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Galaxy surveys are evolving

We used to live in an We are now starting an
era of shot noise era of cosmic variance
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[Finding galaxies was the limiting factor] [Gaining volume is the limiting factor]




Cosmology from galaxy clustering
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Fisher information matrix of galaxy surveys

FKP - Feldman, Kaiser & Peacock (1994)
Tegmark et al. (1997), R.A. (2012)

The galaxy power spectrum in redshift space, for any galaxy survey, can be
expressed in units of its shot noise (1/n,). This defines the survey’s effective
power spectrum (which is adimensional):
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The Fisher information for the (log of the) effective power spectrum is:
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Fisher information in phase space

On each cell of phase space volume there is a certain amount of information
about the spectrum (and other quantities), given by: I
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The precision with which we can estimate the effective power spectrum from the
information in each cell of phase space is:
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The Fisher information is additive, so integrating over the phase space volume
gives the total information.



Fisher information, effective volume and cosmic variance
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Why?
Much of the cosmological information resides in the power spectrum

(8(k) (k")) = (2m)*6(k — k') P(k)

In a finite volume, even if we map a huge number of tracers, the
precision with which we can measure the modes, and P(k), is limited
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Implications for cosmology
Example: J-PAS
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Are these many millions of z=1 galaxies really “wasted”
from the point of view of cosmology?
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NO!



How to “beat” cosmic variance

By comparing the clustering of the Seljak 2008; McDonald & Seljak 2008
diff rent tr " fl r K 1 Gil-Marin et al. 2011

cre acCers Of large-scale Hamaus, Seljak & Desjacques 2011,2012
structure (LRGs, ELGs, etc.), we can Cai & Bernstein 2011

R.A. & K. Leonard, MNRAS 2013 (arXiv:1302.5444)

measure with arbitrary accuracy” the
physical parameters that determine
their different clustering amplitudes
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Multi-tracer Fisher information matrix

R.A., MNRAS 2012 (1108.5409)
R.A. & K. Leonard, MNRAS 2013 (1302.5444)

Let’s say we have several (o = 1,2, ... N) different types of tracers of
large-scale structure: a=1 (LRGs) , a=2 (ELGs), a=3 (quasars), etc.

The multi-tracer Fisher matrix is:

1 PaP  PaPs(l-—"P
F, 3 = F(logP,,logPs) :Z[(Saﬂlﬁ—P_l_ (1B—|—(77)2 )] : P:ZPO‘

Or, in terms of the usual parameters:
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Multi-tracer Fisher information matrix

The multi-tracer Fisher information is unbounded!
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But this still does not necessarily mean that the total information is unbounded...

In fact, there is no clear meaning But if we diagonalize the Fisher matrix,
to “total information” for non- then each eigenvalue adds positive,
diagonal Fisher matrices independent amounts of information!

R -

NAN

/
= T




Multi-tracer Fisher information matrix

R.A. & K. Leonard, MNRAS 2013 (arXiv:1302.5444)

We can diagonalize the multi-tracer Fisher matrix by a change of variables:
Po = La

N
First, we define the aggregate effective spectra as: S, = Z P

The variables which diagonalize the multi-tracer Fisher matrix (eigenvectors) are:
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Diagonalized multi-tracer Fisher matrix

In terms of the relational power spectra Q, the Fisher matrix is diagonal!
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Example: 2-tracer survey
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Constraints on the RSD parameter f(z) [-ras]
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Redshift-space distortions & modified gravity
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Constraints in local non-Gaussianity parameter far
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Conclusions:

e Cosmic variance is a fundamental limitation only for measurements of the
power spectrum

® Multi-tracer strategies are able to optimally explore the new era of volume-
limited surveys of large-scale structure

e In particular, the multi-tracer approach can enhance dramatically the
constraints on:

* modified gravity (through the RSD function f)

* inflation (fNL)

e Even BAOs can benefit: both indirectly (through marginalizations), and also
directly, via enhancements of the constraints from AP tests

e Biggest challenge is covariance of biases and shot noise between tracers; we are
studying those covariances with the help of N-body simulations



Forecasted distance constraints from BAQOs in J-PAS

* RSDs and shape of P(k) were marginalized
* Equivalent to Seo/Eisenstein “BAOs-only” method
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Figure of Merit for J-PAS
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* With Planck priors

* Marginalized against shape of P(k) & other parameters
* RSD information was marginalized, but not projected
into final set of cosmological parameters

* Same methods/criteria as used for EUCLID papers




