UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS

CARLOS ALEXANDRE BRASIL

Tomografia de Estados Quânticos em sistemas de 3 q-bits: uma ferramenta da Ressonância Magnética Nuclear para aplicações em Computação Quântica

São Carlos

2008

CARLOS ALEXANDRE BRASIL

Tomografia de Estados Quânticos em sistemas de 3 q-bits: uma ferramenta da Ressonância Magnética Nuclear para aplicações em Computação Quântica

Dissertação apresentada ao Instituto de Física de São Carlos da Universidade de São Paulo para obtenção do título de Mestre em Ciências

> Área de Concentração: Física Básica Orientador: Prof. Dr. Tito José Bonagamba

São Carlos

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pelo Serviço de Biblioteca e Informação IFSC/USP

Brasil, Carlos Alexandre.

Tomografia de estados quânticos em sistemas de 3 q-bits: uma ferramenta da ressonância nuclear para aplicações em computação quântica./Carlos Alexandre Brasil; orientador Tito José Bonagamba.-São Carlos, 2008. 296 p.

Dissertação (Mestrado em Ciências - Área de concentração: Física Básica) – Instituto de Física de São Carlos da Universidade de São Paulo.

1. Computação quântica. 2. Ressonância magnética nuclear. 3. Tomografia de estados quânticos. 4. Pulsos não seletivos. 5. Pulsos fortemente modulados. I. Título.

"Para criaturas pequenas como nós, a vastidão só é suportável através do amor".

Carl Sagan, Contato

Para Esther Maria e José Carlos Brasil, meus pais. Por tudo. Para o meu pequeno sobrinho Gabriel.

Agradecimentos

Qualquer lista de agradecimentos, por melhores que sejam as intenções do autor, sempre acaba incompleta. De fato, uma relação com os nomes de todos que contribuíram direta ou indiretamente para esse trabalho e minha formação aumentaria consideravelmente o número de páginas da dissertação. Espero, entretanto, poder compensar pessoalmente as inevitáveis omissões.

Gostaria de agradecer, em primeiro lugar, ao meu orientador, professor, mestre e amigo Tito José Bonagamba. Trabalhamos juntos desde meu primeiro ano de graduação e posso dizer que foram sete anos de convivência extremamente agradável. Seus ensinamentos, tanto pessoais como científicos, são inestimáveis. Meus agradecimentos incluem sua família, pela hospitalidade ao receberem todo o nosso grupo nas celebrações de fim-de-ano em sua casa.

Durante esse trabalho pude contar com a ajuda preciosa e fundamental do Doutor João Teles de Carvalho Neto que, na prática, atuou como meu co-orientador, me auxiliando nas implementações experimentais, nos aspectos teóricos e na revisão desse texto. Suas contribuições estão presentes em todas as etapas. Desnecessário dizer que quaisquer falhas aqui contidas são devidas a mim, única e exclusivamente.

Ao Professor Eduardo Ribeiro de Azevedo pela ajuda durante algumas implementações experimentais. Para o projeto das sondas para Computação Quântica (CQ), tivemos a ajuda e supervisão do Doutor Edson Luiz Gea Vidoto. Nesse aspecto, gostaria de agradecer aos técnicos do Laboratório de Espectroscopia da Alta Resolução (LEAR): Aparecido Donizeti Fernandes de Amorim, João Gomes da Silva Filho, José Carlos Gazziro e Odir Adolfo Canevarollo. Ao Edivaldo Cardoso por selar os bulbos com as amostras utilizadas nos experimentos.

Ao Arthur Gustavo de Araújo Ferreira, com quem convivo desde a graduação, cujo trabalho de mestrado se desenvolveu paralelamente e está diretamente relacionado a esse.

À Doutora Débora Terezia Balogh por sintetizar amostras e ceder o espaço do laboratório de química do Grupo de Polímeros Bernard Gross para o preparo de alguns materiais que seriam

utilizados nesse trabalho. Aos funcionários do Grupo de Biofísica por também cederem espaço no laboratório para o preparo das amostras. Ao Professor Patrick Judeinstein, do Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université de Paris-Sud, França, por nos fornecer a amostra de CsPFO que foi efetivamente utilizada na parte experimental dessa dissertação.

À secretária Isabel Aparecida Possatto de Oliveira. Aos funcionários do serviço de pósgraduação. Às funcionárias da biblioteca do IFSC, pela simpatia, presteza no atendimento e organização, que contribuem para fazer desta uma das melhores bibliotecas da USP. Ao Italo Carlos Celestini que imprimiu todas as versões dessa dissertação.

Aos colegas e ex-colegas do LEAR: Cora Castelo Branco de Francisco Reynaud dos Santos (espero não ter omitido nenhum sobrenome!), Mariane Barsi Andreeta, Alessandro Aguiar de Castro Sá, Alviclér Magalhães, Bruno Barbagallo Fonseca, Gregório Couto Faria, Nilson Camargo Mello, Rodrigo de Oliveira Silva. Em especial ao André Alves de Souza (Caçula) pela convivência diária com os cafés, chás, piadas e auxílio em experimentos e no entendimento de alguns aspectos da RMN.

Aos colegas de CQ do CBPF, no Rio de Janeiro: Rubén Auccaise Estrada (Rubenito) e André Gavini Viana (Cabelo). Espero que voltemos a trabalhar juntos no mesmo clima de descontração existente em 2006. Ao Fábio Aurélio Bonk, o desbravador, o primeiro a lidar com CQ no LEAR.

Aos professores do IFSC com quem tive aula e que muito me influenciaram: Djalma Mirabelli Redondo, Francisco Eduardo Gontijo Guimarães, Horácio Carlos Panepucci (*in memorian*), José Carlos Egues de Menezes, José Fabian Schneider, Klaus Werner Capelle, Lidério Citrângulo Ioriatti Júnior, Luiz Nunes de Oliveira, Máximo Siu Li, Reginaldo de Jesus Napolitano e Valter Luiz Líbero.

Aos colegas de graduação do IFSC. Aos meus colegas de pós-graduação: Poliana Heiffig Penteado, Victória Flório Pires de Andrade, Ângelo Danilo Faceto, Guilherme da Costa Pereira Innocentini (Bruce), Jonathas de Paula Siqueira, Luís Borrero, Nelson Mesquita Fernandes, Paulo Eduardo Gonçalves de Assis e Paulo Henrique Dias Ferreira (PH). Agradecimentos especiais à Mariana Mieko Odashima e ao Guilherme Nery Prata (Blane) pela convivência, bom-humor e pelas muitas horas de estudos em conjunto.

Ao meu irmão Carlos Magno pelas piadas e pela irreverência. Ao meu irmão Alex Ricardo pelos conselhos e pela ajuda sempre que precisei; à sua esposa Raquel. À minha irmã Liliane.

À minha estimada tia Lourívia (*in memorian*). Aos meus padrinhos, Carminha e Walter, que não vejo há muito tempo.

À senhora Maria de Lourdes Moraes, dona da pensão onde me hospedo desde o meu primeiro dia de aula.

Resumo

Este trabalho consiste na análise de um método de reconstrução/tomografia de estado quântico em ressonância magnética nuclear utilizando pulsos de radiofreqüência não-seletivos, que possuem a propriedade de promover rotações globais do sistema de *spins* $\frac{7}{2}$. Tal método foi aplicado para reconstruir estados relacionados à computação quântica. As operações lógicas e os estados iniciais envolvidos nas operações quânticas foram construídos através de pulsos modulados optimizados numericamente; o processo de optimização, em particular, não foi tratado nesse trabalho. Foram elaborados programas que simulam:

- a construção dos estados e portas lógicas utilizando os parâmetros dos pulsos modulados;
- a aplicação dos pulsos de tomografia e a geração dos dados necessários à reconstrução (amplitudes espectrais);
- construção de estados utilizando pulsos simples para testes das circunstâncias experimentais;
- efeitos de possíveis problemas relacionados à amostra ou ao equipamento.

Finalmente, foi elaborado um programa para **reconstrução** do estado a partir da leitura das amplitudes espectrais, que podem ser obtidas a partir dos programas relacionados no segundo item, ou experimentalmente. As implementações experimentais foram realizadas medindo sinais de RMN de núcleos de ¹³³Cs, localizados em um cristal líquido, que, por possuírem *spin* $\frac{7}{2}$, devido às interações Zeeman e quadrupolar elétrica, apresentam sete linhas espectrais distintas para transições entre níveis energéticos adjacentes; logo, é possível tratar esses núcleos como sistemas de 3 q-bits. Foram construídos estados pseudo-puros e aplicada uma das portas Toffoli. Além disso, uma discussão do algoritmo quântico de busca de Grover no contexto da Ressonância Magnética Nuclear é apresentada para uma futura implementação.

