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Motivation

Universal fluctuations in mesoscopic transport

Conduction can be described as single particle scattering
via Landauer-Büttiker formalism

Semiclassical approach to universal fluctuations of  
scattering observables: cross-sections, transmission
coefficients (conductance), Wigner time delay ...
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Summary

Statement of the dwell time problem

Dwell time in quantum mechanics
first attempts: Eisenbud & Wigner, Smith

Wigner time delay
connection with density of states
classical limit

Classical scattering
average classical time delay

Conclusions
quantum-classical correspondence ?
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The problem

Asymptotically free 
particle scattered by 
a smooth potential. 

What is the duration of the scattering process?
(meaningful question in classical mechanics)

Electronic scattering 
through a 
mesoscopic cavity.

Idealization of mesoscopic
transport problem. Cavity 
plus waveguide geometry.

One particle scattered by a potential in 2D, 3D
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Classical scattering

Control surfaces allow to define dwell time with precision
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Dependence on initial conditions: 
reaction functions Ott’s chaos book

Bleher, Grebogi & Ott, 1990
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regular chaotic

Fractality is caused
by stretching and 
folding.

7

Dependence on initial conditions: dwell time

Στ260.0=
mE

E

Σ

b

Initial states on stable manifolds
of prisoner trajectories have
infinite dwell times.
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Classical dwell time: statistical approach

τ
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Does the average over initial states exist?

It depends on how initial states are weighted: 
determined by experimental setting
or theoretical considerations.

?)( =τP distribution of 
dwell times
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Scattering as a Poincaré section mapping

The scattering map can be seen as the first return map to S,
S is equipped with coordinates (q,p)

)},{( θθ p=Σ

Ø The “natural” weight of a set of incoming (outgoing) states 
is its area in S (Liouville measure). 

Ø The scattering map is area preserving.

LU)},{( ypy=Σ′

E fixed
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Average dwell time

is finite and can be expressed in terms of simple geometric 
properties of the scattering system.

The average dwell time
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Proof in three steps

Ø Abstract scattering system
Ø Billiard + waveguides, dwell time measured in bounces
Ø General case
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1. Recurrence map as a scattering system

ΓΓ→Γ:T
area preserving

CΓ⊂C
entrance/exit

T

Poincaré’s recurrence theorem: “All” points in C return to C
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2. Billiard + waveguide,  E fixed
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If time is measured in bounces, scattering by a billiard is a 
Poincaré recurrence map.
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Computing the average
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Special cases

If T is ergodic then
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Kac’s lemma (1947)

The general result is              
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Continuous time

Σ∞<<
ΣΣ v

D
nτ

D
v

diameter

velocity

Observation:

Can the previous scheme be adapted to the continuous case?

Consider the stroboscopic map !
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Γ′,C are 4 dimensional       

C
Γ′

set of incoming states   

inner phase space explored by scattering trajectories
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Constructing       fromC
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Let’s C grow in two directions:
(1) normal to the energy surface
(2) along the flow
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Γ′ energy shell of width          inside the scattererE∆
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With this choice:
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volume inside
the energy shell
to the right of S( ) ΣΩ=Cµ

volume in S inside the energy shell of S
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Final result
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These formulas are also valid for smooth systems !

density of states

number of channels

Σ
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Multichannel scattering
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The S-matrix as a QPM

For fixed x, e.g., x=0
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Ø The classical limit of the quantum scattering map               
(S-matrix) is a Poincaré section map

Ø Unitarity of S corresponds to classical area preservation

Ø Averages over (quantum) channels correspond to   
averages over Swith the Liouville weight
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Simplest version of quantum time delay

s-wave scattering, spherical symmetry
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Eisenbud-Wigner time delay
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Wigner (1955)
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Example: hard core of radius a

22

A more general definition
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Time delay matrix

dE
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Wigner-Eisenbud

time delay for a wavepacket inciding via channel aaaτ̂
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Connection with density of states
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Examples

Wigner time delay as indicator of 
resonant structure

15 open channels, overlapping resonances
A. M. Ozorio de Almeida & ROV (1999)
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Examples II

4 channels in each guide, Akguc & Reichl (2000)

transmission vs Wigner time delay

transmission
coefficients

partial time delays
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Energy average )()( E
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containing many resonances ...

In the semiclassical limit
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Quantum-classical correspondence ?
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Wigner time delay
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time delay

Ø Differences are due to tunneling

Ø There is no correspondence in general, i.e., for systems
with mixed phase space

Ø Very thin resonances also contribute to the quantum 
average time delay
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Final remark

EW ∂
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energy averaged
Wigner time delay

Σ= τunder certain
conditions

classical
time delay


