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Universal fluctuations in mesoscopic transport

Conduction can be described as single particle scattering
via Landauer-Bittiker formalism

Semiclassical approach to universal fluctuations of
scattering observables: cross-sections, transmission
coefficients (conductance), Wigner time delay ...
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Statement of the dwell time problem

Classical scattering L,
average classical time delay {}vf:
n

Dwell time in quantum mechanics
first attempts: Eisenbud & Wigner, Smith
Wigner time delay

connection with density of states
classical limit

Conclusions
quantum-classical correspondence ?

One particle scattered by a potential in 2D, 3D

Asymptotically free Electronic scattering Idealization of mesoscopic
particle scattered by through a transport problem. Cavity
a smooth potential. mesoscopic cavity. plus waveguide geometry.




Control surfaces allow to define dwell time with precision

S

dwell time :

Initial states on stable manifolds
of prisoner trajectories have
infinite dwell times.
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Does the average over initial states exist?

It depends on how initial states areweighted:
determined by experimental setting
or theoretical considerations.




The scattering map can be seen as the first return map to %,
¥ is equipped with coordinates (q,p)

E fixed

S={@,p)} S¢={(y.p}U-

» The scattering map is area preserving.

» The “natural” weight of a set of incoming (outgoing) states
is its area in X (Liouville measure).
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Poincaré’s recurrence theorem: “All” points in C return to C
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The average dwell time

Qt (g, p)dodp

{t),= A(ls) A(S) = Qdadp

is finite and can be expressed in terms of simple geometric
properties of the scattering system.

» Abstract scattering system
» Billiard + waveguides, dwell time measured in bounces
» General case
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If time is measured in bounces, scattering by a billiard is a
Poincaré recurrence map.
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But
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Cornfeld-Fomin-Sinai, p. 20
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If T is ergodic then
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Even for non-ergodic T we may have | |¥ 1T "C=Gedg.,
n=.
The general resultis
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depend on the

I’T'(C) dynamics!

14

Observation:

D diameter
< >S < > _<¥ V velocity

Can the previous scheme be adapted to the continuous case?
Consider the stroboscopic map !
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C set of incoming states
&t

inner phase space explored by scattering trajectories 15

Let's C grow in two directions:
(1) normal to the energy surface DE
(2) along the flow Dt

¢ ={(v.p,.Ent)}

‘GU energy shell of width DE inside the scatterer

With this choice: e We
n'(C)=n(C)[EDt rr(@:ﬁDE volume inside

the energy shell
m(C) =W, i

to the right of £

volume in X inside the energy shell of £ .




| number of channels|

W= cyixdydp,dp,

HEE

x>0

These formulas are also valid for smooth systems !

We = Q(x=0, p,=0)EE dydp,
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y , p y
in thewaveguide H = H +-—*
y Zm —Ix_

Hf . (Y)=ef . (Y)

€, <E open channels, propagating o+ h’k’

€, > E closed channels, evanescent "2m,
é\l e+ik,,x g e ik, x

y (xy;E)=a a,——f,(y) +a b,——"f.(y)
L e TP [ R,

- unitary scattering S-matrix
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For fixed x, e.g., x=0 S
N ¥
S: éaan%) ® ébnf&(_y)
n=1 - n=1 kn
y in y out

» The classical limit of the quantum scattering map
(S-matrix) is a Poincaré section map

» Unitarity of S corresponds to classical area preservation

» Averages over (quantum) channels correspond to
averages over X with the Liouville weight
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s-wave scattering, spherical symmetry
stationary phase
peak
L =v(t,-t)
t, =h(dd/dE)
_
r. =v(t-t,- Dt)
— ~2ih(E)
S(E) =¢”
( ) delay time Dt = %%
S “matrix”
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_ =)
Dt 2h_ - hS ElsenbUd (1948) _
dE dE Wigner (1955)

£(E) =- inst 95 dS time-delay matrix =S - dS
(B) =-i dE  Smith (1960) dE
Example: hard core of radius @ Wigner-Eisenbud
S(E) = e'Zik"’l k=p/h=nmv/h <t'\aa> time delay for awavepacket inciding via channel a
a Averaging over channels (equal weights)
Dt =- — time advance
V

tw(E)=- —T % —+ Wigner time-delay

P, (t) QP (r t) dF S-matrix pole decomposition

==l LB e e e
classical dwell time in R —

P(r,t) =L/ (F,t)|2 P quantum dwell time definition

tw(E) =% r(E)+--- Krein-Friedel-Lloyd
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Wigner time delay as indicator of
resonant structure
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15 open channels, overlapping resonances
A. M. Ozorio de Almeida & ROV (1999)

transmission vs Wigner time delay
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Vi if transmission
I | coefficients

partial time delays
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4 channels in each guide, Akguc & Reichl (2000)
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Averaging over a window (t )» h (r)
containing many resonances ... w

In the semiclassical limit
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energy averaged classical
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energy averaged classical
Wigner time delay time delay
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