Palavras-chave: Computação quântica, Ressonância magnética nuclear, Tomografia de estados quânticos, Pulsos não-seletivos, Pulsos fortemente modulados

Abstract

This work describes a quantum state tomography method in nuclear magnetic resonance using nonselective radiofrequency pulses that cause global rotations of spin $\frac{7}{2}$ systems. This method was applied to tomograph states related to quantum computation. Numerically optimized modulated pulses allowed building the initial states and the logical operations involved in the quantum operations; particularly, the optimization process was not treated in this work. Several programs were constructed that simulate:

- the construction of the quantum states and the logical operations by means of the modulated pulses parameters;
- the application of the tomography pulses and the generation of the necessary data for tomography (spectral amplitudes);
- the construction of the states using simple pulses for experimental condition tests;
- the effects of possible problems related to the samples or equipments.

Finally, a quantum state tomography program was elaborated to read the spectral amplitudes, which can be obtained from the programs related to the second item, or experimentally. The experimental implementations were performed measuring the NMR signals from spin $\frac{7}{2}$ ¹³³Cs nuclei located in a liquid crystal under Zeeman and quadrupolar electric interactions. The NMR spectrum of these nuclei, under these interactions and located in an oriented sample, present 7 spectral lines for transitions between adjacent energetic levels; with this, it is possible to treat it like a 3 q-bits system. Pseudo-pure states were constructed and one Toffoli gate was applied. Furthermore, a discussion about the Grover's quantum search algorithm in the nuclear magnetic resonance context was presented for future implementation.

Key-works: Quantum computation, Nuclear magnetic resonance, Quantum state tomography, Nonselective pulses, Strongly Modulated Pulses

Siglas e Abreviaturas Utilizadas

C-BIT – Bit clássico

- CBPF Centro Brasileiro de Pesquisas Físicas
- CL Cristal líquido
- CQ Computação Quântica
- CsPFO Pentadecafluoroctanoato de césio
- DDC Dodecil sulfato de césio
- DDS Dodecil sulfato de sódio
- FID Sinal de indução livre do campo de RF
- ICP Imprecisão na calibração dos pulsos
- IFSC Instituto de Física de São Carlos
- LEAR Laboratório de Espectroscopia de Alta Resolução
- NHRF Não-homogeneidade do campo de RF
- Q-BIT Bit quântico
- RF Radiofreqüência
- RMN Ressonância Magnética Nuclear
- SMP Pulso fortemente modulado
- UFES Universidade Federal do Espírito Santo
- USP Universidade de São Paulo

Sumário

Introdução	21
Capítulo 1: O Operador Densidade	25
1.1. Introdução	
1.2. Sistemas em equilíbrio termodinâmico	
1.3. O estado puro	
1.3.1. Descrição convencional do estado puro	27
1.3.2. Descrição do estado puro através do operador densidade	
1.4. A mistura estatística	29
1.4.1. Descrição da mistura estatística através do operador densidade	
1.5. Propriedades gerais do operador densidade	
1.6. Populações e coerências	
1.6.1. Populações	
1.6.2. Coerências	
1.6.3. Dependencia temporal	
1.7. Sistemas em equilibrio termico	
1.8. Evolução temporal do operador densidade	
1.9. Mudanças de referencial	
Capítulo 2: Aspectos Quânticos da Ressonância Magnética Nuclear	
2.1 Introdução	43
2.2. Operadores de <i>spin</i>	43
2.3. Aproximação de altas temperaturas	
2.4. Rotações sobre o sistema de <i>spins</i>	
2.5. Interação Zeeman	
2.5.1. Sistema girante de coordenadas	
2.5.2. Efeitos dos campos de radiofreqüência sobre os spins nucleares	
2.5.3. O sinal de RMN sob interação Zeeman	
2.6. Interação quadrupolar elétrica	57
2.6.1. Spin $\frac{3}{2}$	
2.6.2. Spin $\frac{7}{2}$	59
2.7. A deteccão em fase e quadratura	61
2.8. Hamiltoniana de interação entre tipos diferentes de núcleos	
2.9. Contextualização	67

3.1. Introdução	. 69
3.2. Definições algébricas fundamentais	. 69
3.3. Coeficientes de Clebsch-Gordan e funções de Wigner	71
3.4. Operadores de polarização	75
3.5. Contextualização	. 79

Capítulo 4: Tomografia da Matriz Densidade		
4.1. Introdução		
4.2. Rotações sobre o operador densidade		
4.3. Valor esperado para a magnetização		
4.4. Tomografia da matriz densidade		
4.5. Etapa computacional		
4.5.1. Organização dos programas		
4.5.2. Seleção de coerências		
4.5.3. Reconstrução do operador densidade		
4.6. Contextualização		

5.1. Introdução	
5.2. Bits clássicos e quânticos	
5.2.1. Bits clássicos (c-bits)	
5.2.2. Bits quânticos (q-bits)	
5.3. Circuitos quânticos	
5.4. O algoritmo de busca de Grover	
5.5. Contextualização	
3	

Capítulo 6: Computação Quântica via Ressonância Magnética Nuclear	
6.1. Introdução	117
6.2. Os estados pseudo-puros	117
6.3. Operações a serem implementadas	
6.3.1. Portas Toffoli	
6.3.2. Algoritmo de busca de Grover	
6.4. Pulsos fortemente modulados – <i>SMP</i> 's	
6.4.1. Medida da fidelidade	
6.4.2. Variáveis optimizadas	
6.5. Simulações de implementações através de SMP's	
6.5.1. Os estados pseudo-puros	
6.5.2. Porta Toffoli 1	
6.5.3. Contextualização	

134	
.134	
.135	
.135	
.135	
.136	
.137	
.138	
.139	
.147	
.149	
.150	
.168	
.175	
• • • • • • •	

7.4.4. Conjugação dos fatores	
7.5. Conclusões	
7.6. Contextualização	

Capítulo 8: Resultados Experimentais	
8.1. Introdução	
8.2. Amostra utilizada	
8.2.1. Estrutura	
8.2.2. Preparação	
8.2.3. Acondicionamento	
8.2.4. Medida do tempo de relaxação longitudinal – T_1	
8.3. Sondas utilizadas	
8.3.1. Sonda VT CP/MAS 7 mm	
8.3.2. Sonda VT CP/MAS 5 mm	
8.4. Resultados e análises	
8.4.1. Testes	
8.4.1.1. Sonda VT CP/MAS 7 mm	
8.4.1.2. Sonda VT CP/MAS 5 mm	
8.4.1.3. Análises	
8.4.2. Estados pseudo-puros e Toffoli 1	
8.5. Propostas	
8.6. Conclusão	

Referências22	27
---------------	----

Apêndice A - Estados pseudo-puros para *spins* $\frac{3}{2}$ e $\frac{7}{2}$.

_	
r	

Apêndice B - Programas para cálculo numérico237	
B.1. Operadores fundamentais de spin e hamiltoniana quadrupolar	
B.2. Operadores de polarização	
B.3. Funções relacionadas ao programa de reconstrução	

Apêndice C - Programas de simulação	
C.1. Tomografia	
C.1.1. Seleção de coerências	
C.1.2. Simulação da gravação das amplitudes espectrais	
C.1.3. Teste de criação de coerências	
C.2. Algoritmo de Grover	
C.3. Estados pseudo-puros	
C.4. Portas lógicas	

Apêndice E - Representações matriciais das operações de 3 q-bits propostas	
E.1. Portas Toffoli	
E.2. Operadores de Grover	

Introdução

Desde o início desta década, tendo em vista as novas possibilidades de aplicação da Ressonância Magnética Nuclear para Computação Quântica, formou-se uma rede de colaborações entre os grupos de RMN do CBPF no Rio de Janeiro, do Departamento de Física da UFES e o LEAR, do IFSC, com o objetivo de explorar essa nova fronteira.

Particularmente no LEAR, em São Carlos, a primeira tese defendida sobre esse assunto, de autoria do Doutor Fábio Aurélio Bonk, sob orientação do Professor Tito José Bonagamba, versava a respeito do uso de pulsos de excitação seletiva para construir os estados iniciais, aplicar as operações lógicas e tomografar os estados resultantes em núcleos de *spin* $\frac{3}{2}$.[1] Foram feitas várias implementações, incluindo construção dos estados pseudo-puros e aplicação das portas C-NOT e Hadamard, resultando em várias publicações.[2-4] Entretanto, a desvantagem de tal método reside exatamente no uso de pulsos seletivos[5], que são muito longos. Uma operação lógica construída pelos mesmos, ou até mesmo a tomografia do resultado final, pode ter uma duração tal que extrapole os tempos de relaxação da amostra. Além disso, o formalismo matemático utilizado para manipular os operadores de transição seletiva[6-8] é um tanto complicado: é necessário construir um sistema de equações que depende do *spin* e do elemento da matriz densidade que está sendo obtido, sem haver uma regra geral para sua elaboração.

