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Plan of the seminar

2. Entangling power of the baker’s map revisited,

with Rômulo F. Abreu

1. Introduction
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Introduction
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Motivation

Why study entangling power of the baker map?

Entanglement is an essential resource for quantum 
computation

What kind of quantum operations produce high levels 
of entanglement?

Or, what is the property that makes a quantum 
operation a good entangler?
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Baker’s map: The Quantum Chaos generation

Balazs & Voros, EL 86
birth (quantization)

selected papers

Saraceno, AP 90
striking scar phenomenon

Dittes, Doron, Smilansky, PRE 94
computation of long-time semiclassical traces

Heller, Tomsovic, Kaplan, O’Connor, ... 90’s
semiclassical theory beyond the log-time

Saraceno & Ozorio de Almeida, AOP 91
semiclassical theory

6

Baker’s map in Quantum Information, 
Computation, Quantum Open Systems

Schack & Caves, PRL 92, PRL 93, PRE 96
information-theoretical characterization of quantum chaos

Schack, PRA 98
efficient realization in terms of quantum gates

Brun & Schack, PRA 99
proposal of 3-bit NMR experiment

Weinstein, Lloyd, Emerson & Cory, PRL 02
NMR experiment

Schack & Caves, AAECC 00
quantum binary shift, family of quantizations
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Baker’s map in QC, QOSystems, etc

Tracy & Scott, JPA 02
limiting cases of Schack-Caves bakers

Soklakov & Schack, PRE 00; PRE 02
classical limit; decoherence studies

Lozinski & Pakonski, PRE 02
irreversible quantum baker

Bianucci, Paz & Saraceno, PRE 02
decoherence studies

Scott & Caves, JPA 03
entangling power

Meenakshisundaram & Lakshminarayan, PRE 05;
Lakshminarayan, JPA 05

multifractal eigenstates, Hadamard
8

New language: qubits, gates, circuits, ...

A qubit is a two-state quantum system.
It has a chosen computational basis           .1,0

A collection of qubits is called a register. 

A quantum logic gate is an elementary quantum 
computation device which performs a fixed 
unitary operation on selected qubits in a fixed period 
of time. 

Barenco, Ekert, Suominen & Törmä, PRA 96

Uinψ outψ
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Quantum networks

A quantum network is a quantum computing device 
consisting of quantum logic gates whose computational steps 
are synchronized in time. 

The outputs of some of the gates are connected by wires to 
the inputs of others. 

The size of the network is its number of gates.

+

_
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Quantum computer

A quantum computer is a quantum network (or a family of 
quantum networks). 

Quantum computation is defined as a unitary evolution of 
the network which takes its initial state input into some final 
state output.
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One qubit gates
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Two qubit gates
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Quantum Fourier Transform

j1 ⊗ j2 ⊗ ... ⊗ jn ≡ j computational basis
(position basis)

j = j12n−1 + ...+ jn 20

F j = 2−n /2 e2π i j k /2 n

k=0

2n −1

∑ k

Periodic Fourier transform
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Factorization of QFT

F j = 2−n / 2 0 +e2πi0. j n 1( )⊗

0 + e2πi0. jn−1 j n 1( )⊗

...

0 + e2πi0. j2 ... jn 1( )⊗

0 + e2πi0. j1... jn 1( )
Fourier transform does not entangle states of the computational basis 
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Quantum Fourier Transform (periodic)

=4F

symmetric controlled phases
bit reversal

16

The baker’s map
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Classical baker

fully chaotic dynamics
(binary shift)
unit square 
è phase space
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Quantum baker’s map

12 += nN

+F
FnB

1+n

=

B j1 ⊗ j2 ⊗ ...⊗ jn+1 =

Fn+1 j1 ⊗ Fn
+ j2 ⊗ ...⊗ jn+1( )[ ]

+
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Baker matrix in the computational basis

B = FN
∗ FN /2 0

0 FN /2

 

 
 

 

 
 

N is the dimension of Hilbert space, e.g., N=2n,

but may take any even value.

