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1l - INITIAL MATHEMATICAL CONCEPTS

In this section we will consider four dimensional spacetimes with a symmetric (and real)metric
tensor. Several mathematical properties aof such spaces are listed in sequence.

l.a - YARIATION IN THE LENGHT OF VECTORS UNDER PARALLEL TRANSPORT

The lenght of a vector A is given by the expression
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here ﬁ?u is the covariant derivative of AY. Similarly
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Accordingly, we have
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Suppose that the vector A describes by parallel transport an infinitesimal closad contour,
Between two points P and P + dP the lenght of this vector suffers the variation
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where dﬁﬂ is given by

dA“ = DAM - aa¥
Then
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Thus, we have
{1) 1f Dguu = 0 holds, the lenght of the vector does not vary under parallel transport.In this
circuMstance it is possible to define an absclute scale of lenght which holds on all points

of the manifold. The lenght defined in this way is independent on the trajectory chosen
between two points close to each other,

(2) 1f Dguv F# 0 it will not exist an absolute scale of lenght on the manifold.

This variation clearly takes the form
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From Stoke's theorem we get
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Since the change in the components Au along the contour is due to parallel transport, we have
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Substitution of this result in the previous formula gives the final result
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where
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is the affine curvature tensor. We will call the quantity
C R L | (1.b.1)

as the rotation curvature. Then,

N -2 a
% GAu 7 @A (1.b.2)
s

1.c - CURVATURE OF SEGMENTATION

. : - . : . th :
Given ?he conditions Ppguv Byvip Kuv,p for a symmetric g, the general solution for the
spacetime connection is of the form
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For a Riemannian geometry both rua'p and Kvo. vanish. Consequently, the spacetime connection
is given by the familiar expression {JL} , the Christoffel symbols. For a Riemann - Cartan
geometry only the Kvﬁ.p vanish. For both situations the connection is said to be metrical.
We will see later examples of geometries which have rvu.p-o but K, . o is different £rom

zero. These geometries have connectioms which are said to be semi-metrical.

The contraction @ = R is given by
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This expression vanishes if FEB = {;%} or equivalently if Rtlp is the Riemann-Christoffel

tensor. It may be shown that
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The invariant @ of (l.c.2) or (l.c.3), is called as the curvature of segmentation {1). If
n *+ 0 then & + 0. Clearly, the reciprocal is not valid, As an example, for the Rismannian

geometry & = 0 but Qa ¥ 0.

1.c - NON-HOLONOMIC SYSTEMS AND THE TORSION

On each point of the fourdimensional spacetime one may define four linearly independent
vector fields which are denoted by h {(x), a =1,,.4, The functions hi(x) are regular and of
the class C2

The vectors h:(x) may be, or may be not, the basis vectors of a coordinate system. The con=-
ditions for these vectors to belong to a coordinate system are

o
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Since the matrix (ha[x)] is non-singular at each fixed point x, there exists the inverse

which is denoted by (hu(x)]
Hopd _ p b b
ha hv Gv . ha hu éa

A field of vectors ha(x) which do not satisfy the conditions (1.d. 1} is said to be NonHdonoai.
Any tensor T™ gy 1Y be projected on a given Non-Holonomic system according to T:m-h:hghm

The cennection on the spacetime manifold is defined as the set of functions r:k which tansbrm
as

|k - A| B 8] a _ o g l|
Tag = A AR, APt A%, Af 5 4 (1.d.2)

gp ] v o B

under the change of Holonomic systems (x) + (x'):

Ahr o ax? .t
e ax® TooTal g

Accordingly, in Nem-Holonomic systems (K) the connection is the aggregate of functions rbc(x)
given by

L8 RM RV pA _ QU Y 2
Tan = by hp By L hy hy au h, (1.4.3)

obtained from (1.d.2) for the transition (x) + (k) _given by AA‘ - h - Defining the Pfaffian
derivative

= K
3 ha au

(this derivative satisfies the Leibniz rule), one has

r® = B2 p¥ pv k a v
Tan = By hg By r * h, 3 ho (1.4.4)
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In what follows we give a geometrical interpretation of T?}G]. In order to have a general
situation we use Non-Holonomic reference systems. On a giveﬁ'a point P0 we construct two
linearly independent vectors v? d} and v? dX. Making the parallel transport of v? d) dong the

vector vg dA we arrive at a point Py

i IR - J- m 4 2
vy dix = vi dx Tim Y1 V2 (dx) (1.d.5)

Parallel transport of vg dX along the vector v? dx defines another end point LS

= 2 2
vy dr = v) dy - TR VR vy (@) (1.d.6)

The difference between these vectors determines the vector w> di which closes the parallele
granm

-
vzdl Pl +
voda
Fo 2
- P
d
vl A 2
-~
vzdk

a .4 =a_.a_-a
W v, + V] - ¥] -V,

Substituting G? and Gg according to (1.d4.5) and (1.d.6) one finds

w ez r‘l’:m-l v?"vl"] da
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Then
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where do™ is the area of the parallelogram. The formula (1.d.7) in Holonomic reference

systems takes the form
a¥ = F‘Il_'po] daP® (1.4.8)
which is called as the translation vector associated to the torsiom T% g1+ Consequently, for

manifolds where existsa torsiom field it is not possible to draw a closed infinitesimal
parallelogram. This property characterizes the existence of a torsion.

laE =

Given some point P on the centre of an infinitesimal parallelogram we can define at this regon
three fundamental objects:

(i) A translation vector: @ = FTP61 daP?

. - PR N 1] pa
@) A rotation curvature: 4, =R vpo do

Gi) A curvature of segmentation: @ =R"1_chrp de”P

This mathematical structure is sufficiently general for describing theories of gravitation
and electromagnetism as geometrical properties of the fourdimensional manifold.However, this
situation is so general that each one of such theories will be a particular case of this ge-
neral geometry, Among the several possibilities we may list the following options:
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(1) M =a =0
the manifold differs from an Euclidean spacetime by the presence of the curvature 9%.
This is a Riemannian geometry. Since the spacetime dimension is 4 only gravitation can be
described in this case. In order to interpret the electromagnetic phenomena in this case
it is necessary to increase the dimensionality of the space (at least 5 dimensions). As
examples of such theories we have (2): :

(1.1) Kaluza-Klein (5 dimensions]: Ygg = constant.

(1.2) P.Jordan-G,Ludwig - E.Schmutzer (5 dimensiens): Tgs is an arbitrary function.
(1.3) Y.Thirry: the metric has 15 independent components.

{1.4) Einstein-Mayer (5 dimensions). the fifth dimension is used as a mathematlical tool.

(1.5) Einstein-Bergmann-Bargmann (5 dimensions): the five-dimensional space has ¢ilin-
drical symmetry along the fifth-direction.

(1.6) J.Podolanski - uses a manifold with six dimensions.

None of such theories will be considered here, since we work with four-dimensional
manifolds.

2y a* = 0
there is no torsion on the manifeold. If the dimension is four, this corresponds to the
Weyl geometry, or to the Eddington geometry. If it corresponds to Weyl's geometry the

connection is determined by the knowledge of:
{2,1) the field of a symmetric metric tensor.

{2.2) the field of a vector ¢u(x}, which will be associated to the change on the lenght-
scale.

This case will be treated in more detail at the section (2).

(3 a=20
The unity of lenght is constant along the paths on the manifold. If the dimension is four,
this case corresponds to the unitary field theery of Infeld. In this theory the basic

field variables are the g(uv)(x] and a skew-symmetric object ?Iﬁ\ﬂ(x)'

(4) & =0

By contraction this implies in § = 0. Thus, there is no curvature in this case.The torsion
takes the role of the basic geometrical quantity. A manifold with such property is called
as a Weitzenblck space. In this space one can determine parallelism at large distances
{tele-parallelism). This geometry was used by Einstein (1928) in his second attempt  for
constructing an unitary field theecry of gravitation and electromagnetism. Recently, this
geometry was apgain used by K.Hayashi (3) with the intention of obtaining a theory of
gravitation at microscopical level.