O trabalho de doutorado de João Teles de Carvalho Neto, sob orientação do Professor Eduardo Ribeiro de Azevedo, consistiu em encontrar maneiras de sanar tais dificuldades. Para tomografar os estados quânticos, foi proposto um método baseado em pulsos não-seletivos, que promovem rotações globais do sistema de spins; o sistema de equações resultantes pode ser generalizado para qualquer spin de uma maneira consideravelmente menos trabalhosa.[9] Para implementar as operações lógicas em CQ, foi adotado um método de optimização numérica, que resultava em *pulsos modulados*. Em sua tese, foram relatados resultados diversos para *spin* $\frac{3}{2}$ e, nesse trabalho,

nasceu a idéia de expandir o método para sistemas de *spin* $\frac{7}{2}$, o que foi feito através de dois projetos de mestrado: o presente e o de Arthur Gustavo de Araújo Ferreira, este último sob orientação do Professor Azevedo.

Esta dissertação versa sobre a adaptação do método de tomografia e a construção de um programa de reconstrução do estado quântico, sendo dividida em quatro partes, de acordo com as ênfases:

- Primeira parte capítulos 1 e 2: Operador densidade e RMN;
- Segunda parte capítulos 3 e 4: Método de tomografia;
- Terceira parte capítulos 5 e 6: CQ, embora a RMN ressurja no novo contexto;
- Quarta parte capítulos 7 e 8: Implicações experimentais através de simulações, apresentando alguns resultados reais.

Convém notar que a primeira e segunda parte são gerais no contexto da RMN, não ficando restritas às aplicações em CQ. Praticamente todos os programas utilizados para cálculo numérico, simulações e reconstrução (esta última o objetivo da dissertação), têm sua listagem completa nos diversos apêndices. As explicações do funcionamento dos mesmos estão no decorrer do texto e na documentação interna.

Por se tratar de um assunto um tanto extenso, que envolve tópicos dificilmente encontrados em um único livro, os diversos aspectos envolvidos na dissertação foram tratados com certo esmero, o que resultou em um número maior de páginas do que o convencional, fato notado tanto pelo mestrando como pelo orientador. O intuito foi exatamente o de deixar o texto o mais claro possível para o leitor, que poderá direcionar a abordagem conforme seu interesse. Se o objetivo for apenas compreender melhor como a RMN pode ser descrita quanticamente, a primeira parte bastará; para aqueles já familiarizados com isso e que quiserem entender o método de tomografia, a leitura da segunda parte é suficiente; se o interesse for os aspectos básicos de CQ e uma parte das tentativas de realizá-la via RMN, a terceira parte poderá ser abordada de imediato. Enfim, para verificar os resultados, a última parte deverá ser consultada.

A optimização numérica das operações lógicas, através da implementação e utilização de *pulsos fortemente modulados*[10], fez parte do trabalho de mestrado do estudante Arthur Gustavo de Araújo Ferreira, embora o capítulo 6 forneça uma breve explicação conceitual desse processo. Os dados experimentais relativos à CQ apresentados aqui foram obtidos com a utilização dos pulsos optimizados por ele, estando também contidos em sua dissertação. Convém ressaltar, entretanto, que esta superposição de resultados não envolve duplicação de utilização dos mesmos, visto que o escopo do trabalho do mestrando Arthur Gustavo de Araújo Ferreira era desenvolver e implementar pulsos modulados para tais operações, enquanto o objetivo da presente dissertação é, como exposto no início, analisar o processo da tomografía de estados quânticos; tais temas são dependentes e complementares, fato que justifica a apresentação de resultados similares nestas absolutamente diferentes dissertações.

Capítulo 1: O Operador Densidade

"A mecânica quântica foi, provavelmente, a maior revolução científica da história da humanidade, pela profundidade das modificações que introduziu".

Mário Schenberg, Pensando a Física

1.1. Introdução

O alvo principal do trabalho apresentado nesta dissertação é o **operador densidade**[11-13]: sua manipulação e reconstrução através de Ressonância Magnética Nuclear.[14-16] Trata-se, como será visto, de um conceito muito útil para descrever sistemas quânticos em mistura estatística, mas totalmente equivalente, em sistemas puros, à descrição feita através da função de onda e da equação de Schrödinger. Aliás, estes dois últimos servirão como ponto de partida para o desenvolvimento do formalismo do operador densidade. Neste capitulo, serão apresentadas suas definições em sistemas puros e mistos, a equação que rege sua evolução temporal (**equação de von Neumann**), alguns conceitos úteis do aspecto fundamental da mecânica quântica (valor médio, populações, coerências, etc.) e do ponto de vista da Ressonância Magnética Nuclear (mudanças de referencial[17]).

Apesar de o tema deste capítulo fazer parte de vários livros de mecânica quântica elementares em particular Cohen-Tannoudji *et al.*[11] – será feita uma revisão aprofundada deste tópico, porém direcionando-o para a descrição do fenômeno da RMN e das ferramentas de CQ via RMN[1,14-16,18,19]. Assim, este capítulo não se restringe a uma repetição simples de itens que já se encontram nos livros de mecânica quântica, já que adiciona elementos importantes para a formação básica de um pesquisador na área de RMN. Por esta razão, para valorizar o esforço feito neste sentido, ele foi escrito com uma estrutura detalhada, pois, espera-se, servirá como auxílio para futuros aprendizes de RMN no LEAR ou em outras instituições.

1.2. Sistemas em equilíbrio termodinâmico

Um sistema em equilíbrio termodinâmico a uma temperatura absoluta *T* apresenta uma probabilidade proporcional a $e^{-\frac{E_n}{kT}}$ de se encontrar em um estado de energia E_n .

De modo geral, a informação incompleta de um sistema é descrita na mecânica quântica através de probabilidades sobre seus possíveis estados: Ψ_1 com probabilidade p_1 , Ψ_2 com probabilidade p_2 , etc., com

$$p_1 + p_2 + \dots = \sum_n p_n = 1$$
 (1.1)

o que constitui uma mistura estatística de estados.

É importante ressaltar que um sistema descrito por uma mistura estatística de estados, com probabilidade p_k de o vetor de estado ser $|\Psi_k\rangle$ não deve ser confundido com um sistema cujo estado $|\Psi\rangle$ é uma superposição linear de estados da forma

$$\left|\Psi\right\rangle = \sum_{k} c_{k} \left|\Psi_{k}\right\rangle \tag{1.2}$$

onde se pode afirmar que o sistema tem probabilidade $|c_k|^2$ de se encontrar no estado $|\Psi_k\rangle$. Para uma combinação linear de $|\Psi_k\rangle$ existirão, em geral, efeitos de interferência entre esses estados graças aos termos cruzados do tipo $c_k c_{k'}^*$, obtidos quando o módulo da amplitude de probabilidade é elevado ao quadrado[11].

Em uma mistura estatística de estados é impossível associar um vetor estado médio ao sistema; em seu lugar deve ser associado um operador médio que permita uma descrição simplificada da mistura estatística, o operador densidade.

1.3. O estado puro

1.3.1. Descrição convencional do estado puro

Para um sistema cuja função de onda é dada por

$$\left|\Psi(t)\right\rangle = \sum_{n} c_{n}(t) \left|u_{n}\right\rangle \tag{1.3}$$

onde $\{\!|u_n\rangle\!\}$ forma uma base ortonormal, obedecida a condição de normalização

$$\sum_{n} \left| c_{n}(t) \right|^{2} = 1$$
 (1.4)

se \hat{A} for um observável com elementos de matriz

$$\left\langle u_{n}\left|\hat{A}\right|u_{p}\right\rangle = A_{np} \tag{1.5}$$

seu valor médio no estado $\left|\Psi\right\rangle$ será

$$\left\langle \hat{A} \right\rangle = \left\langle \Psi(t) \left| \hat{A} \right| \Psi(t) \right\rangle = \sum_{n} c_{n}^{*}(t) \left\langle u_{n} \left| \hat{A} \sum_{p} c_{p}(t) \right| u_{p} \right\rangle$$

$$\therefore \quad \left\langle \hat{A} \right\rangle = \sum_{n,p} c_{n}^{*}(t) c_{p}(t) A_{np}$$

$$(1.6)$$

A evolução do sistema será dada pela equação de Schrödinger

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H}(t) |\psi(t)\rangle \tag{1.7}$$

onde \hat{H} é o **hamiltoniano** do sistema.

