Transformation laws of redshift, flux and luminosity in generic spacetimes

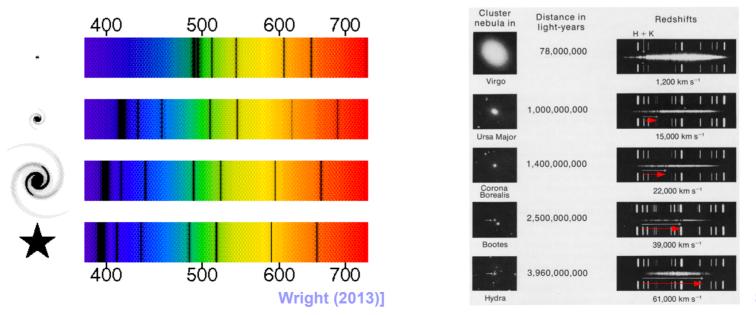
<u>Maurício O. Calvão</u>*, B. L. Lago**, R. R. R. Reis* & B. B. Siffert*

*IF-UFRJ **CEFET-RJ

I. INTRODUCTION

I.1. MOTIVATION

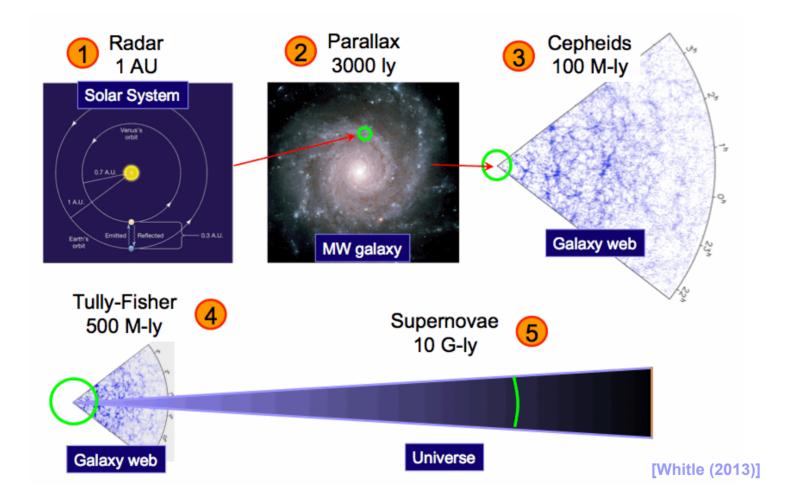
redshift: Doppler, gravitational, cosmological



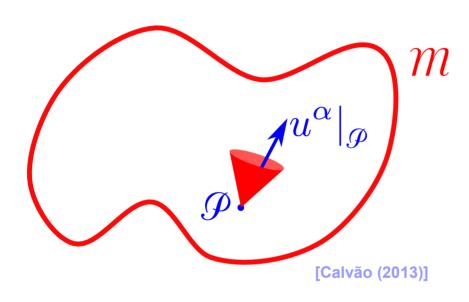
Schombert (2013)]