20

NOT Symmetry

Saraceno, AP 90If antiperiodic Fourier is used, then 

negation

Corresponds to phase-space reflection symmetry

=F ′ F ′

=B B



6

21

Symmetry reduced baker 

Because of reflection symmetry the baker can be block diagonalized
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π,0D
desymmetrized baker
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The classical D-baker (D-map)

Cvitanovic,  Gunaratne & Procaccia, PRA 88

conservative 
Smale horseshoe
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The quantum D-baker

12 += nN

Saraceno & Vallejos, CHAOS 95

D
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CNOT of all subleading bits

Does not have reflection symmetry

ϕ
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ϕ

24

D-baker matrix in the computational basis
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Digression: Quantum Smale horseshoe

Saraceno & 
Vallejos, CHAOS 95
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N=108

Nonnenmacher &
Zworski, nlin.CD 04-05
fractal Weyl laws,
resonance distribution, 
etc
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Entangling power of the baker’s map

27

Entanglement

H = H A ⊗ H B

The Hilbert space of the composite system is the tensor product of the 
Hilbert spaces of both subsystems:

A pure state of a pair of quantum systems, A and B, is said entangled if it 
is not separable.

BABA ψφ ⊗=Ψ +

H A H BH

separable
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Entangling measures for bipartite pure states  

Ψ ∈ H A ⊗ H B

ΨΨ=ρ

ΨΨ= BA trρ

pure state

density matrix

reduced density matrix

AAAS ρρ logtrvN −=

21 AAS ρtrL −=

von Neumann entropy

linear entropy
(1 minus purity)
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Entangling power of unitary transformations  
Zanardi, Zalka & Faoro, PRA 00

[...] how much entanglement is produced by U on the average, 
acting on a given distribution of non-entangled quantum states. 

entanglement measure,
i.e., von Neumann or 
linear entropy

average over ensemble
of product states, with
probability p

ep = E U ψA ⊗ ψB( )
ψA ,ψ B

30

Properties  

ep = E U ψ A ⊗ ψB( )
ψA ,ψB

Zanardi, Zalka & Faoro, PRA 00

If E is von Neumann (or linear) entropy, the measure above 
satisfies the properties required for an entanglement 
measure:

( ) ( )UeUUUe BA pp =⊗

( ) ( )UeUTe pp =

( ) 01 =pe

T=SWAP  (if dimA= dimB)

31

Ensembles of states

ψ → x1 + i y1, ... , xN + i yN( )

uniform measure (CUE, Haar)

p x1, y1,..., xN ,yN( )∝ δ 1− xi
2 + yi

2

i=1

N

∑
 

 
 

 

 
 

Invariant with respect to unitary transformations

States generated in this way are called random states

32

Ensembles of product states

Invariant with respect to local unitary transformations

BA ψψψ ⊗=

CUE NA( ) CUE NB( )

Minimum information ensemble

CUE NA( )⊗CUE NB( )



9

33

Ensembles of unitary operators

Invariance with respect to left or right group actions

U →
x11 + i y11

...
xNN + i yNN

 

 

 
  

 

 

 
  

( ) ( )21 VUVpUp =

Measure in the group of unitary matrices ( )Up

è leads to CUE ensemble

34

Ensemble average in ...

ep = E U ψ A ⊗ ψB( )
ψA ,ψB

Zanardi, Zalka & Faoro, PRA 00

The “natural” measure in the set of product states is 
CUE X CUE, to be denoted p0 .