1.3.2. Descrição do estado puro através do operador densidade

A relação (1.6) mostra que os coeficientes $c_n(t)$ entram na determinação dos valores médios através de expressões do tipo $c_n^*(t)c_p(t)$, que representam simplesmente os elementos de matriz do operador $|\psi(t)\rangle\langle\psi(t)|$, o **projetor** sobre o *ket* $|\psi(t)\rangle$, já que

$$\langle u_{p} | \psi \rangle \langle \psi | u_{n} \rangle = \langle u_{p} | \sum_{p'} c_{p'} | u_{p'} \rangle \sum_{n'} c_{n'}^{*} \langle u_{n'} | u_{n} \rangle = \sum_{p',n'} c_{p'} c_{n'}^{*} \langle u_{p} | u_{p'} \rangle \langle u_{n'} | u_{n} \rangle =$$

$$= \sum_{p',n'} c_{n'}^{*} c_{p'} \delta_{nn'} \delta_{pp'} = c_{n}^{*} c_{p}$$

$$(1.8)$$

O operador densidade é definido, então, como

$$\hat{\rho}(t) \equiv \left| \psi(t) \right\rangle \! \left\langle \psi(t) \right| \tag{1.9}$$

com

$$\left\langle u_{p}\left|\hat{\rho}\right|u_{n}\right\rangle = \rho_{pn} = c_{n}^{*}c_{p} \tag{1.10}$$

A especificação de $\hat{\rho}(t)$ é suficiente para caracterizar o estado quântico do sistema, ou seja, este operador permite a obtenção de todas as previsões físicas relacionadas a $|\psi(t)\rangle$. Evidentemente, **o operador densidade é auto-adjunto**, ou seja, $\hat{\rho} = \hat{\rho}^+$. As expressões (1.4) e (1.6) podem ser reescritas em termos do operador densidade.

• **reescrevendo (1.4):** Utilizando o fato de que $\rho_{pn} = c_n^* c_p$

$$\sum_{n} |c_{n}(t)|^{2} \stackrel{(1.8)}{=} tr\{\hat{\rho}(t)\}^{(1.10)} \sum_{n} \rho_{nn}(t) = 1$$

$$\therefore tr\{\hat{\rho}(t)\} = 1$$
(1.11)

• reescrevendo (1.6): Inserindo (1.5) e (1.8),

$$\left\langle \hat{A} \right\rangle = \sum_{n,p} \rho_{pn} A_{np} \stackrel{(1.5)}{=} \sum_{n,p} \left\langle u_p \left| \hat{\rho} \right| u_n \right\rangle \left\langle u_n \left| \hat{A} \right| u_p \right\rangle = \sum_p \left\langle u_p \left| \hat{\rho} \sum_n \left| u_n \right\rangle \left\langle u_n \left| \hat{A} \right| u_p \right\rangle \right\rangle = \sum_p \left\langle u_p \left| \hat{\rho} \hat{A} \right| u_p \right\rangle = tr \left\{ \hat{\rho} \hat{A} \right\}$$

$$\therefore \quad \left\langle \hat{A} \right\rangle = tr \left\{ \hat{\rho} \hat{A} \right\}$$

$$(1.12)$$

A evolução temporal de $\hat{\rho}(t)$ será obtida através da equação de Schrödinger (1.7).

$$\frac{d}{dt}\hat{\rho} = \frac{d}{dt}(|\psi\rangle\langle\psi|) = \left(\frac{d}{dt}|\psi\rangle\rangle\langle\psi| + |\psi\rangle\left(\frac{d}{dt}\langle\psi|\right)^{(1.7)} = \frac{1}{i\hbar}\hat{H}|\psi\rangle\langle\psi| - \frac{1}{i\hbar}|\psi\rangle\langle\psi|\hat{H} = \\
= \frac{1}{i\hbar}(\hat{H}\hat{\rho} - \hat{\rho}\hat{H}) = \frac{[\hat{H},\hat{\rho}]}{i\hbar} \\
\therefore \quad \frac{d}{dt}\hat{\rho} = \frac{[\hat{H},\hat{\rho}]}{i\hbar}$$
(1.13)

A expressão (1.13) é a equação de von Neumann[11-13].

1.4. A mistura estatística

Para uma mistura estatística de estados,

$$\hat{\rho}(t) = \sum_{k} p_{k} \hat{\rho}_{k}, \quad \hat{\rho}_{k} = \left| \psi_{k} \right\rangle \! \left\langle \psi_{k} \right|$$
(1.14)

 com

$$\begin{cases} 0 \le p_1, p_2, ..., p_k, ... \le 1 \\ \sum_k p_k = 1 \end{cases}$$
(1.15)

1.4.1. Descrição da mistura estatística através do operador densidade

Todas as previsões físicas do sistema podem ser expressas em termos de $\hat{\rho}(t)$, média ponderada dos operadores densidade $\hat{\rho}_k$.

Se \hat{P}_n for o projetor sobre o subespaço associado ao autovalor a_n , a probabilidade $\wp_k(a_n)$ de uma medida de \hat{A} resultar a_n se o estado do sistema for $|\psi_k\rangle$ será

$$\wp_k(a_n) = \left\langle \psi_k \left| \hat{P}_n \right| \psi_k \right\rangle \tag{1.16}$$

Para obter a probabilidade $\wp(a_n)$ de uma medida do observável \hat{A} resultar em a_n em uma mistura estatística, é necessário tomar a média ponderada das probabilidades $\wp_k(a_n)$,

$$\wp(a_n) = \sum_k p_k \wp_k(a_n) \tag{1.17}$$

A equação (1.16) pode definir um *ensemble* de partículas em diferentes estados quânticos. Como \hat{P}_n é um observável, utilizando (1.12),

$$\wp_k(a_n) = \left\langle \hat{P}_n \right\rangle_{\Psi_k} \stackrel{(1.12)}{=} tr\left\{ \hat{\rho}_k \hat{P}_n \right\}$$
(1.18)

pois no caso analisado anteriormente, o sistema se encontrava no estado puro $|\psi(t)\rangle$, e seu equivalente agora é $|\psi_k\rangle$. Substituindo (1.18) em (1.17),

$$\wp(a_n) \stackrel{(1.18)}{=} \sum_k p_k tr\left\{\hat{\rho}_k \hat{P}_n\right\} = tr\left\{\sum_k p_k \hat{\rho}_k \hat{P}_n\right\} = tr\left\{\hat{\rho} \hat{P}_n\right\}$$

$$\therefore \quad \wp(a_n) = tr\left\{\hat{\rho} \hat{P}_n\right\}$$
(1.19)

utilizando a definição de $\hat{\rho}(t)$ para a mistura estatística de estados.

Como as previsões físicas mais comuns possuem dependências lineares em $\hat{\rho}$ e o estado de mistura estatística é uma combinação linear de operadores puros, várias relações, válidas para estados puros, são também válidas para operadores mistos.

1.5. Propriedades gerais do operador densidade

Como os coeficientes p_k são reais (afinal, tratam-se de probabilidades), $\hat{\rho}$ é um operador hermitiano, assim como $\hat{\rho}_k$.

O traço de $\hat{\rho} \in I$, o que decorre da soma das probabilidades:

$$tr\{\hat{\rho}\} = tr\left\{\sum_{k} p_{k} \hat{\rho}_{k}\right\} = \sum_{k} p_{k} tr\{\hat{\rho}_{k}\}^{(1.11)} = \sum_{k} p_{k} = 1$$
(1.20)

O valor médio de um observável \hat{A} também pode ser escrito em termos do operador densidade no caso de mistura estatística:

$$\left\langle \hat{A} \right\rangle = \sum_{n} a_{n} \wp(a_{n})^{(1.19)} \sum_{n} a_{n} tr\left\{ \hat{\rho} \hat{P}_{n} \right\} = \sum_{n} tr\left\{ \hat{\rho} a_{n} \hat{P}_{n} \right\} = tr\left\{ \hat{\rho} \sum_{n} a_{n} \hat{P}_{n} \right\} = tr\left\{ \hat{\rho} \hat{A} \right\}$$

$$\therefore \quad \left\langle \hat{A} \right\rangle = tr\left\{ \hat{\rho} \hat{A} \right\}$$

$$(1.21)$$

Uma maneira de diferenciar um estado puro de uma mistura estatística é através do traço de $\hat{\rho}^2$.[13] O traço de uma matriz é independente da base em que é representada; considerando uma base onde $\hat{\rho}$ é diagonal, seus elementos de matriz terão a forma

$$\rho_{mn} = \rho_m \delta_{mn} \tag{1.22}$$

e, assim,

$$tr\{\hat{\rho}^2\} = \sum_{m} (\hat{\rho}^2)_{mm}$$
 (1.23)

