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Galaxy surveys are evolving 

We used to live in an 
era of shot noise

We are now starting an 
era of cosmic variance

[Finding galaxies was the limiting factor] [Gaining volume is the limiting factor]



Cosmology from galaxy clustering

Clustering
in position

space

Clustering
in Fourier

space

Bias:
⇠2(r) = b22 ⇠(r)  ! P2(k) = b22 P (k)

⇠1(r) = b21 ⇠(r)  ! P1(k) = b21 P (k)

⇢g(~x) = ng(~x) [1 + �g(~x)] ! ng(~x) [1 + bg(~x) �(~x)]

BAOs

BAOs



Fisher information matrix of galaxy surveys
FKP - Feldman, Kaiser & Peacock (1994)

Tegmark et al. (1997), R.A. (2012)
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The galaxy power spectrum in redshift space, for any galaxy survey, can be 
expressed in units of its shot noise (1/ng). This defines the survey’s effective 
power spectrum (which is adimensional):

The Fisher information for the (log of the) effective power spectrum is:
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Fisher information in phase space

On each cell of phase space volume there is a certain amount of information 
about the spectrum (and other quantities), given by:
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The precision with which we can estimate the effective power spectrum from the 
information in each cell of phase space is:

k

x

phase space density 
of information < 1/2

phase space 
volume =         . 

The Fisher information is additive, so integrating over the phase space volume 
gives the total information.
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Power of a survey: 
~ effective volume

Fisher information, effective volume and cosmic variance
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Why?

Much of the cosmological information resides in the power spectrum
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In a finite volume, even if we map a huge number of tracers, the 
precision with which we can measure the modes, and P(k), is limited



          

        Cosmic variance dominates here, so...
                ... a colossal “waste of galaxies”?

Implications for cosmology
Example: J-PAS
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Are these many millions of z≾1 galaxies really “wasted”, 
from the point of view of cosmology?

J-PAS is cosmic variance-limited up to 
z~1, and shot noise-limited above that



NO!



How to “beat” cosmic variance

Seljak 2008; McDonald & Seljak 2008
Gil-Marín et al. 2011

Hamaus, Seljak & Desjacques 2011,2012
Cai & Bernstein 2011

R.A. & K. Leonard, MNRAS 2013 (arXiv:1302.5444)

By comparing the clustering of the 
different tracers of large-scale 
structure (LRGs, ELGs, etc.), we can 
measure with arbitrary accuracy* the 
physical parameters that determine 
their different clustering amplitudes
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The multi-tracer Fisher matrix is:

Or, in terms of the usual parameters:

Let’s say we have several (α = 1,2, ... N) different types of tracers of 
large-scale structure: α=1 (LRGs) , α=2 (ELGs) , α=3 (quasars) , etc. 

Multi-tracer Fisher information matrix
R.A., MNRAS 2012 (1108.5409)

R.A. & K. Leonard, MNRAS 2013 (1302.5444)
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Multi-tracer Fisher information matrix

The multi-tracer Fisher information is unbounded!
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But this still does not necessarily mean that the total information is unbounded...

In fact, there is no clear meaning 
to “total information” for non-
diagonal Fisher matrices

But if we diagonalize the Fisher matrix, 
then each eigenvalue adds positive, 
independent amounts of information!
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We can diagonalize the multi-tracer Fisher matrix by a change of variables:

Sa =
NX

↵=a

P↵

Q1 = S1 = P

Qa =
Sa
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...

QN =
SN
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=
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P↵ ! Qa

(a>1)

Multi-tracer Fisher information matrix
R.A. & K. Leonard, MNRAS 2013 (arXiv:1302.5444)

Qa (a>1) are relational variables (ratios of 
spectra between the different tracers). 

They do not involve P(k)

First, we define the aggregate effective spectra as:

The variables which diagonalize the multi-tracer Fisher matrix (eigenvectors) are:

Q1 is the total effective spectrum of the 
survey. Only it involves P(k)

CV-
limited

NOT
CV-limited



Diagonalized multi-tracer Fisher matrix

In terms of the relational power spectra Qa the Fisher matrix is diagonal!

