. So again we can define
8 vacuum state.

Consider another example to clarify the situaton.

Suppose we have an elevator filled with gas

which is suddenly accelerated. At the beginning

FIGURE 4 a compression shock wave will more from the

floor to the ceiling. This wave can be in-

terpreted in terms of phonons. These phonons will gradually diffuse and the temperature of
the gas will increase. As the elevator undergoes a uniform acceleration a new stationary
state will be reached, and a new non-phonon state can be defined. A similar situatiom is
encountered in the conductor case. As we suddenly accelerate it photons will be produced
even though it carries no charge. As the acceleration becomes constant a stationary states

will be attained,

Let a be the acceleration of the conductor., One can show that for values of s small compared
to 2~} the vacuum energy density behaves like

(xoo> n = conft (29)
s”a

the inverse (a'l] of the acceleration in this case plays the role of a radius of curvature.

More interesting is the behaviour far away from the conductor, There, we have

<Ioo> n - COmst (30)
sl

We can now accelerate the conductor mere and more until it approaches, as a limiting path

the boundary of a wedge-shaped region {(see figure 5). Here spacetime is one quadrant of a

Ninkowski spacetime. There is a vacuum associated with this quadrant known as the Rindler
vacuum (see reference (19)}, because there exists a global timelike Killing vector field in
the quadrant,

If the region above the elevator were filled with a thermal gas then the temperature would
change from point te point. It in fact varies according to the following law:
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T~ 1/s (31)

Now note that from eqs(30} and (31) we find,
that the energy density goes like

<Z°°> ~ - const . T4 (32)
that is, the vacuum energy density varies
like a thermal radiation density, but it  has
the wrong sign! How can we understand this
negativity?

It looks as if the ground state of the Rindler

vacuum is in some sense below the absclute

zero of temperature. One needs to add photons FIGURE 5

to it to bring its energy up to that of  the

Minkowski vacuum, and these photons must be

added in a thermal distribution. This interpretation is in fact correct. One may consider two
kinds of photons - Rindler photons and Minkowski photons. Both are equally “real", but they
are different. The Minkowski vacuum contains no Minkowski photons but it is filled with a
thermal distribution of Rindler photons.

How could we detect Rindler or Minkowski photons? How does a given particle detector respond
in a given circumstance? {See reference 2Z0)). The answer to this question will help wus to
understand the negative energy phenomenon. A particle detector is certainly not something
that measures TVY, for the only way to measure T"V is by measuring the gravitational or elec
tromagnetic field associated with it.

Usually a photon detector is a dipole detector. For simplicity let us consider a monopole
detector designed to detect scalar particles. The interaction Lagrangean between the monopde
gnd the field may be taken in the form

kine = R(TIg [x(2)] (33)

there g is the scalar field and the functioms x*(1) define the world line of the detector,
idealized to be a pointlike cbject. The operator m(r) represents its monopole moment at the
proper time 1., In calculating the detector respense we shall need its matrix elements:

<E|p(x){E'> = <E|p(0)|E'> el (E-E')T (34)

Suppose the detector is initially in its ground state and the field is in a state described
by the symbol ¥. Them the probability amplitude that the monopole gets excited to the lavel
E while the field undergoes a transition to a state ¥'is given by

A(E,¥']|0,¥) = <E,¥'|T raxp(il kint an) | 10w (35)

Let us assume that E » 0 and neglect radiactive corrections. The amplitude can then be
approximated by the first term of the perturbation expansion, namely

A(B.Y‘|0.T)%i<ﬁ,?'}J plrdg [x(0)] dr|o,¥» (36)

this amplitude depends both on the path x“(r) and on the initial state ¥ of the field. Using
eq. (34) we may rewrite it in the form

A(E,¥']|0,¥) = i<B|m(D)|U>J e BTy [4fx (1) ] |¥rar (373
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From eq. (37} of the last lecture we may easily obtain the probability that the detector gets
excited to the state |[E>». It is:

-iE{t-1")

P(E} = L |A(E‘T‘|0.?)|22|<E|E(0)|0>|2Jw erm dr'e ce¥ pCxfr) o Cx0r)]] > (38)
l{f!

- Jem
The detector response is seen to depend jointly on the monopele-moment matrix element and the
Fourier transform (along the world line) of the Wightman function of the field in the state
|¢>. If the motion is such that the Wightman function depends only on the proper time
difference (t-t') them one of the t integrations can be omitted so as to yield a simple
transition rate,

If the field is in the standard Minkowski vacuum state and the detector moves along a  geo-

desic world line, then the Wightman function has positive frequency only, tﬁa Fourier_
transform vanishes and the detector remains in its groundstate (P({E))= 0 . If the detecter

suffers an acceleration the Wightman function contains negative as well as positive fiequendes

and P{B} no longer generally vanishes,

Suppose, on the other hand, that the field is in the Rindler vacuum state and the detector
moves along a Rindler world line, i.e,, along a flow line of the Killing vector field. This
iz an accelerated motion but the detector does not get excited in this case. The general
rule is as follows: unaccelerated detectors respond to Minkowski (i.e., standard) photons;
accelerated detectors respond to Rindler photons. An unaccelerated detector getsexcited in a
Rindler vacuum (*) and an accelerated detector gets iscited in a Minkowski wvacuum.A Minkowsk
vacuum is full of Rindler photons (from both left and right quadrants actually). To build up
a a Minkowski vacuum from a Rindler vacuum one must add Rindler photons, and these have to
be added in a thermal distribution.