A (1.23) pode ser desenvolvida utilizando a definição dos elementos de uma matriz resultante do produto de matrizes:

$$\left(\hat{\rho}^{2}\right)_{ik} = \sum_{j} \rho_{ij} \rho_{jk} = \sum_{j} \rho_{i} \delta_{ij} \rho_{j} \delta_{jk} = \rho_{i}^{2}$$

$$(1.24)$$

Como será mostrado em (1.37), os elementos diagonais do operador densidade são *positivos*, $\rho_m \ge 0$, sendo permitido então utilizar uma generalização da *desigualdade triangular*[20]:

$$\sum_{m} \rho_m^2 \le \left(\sum_{m} \rho_m\right)^2 \tag{1.25}$$

Substituindo (1.24) e (1.25) em (1.23):

$$tr\{\hat{\rho}^{2}\} = \sum_{m} (\hat{\rho}^{2})_{mm} \stackrel{(1.24)}{=} \sum_{m} \rho_{m}^{2} \stackrel{(1.25)}{\leq} \left(\sum_{m} \rho_{m}\right)^{2} = [tr(\hat{\rho})]^{2} = 1 \quad \therefore \quad tr\{\hat{\rho}^{2}\} \le 1$$
(1.26)

Para uma **mistura estatística**, $0 \le p_1, p_2, ..., p_k, ... < 1$, e a desigualdade (1.25) se torna mais restritiva:

$$\sum_{m} \rho_m^2 < \left(\sum_{m} \rho_m\right)^2 \tag{1.27}$$

e, dessa forma,

$$tr\{\hat{\rho}^2\} < 1$$
 (1.28)

Já no caso de um **estado puro**, o operador densidade é um projetor e $\hat{\rho}^2 = \hat{\rho}$, logo

$$tr\{\hat{\rho}^2\} = 1 \tag{1.29}$$

Essas duas condições podem ser sintetizadas na expressão (1.30):

$$tr\{\hat{\rho}^2\} \begin{cases} = 1, \text{ estado puro} \\ < 1, \text{ mistura estatística} \end{cases}$$
 (1.30)

É conveniente considerar uma situação em que o hamiltoniano do sistema é perfeitamente conhecido, em lugar de seu vetor de estado. Nesse caso, se o sistema tiver, no instante inicial t_0 , probabilidade p_k de se encontrar no estado $|\psi_k\rangle$, então, para $t > t_0$, o sistema terá probabilidade p_k de se encontrar em $|\psi_k(t)\rangle$ dada por:

$$\begin{cases} i\hbar \frac{d}{dt} |\psi_{k}(t)\rangle = \hat{H}(t) |\psi_{k}(t)\rangle \\ |\psi_{k}(t_{0})\rangle = |\psi_{k}\rangle \end{cases}$$
(1.31)

Trata-se simplesmente da aplicação da equação de Schrödinger (1.7), tendo uma condição inicial. O operador densidade no instante *t* será

$$\rho(t) = \sum_{k} p_k \hat{\rho}_k(t), \quad \hat{\rho}_k(t) = \left| \psi_k(t) \right\rangle \! \left\langle \psi_k(t) \right| \tag{1.32}$$

onde $\hat{\rho}_k$ obedece, por (1.13),

$$i\hbar \frac{d}{dt}\hat{\rho}_{k}(t) = \left[\hat{H}(t), \hat{\rho}_{k}(t)\right]$$
(1.33)

Como tais relações são lineares, então

$$i\hbar\frac{d}{dt}\hat{\rho}(t) = \left[\hat{H}(t), \hat{\rho}(t)\right]$$
(1.34)

1.6. Populações e coerências

1.6.1. Populações

De acordo com a definição de $\hat{\rho}(t)$ para mistura estatística, os elementos diagonais ρ_{nn} de sua matriz serão dados, na base $\{u_n\}$, por

$$\rho_{nn} = \sum_{k} p_k (\hat{\rho}_k)_{nn} \tag{1.35}$$

Como $\hat{\rho}_k = |\psi_k\rangle \langle \psi_k|$, definindo as componentes de $|\psi_k\rangle$ na base $\{|u_n\rangle\}$

$$c_n^{(k)} = \left\langle u_n \middle| \psi_k \right\rangle \tag{1.36}$$

 ρ_{nn} será dado explicitamente por

$$\rho_{nn} = \sum_{k} p_{k} \langle u_{n} | \hat{\rho}_{k} | u_{n} \rangle = \sum_{k} p_{k} \langle u_{n} | \psi_{k} \rangle \langle \psi_{k} | u_{n} \rangle = \sum_{k} p_{k} c_{n}^{(k)} c_{n}^{(k)*} = \sum_{k} p_{k} | c_{n}^{(k)} |^{2}$$

$$\therefore \quad \rho_{nn} = \sum_{k} p_{k} | c_{n}^{(k)} |^{2}$$
(1.37)

Se o estado do sistema for $|\psi_k\rangle$, $|c_n^{(k)}|^2$ será a probabilidade de encontrar o sistema no estado $|u_n\rangle$ em uma determinada medida. De acordo com (1.35), levando em conta a indeterminação do estado antes da medida, ρ_{nn} representa a probabilidade média de encontrar o sistema no estado $|u_n\rangle$. Por essa razão, ρ_{nn} é denominado de **população**[11] do estado $|u_n\rangle$. Caso a medida seja repetida *N* vezes, com *N* muito grande, $N\rho_{nn}$ sistemas serão encontrados no estado $|u_n\rangle$.
1.6.2. Coerências

Para os elementos não-diagonais da matriz de $\hat{\rho}(t)$,

$$\rho_{np} = \sum_{k} p_k (\hat{\rho}_k)_{np} \tag{1.38}$$

ou, explicitamente,

$$\rho_{np} = \sum_{k} p_{k} \langle u_{n} | \rho_{k} | u_{p} \rangle = \sum_{k} p_{k} \langle u_{n} | \psi_{k} \rangle \langle \psi_{k} | u_{p} \rangle = \sum_{k} p_{k} c_{n}^{(k)} c_{p}^{(k)*}$$

$$\therefore \quad \rho_{np} = \sum_{k} p_{k} c_{n}^{(k)} c_{p}^{(k)*}$$
(1.39)

O termo $c_n^{(k)}c_p^{(k)*}$ expressa os efeitos de **interferência** entre os estados $|u_n\rangle$ e $|u_p\rangle$ que podem surgir quando o estado $|\psi_k\rangle$ for uma superposição linear de estados. De acordo com (1.39), ρ_{np} é a média destes termos cruzados, tomados sobre todos os possíveis estados da mistura estatística. Em contraste com as populações, ρ_{np} pode ser nulo mesmo quando nenhum dos produtos $c_n^{(k)}c_p^{(k)*}$ se anular, pois a soma em *k* envolve números complexos.

Se ρ_{np} for nulo, a média expressa em (1.39) terá cancelado quaisquer efeitos de coerência entre os estados $|u_n\rangle$ e $|u_p\rangle$. Por essa razão, os termos ρ_{np} são chamados de **coerências**[11].

1.6.3. Dependência temporal

Os *kets* $|u_n\rangle$ são autovetores de uma hamiltoniana *por hipótese* independente do tempo e com autovalores discretos,

$$\hat{H}|u_n\rangle = E_n|u_n\rangle \tag{1.40}$$

Para determinar as expressões de ρ_{nn} e ρ_{np} em função do tempo, é conveniente primeiro determinar como o comutador de \hat{H} com $\hat{\rho}(t)$ atua em $|u_p\rangle$:

$$\left[\hat{H},\hat{\rho}(t)\right]u_{p}\rangle = \hat{H}\hat{\rho}(t)\left|u_{p}\rangle - \hat{\rho}(t)\hat{H}\left|u_{p}\rangle = \hat{H}\hat{\rho}(t)\left|u_{p}\rangle - \hat{\rho}(t)E_{p}\left|u_{p}\rangle\right.$$
(1.41)

Substituindo (1.40) na equação de von Neumann (1.13):

$$\langle u_n | [\hat{H}, \hat{\rho}(t)] u_p \rangle = \langle u_n | \hat{H} \hat{\rho}(t) | u_p \rangle - \langle u_n | \hat{\rho}(t) E_p | u_p \rangle =$$

$$= E_n \langle u_n | \hat{\rho}(t) | u_p \rangle - E_p \langle u_n | \hat{\rho}(t) | u_p \rangle = (E_n - E_p) \rho_{np}$$

$$\therefore \quad \langle u_n | [\hat{H}, \hat{\rho}(t)] u_p \rangle = (E_n - E_p) \rho_{np}$$

$$(1.42)$$

ou seja,

$$\begin{cases} i\hbar \frac{d}{dt} \rho_{nn}(t) = 0\\ i\hbar \frac{d}{dt} \rho_{np}(t) = (E_n - E_p) \rho_{np}(t) \end{cases} \Rightarrow \begin{cases} \rho_{nn} = (\text{constante})\\ \rho_{np} = e^{\frac{i}{\hbar}(E_p - E_n)t} \rho_{np}(0) \end{cases}$$
(1.43)

As populações são constantes e as coerências oscilam nas freqüências de Bohr do sistema[11,12].

