

The search for a cosmic topology: Where to look for it, and how to interpret results

B. Mota M.J. Rebouças R. Tavakol

<u>Outline</u>

1. Cosmic topology and detectability

2. Circles in the sky - Detecting cosmic topology

3. Constraining observable parameters

4. Where to look for topology, and what it can tell us

Detecting topology: multiple images

Holderingssphere field

Non-trivial topology \rightarrow Multiple images in covering space

Detectability: one holonomy at a time

• γ is a Clifford Translation (CT) if $d(x, \gamma x) = cte$. for any x

<u>Outline</u>

1. Cosmic topology and detectability

2. Circles in the sky – Searching for cosmic topology

3. Constraining observable parameters

4. Where to look for topology, and what it can tell us

Circles in the sky

- In a universe with non-trivial topology, copies of the fundamental domain will tesselate the covering space
- If the topology is detectable, copies of the LSS will "spill over" and intersect along circles
- Along such intersecting circles temperature fluctuations will match

Circles in the sky

- A Pair of circles in the CMB map with idential patterns of temperature fluctuations should be observable any detectable holonomy γ
- If γ is a CT, the corresponding pair of circles will be antipodal

The S_{max} statistic

Proposed by Cornish, Spergel & Starkman in 1998 and modified (mweigthing) in 2004

$$S_{ij}(\alpha,\beta) = \frac{2\sum_{m} mT_{im}(\alpha)T_{jm}^{*}(\alpha)e^{-im\beta}}{\sum_{n} n\left[\left|T_{in}(\alpha)\right|^{2} + \left|T_{jn}(\alpha)\right|^{2}\right]}$$

Bielewicz & Banday (2011)

... but there are complications

Dominant:

- ISW
- Doppler
- Foreground contamination

Sub-dominant:

- Last scattering shell thickness
- Beam profile
- Detector noise
- Proper movement
- Etc...

Hu, Sugiyama & Silk (1997)

KQ85, Gold et. al. (2010)

The searches: nothing (definite) so far II

 Cornish et al (2004), Key et al (2007) Nearly antipodal, WMAP 1y, ILC full sky no signal

Bielewicz & Banday, 2011 Antipodal only, WMAP 7y W band, KQ85y7 mask no signal

• Vaudrevange et al, 2012

•

All pairs, WMAP 7y W band + ILC inside mask weird signal, very likely foreground contamination

• Aurich & Lustig, 2013

Antipodal only, WMAP 7y W + V bands, KQ75 & KQ85 masks marginal signal, likely foreground contamination

<u>Outline</u>

1. Cosmic topology and detectability

2. Circles in the sky - Detecting cosmic topology

3. Constraining observable parameters

4. Where to look for topology, and what it can tell us

(nearly) Excluding a detectable cosmic topology in the inflationary limit

- We can show that for small χ_{obs}

- Yes, in the inflationary limit
 - For observers in hyperbolical universes, $\theta \leq 1.1^{\circ}$
 - For 99% of observers in spherical universes, $\theta \leq 10^{\circ}$

$\boldsymbol{\theta}_{max}$ for the orientable flat manifolds

Symbol	Manifold	n	$ heta_{ m max}$
E_1	three-torus	$1,\!1,\!1$	0°
E_2	half turn space	$1,\!1,\!2$	120°
E_3	quarter turn space	$1,\!1,\!4$	86°
E_4	third turn space	$1,\!1,\!3$	109°
E_5	sixth turn space	$1,\!1,\!6$	59°
E_6	Hantzsche-Wendt space	2,2,2	120°

Determining the holonomy in flat spaces

- One should be able to obtain holonomy parameters from the CitS parameters
- But is determining one holonomy enough to determine all the topology?
- For non-translational flat holonomies, there is!

The (classes of) orientable flat 3-manifolds

- No characteristic scale
- Some parameters are free
- All but ${\rm E_6}$ have as generators of Γ
 - 2 translations
 - 1 'screw motion'
 - α = 0, π , $\pi/2$, $\pi/3$, $\pi/6$

• E₆ ('Hantzche-Wendt') is generated by 3 screw motions with $\alpha_i = \pi/2$, i=1,2,3

Determining the holonomy II

• The twist parameter of the holonomy can be expressed in termos of CitS parameters θ and ϕ

$$\cos \alpha = \frac{(\cos \phi + 1)(\cos \theta + 1)}{2} - 1$$

• The compactifiation length can also be expressed

$$L = \chi_{obs} \cos \nu \sqrt{\frac{\cos \theta - \cos \alpha}{1 - \cos \alpha}}$$

L can take any value (non-rigidity), but α is constrained:

$$\alpha = 2\pi/n, \quad n = \{1, 2, 3, 4, 6\}$$

• In general more than one topology will include each given holonomy. However, only one of them will generate the shortest geodesic

Determining the topology from a single pair detection

Outline

1. Cosmic topology and detectability

2. Circles in the sky - Detecting cosmic topology

3. Constraining observable parameters

4. Where to look for topology, and what it can tell us

Where to look?

Homogeneous

- Antipodal circle pairs
- Flat
- No phase shift

Non-homogeneous

Non-antipodal pairs

• Phase shift specified by deviation from antipodicity

- Spherical
- Antipodal pairs
 Phase shift
 Q 70 (Dispat)
 - $< 2.7^{\circ}$ (Planck)
 - < 0.004° (Inflation)

- Nearly antipodal pairs
- Small phase shift
 < 10° for most observers
 (inflation)

What can a pair detection it tell us?

Antipodal

- - It's a flat Universe!

- It's a positively-curved Universe!
- Universe is globally homogeneous
- With sufficient precision, value of Ω_{k}

Non-antipodal

Universe is not globally homogeneous

• Either flat or positively-curved, depending on values of ϕ and θ

 In many cases, can fully specify topology

hase $\neq 0$

nase =

The way forward

The issue of a detectable cosmic topology is <u>not</u> settled!

• Focused searches: Look only for e.g. flat holonomies, or translational holonomies:

- Computationally more efficient
- Reduces false-positive threshold

Systematically look for matching partial circle (arcs)

Look for topology in polarization maps? (cross-validation