Equivalence principle, fundamental constants, spatial isotropy

Jean-Philippe UZAN

Rio/2013

Equivalence principle and the fundamental constants

- <u>lecture 1</u>: equivalence principle constants and gravity

<u>- lecture 2</u>: Observational constraints on the variation of constants

Test of local isotropy

- <u>lecture 3</u>: Weak lensing as a test of local spatial isotropy

complementary to Chris' lectures on Copernican principle

Observational constraints on the variation of fundamental constants

Jean-Philippe UZAN

Physical systems

Observables and primary constraints

A given physical system gives us an observable quantity

From a physical model of our system we can deduce the sensitivities to the primary physical parameters

$$\kappa_{G_k} = rac{\partial \ln O}{\partial \ln G_k}$$

The primary physical parameters are usually not fundamental constants.

$$\Delta \ln G_k = \sum_i d_{ki} \Delta \ln c_i$$

System	Observable	Primary constraint	Other hypothesis
Atomic clocks	Clock rates	α, μ, g _i	-
Quasar spectra	Atomic spectra	α, μ, g _p	Cloud physical properties
Oklo	Isotopic ratio	E _r	Geophysical model
Meteorite dating	Isotopic ratio	λ	Solar system formation
СМВ	Temperature anisotropies	α, μ	Cosmological model
BBN	Light element abundances	Q, $\tau_{\rm n}$, ${\rm m_e}$, ${\rm m_N}$, $lpha$, ${\rm B_d}$	Cosmological model

Based the comparison of atomic clocks using different transitions and atoms *e.g.* hfs Cs vs fs Mg : $\mathbf{g}_{\mathbf{p}}\mu$; $(g_p/g_I)\alpha$ hfs Cs vs hfs H:

$$rac{
u_{Cs}}{
u_{H}} \propto g_{Cs} \mu lpha^{2.83}$$

High precision / redshift o (local)

Clock 1	Clock 2	Constraint (yr^{-1})	Constants dependence	Reference
	$rac{\mathrm{d}}{\mathrm{d}t}\ln\left(rac{ u_{\mathrm{clock}_1}}{ u_{\mathrm{clock}_2}} ight)$			
⁸⁷ Rb	^{133}Cs	$(0.2 \pm 7.0) \times 10^{-16}$	$\frac{g_{Cs}}{q_{Rb}}\alpha_{EM}^{0.49}$	
87 Rb	^{133}Cs	$(-0.5 \pm 5.3) \times 10^{-16}$		Bize (2003)
$^{1}\mathrm{H}$	^{133}Cs	$(-32\pm 63) \times 10^{-16}$	$g_{C_s}\mu \alpha_{E_M}^{2.83}$	Fischer (2004)
$^{199}{ m Hg^{+}}$	^{133}Cs	$(0.2 \pm 7) \times 10^{-15}$	$g_{\rm Cs}\mu\alpha_{\rm EM}^{6.05}$	Bize (2005)
$^{199}Hg^{+}$	^{133}Cs	$(3.7 \pm 3.9) \times 10^{-16}$	EIM	Fortier (2007)
$^{171}Yb^{+}$	^{133}Cs	$(-1.2 \pm 4.4) \times 10^{-15}$	$g_{\rm Cs}\mu\alpha_{\rm TM}^{1.93}$	Peik (2004)
$^{171}\mathrm{Yb^{+}}$	^{133}Cs	$(-0.78 \pm 1.40) \times 10^{-15}$	E M	Peik (2006)
87 Sr	^{133}Cs	$(-1.0 \pm 1.8) \times 10^{-15}$	$q_{\rm Cs}\mu\alpha_{\rm cs}^{2.77}$	Blatt (2008)
87 Dy	87 Dy	· · · · ·	DON' EM	Cingöz (2008)
²⁷ Al ⁺	$^{199}\mathrm{Hg^{+}}$	$(-5.3\pm7.9)\times10^{-17}$	$\alpha_{\rm EM}^{-3.208}$	Blatt (2008)

The gyromagnetic factors can be expressed in terms of g_p and g_n (shell model).

 $\frac{\delta g_{\rm Cs}}{g_{\rm Cs}} \sim -1.266 \frac{\delta g_p}{g_p} \qquad \frac{\delta g_{\rm Rb}}{g_{\rm Rb}} \sim 0.736 \frac{\delta g_p}{g_p}$

All atomic clock constraints take the form

$$\frac{\dot{\nu}_{AB}}{\nu_{AB}} = \lambda_{g_{\rm p}} \frac{\dot{g}_{\rm p}}{g_{\rm p}} + \lambda_{\mu} \frac{\dot{\mu}}{\mu} + \lambda_{\alpha} \frac{\dot{\alpha}}{\alpha}$$

Using Al-Hg to constrain α , the combination of other clocks allows to constraint $\{\mu, g_p\}$.

