The mask effect in non-Gaussian analyses in CMB data

Armando Bernui UNIFEI & ON

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

The mask effect in non-Gaussian analyses in CMB data

Armando Bernui UNIFEI & ON

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

PLANCK: SMICA

Non-Gaussian (NG) analyses in CMB data

We look for NG of any origin in CMB data

- ▶ there are various foreground sources $\Rightarrow \exists$ several types of NG
- ▶ they have different intensities and angular scale dependence

▶ they appear mixed: primordial with non-primordial NG

NG ANALYSES IN CMB DATA \exists an optimal estimator for prim. NG: bispectrum

However, maps also contain non-primordial NG and a single estimator is not **sensitive** to all possible NG contaminations in CMB maps:

- residual foregrounds and point sources
- instrumental systematic effects
- secondary CMB anisotropies
- ▶ non-linear second order perturbations, etc.

Consider, for instance, the 1-pdf

CMB from WMAP3: 1-point distribution function

-4

-2

メロト (四) (三) (三) (三)

2

4

Ο ΔΤ/σ,

CMB FROM PLANCK: 1-POINT DISTRIBUTION FUNCTION

NG ANALYSES IN CMB DATA

Different NG estimators are useful: to detect, to discriminate -between mixed contaminations-, to constrain, or to corroborate previous results,...and can be complementary!

For this, $\dots > NG$ estimators are welcome!

Systematic effects: incomplete CMB maps

One of the most important systematics is the masking effect, which seems unavoidable!

IN REAL MAPS ... MASKS ARE NECESSARY!

and also in the synthetic ones:

WHAT IS THE PROBLEM with using a mask?

In a Gaussian CMB map, a cut-sky does not modify the Gaussian props.

In a non-Gaussian CMB map this, in general, is not true!

MASKS ARE NECESSARY:

We know: $\widetilde{\Delta T} \propto \widetilde{\Phi} \Rightarrow \langle \Delta T(\theta_1, \varphi_1) \Delta T(\theta_2, \varphi_2) \Delta T(\theta_3, \varphi_3) \rangle$ full-sky CMB map BUT a full-sky CMB map is not available: masks needed to cut-off the foreground contaminations (g and e-g)

MASKED CMB-MAP: HOW TO DEAL WITH IT?

 In the literature*: calculations looking for NG assume a numerical factor f_{skv} to quantify the effect of the mask on NG estimations; e.g.

for KQ-75 9yr mask
$$\longrightarrow$$
 $\mathbf{f_{sky}}$ $=$ 71%

In other words NG is assumed isotropically distributed and a 29% cut-sky implies 29% less contamination, independent of the $f_{\rm NL}$ vaues

Be careful: this assumption may not be correct. Take a look at this example, imagine it is a WMAP map: what happen after the cut-sky?

* Yadav & Wandelt, arXiv:0712.1148; Creminelli et al., astro-ph/0509029

 To investigate masked vs. full-sky maps we shall consider simulated maps contaminated with local NG

CMB: A PROBE OF PRIMORDIAL UNIVERSE

• Cosmic Microwave Background (CMB) temperature fluctuations $\Delta T/T_0$ contain information from primordial Universe. Inflation provides a source for curvature perturbation $\Phi = \Phi(\vec{x}, t_{dec})$, which generates large-scale CMB fluctuations, through the comoving scalar curvature perturbation ζ

$$\frac{\zeta}{5} = \frac{\Phi}{3} = \frac{\Delta T}{T_0}$$

• $\Delta T/T_0$ are expected to be a stochastic realization of a Gaussian random field plus small non-Gaussian contributions due to primordial processes. The curvature perturbation in the real space can be split into two components: the linear term Φ_L (representing the Gaussian component) plus a NG term

$$\Phi(\mathbf{x}) = \Phi_{\mathrm{L}}(\mathbf{x}) + f_{\mathrm{NL}} \left(\Phi_{\mathrm{L}}^{2}(\mathbf{x}) - \langle \Phi_{\mathrm{L}}^{2}(\mathbf{x}) \rangle \right),$$

 $f_{\rm NL}$ is a dimensionless parameter. $f_{\rm NL}=0\implies$ purely Gaussian case.

CMB: LOOKING FOR PRIMORDIAL NG

 \blacktriangleright A non-null three-point correlation function for $\tilde{\Phi},$ that is,

$$\langle \, ilde{\Phi}(ec{k}_1) \, ilde{\Phi}(ec{k}_2) \, ilde{\Phi}(ec{k}_3) \,
angle = \delta(ec{k}_1 + ec{k}_2 + ec{k}_3) \, B_{\Phi}(k_1,k_2,k_3)$$

suggests primordial NG from a CMB. B_{Φ} is the bispectrum. Interesting: local non-Gaussianities $k_1 \approx k_2 \gg k_3$. For exm. $f_{\rm NL}^{\rm local} = 100$

 $\{a^{\rm G}_{\ell m} + 100 \times a^{\rm NG}_{\ell m}\} - \{a^{\rm G}_{\ell m}\} = \{100 \times a^{\rm NG}_{\ell m}\}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