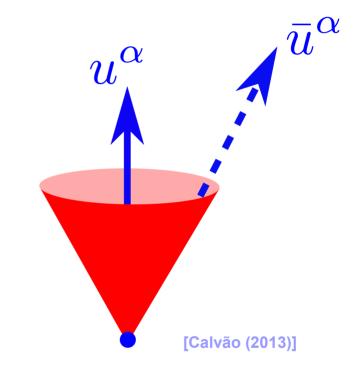
2

flux and luminosities



instantaneous observer



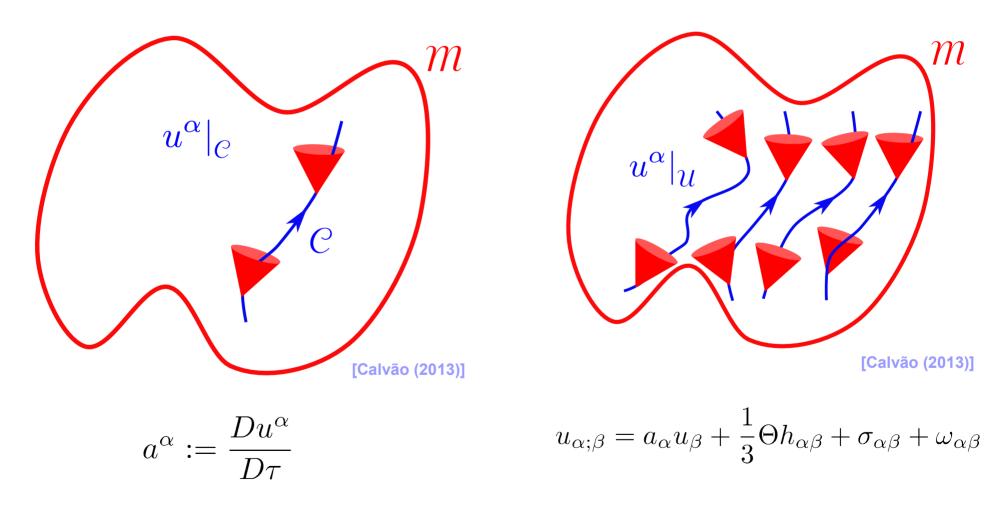


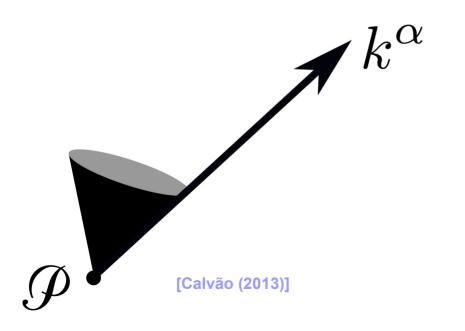
$$h^{\alpha\beta} := g^{\alpha\beta} - u^{\alpha}u^{\beta}$$