Note: one actually needs to include the effects of the polarization of the non-valence nucleons and spin-spin interaction.

[Flambaum, 0302015,...

Importance of unification

Unification
$$lpha_i^{-1}(E) = lpha_{GUT}^{-1} + rac{b_i}{2\pi} \ln rac{M_{GUT}}{E}$$

Variation of α is accompanied by variation of other coupling constants

QCD scale
$$\Lambda_{\text{QCD}} = E \left(\frac{m_c m_b m_t}{E^3}\right)^{2/27} \exp\left[-\frac{2\pi}{9\alpha_s(E)}\right]$$

Variation of $\Lambda_{\rm QCD}~$ from $\alpha_{\rm S}$ and from Yukawa coupling and Higgs VEV

Theories in which EW scale is derived $v \sim \exp \left[-\frac{8\pi^2}{h_t^2}\right]$

Variation of Yukawa and Higgs VEV are coupled

String theory All dimensionless constants are dynamical – their variations are all correlated.

These effects cannot be ignored in realistic models.

One then needs to express m_p and g_p in terms of the quark masses and Λ_{QCD} as

$$\begin{split} \frac{\delta g_{\rm p}}{g_{\rm p}} &= \kappa_{\rm u} \frac{\delta m_{\rm u}}{m_{\rm u}} + \kappa_{\rm d} \frac{\delta m_{\rm d}}{m_{\rm d}} + \kappa_{\rm s} \frac{\delta m_{\rm s}}{m_{\rm s}} + \kappa_{\rm QCD} \frac{\delta \Lambda_{\rm QCD}}{\Lambda_{\rm QCD}} \\ \frac{\delta m_{\rm p}}{m_{\rm p}} &= f_{T_{\rm u}} \frac{\delta m_{\rm u}}{m_{\rm u}} + f_{T_{\rm d}} \frac{\delta m_{\rm d}}{m_{\rm d}} + f_{T_{\rm s}} \frac{\delta m_{\rm s}}{m_{\rm s}} + f_{T_{\rm g}} \frac{\delta \Lambda_{\rm QCD}}{\Lambda_{\rm QCD}} \\ m_i &= h_i v \end{split}$$

Assuming unification.

$$\frac{\dot{\nu}_{AB}}{\nu_{AB}} = \lambda_{g_{\rm p}} \frac{\dot{g}_{\rm p}}{g_{\rm p}} + \lambda_{\mu} \frac{\dot{\mu}}{\mu} + \lambda_{\alpha} \frac{\dot{\alpha}}{\alpha} \qquad \longrightarrow \qquad \frac{\dot{\nu}_{AB}}{\nu_{AB}} = C_{AB} \frac{\dot{\alpha}}{\alpha}$$

 C_{AB} coefficients range from 70 to 0.6 typically.

Model-dependence remains quite large.

[Luo, Olive, JPU, 2011]

Nuclear methods (Oklo / meteorite dating)

Oklo- a natural nuclear reactor

Oklo: why?

<u> 4 conditions :</u>

1- Naturally high in U²³⁵,

2-moderator : water,

- 3- low abundance of neutron absorber,
- 4- size of the room.

Oklo-constraints

Natural nuclear reactor in Gabon, operating 1.8 Gyr ago (z~0.14)

Abundance of Samarium isotopes

Shlyakhter, Nature **264** (1976) 340 Damour, Dyson, NPB **480** (1996) 37 Fujii et al., NPB **573** (2000) 377 Lamoreaux, torgerson, nucl-th/0309048 Flambaum, shuryak, PRD**67** (2002) 083507

$$^{149}\mathrm{Sm}+n
ightarrow ^{150}\mathrm{Sm}+\gamma \qquad E_r = 0.0973\,\mathrm{eV}$$

From isotopic abundances of Sm, U and Gd, one can measure the cross section averaged on the thermal neutron flux

$$\hat{\sigma}_{149}(T,E_r)=91\pm 6~{
m kb}$$

From a model of Sm nuclei, one can infer

 $s=\Delta E_r/\Delta \ln lpha$

s~1Mev so that

$$\Delta lpha / lpha \sim 1 {
m Mev} / 0.1 {
m eV} \sim 10^{-7}$$

 $\Deltalpha/lpha = (0.5\pm1.05) imes10^{-7}$

Damour, Dyson, NPB **480** (1996) 37

Fujii et al., NPB **573** (2000) 377 **2** branches.

