Lyapunov exponent of a Lennard-Jones gas: cumulant expansion

<u>Raúl O. Vallejos (CBPF)</u> Celia Anteneodo (Puc-Rio) Leonardo Cirto (CBPF, MSc)

WORKSHOP ON NONLINEAR PHYSICS AND APPLICATIONS, JOÃO PESSOA, 9 SEPTEMBER 2011

Purpose

Can the cumulant-expansion approach estimate the Lyapunov exponent of a (dilute) Lennard-Jones gas?

The Lyapunov exponent

Dynamical system

 $\frac{dx}{dt} = f(x), \quad x \in \Re^n$

Asymptotically

$$|w(t)| \approx |w| e^{\lambda t}$$

Tangent dynamics

In the limit $|w| \rightarrow 0, w \rightarrow \xi$:

$$\frac{d\xi}{dt} = Df_{x(t)} \cdot \xi$$

Linear system of differential equations with time-dependent coefficients

Operational definition of Lyapunov exponent :

 $\lambda = \lim_{t \to \infty} \frac{1}{t} \ln \left| \xi(t) \right|$

 λ does not depend on initial conditions

Why λ ?

 λ quantifies sensitivity to initial conditions, instability, unpredictability, chaos

In classical statistical mechanics: $\lambda > 0$ necessary for validity of microcanonical formalism $\lambda \approx 0$ signals thermodynamic anomalies

Hessian

1)
$$\lambda = \lim_{t \to \infty} \frac{1}{2t} \ln |\xi(t)|^2$$

$$\frac{d\xi}{dt} = A(t)\xi$$

$$\begin{pmatrix} 0 & 1\\ -\underline{V}(t) & 0\\ \end{bmatrix}$$

Hessian

1)
$$\lambda = \lim_{t \to \infty} \frac{1}{2t} \ln |\xi(t)|^2$$

2)
$$\lambda = \lim_{t \to \infty} \frac{1}{2t} \left\langle \ln \left| \xi(t) \right|^2 \right\rangle_{x_0, \xi_0}$$

Hessian

1)
$$\lambda = \lim_{t \to \infty} \frac{1}{2t} \ln |\xi(t)|^2$$

2)
$$\lambda = \lim_{t \to \infty} \frac{1}{2t} \left\langle \ln \left| \xi(t) \right|^2 \right\rangle_{x_0, \xi_0}$$

3)
$$\lambda \approx \lim_{t \to \infty} \frac{1}{2t} \ln \left\langle \left| \xi(t) \right|^2 \right\rangle_{x_0, \xi_0} \equiv \lambda_2$$

 $\frac{d\xi}{dt} = A(t)\xi$ $\begin{pmatrix} 0 & 1\\ -\underline{V}(t) & 0\\ \end{bmatrix}$

Hessian

if intermittency weak enough

A theory for λ_2

ROV & C. Anteneodo, PRE02 Barnett, Tajima, Nishihara, Ueshima, Furukawa, PRL96

 $\frac{d\xi}{dt} = A(t)\xi \quad \Leftrightarrow \quad \frac{d\psi}{dt} = -iH(t)\psi$

Analogous to a Schrödinger equation with a time-dependent nonhermitian Hamiltonian

A theory for λ_2

ROV & C. Anteneodo, PRE02 Barnett, Tajima, Nishihara, Ueshima, Furukawa, PRL96

$$\frac{d\xi}{dt} = A(t)\xi \quad \Leftrightarrow \quad \frac{d\psi}{dt} = -iH(t)\psi$$

Analogous to a Schrödinger equation with a time-dependent nonhermitian Hamiltonian

Solution:

$$\xi(t;x_0,\xi_0) = T e^{\int_0^t A(t_1;x_0)dt_1} \xi_0$$

time ordering

Second moments

$$\lambda_{2} = \lim_{t \to \infty} \frac{1}{2t} \ln \left\langle \left| \xi(t) \right|^{2} \right\rangle_{x_{0},\xi_{0}}$$

$$\left< \left| \xi \right|^2 \right> = Tr \left< \xi \xi^T \right>$$

matrix of second moments

$$\frac{d\xi}{dt} = A\,\xi \Longrightarrow \quad \frac{d}{dt}\,\xi\xi^T = A\,\xi\xi^T + \xi\xi^T A^T \equiv \hat{A}\,\xi\xi^T$$

linear operator

$$\left\langle \xi\xi^{T}(t)\right\rangle_{x_{0},\xi_{0}} = \left\langle T e^{\int_{0}^{t} \hat{A}(t_{1};x_{0})dt_{1}}\right\rangle_{x_{0}} \underbrace{\left\langle \xi_{0}\xi_{0}^{T}\right\rangle_{\xi_{0}}}_{\propto \frac{1}{z}}$$

Preparatory step

$$\hat{A} = \left\langle \hat{A} \right\rangle + \delta \hat{A}$$

 \rightarrow Switch to the interaction representation

The cumulant expansion (Kubo, van Kampen, Fox)

Fluctuations of small amplitude and/or short correlation time

$$\left\langle T e^{\int_0^t \hat{A}(t_1;x_0)dt_1} \right\rangle = e^{\hat{O}t}$$

 \hat{O} is time-independent

$$\hat{O} = \left\langle \hat{A} \right\rangle + \int_{0}^{\infty} d\tau \left\langle \delta \hat{A}(t) e^{\tau \left\langle \hat{A} \right\rangle} \delta \hat{A}(t-\tau) e^{-\tau \left\langle \hat{A} \right\rangle} \right\rangle + \cdots$$

average + integrated autocorrelation function + ...