$$\bar{u}^{\alpha} = \gamma \left(u^{\alpha} + v e^{\alpha} \right)$$

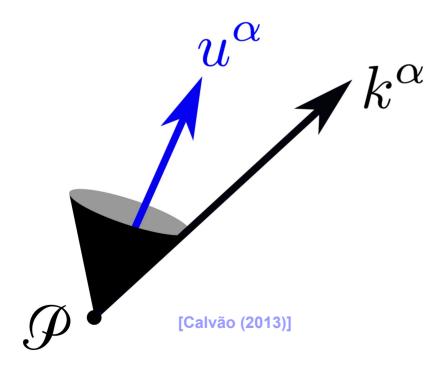
observer

frame of reference



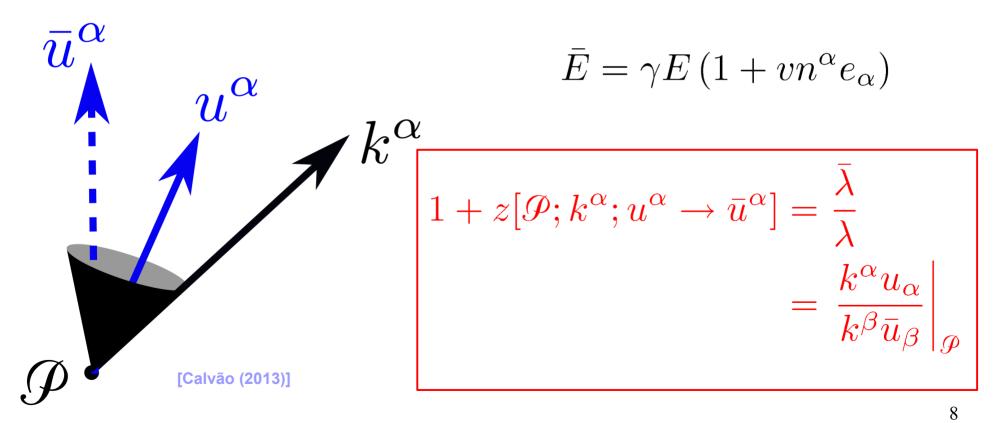


II. REDSHIFT



 $k^{\alpha} = E\left(u^{\alpha} + n^{\alpha}\right)$

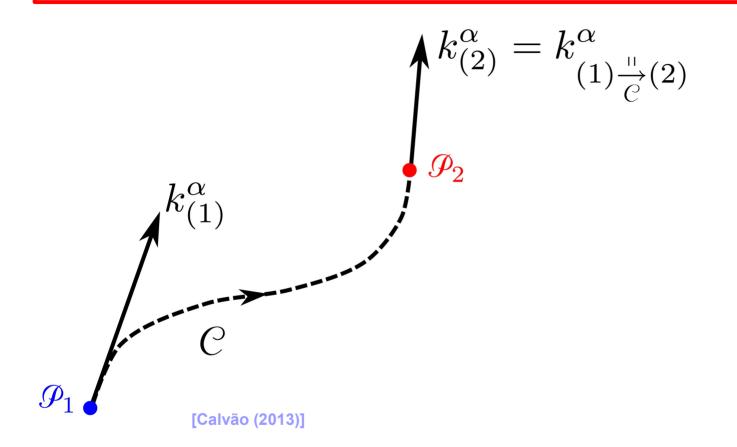
II. REDSHIFT



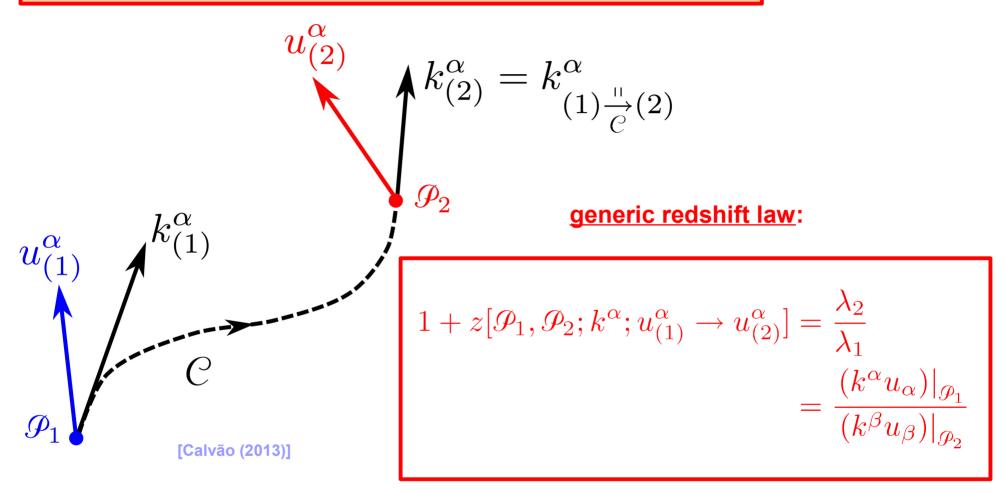
Vth Workshop "Challenges of New Physics in Space", Rio de Janeiro, RJ, 28 April – 03 May 2013

Mif

II.2. GLOBAL (OR AT A DISTANCE)



II.2. GLOBAL (OR AT A DISTANCE)



II.2. GLOBAL (OR AT A DISTANCE)

in particular, for any spacetime:

$$\exists u_{(2)}^{\alpha} \mid u_{(2)}^{\alpha} = u_{(1) \stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}}\stackrel{\text{\tiny{II}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}}}}\stackrel{\text{\scriptstyle{II}}}}{\stackrel{\text{\tiny{II}}}}{\stackrel{\text{\tiny{II}}}}}\stackrel{\text{\scriptstyle{II}}}}{\stackrel{\text{\tiny{II}}}}}\stackrel{\text{\scriptstyle{II}}}{\stackrel{\text{\tiny{II}}}}}\stackrel{\text{\scriptstyle{II}}}}{\stackrel{\text{II}}}}\stackrel{\text{\scriptstyle{II}}}}{\stackrel{\text{II}}}}\stackrel{\text{\scriptstyle{II}}}}{\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}}}}\stackrel{\text{\scriptstyle{II}$$

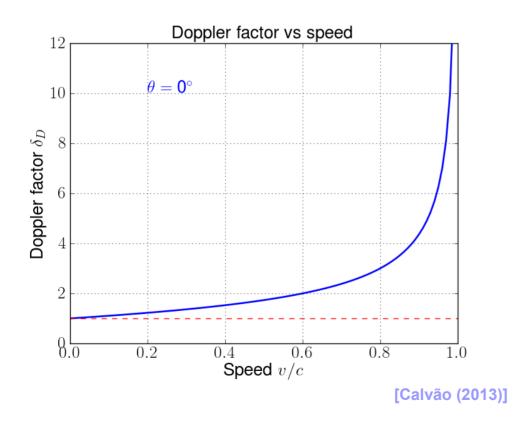
challenge to expanding space paradigm!

basis for consistent definition of absolute magnitude!