Meteorite dating

Bounds on the variation of couplings can be obtained by constraints on the lifetime of long-lives nuclei (α and β decayers)

For β decayers,

 $\lambda \sim \Lambda(\Delta E)^p \propto G_F^2 lpha^s$

Rhenium:

 ${}^{187}_{75}\text{Re} \longrightarrow {}^{187}_{76}\text{Os} + \bar{\nu}_e + e^- \qquad \text{Peebles, Dicke, PR 128 (1962) 2006}$

 $\Delta E \sim 2.5 \, \mathrm{keV}, \qquad s \sim -18000$

Use of laboratory data +meteorites data

 $-24 imes 10^{-7} < \Delta lpha / lpha < 8 imes 10^{-7}$ Olive et al., PRD 69 (2004) 027701

Caveats: meteorites datation / averaged value

Quasar absorption spectra

Spectres d'absorption de quasars

Absorption spectra

Paleo-spectra

Generalities

The method was introduced by Savedoff in 1956, using Alkali doublet

Most studies are based on <u>optical techniques</u> due to the profusion of strong UV transitions that are redshifted into the optical band *e.g. SiIV* @ *z*>1.3, *FeIII1608* @ *z*>1

<u>Radio observations</u> are also very important

e.g. hyperfine splitting (HI21cm), molecular rotation, lambda doubling, \ldots

- offer high spectral resolution (<1km/s)
- higher sensitivity to variation of constants
- isotopic lines observed separately (while blending in optical observations)

Shift to be detected are small

e.g. a change of a of 10⁻⁵ corresponds to

- a shift of 20 mÅ (i.e. of 0.5 km/s) at $z\sim2$
- % of a pixel at R=40000 (Keck/HIRES, VLT/UVES)

Many sources of uncertainty

- absorption lines have complex profiles (inhomogeneous cloud)
- fitted by Voigt profile (usually not unique: require lines not to be saturated)
- each component depends on z, column density, width

QSO absorption spectra

3 main methods:

<u>Many multiplet (MM)</u> Webb et al. 1999 Compares transitions from multiplet and/or atom

s-p vs d-p transitions in heavy elements Better sensitivity

<u>Single Ion Differential α Measurement (SIDAM)</u> Analog to MM but with a single atom / FeII

Levshakov et al. 1999

Si IV alkali doublet

QSO: many multiplets

The many-multiplet method is based on the corrrelation of the shifts of <u>different lines</u> of <u>different atoms</u>.

Relativistic N-body with varying α :

$$\omega = \omega_0 + 2 \, q \frac{\Delta \alpha}{\alpha}$$

First implemented on 30 systems with MgII and FeII

R=45000,

Webb et al. 1999

S/N per pixels between 4 & 240, with average 30° Wavelength calibrated with Thorium-Argon lamp

HIRES-Keck, 143 systems, *0.2<z<4.2*

$$\frac{\Delta \alpha}{\alpha} = (-0.57 \pm 0.11) \times 10^{-5}$$

Murphy et al. 2004

 5σ detection !

QSO: uncertainties

- Error in the determination of laboratory spectra
- Different atoms may not be located in the same part of the cloud (relative Doppler)
- Lines may be blended by transitions in another system
- Variation of velocity of the Earth during integration can induce a differential Doppler shift
- Atmospheric dispersion
- Magnetic fields in the clouds
- Temperature variation during the integration
- Instrumental effects (e.g. variation of the intrinsic profile of the instrument)

Isotopic abundance of MgII (used as an anchor)

- affects the value of the effective rest-wavelengths
- assumed to be close to terrestrial ${}^{24}Mg:{}^{25}Mg:{}^{26}Mg=79:10:11$
- r=(26+25)/24 cannot be measured directly
- from molecular absorption of MgH: r decreases with metallicity
- But *r* found to be high in giant stars in NGC6752
- A shenfelter et al proposed a enhancement of r from stars in (2-8) $\rm M_{sun}$ in their asymptotic giant branch phase
- If r=0.62 instead of r=0.27, then no variation of α
- But overproduction of P, Si, Al

QSO: VLT/UVES analysis

Selection of the absorption spectra:

- lines with similar ionization potentials most likely to originate from similar regions in the cloud
- avoid lines contaminated by atmospheric lines
- at least one anchor line is not saturated *redshift measurement is robust*
- reject strongly saturated systems

Only 23 systems

lower statistics / better controlled systematics R>44000, S/N per pixel between 50 & 80

