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Entanglement

BA ΗΗH ⊗=

The Hilbert space of the composite system is the tensor product of the
Hilbert spaces of both subsystems:

A pure state of a bipartite system, A + B, is said entangled if it is not
separable.

BABA ψφ ⊗=Ψ +

AΗ BΗΗ

separable
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Entanglement measures for bipartite pure states  

BA ΗΗ ⊗∈Ψ

ΨΨ=ρ

ΨΨ= BA trρ

pure state

density matrix

reduced density matrix

AAAS ρρ logtrvN −=

21 AAS ρtrL −=

von Neumann entropy

linear entropy
(1 – purity)
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Entangling power of unitary transformations

Zanardi, Zalka & Faoro, PRA 00

[...] how much entanglement is produced by U on the average, 

acting on a given distribution of non-entangled quantum states. 

entanglement measure,
e.g., 
linear entropy

average over ensemble
of product states

( ) ( )
,A B

A Bep U S U
ψ ψ

ψ ψ= ⊗
L
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Alternative measure:
Operator entanglement (Schmidt strength)

( ) ( )
2

1 tr U

A Aoe U ρ= −

UUB

U

A tr=ρ

Zanardi, PRA 01

Wang & Zanardi, PRA 02

Nielsen et al, PRA 03

Zyczkowski & Bengtsson, OSID 04

Bengtsson & Zyczkowski´s book

UU
U =ρ

HS

N

HS

N BA

HHU 22 ⊗∈

( )BABA
+≡ tr

Hilbert-Schmidt scalar product
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Entangling power of the baker´s map

baker map on 8=4+4 qubits
5 initial random product states

n

?
bipartite entanglement of pure states Scott & Caves, JPA 03
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“Random State Theory”

If the quantum dynamics is “chaotic”, then initial

nonentangled states evolve asymptotically into random

states, only restricted by the normalization condition.

... for the asymptotic entangling power of a unitary

operator says:

Then, the asymptotic entangling power should be equal
to the average entropy of random states.
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Canonical Random States

( )NN yixyix ++→ ,,11 Kψ

uniform measure

( ) 







+−∝ ∑

=

N

i

iiNN yxyxyxp
1

22

11 1,,,, δK
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Random Matrix Theory

If the quantum dynamics is “chaotic”, then it can be

modeled by a random unitary map.

Asymptotic states are the result of the repeated

application of a random map to nonentangled states:

BA

n
Un φφψ ⊗=)(

∞→n
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Initial Objective

Compare the predictions of both theories, i.e., 

Random State Theory vs Random Matrix Theory, 
for the asymptotic entanglement of “typical” maps.

typical = describable by any of the circular

ensembles of random unitary matrices
(CUE or COE)
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Observation

BA

n
Un φφψ ⊗=)(

If U is a random unitary operator belonging to CUE, then

a canonical random vector can be constructed as

BAU φφ ⊗

RMT

( )nψ =
∞→n

RST random vector
1

A BU φ φ⊗
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Extended Objective

1. Entangling power of as a function of n
n

U

2. Operator entanglement of as a function of n
n

U
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Choosing the ensembles

BA ψψψ ⊗=

canonical random states,
complex or real 

states:

maps: CUE or COE



15

Entangling Power: Simulations

Experimental setup

Bd

n
U

A

B

ψ

ψ

⊗

Aρ entropy

� Entanglement (linear entropy) as a function of time

� Double average over input states and maps

non-selective measurement

Ad
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Average entangling power versus time

( )CUECUE
n

CUE ⊗

( )CUECUE
n

COE ⊗

( )OEOE
n

COE ⊗

54 ⊗=N
20Hτ =

1. decreasing
2. saturation at Heisenberg time
3. coincidence?
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Analytical results

( )CUECUE
n

CUE ⊗

( )CUECUE
n

COE ⊗

( )OEOE
n

COE ⊗

54 ⊗=N

1

3 4

random vectors

Gorin-Seligman
Hτ

4

3

1
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Two-vector averages of monomials of order 8

( )
CUE

ep U ∞
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Tools for averaging over the classical groups

Mello, JPA 90

Gorin, JMP 02

Collins, math-ph/02

Aubert & Lam, JMP 03, JMP 04

Braun, math-ph/06

Collins & Sniady, CMP 06
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Operator entanglement

CUE

COE

1. decreasing
2. saturation at Heisenberg time
3. coincidence !
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Analytical results

CUE

COE

1. CUE operator entanglement
2. Shape for CUE cases (also ep)
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Conclusions

Asymptotic states generated dynamically are

not canonical random states

Dynamics produces correlations → lower entropy

Small effect (second order in system size), but

equivalent to imposing time reversal symmetry
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A1. Extreme values

monomials of order 4

monomials of order 8
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A2. Shapes