{5) All the previous cases work with symmetric metric fields. There are also examples of
of theories which consider asymmetric metric fields. Since the symmetry presented by the
metric is independent of the symmetry associated te the connection, in this case we can
also have a torsion., Such theories are of two types:

(4.1) real asymmetric metric,

(4.2) complex asymmetric metric.

The first case was treated by SchrBdinger and by Einstein. The second one was considered by
Einstein. A shert review of this second tentative will be written at the section (5).
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2 - THE THEORY OF WEYL

In this theory (4), similarly to what happens in general relativity, there exists at each
peint of the space a geodetic coordinate system. This assumption implies in the existence of
a symmetric affine connection. Thus, in this theory the % vanish Weyl's theory is dis-
tinguished from general relativity due to the property that the unity of lenght is no longer
gn absolute quantity. As it will be seen this implies in the existence of a curvature of
segmentation.

The local structure of the manifold is determined from the two differential forms
2 _ v - "
ds [ & dx . de = ¢, dx

dsz is a bilinear form (symmetric metric). The metric & is subjected to the semi-metrical
conditions

Kiv,p ® Buv,p ™ = By % (z.1)

These equations determine the expression of the conmectiom: (use directly the equations
(l.c.1) for this value of the Kuv.p)

Mo, 1 sp p - P

Pvp ‘&p} oy (ﬁu ¢, * 8, ‘u &y 4+ _ (2.2)
where we have used the assumption that r%?i] -0,
It should be noted that the equations (2.1) do not uniquely determine the set of quantities
8y Op. indeed, any pair of quantities given by

Biv "A B, . # ¢, -3 ind (2.3)
satisfies the same conditions (2.1)., However, the Ptp are uniquely determined (the rtp have
the same expression for any choice of variables By ¢p). Due to the form of the variation
6¢p we call the transformation (2.3) as the Weyl gauge transformation. Thus

ds'? o A as?

d¢’' = d¢ - d 2n A

The curvature tensor has the form

1 . 1 1.p A, 1
R ve “Puve * 7 ’:‘w*é‘[’:\ava]’u*gu v ¢+ 7 & ¥ L T EqQuht Taptu‘vj L (2.8

wherest is the Riemann-Christoffel tensor, ¢, is the field intensity associated to the

vo
9,, namely

¢
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In the formula (2.4) the symbol vv indicates the covariant derivative associated to the
Christoffel symbols. From (2.4) it is easy to show that the curvature of segmentation and
the Ricci tensor have the expressions

8 =2 6,4 dg¥?

P . 1 . 21 A _1 . p 1
va = Ruvp Guv *y ’uv LN Pl 4 3uvvx‘ z 3uv’p¢ 7 ’u’v

Therefore the Ru“'is asymmetric,
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2 - THE ACTION PRINCIPLE FOR WEYL'S THEORY

The quantities By !
form

p are the potentials of the theory. Thus, the Action principle is of the

I = fL d4 x

L= Lo(gy Bivar &y a8 far %, 0)

The eventual presence of second order derivatives of the S is due to the fact that the
gravitational part of the Lagrangian density will be different of the Einstein's  Lagrangiasn
{namely, the quantity gu“Guv). In order to have an explicit form for L cne imposes the

following invariance principles:
(a) The Action function is invariant under arbitrary coordinate transformations.
(b} The Action function is invariant under gauge transformations of the potentials ¢p.

Then, L is dependent only on quantities which are scalar densities of weight {+ 1) with
respect to coordinate transformations and which are gauge invariant. We shall call such
objects as "in-invariants". By extension, "in-tensors" means tensors which are gange-invariant,
The affinity Ftp is gauge-invariant, consequently the curvature tensor of Weyl's theary is an
"in-tensor'". We shall use the notation

¥ =W H
R vpao G vpg

Accordingly, the first contraction generates another "in-tensor"

= RH = *
RUD Vel GVQ

The next contraction which generates an“in-scalar-density" is of the form
o = 8) /g, (3.1)

since *G' = % *G, and /-g' = X Y-g .
The expression of oy given by (3.1) is the simplest expression which invelves the curvature
and satisfies conditions (a) and (b). It is possible te construct more complicated quantities
with these properties, as for example:

= *Gp *GU g /_—g‘

- WY =
@y = "G, 6 E + 83 Uve  p...

v

However, we will not consider these possibilities (the situation here is similar to what
happens in general relativity, where the Einstein's Lagrangian is the simplest expression of
a possible Lagrangian),

To the expression of o, one adds a Maxwell Lagrangian LY ¢"V V=¥  and obtain the expression
of Weyl's Lagrangian:

L= -ae, ¢ /g (3.2)

The field equations obtained from this Lagrangian density have the form

¢V -l Ve ax ™

uv 3o
Yoo T3 Y 0

where G*Y - % g”“ G corresponds to the Einstein's tensor, and T'" is the analog of 2 canomnical

energy-momentum tensor. Its explicit expression being
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The tensor T is the Einstein-Maxwell tensor, with the well known properties: L A

TE - 0. The constants A, o and 8 appear due to the following choice of & gage condition

“G =42 .s-ﬁ-

In equation {3.5) J¥ represents the coefficient of the variation of the "gravitational part"
of L with respect to the potentials ¢u:

™ . G!*Gz Y=g)
u

The trace of the tensor T'Y has the form

2. _ 4, 3 b _ by L 4L _ 3 . .p
T R e =~ T % {¢p¢ i 9,0 } * T & ¢ (3.6)

From the expression of *G (which is identical to the scalar of curvature of Weyl's curvature}
one gets

J{l,_3¢u/__g *G
in the Lorentz gauge vu¢" = 0. Then, (note that here *G = 4X)

4 3 p 1
T~ ue” = - - J J¥ (———
T OWT 3 e
Thus, in Weyl's theory matter cannot exist without the presence of charges or currents. Since
it i§ well known that indeed matter can be detected without the presence of electric charges,
this is & negative result of this theory.

From the mathematical stand-point Weyl's theory seems to be the simplest formulation in a
four-dimensional spacetime without torsion, which may, in principle, describe gravitation
and electromagnetism. However, this formulation has some serious negative points from the
physical point of view:

(a) The property referred sbove, regarding the structure of matter.

(b} The electromagnetic gauge has & direct interference with the measure of lenghtszzlz -Azz.
Since A = A(x}, it follows that the observation of the lenght of a vector will depend on
the location of this vector. For the propagation of light in vacuum, this would imply in
a variation of the frequency (c = vi = constant}. This in turn would imply that atoms
radiate different spectral lines at different locatioms, and this is not observable.

In order to avoid these negative results one has to consider only the light-cone at each
event in spacetime, since these regions are not influenced by conformal changeé. However, a
formulation involving tensor fields is, in principle, a theory which may be described in any
region, and so it is not adequate for such restrictions. In principle, it may be possible to
reformulate Weyl's theory in terms of two-component spinor fields. Since such fields are
associated to null-vectors, the above mentioned problems may be avoided. Due to these proliems,
Weyl's theory, as originally formulated, is not considered as a correct possible formulation
of an unitary field theory.