VLT/UVES

$$\frac{\Delta \alpha}{\alpha} = (-0.01 \pm 0.15) \times 10^{-5}$$
Srianand et al. 2007

DOES NOT CONFIRM HIRES/Keck DETECTION

Going further

Other transitions:

- <u>- HI21cm vs UV</u> of heavy element transitions: $\alpha^2 g_p/\mu$
- <u>HI vs molecular transitions</u> (CO, HCO+, HCN): $g_p \alpha^2$

- <u>OH18cm</u>: ground state ${}^{2}\Pi_{3/2}$ J=3/2 of OH is split in 2 levels further split in 2 hyperfine states, It constrains $g_{p}(\alpha^{2}\mu)^{1.57}$

- <u>FIR fine-structure lines (CO)</u> $\alpha^2 \mu$
- <u>Conjugate OH lines (emission</u>+absorption lines with same shape): $g_p(\alpha\mu)^{1.85}$
- Molecular lines (H2, NH3, HD): μ

Table 10: Summary of the latest constraints on the variation of fundamental constants obtained from the analysis of quasar absorption spectra. We recall that $y \equiv g_p \alpha_{\rm EM}^2$, $F \equiv g_p (\alpha_{\rm EM}^2 \mu)^{1.57}$, $x \equiv \alpha_{\rm EM}^2 g_p / \mu$, $F' \equiv \alpha_{\rm EM}^2 \mu$ and $\mu \equiv m_p / m_e$, $G = g_p (\alpha \mu)^{1.85}$.

Constant	Method	System	Constraint $(\times 10^{-5})$	Redshift	Ref.
$\alpha_{\rm EM}$	AD	21	(-0.5 ± 1.3)	2.33 - 3.08	[366]
	AD	15	(-0.15 ± 0.43)	1.59 - 2.92	[87]
	AD	9	(-3.09 ± 8.46)	1.19 - 1.84	[339]
	MM	143	(-0.57 ± 0.11)	0.2 - 4.2	[356]
	MM	21	(0.01 ± 0.15)	0.4 - 2.3	[86]
	SIDAM	1	(-0.012 ± 0.179)	1.15	[351]
	SIDAM	1	(0.566 ± 0.267)	1.84	[351]
y	HI - mol	1	(-0.16 ± 0.54)	0.6847	[364]
	HI - mol	1	(-0.2 ± 0.44)	0.247	[364]
	CO, CHO^+		(-4 ± 6)	0.247	[519]
F	OH - HI	1	$(-0.44 \pm 0.36 \pm 1.0_{syst})$	0.765	[266]
	OH - HI	1	(0.51 ± 1.26)	0.2467	[134]
x	HI - UV	9	(-0.63 ± 0.99)	0.23 - 2.35	[479]
	HI - UV	2	$-(0.17 \pm 0.17)$	3.174	[457]
F'	CII - CO	1	(1 ± 10)	4.69	[316]
	CII - CO	1	(14 ± 15)	6.42	[316]
G	OH	1	< 1.1	0.247, 0.765	[91]
	OH	1	< 1.16	0.0018	[91]
	OH	1	(-1.18 ± 0.46)	0.247	[268]
μ	H_2	1	(2.78 ± 0.88)	2.59	[417]
	H_2	1	(2.06 ± 0.79)	3.02	[417]
	H_2	1	(1.01 ± 0.62)	2.59	[281]
	H_2	1	(0.82 ± 0.74)	2.8	[281]
	H_2	1	(0.26 ± 0.30)	3.02	[281]
	H_2	1	(0.7 ± 0.8)	3.02, 2.59	[475]
	NH ₃	1	< 0.18	0.685	[355]
	NH ₃	1	< 0.38	0.685	[343]
	HC_3N	1	< 0.14	0.89	[243]
	HD	1	< 9	2.418	[398]
	HD	1	$(0.56 \pm 0.55_{\text{stat}} \pm 0.27_{\text{syst}})$	2.059	[332]

Cosmic microwave background

CMB

It changes the recombination history

1- modifies the optical depth

2- induces a change in the hydrogen and helium abundances (x_e)

$$\dot{\tau} = x_e n_e c \sigma_T$$

Effect on the position of the Doppler peak on polarization (reionisation)