11

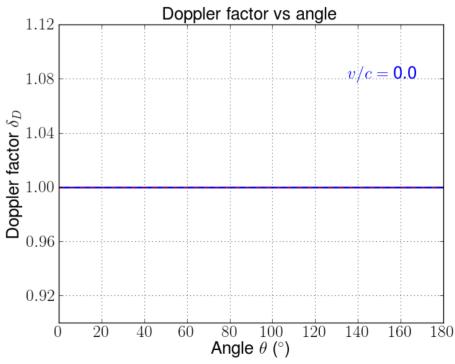
II.3. DOPPLER FACTOR

$$\delta_D(v,\theta) := \left[\gamma(v)\left(1 - v\cos\theta\right)\right]^{-1} \Rightarrow 1 + z(v,\theta) = \delta_D(v,\theta)$$



II.3. DOPPLER FACTOR

$$\delta_D(v,\theta) := \left[\gamma(v)\left(1 - v\cos\theta\right)\right]^{-1} \Rightarrow 1 + z(v,\theta) = \delta_D(v,\theta)$$

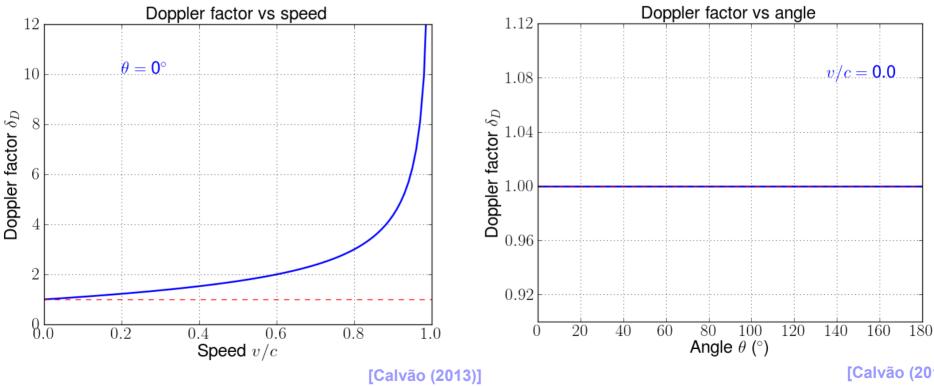


[Calvão (2013)]

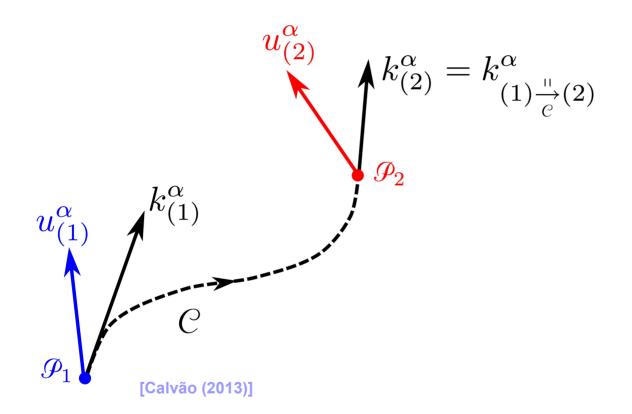
II.3. DOPPLER FACTOR

 $\delta_D(v,\theta) := [\gamma(v) (1 - v \cos \theta)]^{-1}$

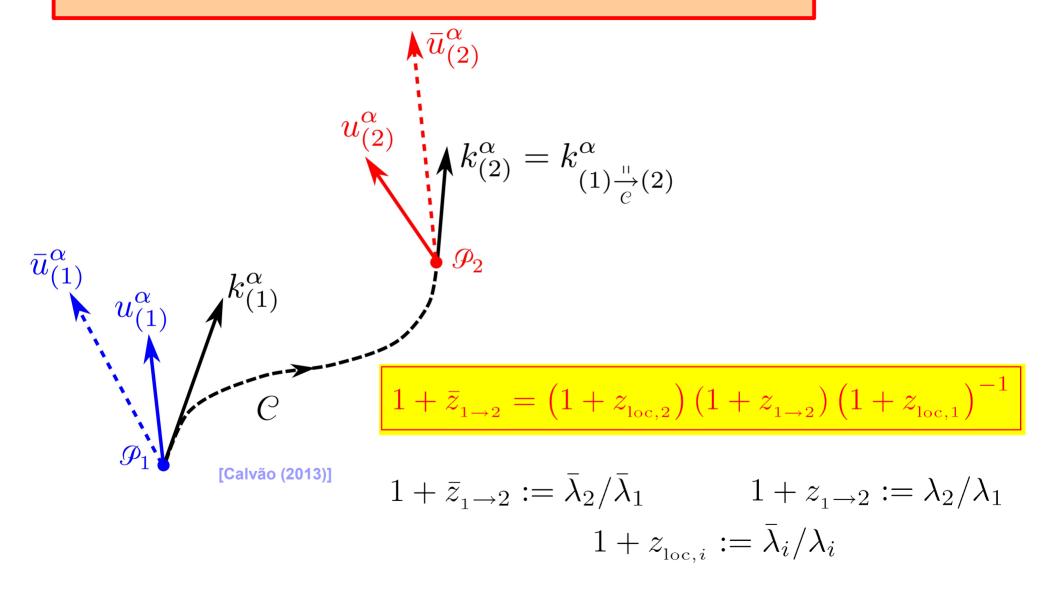
$$\Rightarrow 1 + z(v,\theta) = \delta_D(v,\theta)$$