4 - gINSTEIN'S THEORY WITH ABSOLUTE PARALLELISH
The second unitary field theory proposed by Einstein in 1928 (5) is characterized by the two

conditions: nﬂ =0, 2@ =0 . The only quantity which distinguishes this manifold from an Eu-
clidean spacetime is the torsion. In this situation it is possible to determine a field of
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parallel vectors over the manifold. In principle, one of the properties of this theory is
the substitution of the description of gravitational phenomena from the language of the
curvature to the language of the torsion. Accordingly, a correspondence principle with ge-
neral relativity is lest, and this fact is also present in almost all the unitary  theories
proposed by this time. These thecries proposed to formulate a new theory of gravitation and
electromagnetism completely dissociated from general relativity, This later theory: was
interpreted as provisional formulation of the gravitational phenomena.

Due to the possibility of the existence of a tele-parallelism, the natural basie geometric

quantities are the vierbeins h%g).

« hlad
gy = h* B, (a)

The h%a} are subjected to the conditions

X )
h%a):v " h%a} ¥ FKU Wigy = 9 (4.1)

Accordingly, the curvature associated to the connection I vanishes, We have,

By -y 8, @
As in general relativity, we also have that ivia = 0. Since the general solution of these
equations has the form given by (l.c.1), it follows that R:PS({ D is in general different
from zero. Thus,i isstill possible to define the objects {BY} and the "Riemann-Christoffel"
tensor. However, such quantities are directly written in function of the h%a]' which are
different from the vierbeins of a Riemannian spacetime (these vierbeins do nat satysfy(4.1)).

From the metricity condition £via " 0 we also have that the full covariant derivatives of
the vierbeins vanish:

n - hE Y] VO
Blayiv ™ Broysv 7 & () Py = ©
Therefore
(A) _ e () _
bu(u) h{a);v hu 0

Thus, the internal connection associated to T vanishes over all spacetime, Consequently the
internal space of this theory is an Euclidian four-space,

The general expression for the commutator of covariant derivatives in a space with curvature
and torsion has the form (2}

|Dp‘Dc AY +re = _pY {F}Aru... +RT  (DJAY_*** + 21T DAY e

M +HpO RTRT+ «Tera [+1+ S TR
v

Presently it assumes the form

k\) .-.’ZI.T DA\}--.

|Pp‘Dq_ TR PO T e
v

here Dp indicates covariant derivative with respect to the connection T,

4.1 - IHE TENSOR OF TORSION

The torsion r?-v has 24 independent components. Among such components there will be a
certain number of identities. The differential Bianchi identities in a space with curvature
and torsion assume the form (here, covariant derivatives indicated by ; refer to the
connection T)

T T T —2pT A T pA __9pT phA _
Ruov;p ‘Rupo;vﬂ?\wp;a ZRuAprEuv_l-ZRulvrl}ch ZRulurE\.-p_ro
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Thus ,if Rtpov + 0 over al}l space it will be identically satisfied. From the identity

T 4RT +r'"- o #Tfe - arh -4 =
up 1'-J‘cr\)::' oo (I‘| LUD_[;V+ o] e )- !_FW| l'»\c1 FLUF-’I l»\\-’i “'hml |XD|-

in the case of vanishing curvature, one gets

T T T A T A T h T _
- T~ . *T | = 4T = - -4 - - ~Tix - =0 1.
20 v io* T o) v T vdl s o) " T v  Bel M T B e Tl (4.1.1)

Presently, the covariant derivative with respect to [ has to be defined in a proper way sice
this connection is asymmetric. We shall use the following definition of this derivative:

T-][:vo];pﬂpr-]r:vc:l )Lprh.-cl vp L,\cr_i r‘;pFT:\JJ\]
Contracting the indices (1,0}, one finds

P =3 T -Qpr (4.1.2)
where T is the vector of torsiomn:

" " Mg
Contracting the indices (t,9) in (4.1.1) and using (4.1.2} one obtains

d s}
Tpv] 10*2plv 00T o2 T Tl TR T T Tlea 20 = 0

In the parenthesis the first term cancels with the fourth one, the same happening with  the
second and third terms, giving

0 - - -

F[:pv];c (ap Ty -3, Fp) (4.1.3)
Defining

- % _

Fov 7 Tl o
we have

va =3, Fp - Bp T, (4.1.4)
Similarly,

pv . polpvl
F r o

It may be shown that

wo . amo . apelbdl 5 .
G - 2F - 4T va 0 (4.1.5)
where
1 o o h 1 B r"rl“’] rt - (4.1.6)
F v lvel

4.2 - THE FJELD EQUATIONS

The field variables are the sixteen components of the vierbeins, The tersion is given in
terms of the first derivatives of these quantities
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Thus, in order to generate second order differential equations one must consider as field
equations, expressions which contain the first derivatives of the torsion. It is natural to
select the objects G"Y and F'Y which contain respectively 16 and 6 components, since  they
have the correct differential order. Having this in mind, we postulate the field equations
as:
"V =0 (4.2.1)
tav o g (4.2.2)

However, in this form they represent 22 equations for the sixteen unknowns h%a]' From(4.1.4)
and (4.2.2) it follows that

r, =3, log¥ (4.2.3)
¥(x) is an arbitrary scalar field. Accordingly, one may use instead of the (4.2.1)and(4.2.2)
the set of equations

¢Y =0 r, =2, log ¥
which are 20 differential equations for the determination of 17 quantities: h"'a and ¥ These
equations are highly non-linear in the h( ) The tensor 'V given by (4.1.6) has terms up
to the order h® in the vierbeins., Due to this mathematical complexity it is not hoped  that
exact solutions can be found for such equations. Thus, one proceeds to find out particular
solutions, and from such solutions one locks for a physical interpretation of the theory.

4.3 - WEAK FIELD APPROXIMATION FOR THE FIELD EQUATIONS
Consider the linear  approximation

IR Tt
h(a) du * Te

N

where T, are first order infinitesimals. The symmetry transformations of the theory are:

a - arbitrary coordinate transformations;
b - global Lorentz transformaticns.

The transformations (a) appear due to the fact that the manifold has a connection.The global
Lorentz rotations are associated to the property that the internal space is globally flat.
In the linear approximation both transformations coincide up to gauge transformations, thus,
presently we will have no distinction between these two types cof transformations,
The Vector of torsion takes the form

T, = 8 r-

X ]

Accordingly, the equations (4.2.3) assume the form

a@r'ﬁ =2, log ¥ (4.3.1)
We have (here nuv indicates the Minkowski tensor)
ol_pv],mul va, ’Z[%rx )nuk va_ %—[3arwnvu-n"}‘3}\rm]

Therefore, the expression FD|EYJP%§51 is of the second order and may be neglected. Then,

- - - - - - - - = 2_ov
alpvl _colpvl,po pelpd,w polov] v polua], pofpv)_ 1 op_ uAd’r
r g ST SeT T AR *T T A= s (1 " -n 5 )

Hax®
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From (4.1.6) the field equations (4.2.1) are written as

a av

™ -a¥ e, % =0 (4.3.2)
Presently, the field equations ar: the (4.35.1) and (4.3.2). The symmetry transformations are
the Lorentz rotations and the gauge transformations which act on the vierbeins. Under these
later transformations we have for the variation of the MVx):

r"Vix) = ruv(x) +Euu v +EUB rUB - @ ryz
Thus,

'R - LMY yo o u o W iy W BE PRV | uv
NI COIEIL RS CS IR M A S P e i LA

’ v N ., B . Bv Vo a
Imposing the gauge condition ° .
TR
¥ =0 (4.3.3)

the ga ge function remains conditioned by the equations

u oV v _UB A WB _ o v _

Egu T * Eﬁ v T Eﬁv T Ew Ta 0
Since both ¢% and r*¥ are first order quantities these conditions are trivially satisfied in
the first order approximation. From (4.3.3)} we have:

L) Lo 1.I_l\i}\*_i -0 (4.3.4)
" Al
Note that under the linear approximation for the h?u) written at the beginning of this
section we have

Y - h%u}h¥e)”“3 noY e Y e Y 2 (V)

W

Then, the symmetric part of the "V is expected to describe gravitation in this approxmatibn.