Degeneracies:

cosmological parameters electron mass origin of primordial fluctuations

$$\sigma_T \propto \alpha^2/m_e$$

Parameters of the fit

 $(\alpha, \Omega_b, \Omega_c, H_0, n_s, A_s, \tau)$

Marginalized distribution on $\boldsymbol{\alpha}$

	Planck+WP	Planck+WP+Lensing	WMAP9
$\Omega_b h^2$	0.02206 ± 0.00028	0.02220 ± 0.00027	0.02309 ± 0.0013
$\Omega_c h^2$	0.1174 ± 0.0030	0.1161 ± 0.0027	0.1148 ± 0.0048
τ	0.0949 ± 0.0143	0.0949 ± 0.0145	0.089 ± 0.014
H_0	65.2 ± 1.8	66.0 ± 1.7	73.9 ± 10.9
n_s	0.9651 ± 0.0128	0.9768 ± 0.0116	0.9732 ± 0.0137
$log(10^{10}A_{s})$	3.106 ± 0.029	3.102 ± 0.028	3.09 ± 0.039
α/α_0	0.9936 ± 0.0043	0.9940 ± 0.0043	1.008 ± 0.020

	Planck+WP+HST	Planck+WP+HighL	Planck+WP+BAO
$\Omega_b h^2$	0.02228 ± 0.00027	0.02210 ± 0.0027	0.02220 ± 0.0025
$\Omega_c h^2$	0.1166 ± 0.0030	0.1185 ± 0.0031	0.1161 ± 0.0028
τ	0.096 ± 0.014	0.094 ± 0.015	0.097 ± 0.014
H_0	68.3 ± 1.5	66.2 ± 1.6	66.7 ± 1.1
n_s	0.9695 ± 0.0115	0.9666 ± 0.0114	0.9748 ± 0.0118
$log(10^{10}A_{s})$	3.097 ± 0.028	3.10 ± 0.029	3.10 ± 0.029
α/α_0	0.9989 ± 0.0037	0.9965 ± 0.037	0.9955 ± 0.038

Big bang nucleosynthesis

BBN: generality

BBN predicts the primordial abundances of D, He-3, He-4, Li-7

Mainly based on the balance between

1- expansion rate of the universe

2- weak interaction rate which controls n/p at the onset of BBN

Example: helium production

$$Y = \frac{2(n/p)_N}{1+(n/p)_N} \qquad (n/p)_f \sim e^{-Q/k_B T_f} \qquad (B_D, \eta)$$

$$(n/p)_N \sim (n/p)_f e^{-t_N/\tau_n}$$
freeze-out temperature is roughly given by
$$G_r^2 (k_B T_f)^5 = \sqrt{GN} (k_B T_f)^2$$

Coulomb barrier: $\sigma = \frac{S(E)}{E} e^{-2\pi \alpha Z_1 Z_2 \sqrt{\mu/2E}}$

Predictions depend on

$$egin{aligned} G_k &= (G, lpha, au_n, m_e, Q, B_D, \sigma_i) \ X &= (\eta, h, N_
u, \ldots) \end{aligned}$$
 for Numer Oliv

Coc,Nunes,Olive,JPU,Vangioni 2006

Scalar-tensor theories

Most general theories of gravity that include a scalar field beside the metric Mathematically **consistent** Motivated by **superstring**

> dilaton in the graviton supermultiplet, modulii after dimensional reduction Consistent field theory to satisfy WEP Useful extension of GR (simple but general enough)

$$S=rac{c^3}{16\pi G}\int\!\sqrt{-g}\{R-2(\partial_\mu\phi)^2-V(\phi)\} \stackrel{ ext{spin 0}}{+}S_m\{ ext{matter}, ilde{g}_{\mu
u}=A^2(\phi)g_{\mu
u}\}$$

$$lpha = \mathrm{d}\ln A/\mathrm{d}\phi \qquad \beta = \mathrm{d}lpha/\mathrm{d}\phi$$

BBN constraints

BBN: effective BBN parameters

Independent variations of the BBN parameters

$$-7.5 \times 10^{-2} < \frac{\Delta B_D}{B_D} < 6.5 \times 10^{-2}$$
$$-8.2 \times 10^{-2} < \frac{\Delta \tau_n}{\tau_n} < 6 \times 10^{-2}$$
$$-4 \times 10^{-2} < \frac{\Delta Q}{Q} < 2.7 \times 10^{-2}$$

Abundances are very sensitive to $B_{D.}$ Equilibrium abundance of D and the reaction rate p(n, γ)D depend exponentially on $B_{D.}$

These parameters are not independent.