II.3. <u>REDSHIFT TRANSFORMATION</u>



II.3. <u>REDSHIFT TRANSFORMATION</u>



Vth Workshop "Challenges of New Physics in Space", Rio de Janeiro, RJ, 28 April – 03 May 2013

16

III. FLUX

III.1. DEFINITION

$$T^{\alpha\beta} = \rho u^{\alpha} u^{\beta} - Ph^{\alpha\beta} + 2q^{(\alpha} u^{\beta)} + \pi^{\alpha\beta}$$

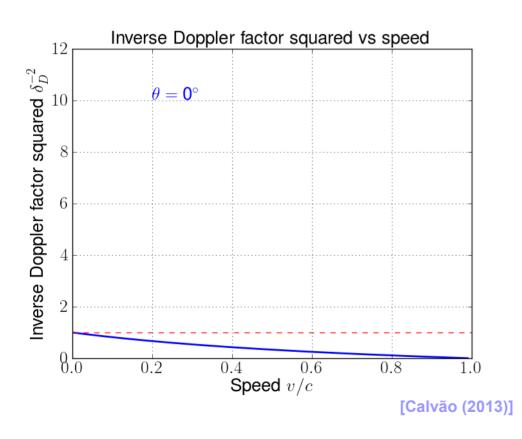
$$f := ||q^{\alpha}||$$
geometrical optics (eikonal) approximation
$$T^{\alpha\beta} = B^2 k^{\alpha} k^{\beta} \qquad (k_{\alpha} := \partial \varphi / \partial x^{\alpha})$$

$$f = \rho$$

Vth Workshop "Challenges of New Physics in Space", Rio de Janeiro, RJ, 28 April – 03 May 2013

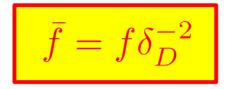
17

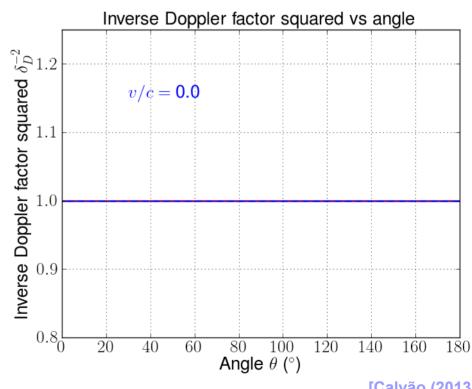
III.2. FLUX TRANSFORMATION



if,

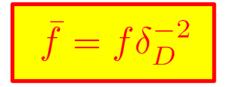
III.2. FLUX TRANSFORMATION

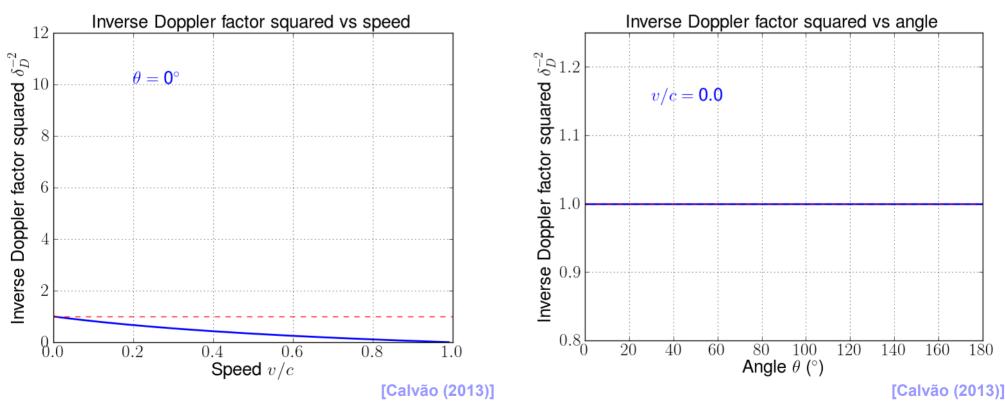




[Calvão (2013)]