Since this is a field of spin Z we still need another condition an the r(uu] (from the ten
components of r(HV} we need five elements for the description of spin 2). As it is  usually
done in field theory, for the definition of a "TT" potential, we impose that

rxon, 10 =0 (4.3.5)
From the conditions (4.3.3) and (4.3.5) one has in equation (4.3.1)

log ¥ = constant

Thus, for the gange conditions (4.3.3) and (4.3.5) the scalar ¥ becomes a constant. For the
equation (4.3.2) one has

O™ =0 , (4.3.86)
which means that both r(c“) and rl:m'lz1 satisfy a wave equation. Therefore.thefﬁﬂ equations
for these variables are wave equationssupplemented by the conditions (4.3.4) and {4.3.5).
This set of equations for the r'='- have the form o the free Maxwell's equations. in the
field intensity ¥ = r|f“L . The equations for the r(U“) have the form of the eqhations for
gravitational radiation in empty spaces (a "TT" field). In this approximation both fields
are uncoupled. Indeed, in this formulation the coupling between the fields r{u“)-and rljn"-||
is of the second-order, sihce the Maxwell's stress energy tensor ™V is quadratic in the
rl-}"’--I . By the other hand, in the exact theory the gravitational and electromagnetic fields

are described by the set of equations (4.2.1) and (4.2.3), and in these equations we cannot
separate the components which describe one of these fields from the other components, since
it is not clear how one can impose gange conditions in the exact theory without breaking the
symmetry of the group of general coordinate transformations,



- 157 -
However, the theory presents some problems. As was said its linear approximation describes
free fields, and usually in field theory for a spin 2 field there exist interactions with
¢lectromagnetic fields via the Maxwell's tensor T - For the exact theory exact solutions
are not known. Thus, it is net clear if this formulation can indeed describe gravitational
and electromagnetic phenomena at a classical level,

It should be mentioned that L.Civita (6) has shown that is possitle to obtain all results of
this theory working in a Riemannian space. Thus, it is possible that the change in  language
from the curvature to the torsion is merely a mathematical procedure.

2 = THE ASYMMETRIC UNITARY THEORY OF EINSTEIN-SCHRODINGER

In this section we will briefly review the unitary field theory proposed by Einstein (7) and

by Schr¥dinger (8). In this theory use is made of a non-symmetric metric and of a non-
symmetric connection. Two versions of the theory are known, one which use asymmetric real
metric and connecticn, due both to Einstein and to Schr8dinger, and the other which is basdd
on 4 complex Hermitian Metric tensor. This later version is mainly due to Einstein. The

mathematical results for these two versions are similar. Preseutly we consider only the case
for complex metrics (9).

5.1 - INITIAL CONCEPTS

In general relativity, or in general for the unitary theories we have to determine the ex-
pression of the connection in terms of the metric tensor S through the conditions

Du By Kuv.a

for given K L Thus, in general relativity Kuu . = U, and imposing the conditiens of
Symmetry for the connection, one finds FR ={Jz}. In Weyl's theory I(mj M I and
with the same symmetrry requirement cne determines Weyl's comnection. In arder to complete

the structure of the theory we need the expression for the curvature, Weyl tensors, etc, and
the field equations. These equations are of the second differential order, and will represent
conditions on the curvature tensocr. As example, we may have equations of the fdrm

R =0 or G =0
uy uwv

which hold outside of the matter distributions. The definition of the energy-momentum tensor

is phenomenalogical, and is distinguished from the definition of its action, namely, the
field 8, which is by itself essentially geometric. The introduction of the tensor Tuv on
the rlght -hand-side of the field equations leads to the equations in presence of matte and
energy.

The mathematical structure of these equations is, in general, reguired to be ohtained from

a variational principle. From such principle one constructs a Lagrangian density which is
the sum of a free term L, associated to the field, and of an interacting term L; which  des-
cribes the coupling of the field with the external sources. This coupling is usually of the

form Ty g"¥ and is called as the "minimal interaction” {as an extension of the concept of
minimal electromagnetic interaction). The field equations follow by variations on the po-
tentials oy (Hilbert's variational principle), or on the :J and the r:D (Palatini's va=-

riational principle)}.

One of the basic properties of the unified theories is that no phenomenologlcal term T wy is
introduced in the Lagrangian density {or in the postulated field equations). The structure
of the interacticns of the field with the sources are expected to be descrlbed by the ge-

neralized field equations.

In these equations the field variables are not only the g, , but alse the variables which
describe the sources (as for instance, the electromagnet1c potentials). Accordingly, we can
only derive field equations with the structure of equations in a region exterior to matter.
Thus, in such theories all factors are reduced to the geometrical properties of the space
under conside
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In 1945 Einstein proposed his last attempt for a consistent unitary theory, and . he has
worked in this theory up to 1855, Schrbdinger has also worked in this theory and has made
substantial mathematical improvements in the foundations of the formalism. The basic prndpes
of the theory may be outlined as follows:

a - The metric gy and the connecuicn FEU are asymmetrical.

b - The skew symmetric part of Eiy is proporticnal to an object which will be interpreted
as the electromagnetic field strength.

Y _ _pnh (D)

- : ; R¥ C
c The curvature has the only symmetry vab vBa

In order to determine the expression for the field equations one has to work out some
mathematical properties of geometries with Hermitian metrics.

Z - E - TQ EINS 'S T

The bilinear form defining the inner product of vectors in spaces with real, symmetric metdcs
is presently replaced by a sesquilinear form which-determines the inner product of two ar-
bitrary complex vectors.

g(A,B) =g A B 2 8 (5.2.1)
with the property

g(a.B) = [g(s.a7]"
Accordingly, the g, is a Hermitian second-rank tensor

gy g;v {(5.2.2)

The coordinates (x¥) are still real quantities. Thus, under ccordinate transformations we
have a formula similar to that used in general relativity.

The affine connection is also asymmetric, and satisfies a condition similar to (5.2.2):
noo_ o'
Ty = Tow (5.2.3)

Objects satisfying (5.2.2) and (5.2.3) are of the form

- . TR SRl
Bov T Bpwy * iR ’ Mo = Twoy * 1 Blag

Due to the asymmetry of the connection one may define two types of variation under parallel
displacement., These expression are denoted by

u
sA+ = - T8 A% axP
op
U
- = - 1H A% axP
SA Fpo AT dx

Accordingly, one has two kinds of covariant derivatives

A+ =3 A¥ 4 ¥ A"
P =] ap

M

A- =3 AY s M AS
0 P po

and for a covariant vector
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The process of raising (lowering) indices is defined as

Ll -
A“-Avg"” A”-g”"Av
_ v . * - *y
A T A gy, Ay tgy A
AV VA A
&, T8 By 6

A curvature of rotation is introduced acceording to the formula derived previously
¢6A-1JR“ A, dsP°
c,m ES W po

v »o_ v voooA v oA _gpv
Roweo =% Tip = % Tuo * Moo Tup = Txp Mo 'Rupc[”

This affine curvature tensor alsc follows from the commutator
o g R0 A o
+ - - _- -
Aype ~ Ay T T 2 TR M
+ +
In general, the curvature is a complex set of quantities with the form

R? (I _1° i vo
upk apr T e

where

T 5% e our% o-re 1% o e2rt 1% -
wer T upe [ el [aedt [pa] T el el

s} F

Vu = 1"+- - - 1"+.. -

UPpA el [Lv]ie
++ +¥

Gﬁpk being the affine curvature tensor constructed with the symmetfic part of the connection

rtv . We mention that here T}uv) is not necessarily equal to the Christoffel symbols.Indeed
up to now we have not derived a metricity condition.