Difficulty: QCD and its role in low energy nuclear reactions.

$$-7.5 \times 10^{-2} < \frac{\Delta B_D}{B_D} < -4 \times 10^{-2}$$

Coc, Nunes, Olive, JPU, Vangioni 2006

BBN: fundamental parameters (1)

Neutron-proton mass difference:

$$Q=m_n-m_p=alpha\Lambda+(h_d-h_u)v$$
 ,

$$\frac{\Delta Q}{Q} = -0.6 \left(\frac{\Delta \alpha}{\alpha} + \frac{\Delta \Lambda}{\Lambda} \right) + 1.6 \left(\frac{\Delta (h_d - h_u)}{h_d - h_u} + \frac{\Delta v}{v} \right)$$

Neutron lifetime:

$$au_n^{-1} = G_F^2 m_e^5 f(Q/m_e) \quad m_e = h_e v \ G_F = 1/\sqrt{2} \, v^2$$

$$\frac{\Delta \tau_n}{\tau_n} = -4.8 \frac{\Delta v}{v} + 1.5 \frac{\Delta h_e}{h_e} - 10.4 \frac{\Delta (h_d - h_u)}{h_d - h_u} + 3.8 \left(\frac{\Delta \alpha}{\alpha} + \frac{\Delta \Lambda}{\Lambda}\right)$$

BBN: fundamental parameters (2)

D binding energy:

Use a potential model
$$V_{nuc} = rac{1}{4\pi r} (-g_s^2 e^{-rm_\sigma} + g_v^2 e^{-rm_\omega})$$

$$\frac{\Delta B_D}{B_D} = -48 \frac{\Delta m_\sigma}{m_\sigma} + 50 \frac{\Delta m_\omega}{m_\omega} + 6 \frac{\Delta m_N}{m_N}$$

Flambaum, Shuryak 2003

Most important parameter beside Λ is the strange quark mass. One needs to trace the dependence in m_s.

$$\frac{\Delta m_{\sigma}}{m_{\sigma}} \sim 0.54 \frac{\Delta m_{s}}{m_{s}}$$

$$\frac{\Delta m_{\omega}}{m_{\omega}} \sim 0.15 \frac{\Delta m_{s}}{m_{s}}$$

$$\frac{\Delta B_{D}}{B_{D}} = 18 \frac{\Delta \Lambda}{\Lambda} - 17 \left(\frac{\Delta v}{v} + \frac{\Delta h_{s}}{h_{s}}\right)$$

$$\frac{\Delta m_{N}}{m_{N}} \sim 0.12 \frac{\Delta m_{s}}{m_{s}}$$

This allows to determine all the primary parameters in terms of (h_i , v, Λ , α)

BBN: assuming GUT

GUT:

The low-energy expression for the QCD scale

$$\Lambda = \mu \left(rac{m_c m_b m_t}{\mu^3}
ight)^{2/27} \exp \left(- rac{2\pi}{9 lpha_3(\mu)}
ight)$$

We deduce

$$\frac{\Delta\Lambda}{\Lambda} = R\frac{\Delta\alpha}{\alpha} + \frac{2}{27} \left(3\frac{\Delta v}{v} + \sum_{i=c,b,t} \frac{\Delta h_i}{h_i} \right)$$

The value of *R* depends on the particular GUT theory and particle content Which control the value of M_{GUT} and of $\alpha(M_{GUT})$. Typically <u>R=36</u>.

Assume (for simplicity) h_i=h

$$\begin{split} \frac{\Delta B_D}{B_D} &= -13\left(\frac{\Delta v}{v} + \frac{\Delta h}{h}\right) + 18R\frac{\Delta \alpha}{\alpha}\\ \frac{\Delta Q}{Q} &= 1.5\left(\frac{\Delta v}{v} + \frac{\Delta h}{h}\right) - 0.6\left(1+R\right)\frac{\Delta \alpha}{\alpha}\\ \frac{\Delta \tau_n}{\tau_n} &= -4\frac{\Delta v}{v} - 8\frac{\Delta h}{h} + 3.8(1+R)\frac{\Delta \alpha}{\alpha} \end{split}$$

Stellar physics

Stellar carbon production

Triple α coincidence (Hoyle)

- Equillibrium between ⁴He and the short 1. lived (~10⁻¹⁶ s) ⁸Be : $\alpha \alpha \Leftrightarrow$ ⁸Be
- Resonant capture to the $(l=0, J^{\pi}=0^+)$ 2. Hoyle state: ⁸Be+ $\alpha \rightarrow {}^{12}C^*(\rightarrow {}^{12}C+\gamma)$

Simple formula used in previous studies

- Saha equation (thermal equilibrium) 1.
- Sharp resonance analytic expression: 2.