1.7. Sistemas em equilíbrio térmico

Seja um sistema em equilíbrio termodinâmico com um reservatório térmico à temperatura absoluta *T*. Nessas condições[11,21],

$$\hat{\rho} = \frac{e^{-\frac{\hat{H}}{kT}}}{Z} \tag{1.44}$$

onde Z é a função de partição do sistema; por sua própria definição,

$$Z = \sum_{n} e^{-\frac{E_n}{kT}}$$
(1.45)

37

mas

$$e^{-\frac{E_n}{kT}} = \left\langle u_n \left| e^{-\frac{\hat{H}}{kT}} \right| u_n \right\rangle \tag{1.46}$$

Assim, substituindo (1.46) em (1.45),

$$Z = \sum_{n} \left\langle u_{n} \left| e^{-\frac{\hat{H}}{kT}} \right| u_{n} \right\rangle = tr \left\{ e^{-\frac{\hat{H}}{kT}} \right\}$$

$$\therefore \quad Z = tr \left\{ e^{-\frac{\hat{H}}{kT}} \right\}$$
(1.47)

Para o conjunto de autoestados $\left\{ u_n \right\}$ de \hat{H} ,

$$\rho_{nn} = \frac{1}{Z} \langle u_n | e^{-\frac{\hat{H}}{kT}} | u_n \rangle = \frac{e^{-\frac{E_n}{kT}}}{Z} \langle u_n | u_n \rangle = \frac{e^{-\frac{E_n}{kT}}}{Z} \quad \therefore \rho_{nn} = \frac{e^{-\frac{E_n}{kT}}}{Z} \tag{1.48}$$

$$\rho_{np} = \frac{1}{Z} \langle u_n | e^{-\frac{\hat{H}}{kT}} | u_p \rangle = \frac{e^{-\frac{E_p}{kT}}}{Z} \langle u_n | u_p \rangle = 0 \quad \therefore \rho_{np} = 0 \tag{1.49}$$

No equilíbrio termodinâmico, as populações do estado estacionário são funções exponencialmente decrescentes com a energia e as coerências entre os estados estacionários são nulas[11].

1.8. Evolução temporal do operador densidade

O operador densidade descreve o **estado** do sistema, enquanto que a hamiltoniana representa as **interações** que podem mudar o estado. Ambos estão relacionados através da equação de von Neumann.

Se $\hat{H}(t)$ e $\hat{\rho}(t)$ comutarem entre si, o operador densidade não se alterará ao longo do tempo. Caso não comutem entre si e \hat{H} seja independente do tempo, a solução formal da equação de von Neumann poderá ser obtida de um modo bem simples. Dado um vetor de estado $|\Psi(t_0)\rangle$ em um instante arbitrário t_0 , o respectivo vetor no instante *t* será

$$\left|\Psi(t)\right\rangle = \sum_{n} c_{n} e^{-i\frac{E_{n}}{\hbar}(t-t_{0})} \left|u_{n}\right\rangle$$
(1.50)

onde $\{\!|u_n\rangle\!\}$ é a base de autoestados de \hat{H} e c_n são coeficientes que podem ser obtidos por

$$c_n = \langle u_n | \psi(t_0) \rangle \tag{1.51}$$

Por outro lado, também é possível obter $|\Psi(t)\rangle$ a partir de $|\Psi(t_0)\rangle$ através do operador evolução $\hat{U}(t)$, com

$$\left|\psi(t)\right\rangle = \hat{U}(t)\left|\psi(t_0)\right\rangle \tag{1.52}$$

onde, evidentemente,

$$\hat{U}(t_0) = \hat{1} \tag{1.53}$$

Substituindo (1.52) na equação de Schrödinger (1.7),

$$i\hbar \frac{d}{dt} \left[\hat{U}(t) | \psi(t_0) \rangle \right] = \hat{H}(t) \left[\hat{U}(t) | \psi(t_0) \rangle \right]$$
(1.54)

e, como $|\Psi(t_0)\rangle$ é um vetor constante (e arbitrário),

$$i\hbar \frac{d}{dt}\hat{U}(t) = \hat{H}(t)\hat{U}(t)$$
(1.55)

$$\hat{U}(t) = e^{-i\frac{\hat{H}}{\hbar}(t-t_0)}$$
(1.56)

Dessa forma, substituindo (1.55) em (1.52),

$$|\psi(t)\rangle = e^{-i\frac{\hat{H}}{\hbar}(t-t_0)}|\psi(t_0)\rangle$$
(1.57)

e, para $t_0 = 0$,

$$|\psi(t)\rangle = e^{-i\frac{\hat{H}}{\hbar}t}|\psi(0)\rangle \tag{1.58}$$

Conjugando (1.58),

$$\langle \psi(t) | = \langle \psi(0) | e^{i\frac{\hat{H}}{\hbar}t}$$
(1.59)

e substituindo na definição de operador densidade (1.9),

$$\hat{\rho}(t) = e^{-i\frac{\hat{H}}{\hbar}t} |\psi(0)\rangle \langle \psi(0)| e^{i\frac{\hat{H}}{\hbar}t}$$
(1.60)

Tendo em vista que $\hat{\rho}(0) = |\psi(0)\rangle\langle\psi(0)|$, a solução formal da equação de von Neumann, ou seja, a dependência temporal do operador densidade com relação ao seu valor no instante inicial $t_0 = 0$ é obtida:

$$\hat{\rho}(t) = e^{-i\frac{\hat{H}}{\hbar}t} \hat{\rho}(0) e^{i\frac{\hat{H}}{\hbar}t}$$
(1.61)

O operador $\hat{U}(t) = e^{-i\frac{\hat{H}}{\hbar}t}$, responsável pela evolução temporal do operador densidade, como mostrado em (1.61), é denominado **propagador**.

Para evoluções sob hamiltonianas \hat{H}_n distintas e independentes do tempo, atuando sobre o sistema em instantes diferentes, durante intervalos de tempo de durações distintas,

$$\hat{\rho}(t) = e^{-i\frac{\hat{H}_{n}}{\hbar}t_{n}} \dots \left\{ e^{-i\frac{\hat{H}_{2}}{\hbar}t_{2}} \left[e^{-i\frac{\hat{H}_{1}}{\hbar}t_{1}} \hat{\rho}(0)e^{i\frac{\hat{H}_{1}}{\hbar}t_{1}} \right] e^{i\frac{\hat{H}_{2}}{\hbar}t_{2}} \right\} \dots e^{i\frac{\hat{H}_{n}}{\hbar}t_{n}}$$

$$\underbrace{\frac{\hat{H}_{1},t_{1}}{\hat{H}_{2},t_{2}}}_{\hat{H}_{n},t_{n}}$$
(1.62),

Esta equação é de grande utilidade para o entendimento de seqüências de pulsos complexas atualmente usadas em espectroscopia n-dimensional e computação quântica via RMN[14-16,18,19].

1.9. Mudanças de referencial

Uma situação comumente encontrada em ressonância magnética nuclear é aquela em que o sistema está submetido a uma interação intensa independente do tempo, \hat{H}_0 , e a uma interação dependente do tempo, \hat{H}_1 . De acordo com (1.24), a evolução temporal do operador densidade obedecerá a equação

$$\frac{d}{dt}\hat{\rho} = \frac{1}{i\hbar} \left[\hat{H}_0 + \hat{H}_1, \hat{\rho} \right] \tag{1.63}$$

Se \hat{H}_1 fosse nulo, a solução de (1.63) seria, de acordo com (1.61),

$$\rho(t) = e^{-i\frac{\hat{H}_0}{\hbar}t} \hat{\rho}(0) e^{i\frac{\hat{H}_0}{\hbar}t}$$
(1.64)

Tendo em vista esse fato, é definido convenientemente o novo operador $\hat{\rho}_{R}(t)$ através da relação

$$\hat{\rho}_R(t) = e^{i\frac{\hat{H}_0}{\hbar}t} \hat{\rho}(t) e^{-i\frac{\hat{H}_0}{\hbar}t}$$
(1.65)