Thus, the complex Ricci tensor is of the form

(ry _p9
Rl-lp R.upc(l")

It may be shown that RMD[F) is Hermitian if the vector of torsion of the Hermitian connecton
vanishes (10):

Py = Thgy = O (5.2.4)

In the definition of the connection we follow the Schridinger's prescription of introducing
another affine connection Wﬁv such that

A 2 :
- w}’:v + 38 W, (5.2.5)

- J
¥ T "Rl

Note that wku is not Hermitian. From (5.2.5) it follows that the vector 1‘p vanishes.
Accowdingly, Ruu(r) is Hermitian.

5,3 - THE FIELD EQUATIONS

Since LA and rﬂa are in principle independent quantities, the field equations have to filow
from Palatini's variational principle. For the Lagrangian density Einstein chooses the same
formal expressiop s for general relativity:
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L=v/g g R, (W)

where ﬁJU(W) is the Ricci tensor for the affine connection W. The field equations have the

form .
8L HY
e = (V- g} =0 : : (5.3.1)
W !
TRV
L
6 = R, (M =0 (5.3.2)
S(/E g,)
where the semi-colon denotes covariant derivative for the connection T. From (5.3.1} it

follows by contraction
2, 75 gl -0 (5.3.%)

Equation (5.3.2) can also be written in terms of T as

Ripy(F) =0 : (5.3.4)
2
Rav () =3 Gy, - %, ) (5.3.5)
- 2
(use that Ru“(r] = Ruv(w) 3 (wv,u - Wu’v]).
From the structure of (5.3.3) we see that it has the form of the Maxwell equations and

(5.3.5) corresponds to the remaining electromagnetic equations. Equation {5.3.4) will des-
cribe the gravitational field. However, we still have the equations (5.3.1). Such equations
in general relativity determine the connection in closed form. Presently, there is no exact
closed solution for these equations, This means that the connection F%p plays the role of a
dynamical function, similarly to the gy and the Wu {the vector Wﬁ is proportional to the
¢lectromagnetic potentials). From the point of view of a comparison with general relativity,
this set of equations are much more complicated than the Einstein-Maxwell equations.

5.4 - INTERPRETATION OF THE FIELD EQUATIONS

Using a comparison with general relativity, the theory has only an'exterior region'since Tuv
is not present in the field equations. The action of Tuv‘ that means the generation of gra-
vitational fields, is therefore included in the geometrical factor R(uu}(F]in eqs. (5.3.4).
However, in order to obtain such result one has to know explicitly the expression for the
Ttp . Accordingly, (5.3.4) and (5.3.1) have te be solved simultaneously. The remaining a-
quations also have to be solved with these later two equations since they involve the metric,
connection and the vector Wu which is part of the connection (see (5.2.5)). As result, the
question of obtaining exact solutions for these equatiens is complicated. In the literature
the exact solution for spherical symmetry is known (11). However, this solution does not
generate a correct motion for charped test particles in the field (12).

Presently, we will consider the more simple situation corresponding to the weak field
approximation {13). We have the two quantities B(uv) and g[iﬁw' In a process of Yinearization
we may expand both objects in power series of some infinitesimal parameters. Here we will
consider a more general situation where only the gﬁnn = ¢uv is subjected to such expansion.
Writing -

2
by E fuv vE guv T
Tyv * Buw)

and using the notation BY¥ = v B,, which holds for arbitrary B,. we can write (5.3.3)in the
first order approximation as
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=7 ¢HBy = Ee -
2,0 v ) o 0 (5.4.1)
o
where vp indicates a covariant derivative with respect to a connection { uv}v constructed
with the metric Yy Equation (%.3.5) takes the form
-1 e =2 -

0 gw TV by 3 B ¥, CILAD I (5.4.2)

for,
= 3 + 3 + = ¥ = =
fave = by 3 v T o T Y tvo * Vo v T Nt Pyup

The equation {5.3.4) for the gravitational field assumes the form

9R(e . vd X 1o A Ay 1 - _ 1 g9.1,9.8.
Ruv v (Tulv ?vp+gulv gup)+ 7V ($u1¢up +Tvl¢up } ZvuvaOgY (vc%uo 7¢upo)cv9$v 7* vE}=0

{5.4.3)
writing
3, W, -3 = -3 xF
B oW v O T uv
We can rewrite (5.4.2) as
= - - gig
O 44y = - X Fy - 650t (5.4.4)
a1 - 0P TR . . _ . - ub
where G v Y Y kauv and Gpnuv is the Riemann-Christoffel tensor, and [J = ¥ ?p .

The theory is complicated in this approximation since we have two second-order antisymmeticd

tensors: Fuv and Tuv for the description of electromagnetism. For the equations

associated to gravitation, one finds after some calculations

1
Ruv - Ty R =X (Tuv + Mpv + Xuv + Yuv] (5.4.5)

where,

- L [(ee A 1 poy. 1 3,09y, 1 2,y |
xuv R’|}V gvxj (v Tup} t T vu vv(ipa T ) ?wuv(kapc)(v T )+ Zwuu?paF 1
- -1 [gee T ,goe 1_2 po A
Yuu 2?'|P vr?paiu *6 qupva v G Argpcg
Thus, several candidates to tensors Tuv‘ of the sources, appear in the right-hand-side of
equations {5.4.5), Of such candidates only Ty has the form of a Maxwell stress temsor if
Tuv=Fu“.However. there is no possibility to get rid of the remaining tensors. Due to such
difficulties, it is not easy to interpret the physical content of such approximation, The

reader should consult the literature for further discussions on this subject.

A weaKer approximation is obtained by taking a series expansion on the gravitaticnal
variables

- + + “he
Yuu nuv [ Iuv € ;uv +
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The equations for the electromagnetic field take the form

po -
n BU iup 0

0 0 "
D‘{’W"XFW : 0=2"3,

with the conditions

pa = -
n 35 ¢uvp XFUU

g F -
n ap wo 0

O ey = 0
For gravitation one has the equations

By * 0

As was to be expected we still have two skew symmetric fields ?uv and Fuv‘ Besides this the

gravitational and electromagnetic equations are not coupled in this approximation. This
result is not consistent since it is known that even gravitational theories in  special
relativity explain the deviation of light vays in the presence of gravitating masses. The
coupling between the two fields will appear in the second-order approximation, with the

presence of three sources factors:

1 1
- R - = +
?uu 7 M , 2 f Iuv x(;uu guv * iuv)

However, explicit calculations apparently, do mot conduct to resuits similar o those obtained
in the Einstein-Maxwell formalism,

FORMULATION

Bonnor (14) and Kursunoglu {15} have considered the possibility of modifying Einstein's non-
symmetric theory. Based on such results Moffat (16) has developed an extension of Einstein's
theory in such way that a correspondence principle with the theory of general relativity may
be obtained. Presently we make a short review of Moffat's theory. The Lagrangian density is
given by

L-v/g rw o+ 8 g g 7l (6.1)
¥°c L\'.u_

k is a constant to be specified later. This Lagrangian has the form of the Einstein Lagran
gian plus a "Maxwell term". Similarly as before one has to use the Palatini's variational
principle, The field equations have the form

-z s‘if);a =0 (6.2)
2,("§ gﬁ"g) =0 (6.3)
Ry (1) = 0 _ 6.4)
*REW:I(T) ) % My, = Wy (6.5)

The only difference with the equations of the Einstein theory comes from the new quantities
"Ry which are given by