$$N_A^2 \langle \sigma v \rangle^{\alpha \alpha \alpha} = 3^{3/2} 6 N_A^2 \left(\frac{2\pi}{M_{\alpha} k_{\rm B} T} \right)^3 \hbar^5 \gamma \exp\left(\frac{-Q_{\alpha \alpha \alpha}}{k_{\rm B} T} \right)$$

with
$$Q_{\alpha\alpha\alpha} = E_R(^8\text{Be}) + E_R(^{12}\text{C})$$
 and $\gamma \approx \Gamma_{\gamma}$

Nucleus

 E_{R} (keV)

 Γ_{α} (eV)

 Γ_{v} (meV)

⁸Be

[Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni, 2009]

Modelisation

Ekström, Coc, Descouvemont, Meynet, Olive, JPU, Vangioni, 2009

Microscopic calculation

□ Hamiltonian:

$$H = \sum_{i=1}^{A} T(r_i) + \sum_{i < j=1}^{A} (V_{Coul.}(r_{ij}) + V_{Nucl.}(r_{ij}))$$

Where $V_{Nucl.}(r_{ij})$ is an effective Nucleon-Nucleon interaction

□ Minnesota N-N force [Thompson et al. 1977] optimized to reproduce low energy N-N scattering data.

 \Box α -cluster approximation for ⁸Be^{g.s.} (2α) and the Hoyle state (3α) [Kamimura 1981]

□ Scaling of the N-N interaction

 $V_{Nucl.}(r_{ij}) \rightarrow (1 + \delta_{NN}) \times V_{Nucl.}(r_{ij})$

to obtain B_D , E_R (⁸Be), E_R (¹²C) as a function of δ_{NN} :

-0.08

0.6

-0.06

.0 04

-0.02

0.02

0.04

0.06

 $\Delta B_{\rm D}/B_{\rm D}$

0.08

Composition at the end of core He burning

Stellar evolution of massive Pop. III stars

We choose **typical** masses of 15 and 60 M_{\odot} stars/ $Z=0 \Rightarrow$ Very specific stellar evolution

 $\Delta \mathbf{B}_{\mathbf{D}} / \mathbf{B}_{\mathbf{D}}$

The standard region: Both ¹²C and ¹⁶O are produced.

> **The ¹⁶O region:** The 3α is slower than ¹²C(α,γ)¹⁶O resulting in a higher T_C and a conversion of most ¹²C into ¹⁶O

> **The ²⁴Mg region:** With an even weaker 3α , a higher T_C is achieved and

 ${}^{12}C(\alpha,\gamma){}^{16}O(\alpha,\gamma){}^{20}Ne(\alpha,\gamma){}^{24}Mg \text{ transforms } {}^{12}C \text{ into } {}^{24}Mg$

> The ¹²C region: The 3α is faster than ¹²C(α , γ)¹⁶O and ¹²C is not transformed into ¹⁶O

Constraints

From stellar evolution of zero metallicity 15 and 60 M_{\odot} at redshift z = 10 - 15

• Excluding a core dominated by $^{\rm 24}{\rm Mg}$ \Rightarrow $\delta_{\!N\!N}$ > -0.005

or $\Delta B_D / B_D > -0.029$

• Excluding a core dominated by $^{\rm 12}{\rm C} \Rightarrow \delta_{\!N\!N} < 0.003$

or $\Delta B_D/B_D < 0.017$

• Requiring ¹²C/¹⁶O close to unity \Rightarrow -0.0005 < δ_{NN} < 0.0015

or $-0.003 < \Delta B_D / B_D < 0.009$

$$\Delta B_D/B_D \approx 5.77 \times \delta_{NN}$$

Conservative constraint on Nucleosynthesis ${}^{12}C/{}^{16}O \sim 1 \Rightarrow -0.0005 < \delta_{NN} < 0.0015$ or -0.003 < $\Delta B_D/B_D < 0.009$

Spatial variations

To vary or not to vary

<u>Claim:</u> Dipole in the fine structure constant [« Australian dipole »]

Indeed, this is a logical possibility to reconcile VLT constraints and Keck claims of a variation.