Proposition

ep0
U( )

U ∈ CUE
=

NA −1( ) NB −1( )
NA NB +1

35

Comment

e p0
U( )

U ∈ CUE
= E U ψ( )

U∈CUE

any input state,
U in CUE

CUE ensemble of product states, 
U in CUE
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Other measures: 
2) Operator entanglement (Schmidt strength)

eSch U( )= −trA ρA
U logρA

U

ρA
U = trB U U

Zanardi, PRA 01
Wang & Zanardi, PRA 02

Nielsen et al, PRA 03
Zyczkowski & Bengtsson, OSID 04

UUU =ρ

HS
N

HS
N BA

HHU 22 ⊗∈

A B ≡ tr A+B( ) Hilbert-Schmidt scalar product
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? ∃ p ψA, ψB( ) :

Question

Is there a measure 
in the set of separable states 

such that the entangling power 
coincides with Schmidt strength?

e p = E U ψA ⊗ ψB( )
ψA ,ψB

= eSch U( )
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Other measures: 3) Eigenvector entanglement

U

ψk{ }1≤k≤N

unitary operator

eigenvectors

Calculate the entanglement of each eigenvector and then 
average over all eigenvectors
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Simulations with the baker

Experimental setup

n

m

τB
A

B

ψ

ψ

⊗

Aρ entropy

Ø Entanglement between most (m) and least (n) significant qubits,
as a function of time

Ø Average over set of input pure states (Zanardi)

non-selective measurement
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Tracing out most significant qubits

ρ12...n ρ2...n

+
1tr 2tr

ρ3...n

+

ρ 4...n

+
3tr ...
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Scott & Caves, JPA 03

CUE average

Schack-Caves family

(s
ca

le
d) Balazs

Voros
Saraceno

80 ⊗
input è

4== nm
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Distribution of entropies

φ1 ⊗ φ2 ⊗...⊗ φ8input ensemble =
8

1
⊗CUE

Scott & Caves, JPA 03

t=512
20,000 states

LS

( )LSP
CUE
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Bakers vs CUE

Bakers are not as good entanglers as typical CUE maps 

Symmetries ? 

Scott & Caves, JPA 03
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Our simulations: 1. Enlarging the ensemble

t=512
20,000 states

LS

LS

( )LSP

( )LSP

8
1
⊗CUE

2
4
⊗CUE
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Baker vs D-map
2

4
⊗CUE( )LSP

LS

baker

D-map
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Baker vs D-map  II

Elimination of symmetry does not increase 
asymptotic entangling power

LS

( )LSP
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Complementary test: Random Symmetric Map

B =U
B− 0

0 B+

 

 
 

 

 
 U

+ →U
COE1 0

0 COE2

 

 
 

 

 
 U

+

LS

( )LSP CUE

S-RMT

one iteration

Both baker and D-map 
possess a 
time-reversal symmetry





−

=
1

1

2
1

R

R
U

48

Then ...

Introducing symmetry does not reduce 
entangling power 
of random maps
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Comments 

Symmetry does not affect entangling power, 
at least for the considered measure

But it might be relevant for eigenvector 
entanglement ... 

(initial states are symmetric, 
symmetry is preserved by the partial trace)

Who is responsible ?
50

Observation

Spectrum is not relevant for asymptotic
entangling power 
(if incommesurate)

Demkowicz-Dobrzanski & Kus, PRE 04
Weinstein & Hellberg, quant-ph 05

SL ∞( )= lim
T→∞

1
T

SL t( )
t=1

T

∑ ∝

1− ...( )
k1,k2,k3,k4

∑ e
i φ k1

−φ k 2
+φ k 3

−φ k 4( )t

time
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Arithmetical chaos?

It is known since Balazs-Voros’ times that 
bakers with N=2n are anomalous:

Balazs & Voros, AOP 89

Poisson !!

254=N 256=N

θθ

( )θN( )θN
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Form factor

N/τ

tr Uτ 2

102=N

1000=N

M. Sano, CHAOS 00

dotted: CUE
dashed: COE
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Breaking pseudo-symmetries

t=512
20,000 states

2381772 =⊗×=N
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Conclusions and perspectives

ConclusionsConclusions

We showed in two different ways that spatial symmetry does 
not affect the entangling power of typical unitaries. 

By avoiding power-of-two dimensions, i.e., qubit systems, 
agreement with Random Matrix Theory is restored.

Next steps
(i) eigenvector entanglement analysis
(ii) identification of precise place where deviation from RMT  

occurs
(iii) analysis of pseudo-symmetries