*R
H

4n G
WP = R (M)« g 1 (6.6)

c i

el s 1 g

Liv=- (gl}Q] + g Egy Bua B guv) (6.7)
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Since the dimension of R(W) is L"2 (the metric has no dimensions}, it follows that the term
4ﬂG/k2c4 in (6.1) has this same dimension. Thus, the constant k has the dimensions

2
dim k=122 L°
dim |e]

where |e| stands for the electric charge. We take k as a pure imaginary quantity. From this
analysis we can write

gli“’:l =kF'IJ\o' ‘iKFuV
The characteristic lenght which may be constructed with the constants h, G and c is the
Planck lenght (17)

L= AHY2 o162 x 1078
<

Using this value one obtains for the constant K the following value

K= ESE = 5.44 x 10757 3'1/2 cal/? seg

c’e
Another quantity with the dimension of a lenght and defined in function of classicd variaties
e, G and c is

eGllz

L= 2 2138 x 107 em
[

which gives
12

' » L7 23,95 x 10779
-]

g—l/Z cm1/2 seg

The relation between X' and K being given by

K1 _et 2
K LI he 137

Thus, the difference between K and K' is very small. We will use the identification

4
ke
A = W (6.8)
o1z M :

In the limit K » 0, gE“ﬂ + 0 and so Bv ¥ 8wy It may be shown that in this limit

v G 4 > - 87 G Maxw,
k'ca (wv) Ca KV
in G 8r G

_.2._:.:[ -+ —
ke’ . [pv] ke ok

Since in this region Byv * By Rﬁrfl (r) + 0 and R(uv)tr} + Ricci Christoffel tensor.
Then, (6,4) ana (6.5) assume the form =

8n G aXW . -
Rv 77 v 70 (6.9)
8nG = 2
- ;;I Fuv ¥ [Wv’u— Hu.v) {6.10)

From (6.8) we have for (6.10)
Fuv = Au,v_ Avuu (6.11)
The remaining field equations, namelly equations (6.2) and (6.3) take the form,

Ziv:ia " 0 (6.12)
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3, V=g % =0 (6.13)
Thus, froem {6.9), (6.11), (6.12) and (6.13) we see that the field equations in this limit
describe the Finstein-Maxwell thecory. The effect of introducing a term quadratic in the
quantities g T in the Lagrangian density is to achieve a correspondence with the known
results of ~ general relativity,

The equations of Moffat's theory can be solved for the case of spherical symmetry and a-

symmetric static pointlike fields (exact solution corresponding to Schwarzschild's seclution
in general relativity). In the limit K » 0 the Reissner-Nosdstrom sclution of the Einstein-
Maxwell equations is obtained. This solution has the following properties:

{1} It has a singularity associated to the system of coordinates at r = m + (m2 + q2/2)1/2
similar to that presented by the Reissner-Nosdstrom solution. Such singularity may be
removed by a Kruskal transformation.

(2) The geometry associated to this solution has a sphere of radius ro = YEkqg , K = szqwhich
acts as a surface of barrier for the singularity at r = 0. This surface is non-singular
and analytic for the 2,y solution of the field equations. The curvature tensors Riu
and Ruv are regular at r_ v L.

vy

(3) The component goohas the form

2 2.2
26m 4Ge ke
g = (1 =« 4-—-4——2-)(1-—4—-)
o9 c“r c'r r
Taking
2
K:.i.... > 0
lel
we have

a) if r> v¥e =L, then Kzez/r4 <1, This means that the above value for follows the
Eoo

usual sign for the g  of the Reissner-Nordstrom's solution. In this region, for r -+ one
gets g~ 1. Thus, the signature for the region r > r  is (---+),

(b} If r< ¥Ke = L, we get ke?/r* > 1 and g, changes sign. This happens inside of the
sphere. Thus, the signature becomes elliptical: (----}. In this region the spacetime has
the structure of an Euclidean fourdimensional space. Since there we cannot define a
light cone, it follows that light rays cannot enter inte this region.

(c} It follows that physical trajectories (represented by time-like, or by null lines) tend
to be deflected from the surface of the sphere (time-like paths require indefinite
metrics, and they do not exist inside of the sphere). In this way the singularity at
r = 0 is not crossed by physical test particles.

{d) The motion of test-particles in this field may be treated and it generates trajectories

which do not cross the sphere of radius r = r_,
Several other problems related to practical applications of this theory have been published
(18), and we refer the reader to the recent literature.

Finally, it is interesting to observe that the asymmetric theory proposed by Moffat can be
generalized in order to include internal symmetties (SU(n}). In particular, for n = 2 we can
include the standard Yang-Mills field in this theory (19). The new theory which is obtained
tends to the Einstein-Maxwell-Yang Mills formalism in the limit where K + 0. Mathematically,
this generalization of Moffat's theory is obtained by the transition: gu“(x)(sixteen complex
functions) - Guu {x) (sixteen 2 x 2 complex matrices, given by Guv(x) = quvi(x)ci . Here

oy = (oo,ﬁ)are the Pauli matrices plus the 2 x 2 identity matrix)}.
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The structure of the vierbiems associated to this extended version of the theory may be
determined (20), The vierbeins being represented by complex 2 x 2 matrices.

7 - EXAMPLE OF AN UNITARY FIELD THEORY DERIVED FROM THE GAUGE FORMALISM

In this section we consider the gauge formalism, as developed in conventional field theory,
as the basic structure, Feollowing with the results of such formalism we will show how one
can obtain an unitary theory based on a background space with a Hermitian metric,Since such
method is an extension of the gauge theory of the group SLZ(C). we first give a short review
of this theory, presently written in terms of the vierbeins.

7.1 ~ INTERNAL STRUCTURE CORRESPONDING TO THE LoCAL grouP SO (3,1)

Presently we consider the field of vierbeins as the basic quantities of the theory.kcordgly,
the gauge theory which is obtained corresponds to the local group S50(3,1) which is iso-
morphical to the group of linear unimodular transformations acting in the two-dimensional
complex spinor space. The vierbein associated to the Riemannian metric may be indicated Dby
e, = (ez). In this notation the world index p denotes the four local vectors. These vectors
form a column matrix e,. In what follows we shall use matrix notation. The vierbeins may be
looked as the set of four local vectors e;, . eg which transform the Riemannian metric v

intoc the Lorentzian metric Npt

Ngp < €5 c 8 - &y (7.1.1)
T

g~ (g, =8

>

ea-ea

The gauge transformations are given by the local rotations of the vierbeins. It will be of
more interest to consider the vierbeins as the column matrix
a e’
e = (e") = [..
u (11) -3
e
1]

and use the notation

= T, = = 7t
e, " e, . n = (n,) =
Then, -
Byw = % * % (7.1.2)

are the inverse relations corresponding to (7.1.1). Thus, the local Lorertz transformations
are written as

T
1 = - . =
e (x) = L(x]) e (x) + L sn+L=m
which imply that
8 (x) = & (x) L7Hx)
U ']

under such transformations one has g;v(x) - gu“(x]. From the metricity conditions Byv a” 0
one gets from (7.1.2)

These two equations are algebraically dependent if
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T -1
Qu = « 1 ’QU N . (?.1.3)

and this implies that Tr ﬂu vanishes., Equivalently, from {7.1.3) one has that Wy o= n.gu is
antisymmetric. In order to interpret this formalism as a gauge theory we introduce a vector
¥ = (¥?) in a internal space by

LN (7.1.4)
Then,

¥t{x) = L(x) ¥(x) (7.1.5}
Since Wta does not transform as ¥ under local 50(3,1) transformations one introduces Y

covariant derivative

wla=aaw+naw
such that
¥, =LY,

(7.1.6)

In the gauge theory @ is called as the gauge field. In the usual gauge theory of internal

groups SU(n), the matrix L of (7.1.5) is a (n X n) unitary matrix in internal space. The
simplest example is for n = 1, where we have the gauge group U(1) of phase transformations
of some complex scalar field $({x}. In this case L = eth and (7.1,6) gives the well known

gauge transformaticn for the electromagnetic potentials: 2, + AG.