III.2. FLUX TRANSFORMATION





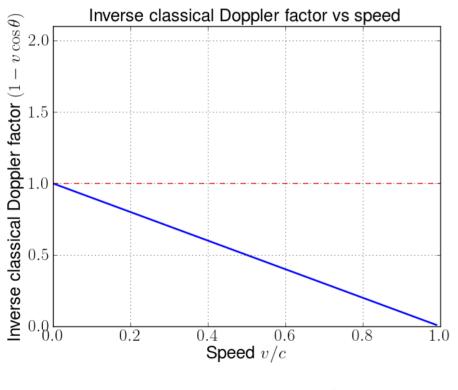
IV. LUMINOSITIES

[Rybicki (1979)]

- $L_\Omega(t,\hat{\mathbf{\Omega}}):\quad \text{angular distribution of emitted (source) power,} \\ \text{or simply angular emitted power}$
- $\mathcal{L}_{\Omega}(t,\hat{\mathbf{\Omega}}): \quad \text{angular distribution of received (detector) power,} \\ \text{or simply angular received power}$

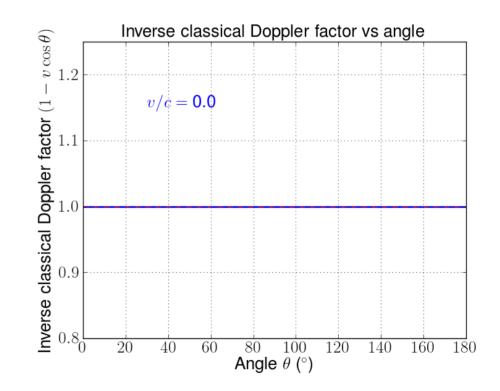
21

$$L_{\Omega} = \mathcal{L}_{\Omega}(1 - v\cos\theta)$$



[Calvão (2013)]

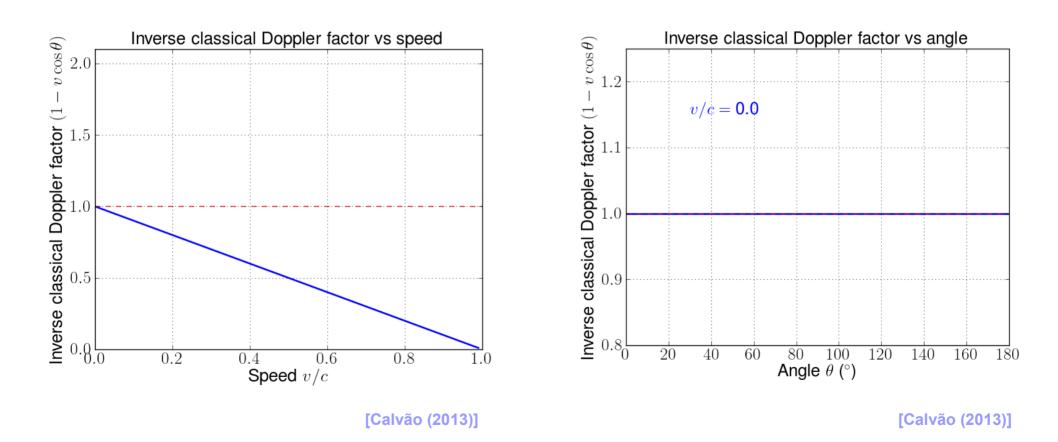
$$L_{\Omega} = \mathcal{L}_{\Omega}(1 - v\cos\theta)$$



