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Summary
We investigate a simple generalization of the 
metric exponential f(R) gravity theory that is 
cosmologically viable and compatible with 
solar-system tests of gravity. We show that, as 
compared with other viable f(R) theories, its 
dependence on the Ricci scalar R improves 
agreement with structure formation and 
alleviates fine-tuning.
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 What is causing the cosmic 
acceleration?

A new exotic component with negative 
pressure (DE) or modified gravity?

Main Possibilities
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• The above F(R) theory doesn't present a regular MDE (a ∝ t1/2  and not a ∝ t2/3)
[Amendola et al. , PRD 75, 083504, 2007].⇒  Inverse power-law F(R) are incompatible 
with structure formation.

Metric f(R) Gravity

• f (R)→ simplest modification to the E-H Lagrangian ; in general f (R,RαβRαβ ,RαβγδRαβγδ ,...) 

• f (R) can be thought as a special case of a scalar-tensor theory 
(Brans-Dicke with wBD=0). 

• An accelerated expansion appears naturally in these models.

• Inflation can be curvature driven if  F(R) = R +αR2. [Starobinsky (PLB 91,99,1980)]
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• The same idea was explored by Capozzielo&Cardone (IJMP D12, 1963, 2003) and
   Carrol et al. (PRD 043528, 2004) for a late time acceleration. They considered F(R) = R −αR−n .

F(R) = R + f (R)
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 “Viable” f(R) theories 
Starobinsky [JETPLett, 86, 157, (2007)]

F (R) = R� ↵R⇤
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Hu & Sawicki [PRD 76, 064004 (2007)] 
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Exponential Gravity

F (R) = R� ↵R⇤(1� e�R/R⇤)
 

F(R)  R −αR*   for R R*

f (0) = 0 ⇒  desapearing cosmological constant
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Generalized Exponential Gravity 

↵, n and R⇤ are free positive parameters.

if n = 1 we obtain exponential gravity

f(R) = �↵R⇤(1� e�R/R⇤
)
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→ lower incomplete gamma function
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Stability & Viability Conditions

m(r ≈ −1) ≈ 0+   and dm
dr

(r ≈ −1) > −1

necessary condition
0 < m(r ≈ −2) ≤ 1

m := RfRR
1+ fR

r := − R(1+ fR )
R + f

What about Cosmology?
Viable cosmology:
a)Start with a RD universe 
b)Have a sadle point MD phase 
c)Have a final accelerated atractor

Amendola et al PRD 75, 083504, 2007

∗ fRR  > 0 (no tachyons)

∗ 1+ fR > 0  (Geff  = G
1+ fR

 doesn’t change sign; no ghosts)

∗ lim
R→∞

f
R
= 0 and lim

R→∞
fR = 0  (GR is recovered at early times)

∗ fR  is small at recent epochs (to satisfy solar and galactic scale constraints)

Pogosian & Silvestri PRD 77, 023503 ,2008
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•The theory above can satisfy all the stability 
conditions.

•It can also satisfy the cosmological viability 
criteria. 

•For fixed n and R* there is a minimum value (αmin) 
of the parameter α, such that there is a final de 
Sitter attractor.  

γ Gravity 
F (R) = R� ↵R⇤
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αmin x n
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fRRµ⌫ �rµr⌫fR +
�
⇤fR � 1

2f
�
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6 � fR

�
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R = 12H2 + 6HH 0
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m2 � e

�3y � d� aeq e

�4y

x2(y) = R
m2 � 3e

�3y � 12 (d + x1(y))

Modified Einstein equations

For a homogeneous Universe filled with matter energy density ⇢̄m and radi-

ation energy density ⇢̄r we use the above equation to get the modified Friedman

equation:

Introducing the following variables

d := ↵R⇤�(1/n)
6nm2

aeq = ⇢̄r0/⇢̄m0 ' 2.9⇥ 10�4

m2 := 8⇡G
3 ⇢̄0 = ⌦m0H

2
0
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Here ⌦̃m0 represents the present value of the matter density parameter
that a ⇤CDM model would have, if it had the same matter density ⇢̄m0

as the modified gravity f(R) model. As a consequence, if H̃0 is the Hubble
constant in the reference ⇤CDM model, we should have ⌦̃m0H̃

2
0 = ⌦m0H

2
0 .