One way to see this is to calculate the Wightman function for unifeormly accelerated motion
in a Minkowski vacuum:

2
<¥ls [x(1)] 6 [x(x*)7 {¥> = - (a/2m) _ (39)
4 sinh® [1/2 a(t-1'-10)

{|¥> = Minkowski wvacuum, & = acceleration, R = 1}.

This is a thermal Green's function having periodicity i/T where

T =a/2r (k= 1}. (40)
The detector gets excited just as if it were at rest in a thermal photon bath with this
temperature.

Black Holes: thermal states play a particularly important role in the theory of black holes,
This may be seen by comparing Schwarzschild coordinates with Kruskal coordinates. Let t De
the standard Schwarzschild time coordinate. It defines a Killing vector field 3/%t which is
timelike outside the "horizon™ (see fig, 6).

w (Each point in the figure represents a
g% Z-sphere of radius 1)

herizon

G MY

T

FIGURE 6
(*} W.Unreeh was the first to discuss the behavior of accelerated detectors.
See reference (20),
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The relation between the Schwarzschild and Kruskal coordinate systems is similar to the

relation between Rindler and Minkowski coordinate systems. In the right hand quadrant a
complete set of mode functions can be found and we can decompose the field inte positive

and negative parts with respect to the Killing vector 3/3t. A vacuum state -can thus be de-
fined with respect to this Killing vector. At large distances from the black hole this vacuum
is undistinguishable from ordinary Minkowski vacuum. In particular <™V vanishes there.Near
the horizon, on the other hand, this vacuum shares many of the features of the Rindler
vacuum: 3 particle detector at rest with respect to 3/3t remains in its ground state;
furthermore, <IDU> in a local Lorentz frame becomes negatively infinite on the horizen just
as it does on the boundary of the Rindler wedge in the Rindler vacuum. This vacuum was first
introduced by Boulware.

There is another vacuum state that may be imposed on the Schwarzschild geometry - a state
for which cx"“s in a local frame remains finite on the horizon. This state is fixed by
the requirement that a freely falling detector undergoesw stimulated transition in the
vicinity of the horizon. This detector has the minimum posible excitation as it crosses the
horizon.

This vacuum, known as the _ Hawking-Hartle vacuum, has a thermal interpretation from the
point of view of the Boulware vacuum (as in the Rindler-Minkowski case). Let M be the mass
of the black hole. Choose units for which the gravity constant G = 1 and the velocity of
light ¢ = 1. Let a detector be placed in the Hawking-Hartle vacuum at Test with respect to
3/%t at a position r = 2M + e, € << IM, where r is the conventional Schwarzschild radial
coordinate. In order to stay in this position the detector must experience an absolute

acceleration equal te

1/2
M
a = L..ig%r__. (41)
Because the Hawking-Hartle vacuum has the local properties of the Minkowski vacuum near

r = 2M, it follows that the detector must react in the high frequency range at least, as if
it were immersed in a thermal photon bath at temperature

(2m/e) /2
8aM

t, = afln =

(42)

these photons correspond tc mode functions based on 8/3t. They are real because they carry
energy. Furthermore, they are able to escape to infinity where, because of the redshift
factor (e/ZM)lfz. they wind up at temperature

1

T, = ¥W (43)
The blackhole we have been considering is assumed to be an "eternal" blackhole with an
horizon that consists of both future and past parts. A blackhole formed by collapse has
only a future horizon. The condition that <xu“> be smooth on this horizon leads (starting
from a precoliapse state with no particles at inifnity) to a final state for which the
photons at infinity are thermal, with temperature given by eq. (43), but are outgeing only.
This radiation was first discovered by Hawking. In the case of the eternal blackhele the
state at infinity is that of a thermal bath in equilibrium with the blackhole, with as many
photons being absorbed as emitted. Associated with this equilibrium we have the usual

termodynamics Telation

dE = TdS, (44)
where E = M, from which we can find the entrepy:

S =1/4 A, (45)
where A = 16mM? is the area of the blackhole.

It should be noted that the characteristic wavelength of the Hawking radiation is of the
order of the blackhole radius itself, So it doesn’t make much sense trying to localize the
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region from which the Hawking radiation originates. As the black hole radiates, an energy
flux density proportional to {1/M4) is emitted. This implies a luminosity for the black hole
proportiofial teo (const/Mz). The usual relation between luminosity and the mass rate of change
is expressed by

dM _ _ const

. Integrating this formula, we obtain a cubic
curve for the time dependence of the mass M(1)
(see fig. 7).

This is a reasonable approximation as long as

the geometry is not wvarying too fast, for
. . Y

stationgrity of the final geometry was assumed

N in order to get a rate of particle production.

As the mass decreases, the curvature increases
and hence the geometry varies too. Eq. (46)
does not held in the final instants eof the
process, for then there are diastic changes
in all relevant quantities and thus a highly

- -
— o ————

non-stationary situation. A correct analysis of
the final stages of black hole decay will re-
quire a full quantum theory of gravfty. In my
final lecture 1 shall discuss the formulation

FIGURE 7 of quantum gravity that makes use of the so-
called effective action, and I shall describe
some properties that the effective action must
have and even propose a reasonable approximate
exprestion for it.

STH LECTURE -~ THF EFFECTIVE ACTION FOR QUANTUM GRAVITY

(For the contents of this lecture the reader is referred to the following article: B.S5.DeWin
Phys.Rev.Lett., 47, 1647 (1981)).
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