[Calvão (2013)]

if

$$L_{\Omega} = \mathcal{L}_{\Omega}(1 - v\cos\theta)$$



24

L(t) : emitted (source) power

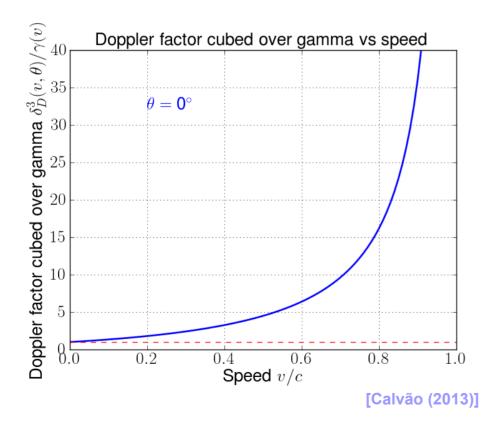
 $\mathcal{L}(t)$: received (detector) power

$$L = \mathcal{L} - v \oint \mathcal{L}(\hat{\mathbf{\Omega}}) \cos \theta \, d\Omega$$

isotropic case:

$$L = \mathcal{L}$$

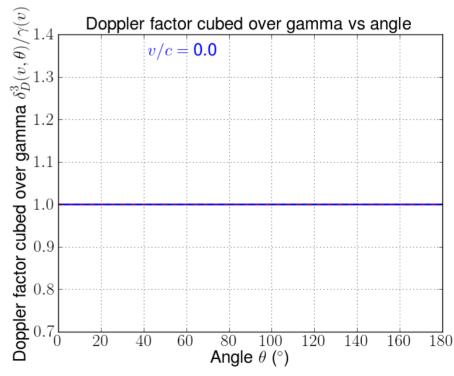
$$\bar{L}_{\Omega} = L_{\Omega} \gamma(v) \delta_D^3(v,\theta)$$



Vth Workshop "Challenges of New Physics in Space", Rio de Janeiro, RJ, 28 April – 03 May 2013

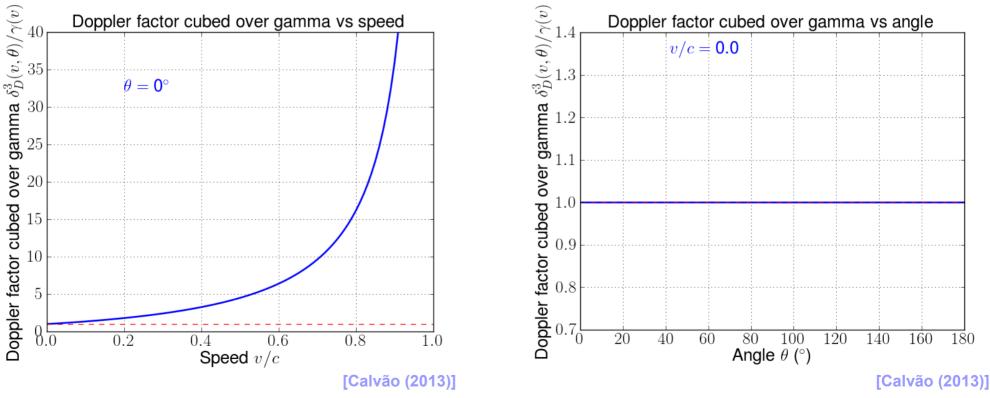
if

$$\bar{L}_{\Omega} = L_{\Omega} \gamma(v) \delta_D^3(v,\theta)$$

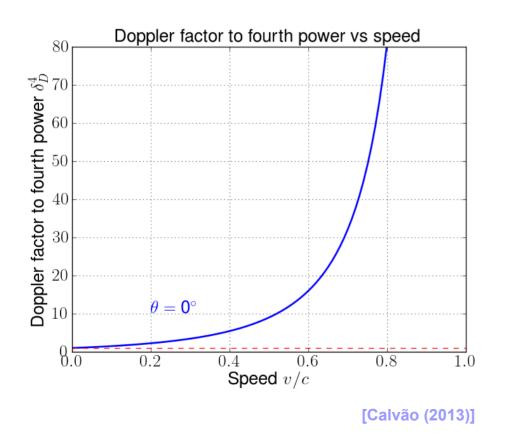


[Calvão (2013)]