Fab = Fa �ab F1 =
1

2

✓
P

1 + P

◆2

Fa =
1

4

P
1 + P

Sa Pa�1

Sa�1

) Fij =

Z
d

3
k d

3
x

(2⇡)

3

X

a

d logQa

d✓

i
Fa

d logQa

d✓

j
=

X

a

F a
ij

< 1/2 ⇔ CV    [FKP]
codifies info about P(k)

unbounded
but no info about P(k)



Example: 2-tracer survey

Why multi-tracer surveys beat cosmic variance 5
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Figure 1. Fisher matrix elements in the case of two species of
tracers. The Fisher information density F1 of Eq. (16), which is
associated with the total effective spectrum Y1 = P = P1 + P2,
is shown by the dashed lines for various values of P2 (0.5, 1, 2,
4, and 8, from the bottom up). The Fisher information density
F2 = 1

4P1P2/(1 + P1 + P2), associated with the relative power
Y2 = P1/P2, is shown by the solid lines.

transformation would still lead to a diagonal Fisher matrix.
It can be verified that permutations of the effective powers
Pα generate O(Nt − 1) orthogonal transformations between
the variables logYa (a "= 1) which are equivalent to the cor-
responding redefinitions according to Eqs. (12)-(13).

As a concrete example, take a survey of two species
of tracers. In that case, we have Y1 = P1 + P2 = P, and
Y2 = P1/P2. The Fisher matrix element associated with
logY1 is F1 = 1

2 P2/(1 + P)2, and the Fisher matrix for
logY2 is F2 = 1

4 P1P2/(1+P). Exchanging P1 and P2 leaves
logY1 invariant, introduces an irrelevant change in the sign
of logY2 → − logY2, and leaves both F1 and F2 invariant.

The behavior of the two independent components of the
Fisher information density for the two-tracer case are plot-
ted in Fig. 1. For small values of the effective powers P1

and P2, it is F1 which has the largest information density.
However, for large values of the effective power (that is, for
large enough densities of the tracers), it is F2 which carries
the most information density. In the limit P1 $ 1 we see
that F1 → 1

2 , while F2 → 1
4P2; hence, when both P1 $ 1

and P2 $ 1, we have F1 ≈ 1
2 , but F2 $ 1. In the opposite

regime, if P1 or P2 vanishes in some region of space, this
region will not contribute with any information about their
ratio (Y2), although it does contribute to the usual Fisher
matrix density (the one associated with Y1 = P). When
both tracers vanish in some region of space, then the whole
Fisher matrix also vanishes identically. The two-tracer ex-
ample shows a generic feature of the multi-tracer approach:
the full potential of the information in the relational degrees
of freedom is only realized when there is a sufficiently large
number density of tracers, such that shot noise is subdom-
inant for at least some of those tracers, over some scales:
Pα = n̄αPα $ 1. Hence, as pointed out by Hamaus et al.
(2010), the multi-tracer method and the techniques to re-
duce shot noise are mutually reinforcing.

This diagonal form of the Fisher matrix has an addi-
tional advantage: it reduces the amount of computations
needed for practical applications. Instead of the Nt(Nt−1)/2
sums and integrations in Eq. (8), we only need to compute
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Figure 2. Effective powers PR (LRG-like, red in color version),
PE (ELG-like, yellow), and PQ (QSO-like, blue), evaluated at
k = 0.1hMpc−1, and across the line-of-sight (µk = 0).
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This means if it ever becomes possible (and desirable) to
divide the tracers in a survey into 100 different types, we
only need to compute the 100 terms in Eq. (18), instead of
the ∼ 5. × 103 terms needed for the non-diagonal form of
the Fisher matrix.