Será determinada, agora, a respectiva equação de von Neumann para $\hat{\rho}_R(t)$. Derivando (1.65),

$$\hat{\rho}(t) = e^{-i\frac{\hat{H}_{0}}{\hbar}t} \hat{\rho}_{R}(t) e^{i\frac{\hat{H}_{0}}{\hbar}t}
= -\frac{i}{\hbar} \hat{H}_{0} e^{-i\frac{\hat{H}_{0}}{\hbar}t} \hat{\rho}_{R}(t) e^{i\frac{\hat{H}_{0}}{\hbar}t} + e^{-i\frac{\hat{H}_{0}}{\hbar}t} \left[\frac{d}{dt} \hat{\rho}_{R}(t)\right] e^{i\frac{\hat{H}_{0}}{\hbar}t} + \frac{i}{\hbar} e^{-i\frac{\hat{H}_{0}}{\hbar}t} \hat{\rho}_{R}(t) \hat{H}_{0} e^{i\frac{\hat{H}_{0}}{\hbar}t} = (1.66)$$

$$= -\frac{i}{\hbar} \hat{H}_{0} \hat{\rho}(t) + e^{-i\frac{\hat{H}_{0}}{\hbar}t} \left[\frac{d}{dt} \hat{\rho}_{R}(t)\right] e^{i\frac{\hat{H}_{0}}{\hbar}t} + \frac{i}{\hbar} \hat{\rho}(t) \hat{H}_{0} = \frac{i}{\hbar} \left[\hat{\rho}(t), \hat{H}_{0}\right] + \frac{e^{-i\frac{\hat{H}_{0}}{\hbar}t} \left[\frac{d}{dt} \hat{\rho}_{R}(t)\right] e^{i\frac{\hat{H}_{0}}{\hbar}t}$$

e expandindo a expressão (1.63),

$$\frac{d}{dt}\hat{\rho} = \frac{1}{i\hbar} \left[\hat{H}_0, \hat{\rho}\right] + \frac{1}{i\hbar} \left[\hat{H}_1, \hat{\rho}\right] = \frac{i}{\hbar} \left[\hat{\rho}, \hat{H}_0\right] + \frac{1}{\underline{i\hbar}} \left[\hat{H}_1, \hat{\rho}\right]$$
(1.67)

conclui-se, comparando os últimos termos de (1.66) e (1.67), que

$$e^{-i\frac{\hat{H}_0}{t}} \left[\frac{d}{dt} \hat{\rho}_R \right] e^{i\frac{\hat{H}_0}{t}} = \frac{1}{i\hbar} \left[\hat{H}_1, \hat{\rho} \right]$$
(1.68)

Multiplicando à esquerda por $e^{i\frac{\hat{H}_0}{\hbar}t}$ e à direita por $e^{-i\frac{\hat{H}_0}{\hbar}t}$ em ambos os membros e substituindo (1.65), é isolada a derivada temporal de $\hat{\rho}_R(t)$:

$$\frac{d}{dt}\hat{\rho}_{R} = \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}\left[\hat{H}_{1},\hat{\rho}\right]e^{-i\frac{\hat{H}_{0}}{\hbar}t} = \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}\left(\hat{H}_{1}\hat{\rho}-\hat{\rho}\hat{H}_{1}\right)e^{-i\frac{\hat{H}_{0}}{\hbar}t} = \\
= \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}\hat{H}_{1}\hat{\rho}e^{-i\frac{\hat{H}_{0}}{\hbar}t} - \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}\hat{\rho}\hat{H}_{1}e^{-i\frac{\hat{H}_{0}}{\hbar}t} = \\
= \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}\hat{H}_{1}e^{-i\frac{\hat{H}_{0}}{\hbar}t}\hat{\rho}_{R}(t)e^{i\frac{\hat{H}_{0}}{\hbar}t}e^{-i\frac{\hat{H}_{0}}{\hbar}t} - \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}e^{-i\frac{\hat{H}_{0}}{\hbar}t}\hat{\rho}_{R}(t)e^{i\frac{\hat{H}_{0}}{\hbar}t}\hat{H}_{1}e^{-i\frac{\hat{H}_{0}}{\hbar}t} = \\
= \frac{1}{i\hbar}e^{i\frac{\hat{H}_{0}}{\hbar}t}\hat{H}_{1}e^{-i\frac{\hat{H}_{0}}{\hbar}t}\hat{\rho}_{R}(t) - \frac{1}{i\hbar}\hat{\rho}_{R}(t)e^{i\frac{\hat{H}_{0}}{\hbar}t}\hat{H}_{1}e^{-i\frac{\hat{H}_{0}}{\hbar}t}$$
(1.69)

Por (1.69) é definido, de maneira análoga à (1.65), o hamiltoniano transformado,

$$\hat{H}_{1R} = e^{i\frac{\hat{H}_0}{\hbar}t}\hat{H}_1 e^{-i\frac{\hat{H}_0}{\hbar}t}$$
(1.70)

e a equação de movimento almejada é obtida:

$$\frac{d}{dt}\hat{\rho}_{R} = \frac{1}{i\hbar}\hat{H}_{1R}\hat{\rho}_{R} - \frac{1}{i\hbar}\hat{\rho}_{R}\hat{H}_{1R} = \frac{1}{i\hbar}\left[\hat{H}_{1R},\hat{\rho}_{R}\right]$$

$$\therefore \quad \frac{d}{dt}\hat{\rho}_{R} = \frac{1}{i\hbar}\left[\hat{H}_{1R},\hat{\rho}_{R}\right]$$
(1.71)

Como procurado, através de transformações adequadas, equação (1.71) possui a mesma forma da equação (1.13). Esse artifício será utilizado no capítulo 2 para "eliminar" o movimento de precessão resultante da interação Zeeman do campo magnético estático[17].

1.10. Contextualização

Todas as propriedades do operador densidade necessárias para o entendimento dos cálculos e implementações desta dissertação foram aqui explicados. Esses conceitos já serão utilizados no próximo capítulo na abordagem dos aspectos quânticos da ressonância magnética nuclear e, principalmente, no capítulo 4, que trata do método de tomografia utilizado. Além disso, o espectro de aplicações deste formalismo é extremamente abrangente, como foi dito na introdução, justificando a atenção dispensada aqui.

Capítulo 2: Aspectos Quânticos da Ressonância Magnética Nuclear

"Doutor Bloch e Doutor Purcell! Os senhores inauguraram um novo caminho para estudos no mundo microscópico da física nuclear. Cada átomo se tornou um instrumento sensível e delicado, tocando sua própria melodia magnética, tênue e inaudível para ouvidos humanos. Por seus métodos, essa música se tornou perceptível, e a melodia característica de um átomo pode ser usada como um sinal de identificação. Isso não é apenas uma conquista de grande beleza intelectual – também se torna um método analítico de altíssimo valor nas mãos dos cientistas".

Harald Cramér, membro da Academia Real de Ciências da Suécia, antes de Felix Bloch e Edward Mills Purcell iniciarem seus respectivos discursos no jantar da cerimônia de entrega do prêmio Nobel de Física em 1952.

2.1. Introdução

Neste capitulo será apresentada a descrição, através do formalismo do operador densidade, de aspectos básicos da Ressonância Magnética Nuclear.[1,14-16,18,19] Serão analisadas com ênfase as interações mais importantes para o sistema utilizado nesta dissertação, **Zeeman** e **quadrupolar** elétrica, embora a última seção forneça uma pequena explanação sobre a interação entre núcleos. Os exemplos da interação quadrupolar elétrica são fornecidos tanto para $spin \frac{3}{2}$ como para $\frac{7}{2}$, já que o primeiro foi utilizado nos trabalhos anteriores de computação quântica do LEAR[1,9]. Já para a interação Zeeman são fornecidos diagramas de energia para vários *spins*.

2.2. Operadores de spin

Na mecânica quântica, o operador momento angular de *spin* \hat{S} é definido[11,22] de forma que, na base $\{m\}$ de autoestados comuns a \hat{S}^2 e \hat{S}_z , para uma partícula de *spin I*,

$$S^{2}|m\rangle = I(I+1)\hbar^{2}|m\rangle$$

$$S_{z}|m\rangle = m\hbar|m\rangle$$
(2.1)

44

Em RMN, é útil trabalhar com o operador adimensional \hat{I} , dado por[23,24]

$$\hat{I} = \frac{\hat{S}}{\hbar} \tag{2.2}$$

por simplificações em certas passagens matemáticas. O operador hamiltoniano associado a um campo magnético \vec{B} é dado, em termos do **momento de dipolo magnético** $\vec{\mu}$, pela expressão[17,21,25]

$$\hat{H} = -\vec{\mu} \bullet \vec{B} \tag{2.3}$$

onde

$$\vec{\mu} = \hbar \gamma \vec{l} , \vec{l} = \hat{l}_x \hat{x} + \hat{l}_y \hat{y} + \hat{l}_z \hat{z}$$
 (2.4)

onde γ é o **fator giromagnético**. Nessa expressão, $\hat{x}, \hat{y} \in \hat{z}$ os versores cartesianos e os \hat{I}_i operadores.