Planck analysis

$$\Theta(n) = \overline{\Theta}[n, c_a(n)] \checkmark$$
$$= \overline{\Theta}\left[n, c_{0a} + \sum_{i=-1}^{1} \delta c_a^{(i)}(z) Y_{1i}(n)\right]$$
$$\simeq \overline{\Theta}[n] + \sum_{a} \sum_{i=-1}^{+1} \frac{\partial \overline{\Theta}[n]}{\partial c_a} \delta c_a^{(i)}(z) Y_{1i}(n)$$

Mode coupling: $D_{\ell m}^{(i)} \equiv \langle a_{\ell m} a_{\ell+1m+i}^* \rangle$

$$D_{\ell m}^{(i)} = f_i(\ell, m) \sum_a \delta c_a^{(i)} \Gamma_\ell^{(a)}$$

$$\Gamma_{\ell}^{(a)} \equiv \frac{1}{2} \left(\frac{\partial \bar{C}_{\ell}}{\partial c_a} + \frac{\partial \bar{C}_{\ell+1}}{\partial c_a} \right)$$

$$c_a(n,z) = c_{0a}(z) + \sum_{i=-1}^{1} \delta c_a^{(i)}(z) Y_{1i}(n)$$

Planck analysis

[Fabre et al (Planck collaboration)]

Wall of fundamental constant

[Olive, Peloso, JPU, 2010]

Idea: Spatial discontinuity in the fundamental constant due to a domain wall crossing our Hubble volume.

Wall of fundamental constants

$$S = \int \left[\frac{1}{2} M_p^2 R - \frac{1}{2} (\partial_\mu \phi)^2 + V(\phi) + \frac{1}{4} B_F(\phi) F_{\mu\nu}^2 \right]$$
$$- \sum_j i \bar{\psi}_j \not{\!\!\!D} \psi_j - B_j(\phi) m_j \bar{\psi}_j \psi_j \Big] \sqrt{-g} d^4 x,$$
$$B_i(\phi) = \exp\left(\xi_i \frac{\phi}{M_*}\right) \simeq 1 + \xi_i \frac{\phi}{M_*}$$
$$V(\phi) = \frac{1}{4} \lambda (\phi^2 - \eta^2)^2$$

-Parameters $(\lambda, M_*, \eta, \xi_F, \xi_i)$

- We assume only ξ_F is non-vanishing BUT the scalar field couples radiatively to nucleons $\xi_N = m_N^{-1} \langle N | (\xi_F/4) F_{\mu\nu}^2 | N \rangle$

$$\xi_p = -0.0007\xi_F \qquad \xi_n = 0.00015\xi_F$$
$$V_{\text{eff}} = V(\phi) + \xi_N \frac{\phi}{M_*} \rho_{\text{baryon}}$$

Constraints

-Constraints from atomic clocks / Oklo / Meteorite dating are trivially satisfied

- To reproduce the «observations»

$$\frac{\Delta \alpha}{\alpha} \simeq 2\xi_F \frac{\eta}{M_*} \sim \text{few} \times 10^{-6}$$

- The contribution of the walls to the background energy is

$$\Omega_{\text{wall}} \equiv \frac{U_{\text{wall}} H_0}{\rho_0} \simeq \left(\frac{\eta}{100 \text{ MeV}}\right)^3,$$

Assume
$$\eta = O$$
 (MeV).

 $(\lambda, M_*, \eta, \xi_F, \xi_i)$

- CMB constraints
$$\left(\frac{\delta T}{T}\right)_{\text{CMB}} \sim 10^{-6} \left(\frac{\eta}{1 \text{ MeV}}\right)^3$$

-Valid field theory up to an energy scale $M_*/\xi_F \sim 10^6 \text{ MeV}$

- Astrophysical constraints
- Tunelling to the true vacuum
- Walls form at a redshift of order 8x109

Future

Physical systems: new and future

JPU, Liv. Rev. Relat. 100 (2010) 1, arXiv:1009.5514

CODEX: COsmic Dynamics EXperiment

Time drift of the redshifts

$$\Delta \lambda = \frac{\Delta t}{1+z} \left[H_0 \left(1+z \right) - H \left(z \right) \right] \lambda_0$$

CODEX:

spectral domain: 400-680 nm R=150000 10-20 times HARPS on 10 years! long term calibration (atomic clocks...)

Constants

The accuracy of a variability measurement side determined by the precision of measurement of the line positions.

Precision on α et μ : 10⁻⁸ 2 order of magnitude better than VLT/UVES Given the cosmological parameters shift of 10⁻⁶/an

Conclusions

The constancy of fundamental constants is a **test of the equivalence principle**. The variation of the constants, violation of the universality of free fall and other deviations from GR are of the same order.

« Dynamical constants » are **generic** in most extensiions of GR (extra-dimensions, string inspired model.

Need for a stabilisation mechanism (least coupling principle/chameleon) Why are the constants so constant? Variations are expected to be larger in the past (cosmology)

All constants are expected to vary (unification)

In the case of quintessence: time variations linked to the equation of state and allow to Constrain the dynamics of the scalar field even when not dominant.

Observational developments allow to set **strong constraints** on their variation *New systems [Stellar physics] / new observations*