4 APPLICATIONS TO FUTURE SURVEYS

As an application of these results, we study how the relative
clusterings improve cosmological constraints for a hypothet-
ical redshift survey that can detect three types of tracers
of large-scale structure. These tracers were chosen to repro-
duce, as much as possible, the properties of luminous red
galaxies (LRGs), emission-line galaxies (ELGs) and quasars
or AGNs (QSOs). The LRG-like tracers are relatively rare,
have a somewhat high bias, and are shallow (z ! 1.5). The
ELG-like tracers are more abundant, have a relatively low
bias, and can be detected to higher redshifts compared to
LRGs (z ! 2). The QSO-like tracers are very rare, have a
very high bias, and can be detected to very high redshifts
(z ! 4) – see, e.g., Abramo et al. (2012).

Fig. 2 shows the effective powers for each species of
tracer, computed at the typical scale of k = 0.1 h Mpc−1,
for modes perpendicular to the line-of-sight (µk = 0). Since
the effective power is a measure of shot noise (a high value
of Pα indicates very low shot noise), the effective powers
chosen for Fig. 2 cover several different scenarios that one
may encounter in real surveys.

We have assumed that the survey covers 104 deg2,
which, for the number densities we have considered, imply
total numbers of 2×107 for the LRG-like tracers, 5×107 for
the ELG-like tracers, and 3 × 106 for the QSO-like trac-
ers. We also assumed that the redshifts are accurate to
σz = 0.001(1 + z), and these uncertainties were factored
into the Fisher matrix in the usual way, through a factor
exp[−k2 µ2

k σ
2
z c

2 H−2] which multiplies the Fisher informa-
tion density. We have also cut-off the Fourier-space integra-
tions at k = 0.1 h Mpc−1, in order to avoid contributions
from scales where non-linear effects become essential.
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Constraints on the RSD parameter f(z)   [J-PAS]
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k)

2 P (k; z)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

10000

20000

30000

40000

z

FHf s
L

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

10000

20000

30000

40000

z

FHf s
L

ELGs only
LRGs only
QSOs only

0.5 1.0 1.5
0.0
0.2
0.4
0.6
0.8
1.0

Re
la
t.êT

ot
al

All, FKP
Relat. inform.
Total

10
x 

bo
os

t!

Information from the 
relative clusterings 

can improve the 
constraints on f(z) by 

up to ~3 at low z’s!

F (✓) =
1

�2
c (✓)



0.5 1.0 1.5 2.0
0.5

0.6

0.7

0.8

0.9

1.0

z

f=
d
Lo
gHG
LêdL

og
HaL

Redshift-space distortions & modified gravity

ELGs only
LRGs only
QSOs only

All

⇤CDM

DGP

f(z) =
d lnG

d ln a
= ��

m(z)

Gµ⌫ = 8⇡GTµ⌫ +8⇡G�Tµ⌫�Gµ⌫+

r2� =
16⇡G

3
�⇢�1

6
�R(fR)Matter growth: =) G(z)

* Marginalized against shape of P(k) & 
cosmological parameters
* Assumed biases were fixed, linear and 
not stochastic → lensing would help a lot!



Constraints in local non-Gaussianity parameter fNL
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Information from 
relative clustering can 
improve constraints 
on fNL by ~5 at low-z!
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Conclusions:

• Cosmic variance is a fundamental limitation only for measurements of the 
power spectrum

• Multi-tracer strategies are able to optimally explore the new era of volume-
limited surveys of large-scale structure

• In particular, the multi-tracer approach can enhance dramatically the 
constraints on:

★ modified gravity (through the RSD function f)
★ inflation (fNL)

• Even BAOs can benefit: both indirectly (through marginalizations), and also 
directly, via enhancements of the constraints from AP tests

• Biggest challenge is covariance of biases and shot noise between tracers; we are 
studying those covariances with the help of N-body simulations
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Figure of Merit for J-PAS
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* With Planck priors
* Marginalized against shape of P(k) & other parameters
* RSD information was marginalized, but not projected 
into final set of cosmological parameters
* Same methods/criteria as used for EUCLID papers
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