⌦̃m0 = 0.28

Where

! d = (1� ⌦̃m0)/⌦̃m0

Each model is characterised by fixed values of the parameters

↵, n and R⇤, which can be written as,
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With x1(y) and x2(y) several quantities can be obtained.
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Local Tests
⇒| fRg |< 4.9 ×10

−11

 

fRg = fR(R = 8πGρg )

ρg 10
−24 g / cm3

It can be shown that solar-system constraints imply
independent of the form of the f(R). (Hu&Sawicki)

| fRg |  =  | fR0
| e

[( R0
R*

)n−(
Rg
R*

)n ]

R* =
1−Ωm0

Ωm0

6n
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(8πGρ0 )
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ρg
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We have

ρ0 =Ωm0ρc =Ωm0 (1.9 ×10
−29h2g / cm3)

| fR0
|  < 4.9 ×10−11e

[(
Rg
R*

)n ]
>10105

>>1
Depends on when the galactic halo 
formed and the density profiles of 
the structures in which the galaxy 
is embedded.

Galaxy to cosmology ⇒| fR0 |<10
−6

(Hu&Sawicki)
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Evolution of Matter Density Perturbations
Here we are interested in the growth of cosmological matter density 
perturbations in the subhorizon regime . For |fR| << 1, we have (see for instance P. 
Zhang (2006), Pogosian&Silvestre (2008), de la Cruz Dombriz et al. (2008))

Q(k, a) := � 2fRRc2k2

(1 + fR)a2
0 :=

d

da

�
00

+ �
0
(
3
a

+
H

0

H
)� �

a2

1� 2Q

2� 3Q

3H2
0⌦m0

a3H2(1 + fR)
= 0

In GR fR=0,  Q=0, there is no scale dependence in the linear regime. 
For wCDM the growing mode is given by (Silveira&Waga (1994))

We calculated numerically the growing mode for the f(R) theory and obtained 
the fractional change in the matter power spectrum P(k) relative to ΛCDM.

�(z) =
1

1 + z
2F1


� 1

3w
,
w � 1
2w

, 1� 5
6w

,�(1 + z)3w 1� ⌦m0

⌦m0

�

Wednesday, May 15, 13



n=1

a=3

a=4

a=6

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

Wednesday, May 15, 13



n=2

a=1.1

a=1.3

a=1.2

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

Wednesday, May 15, 13



n=3

a=0.8

a=0.9

a=1.0

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

Wednesday, May 15, 13



n=3, a=0.87

n=2, a=1.18

n=1, a=2.7

H&S n=4, fR0 = 0.01

1 + w max > 0.02

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

Wednesday, May 15, 13



n=1

a=3

a=4

a=6

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

n=2

a=1.1

a=1.3

a=1.2

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

n=3

a=0.8

a=0.9

a=1.0

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

n=3, a=0.87

n=2, a=1.18

n=1, a=2.7

H&S n=4, fR0 = 0.01

1 + w max > 0.02

-3.0 -2.5 -2.0 -1.5 -1.0
0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

z=0

Wednesday, May 15, 13



n=1

a=3

a=4z=1
-3.0 -2.5 -2.0 -1.5 -1.0

0.00

0.05

0.10

0.15

log k Hh Mpc-1L

D
P k
êP k

Wednesday, May 15, 13



Conclusions
• It is very difficult to have modified f(R)-gravity models that satisfy all 

the viability and stability criteria, with a cosmic expansion history 
distinct from ΛCDM and being, at the same time, in accordance with 
large scale structure formation and local tests of gravity. 

• We have presented a class of generalized exponential f(R) gravity 
theory, with a parameter controlling the steepness, that facilitates 
agreement with observations and can give rise to viable f(R) models 
distinct from ΛCDM.

• Further investigations are necessary, in particular cosmological 
simulations should be performed, trying to constrain even more the 
parameter space of the γ-gravity theory, checking if it will remain a 
viable and interesting modified gravity theory.
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