Lyapunov exponent of a Lennard-
Jones gas: cumulant expansion

WORKSHOP ON NONLINEAR PHYSICS AND APPLICATIONS,
JOAO PESSOA, 9 SEPTEMBER 2011



Can the
estimate the of a
(dilute) Lennard-Jones gas?



Dynamical system

Asymptotically

W(t)| ~ |wje”




In the limit

Linear system of differential equations with
time-dependent coefficients

Operational definition of Lyapunov exponent :

A does not depend
on initial conditions



A quantifies sensitivity to initial conditions,
instability, unpredictability, chaos
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if intermittency weak enough



ROV & C. Anteneodo, PRE02
Barnett, Tajima, Nishihara, Ueshima,
Furukawa, PRL96

Analogous to a Schrodinger
‘equation with a

time-dependent
nonhermitian Hamiltonian
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ROV & C. Anteneodo, PRE02
Barnett, Tajima, Nishihara, Ueshima,
Furukawa, PRL96
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nonhermitian Hamiltonian

time ordering
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Preparatory step
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- Switch to the interaction representation
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 Fluctuations of small amplitude and/or short correlation time
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average + integrated autocorrelation function + ...
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~ The generalized Lyapunov exponent is given by

=~ max R eigenvalues of O
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Next: calculate and diagonalize O. Use symmetries!




In some cases = 3D,
eXx., dilute gas, Hamiltonian mean field XY model

Other cases = restrict to 3D subspace
(mean field approximation in tangent space)
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normalized autocorrelation function 18
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Short correlation time, negligible average fluctuations
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first neighbors

100
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The Lennard-Jones gas

N
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dilute
gas phase

N=108

Smit, JCP (1992)
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numerical

= Romero Bastida,
Braun, JPAOS
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Lyapunov exponents

average over
finite-time




dominated by tails

Simple sampling is bound to fail
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dominated by tails

The larger the g, the worse the performance of SS
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Gaussian approximation

Some improvement but still unsatisfactory
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Estimating generalized Lyapunov exponents for products of random matrices
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We discuss several techniques for the evaluation of the generalized Lyapunov exponents which characterize
the growth of products of random matrices in the large-deviation regime. A Monte Carlo algorithm that
performs importance sampling using a simple random resampling step is proposed as a general-purpose
numerical method which 1s both efficient and easy to implement. Alternative techniques complementing this

cloning and pruning
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6N equations (ex., N=108)
for 3D L]

de
dt

=A(t) ¢

Hessian
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6N equations (ex., N=108) 2 equations
for 3D L]

Hessian
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ex., i.i. Gaussians

Poisson sequence
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Adapt importance-sampling MC to
deterministic LJ dynamics

theory

numerical
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Thanks!

http://www.cbpf.br/~vallejos/publications
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