For Riemannian spacetimes one can derive the explicit expression for the connection it from
the conditions e = 0.
yle

0 =-e . s+ =g, . (7.1.7)

By this formula we again see that I for each fixed value for a, is a matrix in internal
space, The equations (7.1,7) are called as the Fock-Ivanenko connection.

The internal curvature, or field intensity associated to this gauge theory, is given by the

commutator
Gy = )y = Py Y (7.1.8)
Pyy = 3, 8y, - 3, 8, e, 2] (7.1.9)

From (7.1,3) and (7.1.9) we have

T
HV

. »7L
P -n Puv n (7.1.10)
Thus, the trace of Puv vanishes: Tr Puv = 0. By {7.1.9) we see that Tr Pml is an Abelian
field intensity, but for S0(3.,1) we will not have such field. The integrability conditions
for the equations euia = 0 give:

A a -
Pov = Ry % v 8y (7.1.11)

where Rlauu is the Riemann-Christoffel tensor. Under the transformations of the SC(3,1)

group one has

Piy = L= Py L7 (7.1.12)
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7,2 - EXTENSION FOR A HERMITIAN METRIC

The complex metric By satisfies the symmetry conditions By ~ givu‘ These conditions
generalize the Riemannian conditions Buy = Byy - The vierbein formalism for Hermitian
metrics is known in the literature (21). Presently we use this formalism as a natural compex
generalization of the resuits of the section (7.1). Instead of the equation (7.1.2), hers
we have

guv = eu e, (7.2.1)

- +

e =g s

" gt (7.2.2)

where e; = ez is the Hermitian conjugate of the column matrix €.

A natural extension of the equations Shvia ~ 0 of the section {7.2) are given by the
relations ’

(ry = ¢ (7.2.3)

Euvia

o
We recall that such relations are part of the field equations for the Einstein and for the
Moffat theory. The spacetime connection which appear in these equations satisfy the symmetry
properties:

[ 1
Fu\.' 1-‘\-'l-t

However, presently we will see that equations of the form (7.2.3) have to be postulated.
Assuming that (7.2.3)} holds we have from (7.2.1)

= + . =0 7. .4
eu|v € 2, e, (7.2.4)
* +
eul“ = €a eu.ﬂv =0 (7.2.5)
* +

As before, these two equations are algebraically dependent if
R = -+ @ +on {7.2.8)

Thus, here Tr q, does not vanish and is a pure imaginary quantity. From (7.2.4), or equi-
valently from (7.2.5) one derives the explicity expression for the internal connection

= el . B = gH s - r* &
2, e ®su e iav e ruv ek] (7.2.7)
t
The extension for complex vierbeins of the local Lorentz rotations is given by the
transformations
| = .
e (x) = L(x) - e (x)
Eﬁ(x) = 'eu(x) IERRICY L LY enL=n (7.2.8)

These transformations define the local group U{3,1). The <connection Q, is the compensating
field associated to such transformations. The variation Gﬂu = n&(x} - né(x) has a form smilar
to that obtained in the S0({3,1) gauge theory (see equations (7.1.6}).

A field intensity is here defined similarly to the definition previously made in the section
(7.1).

PN'QYJ (7.2.9)

Here we have
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-1
Pro= = P (7.2.10)

As consequence Tr Puu is a pure imaginary antisymmetric second rank tensor. Note that instead
of (7.2.10) one can use the equivalent conditions:

+

W = o Ple =W

Y
Under the transformations (7.2.8) one gets

-1
t = L] .
PUU L P " L

Accordingly, Tr Puu is gauge invariant. From (7.2.9) we see that this quantity has the form

of an Abelian field intensity

Tr Py, = 8, Tr 2, - 3, Tr @, (7.2.11)

for the gauge field R, one obtains
Tr &' = Tr @, + Tr (LL75)
W H Ty

Thus, by taking trace on the objects associated te the gauge group U(3,1) we determine its
Abelian sub-group structure, in the case the group U{1].

An arbitrary element L satisfying (7.2.8) has the following infinitesimal form
L=1+c¢€
. T
g=r1tr+ i8S ,R=n-r=-R , 8§=n+«5=25 .

Such transformations depend on sixteen real parameters. We may decompose the matrix E=n+e as

-
E=R+4iT+ ; n A,
where,

T =5 - } o A

A =Tr &

T is a 4 x 4 symmetric, trace free matrix. The particular element L, given by

R RN LR A
s
satisfies the condition L; L, = L. Thus, it belengs to the sub-group U(1). Under the action
of this element we have

Then,

-1 L ]
i Tr ﬁv iTr Qu + hv

this implies that the quantities Av =i Tr Qq, satisfy the properties

(i) are real quantities
@i they temd to zero if r:a - {JL} (Tr g vanishes in general relativity)
Gii) the field intensity for A has the form of a field tensor of an Abelian gauge theory.

@} the sub-group formed with the set of elements L =1- eiA is mathematically equivalent

to U(1):

¥ial ¥, where ¥ has the properties:
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a - is a set of four world scalars.
b - is an internal vector under the transformations of the group U(3,1).

In order to asscciate these properties to a real charged matter field one has to obtain the
relationship between Ra and a spinor connection Qu, since charged matter is usually descibed
bu spinor fields. In these notes we shall not discuss what are the differences between a
Dirac spinor (associated to S$0(3,1)) and a spinor generated by U(3,1}. The reasoh for
aveiding such discussion is that presently we can determine ﬁa without the explicit wuse of
four-component spinors. We use the definitions

Yix) = ey,

8H (x)

ép (x) ¥°

These formulas generalize the usual results used in the thecry of Dirac spinors in  general
relativity. The.ya indicate the constant Dirac matrices, and presently we have

By Yo v Y, B T2 g 8 (7.2.12)

(we use the symbol ¢ for indicating the 4 x 4 identity matrix with spinor indices).

It will be of interest to determine the relation between 2, and {4, without using the me-
tricity conditions" {7.2.3). This can be done, since we use the weaker conditions

i .
e * 0 (7.2.13)

These conditions represent metricity conditions on the local pseudo-Fuclidian space with
metric L The notation of a double stroke indicates the full covariant derivative,given by
- - -
B -3 8 -T* g + |8 .
vl e o n ro A Suttn
-

From (7.2.13) one gets

a a c o_
By ] Yy =0

Solving for nu one finds

_ . i .a b "
ﬂa = <4 1-7 Qu-b Ty {(7.2.14)
The arbitrary field <, is chosen by imposing that
Tr ﬁa = 4ca = -1k Au (7.2.15)

k is a constant with the dimension of the inverse of the electric charge{22)(er equivalently
with the dimension o ehc).Given ﬂu we determine Qu through the relations (7.2.14)and(7.2.15),
and use this connection for the introduction of the minimal interaction of a spinor field V¥
and the two parts of our present gange field:

'{f’,“-' \Fla = ‘i’,u‘* ﬂa ¥

In this derivative we have a term -ik s ALY which has the structure of an electromagnetic
» 4
interaction, besides this we alsc have another interaction given by - % n:lbua ¥which will

represent a ''gravitational interaction".

7.3 - ST ¥

The integrability conditions associated to the equations (7.2.4) imply that the internal
curvature Pua is given in terms of the spacetime curvature by

- b -8
Poa = Rguua(r) e @ e (7.3.1)
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where Reuua is the curvature R?uva with the index B lowered with the use of the Hermitian
metric. The notation @ denotes a direct product in internal space.