The cumulant expansion II

$$\left\langle \left| \xi \right|^2 \right\rangle = Tr \left\langle \xi \xi^T(t) \right\rangle = Tr e^{\hat{O}t} \mathbf{1}$$

The generalized Lyapunov exponent is given by

$$\lambda_2 = \frac{1}{2} \max \Re \left(eigenvalues of \hat{O} \right)$$

Next: <u>calculate</u> and <u>diagonalize</u> Ô. Use symmetries!

Relevant subspace

In some cases \rightarrow 3D, ex., dilute gas, Hamiltonian mean field XY model

Other cases \rightarrow restrict to 3D subspace (mean field approximation in tangent space)

Final result (second order)

 $\|\hat{O}\| = \begin{pmatrix} 0 & 0 & 2 \\ 2\sigma^{2}\tau_{c}^{(1)} & -2\sigma^{2}\tau_{c}^{(3)} & -2\mu \\ -\mu + 2\sigma^{2}\tau_{c}^{(2)} & 1 & -2\sigma^{2}\tau_{c}^{(3)} \end{pmatrix}$ 3x3 matrix

Final result (second order)

$$\|\hat{O}\| = \begin{pmatrix} 0 & 0 & 2 \\ 2\sigma^{2}\tau_{c}^{(1)} & -2\sigma^{2}\tau_{c}^{(3)} & -2\mu \\ -\mu + 2\sigma^{2}\tau_{c}^{(2)} & 1 & -2\sigma^{2}\tau_{c}^{(3)} \end{pmatrix}$$

3x3 matrix

$$\mu = \frac{1}{N} \operatorname{Tr} \left\langle \underline{\mathbf{V}} \right\rangle_{\mu}$$

average

$\sigma^2 = \frac{1}{N} \operatorname{Tr} \left\langle \left(\delta \underline{\underline{V}} \right)^2 \right\rangle_{\mu}$

variance

$$\tau_c^{(k)} = \int_0^\infty d\tau \, \tau^{k-1} f(\tau)$$

correlation times

$$f(\tau) = \frac{1}{N\sigma^2} \operatorname{Tr} \left\langle \delta \underline{\underline{V}}(0) \delta \underline{\underline{V}}(\tau) \right\rangle_{\mu} = \frac{1}{N\sigma^2} \sum_{i,j=1}^{N} \left\langle \delta V_{ij}(0) \delta V_{ij}(\tau) \right\rangle_{\mu}$$

normalized autocorrelation function

Special case

Short correlation time, negligible average fluctuations

$$\lambda_2 \approx \left(\frac{\sigma^2 \tau_c^{(1)}}{2}\right)^{1/3}$$

Testing the theory

 α -XY Hamiltonian model

$$H = \sum_{i=1}^{N} \frac{L_{i}^{2}}{2I} + \frac{J'}{2} \sum_{i,j=1}^{N} \frac{1 - \cos(\theta_{i} - \theta_{j})}{r_{ij}^{\alpha}}$$

Results $\lambda_{num} v s \lambda_{2 theo}$

ROV & C. Anteneodo *Physica A* (2004)

numerics

Latora, Rapisarda, Ruffo, PRL (1998)
Anteneodo & Tsallis, PRL (1998)
Campa, Giansanti, Moroni, Tsallis, PLA (2001)

The Lennard-Jones gas

The Lennard-Jones gas

N=108

Smit, JCP (1992)

L. Cirto, MSc Thesis (2010)

Theory vs numerics

Generalized vs standard LE (numerical)

However ...

$$\lambda \approx \left\langle \frac{1}{2t} \ln \left| \xi \right|^2 \right\rangle_{x_0, \xi_0}$$

average over finite-time Lyapunov exponents

If simple sampling ...

Simple sampling is bound to fail

If simple sampling ...

The larger the q, the worse the performance of SS

Simple sampling + Gaussian?

Gaussian approximation

Some improvement but still unsatisfactory

Importance sampling!

stochastic maps

PHYSICAL REVIEW E 81, 036701 (2010)

Estimating generalized Lyapunov exponents for products of random matrices

J. Vanneste*

of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, Uni (Received 12 November 2009; published 8 March 2010)

We discuss several techniques for the evaluation of the generalized Lyapunov exponents which characterize the growth of products of random matrices in the large-deviation regime. A Monte Carlo algorithm that performs importance sampling using a simple random resampling step is proposed as a general-purpose numerical method which is both efficient and easy to implement. Alternative techniques complementing this

cloning and pruning

Test: random frequency oscillator

=1D Anderson localization problem

6N equations (ex., N=108) for 3D LJ

Test: random frequency oscillator

=1D Anderson localization problem

6N equations (ex., N=108) for 3D LJ

2 equations

Mimic dilute LJ: white Poisson noise

$$\begin{pmatrix} \dot{\xi}_1 \\ \dot{\xi}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\nu(t) & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix}$$

$$\nu(t) = \sum_{k} A_{k} \,\delta(t - \tau_{k})$$

ex., i.i. Gaussians

Poisson sequence

Results (preliminary)

• λ • λ_2 (I.S.) • λ_2 (Gauss) • λ_2 (Gauss) • λ_2 (theo.) (exact)

Conclusions

Adapt importance-sampling MC to deterministic LJ dynamics

Thanks!

http://www.cbpf.br/~vallejos/publications

The Kubo number

$$\eta_{
m K}=\sigma_{\lambda}\,\left(au_{c}^{(1)}
ight)^{2}\,\propto\,\sqrt{
ho_{0}}$$