CMB: LOOKING FOR PRIMORDIAL NG

• A non-null three-point correlation function for $\tilde{\Phi}$, that is,

 $\langle \, \tilde{\Phi}(\vec{k}_1) \, \tilde{\Phi}(\vec{k}_2) \, \tilde{\Phi}(\vec{k}_3) \, \rangle = \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \, B_{\Phi}(k_1, k_2, k_3)$

suggests primordial NG from a CMB. B_{Φ} is the bispectrum. Interesting: local non-Gaussianities $k_1 \approx k_2 \gg k_3$. For exm. $f_{\rm NL}^{\rm local} = 100$

 $\{a^{\rm G}_{\ell m} + 100 \times a^{\rm NG}_{\ell m}\} - \{a^{\rm G}_{\ell m}\} = \{100 \times a^{\rm NG}_{\ell m}\}$

$$-10 \le 17 \le f_{
m NL}^{
m local} \le 57 \le 74$$
 wmap-9yr

 To investigate masked vs. full-sky maps we shall investigate simulated maps contaminated with local NG using two new Gaussian statistical estimators

・ロト ・御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・ の

NG estimators for CMB maps: Skewness-map

Consider a CMB sphere.

- Consider a hemisphere centered at the north pole C₁. Calculate the skewness inside and save the value S₁ associated to C₁.
- ► Consider a hemisphere centered at another point C₂. Calculate the skewness inside and save the value S₂ associated to C₂.
- Assuming you have started with a uniform distribution of points: {C₁, C₂, ..., C_N}, then you get a set of real values {S₁, S₂, ..., S_N}.
 HealPix helps you to get a colored map!

NG ESTIMATORS FOR CMB MAPS: S-map

Calculate the SKEWNESS values on N hemispheres (= caps of 90° aperture) whose centers are uniformly dist.: this set **S** form the SKEWNESS-MAP

$$\mathbf{S} = \{S_j, j = 1, \dots, N_{Caps}\}$$
, where $S_j \equiv \frac{1}{N_p \sigma_j^3} \sum_{i=1}^{N_p} \left(\Delta T_i - \overline{\Delta T_j}\right)^3$

Temperature map: T

Skewness-map: S(T)

NG ESTIMATORS FOR CMB MAPS: K-map

Calculate the KURTOSIS values on N hemispheres (= caps of 90° aperture) whose centers are uniformly dist.: this set **S** form the KURTOSIS-MAP

$$\mathbf{K} = \{K_j, j = 1, \dots, N_{\mathsf{Caps}}\}$$
, with $K_j \equiv \frac{1}{N_p \sigma_j^4} \sum_{i=1}^{N_p} \left(\Delta T_i - \overline{\Delta T_j}\right)^4 - 3$

Temperature map: T

NG ESTIMATORS FOR CMB MAPS: S & K-maps

Then we calculate their power spectra:

and use the χ^2 – statistics to evaluate the results

メロト メタトメミト メミト 二月

WE DO HAVE -or Not- a nearly Full-Sky MAP?

Masks are necessary!

MASKS ARE NECESSARY? ... THEY ARE!

Full-sky versus Masked maps: take a look!

MASKED CMB-MAP: A CONTAMINATING EFFECT?

We are curious about: NG estimatives are independent of the value f_{NL}^{local} present in the MC map?

► We study the effect of masking procedure in non-Gaussian CMB analyses. Using thousands of simulated CMB maps containing different amounts of primordial NG of local type: f^{local}_{NL} = 0, 11, 53, 200, 500, we quantify the effect produced by KQ-75 9yr WMAP mask.

Results 1

Gaussian analyses: Kurtosis-maps spectra

 $\chi^{2}|_{\text{masked}} / \chi^{2}|_{\text{full-sky}} = 3.4 \text{ (GoF)}; \chi^{2}|_{\text{masked}} / \chi^{2}|_{\text{full-sky}} = 5.4 (\chi^{2}-\text{statistics})$

(日) (四) (日) (日) (日)

$$\chi^2 - \text{STATISTICS}$$

$$\chi^2 = \sum_{i,j=1}^{\#bins} (f_i - \langle f_i \rangle) \mathbf{M}_{ij}^{-1} (f_j - \langle f_j \rangle),$$

where,

$$\mathbf{M}_{ij} \equiv \langle f_i f_j \rangle - \langle f_i \rangle \langle f_j \rangle,$$

is the covariance matrix, and $\langle f_i \rangle$ corresponds to the **mean** of

the function determined by the MC CMB maps for the *i*-th bin.

Results 2

 $\sim \chi^2$ -statistics for the above spectra (NG^{masked}_{full-sky} versus G^{masked}_{full-sky} maps) gives low values. Instead relative χ^2 , i.e. $\chi^2|_{\text{masked}}/\chi^2|_{\text{full-sky}}$ leads to a quantitative comparison between the mean-spectra corresponding to masked and unmasked cases.

Kurtosis

CONCLUSIONS

- Contaminations are underestimated in masked maps with small *f*_{NL}^{local}: lower is the *f*_{NL}^{local} value worse is the fit to the corresponding Gaussian spectrum case, as compared with similar evaluation for the full-sky case.
- ► Estimatives of NG via f_{sky} depends on |f_{NL}^{local}|: i.e., f_{sky} ≠ const. To say it simple: masks seems to introduce NG in a non-trivial way. We conclude that the masking process is not innocuous at all and deserves accurate examination.

Bibliography

A. Bernui and M.J. Rebouças, Phys. Rev. D85, 023522 (2012)

Acknowledgements

To FAPEMIG (Fund. de Amparo à Pesq. do Estado de Minas Gerais)