$$\bar{L}_{\Omega} = L_{\Omega} \gamma(v) \delta_D^3(v,\theta)$$

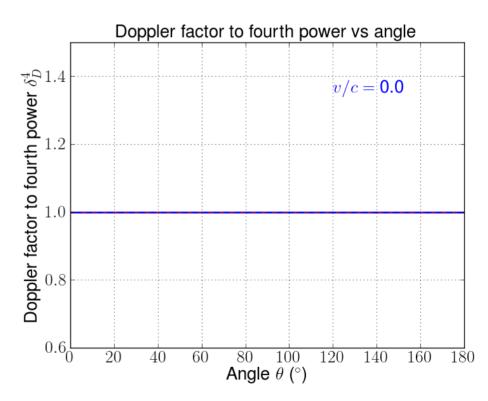


$$\bar{\mathcal{L}}_{\Omega} = \mathcal{L}_{\Omega} \, \delta_D^4(v,\theta)$$



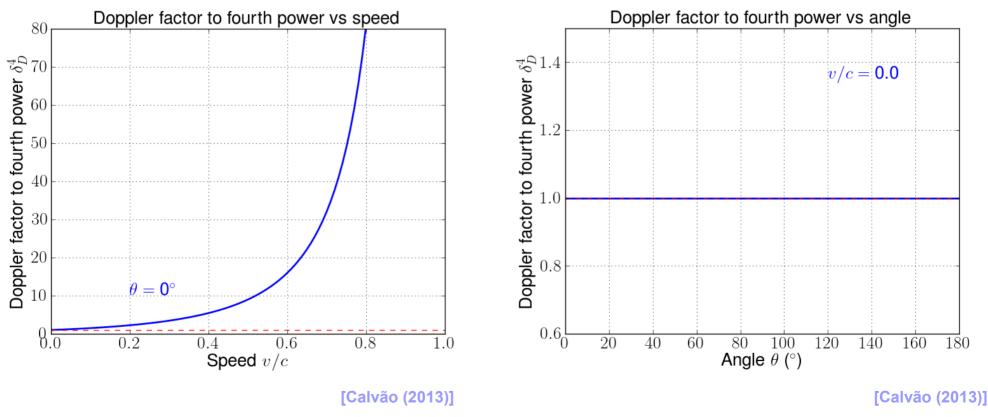
if

$$\bar{\mathcal{L}}_{\Omega} = \mathcal{L}_{\Omega} \, \delta_D^4(v,\theta)$$



[Calvão (2013)]

$$\bar{\mathcal{L}}_{\Omega} = \mathcal{L}_{\Omega} \, \delta_D^4(v,\theta)$$



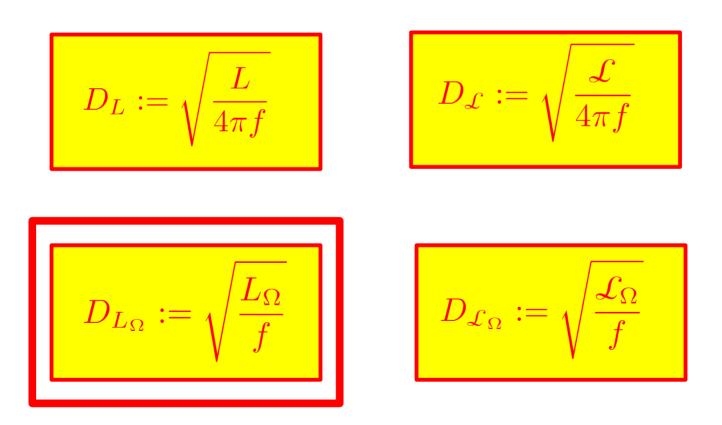
31

$$\bar{L} = L + v \oint L_{\Omega}(\hat{\Omega}) \cos \theta \, d\Omega$$

$$\bar{\mathcal{L}} = \gamma^2 \left[\mathcal{L} + \oint \mathcal{L}_{\Omega} \left(2 + v \cos \theta \right) v \cos \theta \, d\Omega \right]$$

V. LUMINOSITY DISTANCES

V.1. DEFINITIONS



VI. CONCLUSION

MAIN RESULTS:

- We clarified the notions related to redshift, flux, luminosities and luminosity distances in a generic spacetime for arbitrary instantaneous observers, essentially without any approximation, not perturbatively!
- All Doppler effects can be interpreted as purely kinematic ones, arising from the use of non-parallely transported instantaneous observers
- In particular, in any spacetime the redshift along a given null geodesic can always be made to vanish
- Flux is essentially the norm of the energy flux vector from the energymomentum tensor and its transformation law is trivially obtained
- There are several consistent notions of (angular) luminosity and consequent luminosity distances
- Differences due to peculiar motions and/or anisotropies do arise and are not negligible at all!!

34