Pue to the condition (7.2.10)} the curvature has to satisfy the conditions

Rauvu(r) = - Rquu(r) . (7.3.2)
We have from (7.3.1)

Tr . = RP

Ve .Bva(P] {7.3.3)

Using (7.3.2) one can show that

B - B . . B _ - -
R ua (1) = 35 Tag) = 2y Tlag] =% Ty = % Ta
Thus {7.3.3) takes the form

Tr P, =08, T, -8, T, _ (7.3.4)
If we work with Einstein's asymmetric theory, or with Moffat's theory, the vector of torsion
of the Hermitian connection vanishes. Therefore, for the theories treated at the sections
(%) and (6) there will be no Abelian field intensity coming from the local structure of the
tangent space {i.e. the structure associated to the group U(3,1)). In these thecries the
electromagnetic potentials are given by the vector W, by means of the definition (5.2. 5}
which represents a projective transformation in spacetime.

Therefore, if we want to exploit the possibility of existence of an Yang-Mills gauge
theory for the group U(3,1) which will represent another approach for an unitary Sdd theory
(23), we have to follow a different method. In what follows we shall consider this possbility.
The assumption which will be made is as follows: we take the fields Qu and By as mdependent
quantities, this will mean that we will have an unitary field theory involving o as
dynamical quantities in a background with metric Euy" The interpretation of this theory will
be made at the end of this section. As consequence of our initial assumption the two cur-

vatures P, and rR? become independent. We identify

Buv

Tr P].N - 2 BD Tr ﬂ\a =21k a[\’Al-l:l =ik Fuv (7.3.5)

The c¢onditions YTIu = § are still valid. Besides this we have

{i)} The curvature R still satisfies the basic symmetry property R = - g®
- Bu + BH

v v Beu’

(if) The connection r¥ = (TEB) satisfies the same symmetry condition as l:w.-fc:n'e:l"""l « TH,

@if) The variational principle which leads to the field equations will involve a  Lagrangian
density quadratic in the curvature Puv and is of the Palatini form.

We take as Lagrangian density the expression
L=/ Tr (B, PV) = /g g° ¢ Tr (7, By - L7
The standard Yang-Mills Lagrangian has the following invariance properties:
{a} is invariant under arbitrary coordinate transformations.
{b}) is invariant under transformations of the group U(3,1].

{c) is invariant for the Weyl scale transformations of the vierbeins: e;(x)-k(x)eu(x). with
A real.
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linder the transformations (c) we have gﬂu = Az guu but the Puv remain unchanged due to our

basic initial assumption (24).

Using the Palatini variational principle, with nu and gy as independent quantities, we get
the equations

L Bp guo, o PBoOH - Bo o, 0B Ou ’ ' :
oW (3 +g g "IV P gt (8 + )ln P ] =0 7.3.6
"] J-g : pal. gk " B* po { )

8L r 1 _
L. = Zg"i-"rrtppup"] My o« z g! Tr (ppcp"“) =0 (7.3.7

If there exist external interactions one has to add at the right hand side of these equatbns
the source factors

" = (1I"®,)- the complex hypermomentum tensor.

™Y - the Hermitian energy - momentum tensor.

Both terms appear in the minimal coupling scheme as Tr(Ql_I ") and £y "V

{7.3.6) we obtain

. Taking trace in

ik /rn Bpguo | oPBOUy -

= - (g 878 g ol o= 0 (7.3.8)
These equations are assumed to describe the electromagnetic field in a space with Hermitian
metric. Thus, the (7.3.6) describe gravitation and electromagnetism in this theery. However,
the equations describing gravitation are associated to the potentials Au. where

s
_ _ ik .
WA TTA L

o
1

AU-LII+1DU

«1 T -1 _
L n LIJ n ,Du n Du n ,TrDu—Q

Calling by qu the curvature associated to the Au we can write the equations for the Au as

Bp guo g "‘ Bo o pB_ou l' :I -
.’q (s + gPBg¥y g g Q| gt (878 *+g'g )_AB.QM 0 (7.3.9)
The two dynamical equations are (7.3.8) and (7.3.9). The equations (7.3.7) are algebraic
equations for the G Thus, the g,y ate taken as a background metric., However, the back-

ground is acted on by the dynamical quantities since (7.3.7) involves the curvature puv
s u u
In the limit Sy > E(uv)® T (v ) along with the metrical conditions r(vu) {va} we have

Tr Qv -0 Tr Puu + 0.
This means that the electromagnetic field becomes an external field. In this region
Q, » A, = Ay and the equations (7.3.9) assume the form of the equations proposed by
Ponomariev (27) for the description of the gravitational field at microscopic level.
Accordingly, our present equations generalize this Yang-Mills formulation for gravitation,
and propose to describe an unitary Yang-Mills formalism for gravitation and electromagnetism
at microscopical level.

Some general properties may be obtained. From the expression of the Lagrangian density we
have that 6L is real. This implies that the matrix

6L . (6L
¥} T,

is Hermitian (28): (%k)H - %% . As consequence the complex tensor TV has the same symmetry

TUV = T+VH
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For the variational derivative with respect to nu we get

U H

which implies that the complex hy ermomentum tensor has the same symmetry

Iu+--nolu.n-1
Accordingly, Tr(gn—) and Tr I" are pure imaginary quantities. The current four-vector is
glven by

S eI L
From {7.3.7)} one obtains

uTu\"g =TU=0
Hv v

§L g
Eguv By
and T: is a real quantity. Thus. the source term associated to the equations for gu“ has to
be traceless.

Using the previous decomposition of the curvature Puv (see reference (26)) we may re-write
the equations (7.3.7) as

28%° Tr(Qu Q™) + 7 8™ Tr (Q,,¢°%) = ~ 2r kz Tiay* Tuv(ext.)

ﬂnr&T(m) has the formal expression of a Maxwell tensor but is constructed with the use of

the Hermitian "metric" guv

1

o vp wa 1 vu po
IR L I TUY . TVH
T T Ty © Ty T T
Note that presently we do not consider a decomposition of the form g4 " g(uu] . With

the intention of associating gy ~ to the electromagnetic field strength. Indeed ere
and Qu are independent objects, and all dynamical effects are taken over by the potentials
nu in the Yang-Mills approach.

It was shown in the literature {29) that exists a macroscopic region x »>> L, here L is =&
fundamental length propertional to the Planck's length, where the present Yang-Mills theory
for gravitation degenerates in the theory of general relativity. Some details are:

(i) Introduce massive terms in the Lagrangian., The Weyl invariance principle is lost.

(ii) For re-obtaining this invariance introduce a scalar field ¢(x), the analogue  of &
Goldstone boson, with

2 2 _1 , gk 4 -
L¢ iz R{g) ¢ T au¢ abe + A R A constant,
@i} The transformation in - due te scale variation is now equivalent to a Higgs-Kibble
transformation, and may be written as gﬁv = iéil * By o where o = constant.
Then,
- Z My | 7
Ltot- LP + Z {L0 +m Tr(BuB } m, ¥y}

Ly = - 3 Tt {BWB“"} N % LR A S

The Bu field and the spinor field ¥ are the massive fields. Let
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which imply in

L + L + nlL

tot tot ¢ , n = constant

The Weyl gange transformation is then fixed by a choice of measuring the interval., It may be
shown that

= . 2 2 [ -
Liot B R(E) * A+ Lp+ Z{L  +a mig Tr(BB") -~ a m,, ¥v}
with
az 4 -1
B = 'rf- A =dnae . dima = L
dim g = L7° » L propertional te Planck’'s length

Then, for x >> L we have B R(g) >> L. and in this region Einstein's equations for general
relativity are recovered:

12 L2
n

B R(g) + L, = —— (R(g} + L)
' 121 T
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