Para obter a evolução do operador densidade, é necessário primeiro definir o operador \hat{I}_z para um dado *spin* nuclear $(\frac{1}{2}, 1, \frac{3}{2}, ...)$, bem como as outras componentes do momento angular \hat{I}_x e \hat{I}_y em termos de matrizes apropriadas. Por conveniência, considerando o *spin I*, serão escolhidas as representações matriciais na base comum de autoestados de \hat{I}_z e \hat{I}^2 , denotada por $\{m\}$, com

$$|m| \le I$$
, $m = -I, -I + 1, ..., I - 1, I$ (2.5)

Também serão definidos os operadores \hat{I}_+ e \hat{I}_- , cujas aplicações na base $\{m\}$ serão dadas por[11,22]

$$\hat{I}_{+} |m\rangle = \sqrt{I(I+1) - m(m+1)} |m+1\rangle$$

$$\hat{I}_{-} |m\rangle = \sqrt{I(I+1) - m(m-1)} |m-1\rangle$$
(2.6)

sendo que os operadores $\hat{I}_x \in \hat{I}_y$ serão dados por

$$\hat{I}_{x} = \frac{\hat{I}_{+} + \hat{I}_{-}}{2}, \ \hat{I}_{y} = \frac{\hat{I}_{+} - \hat{I}_{-}}{2i}$$
(2.7)

Dessa forma, os elementos de matriz de cada operador serão

$$\begin{pmatrix} \hat{I}_z \end{pmatrix}_{m'm} = \langle m' | \hat{I}_z | m \rangle = m \delta_{m',m} \\ \begin{pmatrix} \hat{I}_+ \end{pmatrix}_{m'm} = \langle m' | \hat{I}_+ | m \rangle = \sqrt{I(I+1) - m(m+1)} \delta_{m',m+1} \\ \begin{pmatrix} \hat{I}_- \end{pmatrix}_{m'm} = \langle m' | \hat{I}_- | m \rangle = \sqrt{I(I+1) - m(m-1)} \delta_{m',m-1} \\ \begin{pmatrix} \hat{I}_x \end{pmatrix}_{m'm} = \frac{\sqrt{I(I+1) - m(m+1)} \delta_{m',m+1} + \sqrt{I(I+1) - m(m-1)} \delta_{m',m-1}}{2} \\ \begin{pmatrix} \hat{I}_y \end{pmatrix}_{m'm} = \frac{\sqrt{I(I+1) - m(m+1)} \delta_{m',m+1} - \sqrt{I(I+1) - m(m-1)} \delta_{m',m-1}}{2i} \\ \end{pmatrix}$$

$$(2.8)$$

Para spin
$$I = \frac{3}{2}, m = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$$
 e, na base $\left\{ \left| \frac{3}{2} \right\rangle, \left| \frac{1}{2} \right\rangle, \left| -\frac{1}{2} \right\rangle, \left| -\frac{3}{2} \right\rangle \right\}$ as matrizes serão:

$$(\hat{I}_z) = \frac{1}{2} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, \\ (\hat{I}_y) = \frac{i}{2} \begin{bmatrix} 0 & -\sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & -1 & 0 \\ 0 & 1 & 0 & -\sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix}, \\ (\hat{I}_x) = \frac{1}{2} \begin{bmatrix} 0 & \sqrt{3} & 0 & 0 \\ \sqrt{3} & 0 & 1 & 0 \\ 0 & 1 & 0 & \sqrt{3} \\ 0 & 0 & \sqrt{3} & 0 \end{bmatrix}$$
(2.9)

e, para *spin* $I = \frac{7}{2}$, $m = -\frac{7}{2}, -\frac{5}{2}, -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ e, na base

 $\left\{ \left|\frac{7}{2}\right\rangle, \left|\frac{5}{2}\right\rangle, \left|\frac{3}{2}\right\rangle, \left|\frac{1}{2}\right\rangle, \left|-\frac{1}{2}\right\rangle, \left|-\frac{3}{2}\right\rangle, \left|-\frac{5}{2}\right\rangle, \left|-\frac{7}{2}\right\rangle \right\} \text{ as respectivas matrizes serão:} \right.$

$$(\hat{t}_{x}) = \frac{1}{2} \begin{bmatrix} 0 & \sqrt{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \sqrt{7} & 0 & 2\sqrt{3} & 0 & \sqrt{15} & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{3} & 0 & \sqrt{15} & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{15} & 0 & 2\sqrt{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & -2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & -2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & -2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & -2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & -2\sqrt{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{15} & 0 & -\sqrt{7} \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{7} & 0 \end{bmatrix}$$

$$(\hat{t}_{x}) = \frac{1}{2} \begin{bmatrix} 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{7} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{7} & 0 \end{bmatrix}$$

$$(2.10)$$

No plano transversal, é conveniente representar a **magnetização** como uma entidade complexa[23,24], onde as componentes $\hat{I}_x \in \hat{I}_y$ estão relacionadas segundo \hat{I}_+ , como definido por (2.6) e (2.7),

$$\hat{I}_{+} = \hat{I}_{x} + i\hat{I}_{y} \tag{2.11}$$

Entretanto, convém ressaltar que a notação complexa não implica que alguma quantidade medida seja imaginária: $\hat{I}_x \in \hat{I}_y$ são duas partes reais proporcionais à magnetização transversal que induz sinal na bobina. Tais sinais diferem por uma fase de $\frac{\pi}{2}$ (ver item 2.7) sendo, por isso, representados como partes de um número no plano complexo. O sinal medido associado ao operador de medida, denominado de FID (como será explicado logo) será, então, dado por

$$\left\langle \hat{I}_{x}(t) + i\hat{I}_{y}(t) \right\rangle = tr\left\{ \hat{\rho}(t) \left(\hat{I}_{x} + i\hat{I}_{y} \right) \right\} = tr\left\{ \hat{\rho}(t) \hat{I}_{+} \right\} = \left\langle \hat{I}_{+}(t) \right\rangle$$
(2.12)

2.3. Aproximação de altas temperaturas

Para campos magnéticos acima de *1T*, a contribuição dominante para a hamiltoniana de *spin* é a **interação Zeeman**[11,21,22,25]:

$$\hat{H} = -\gamma \hbar \hat{I}_z B_0 = -\hbar \omega_0 \hat{I}_z, \quad \omega_0 \equiv \gamma B_0$$
(2.13)

onde se supõe que o campo magnético estático \vec{B}_0 seja aplicado ao longo da direção z.

Acima de 1 K e com campos magnéticos da ordem de 10 T,

$$\frac{\hbar\omega_0}{kT} \ll 1 \tag{2.14}$$

47

o que pode ser verificado a partir de algumas estimativas numéricas, mostradas na tabela 2.1. Como é possível observar, todas as razões já são, de fato, menores do que *I* em *I K*. Nos experimentos de computação quântica tratados nessa dissertação, as amostras estão à temperatura ambiente, cerca de *300 K*, diminuindo ainda mais tais razões.

Núcleo	Ι	γ(MHz.T ⁻¹)	$\omega_0 (s^{-1})$	$\frac{\hbar\omega_0}{kT}$	
				1K	300 K
$^{1}\mathrm{H}$	$\frac{1}{2}$	42,4	2,7.10 ⁹	2,1.10 ⁻²	7,0.10 ⁻⁵
$^{2}\mathrm{H}$	1	6,5	4,1.10 ⁸	3,1.10 ⁻³	1,0.10 ⁻⁵
²³ Na	$\frac{3}{2}$	11,3	7,1.10 ⁸	5,4.10-3	1,8.10 ⁻⁵
¹³³ Cs	$\frac{7}{2}$	5,6	3,5.10 ⁸	2,7.10 ⁻³	9.10 ⁻⁶

Tabela 2.1 - Estimativas numéricas para a razão em (2.14)

Dessa forma, o operador densidade (1.44) pode ser expandido, desprezando-se os termos quadrático e superiores; tal expansão é denominada de **aproximação de alta temperatura**[21,25].

$$\rho = \frac{e^{-\frac{\hat{H}}{kT}}}{Z} \approx \frac{1}{Z} \left(\hat{1} + \frac{\hbar\omega_0}{kT} \hat{I}_z \right)$$
(2.15)

A componente proporcional à identidade não evolui no tempo:

$$\frac{\hat{1}}{Z}(t) = \hat{U}(t)\frac{\hat{1}}{Z}(0)\hat{U}^{+}(t) = \hat{U}(t)\hat{U}^{+}(t)\frac{\hat{1}}{Z}(0) = \hat{1}\frac{\hat{1}}{Z}(0) = \frac{\hat{1}}{Z}(0)$$
(2.16)

e não é acessível pelo experimento de RMN, já que não afeta o valor de \hat{I}_+ :

$$tr\{\hat{1}\hat{I}_{+}\} = tr\{\hat{I}_{+}\} = 0$$
 (2.17)

logo, é conveniente trabalhar apenas com a parte dependente do tempo, dada pelo operador densidade parcial[1,14-16,18,19] $\Delta \hat{\rho}_0$

$$\Delta \hat{\rho}_0 \equiv \frac{\hbar \omega_0}{ZkT} \hat{I}_z = \alpha \hat{I}_z, \ \alpha \equiv \frac{\hbar \omega_0}{ZkT}$$
(2.18)

onde α é um parâmetro adimensional. Para facilitar os cálculos, será usado o operador $\Delta \hat{\rho}$ definido por

$$\Delta \hat{\rho} \equiv \frac{\Delta \hat{\rho}_0}{\alpha} \tag{2.19}$$

ou seja, trata-se do operador densidade parcial sem a constante α . Para (2.18), segundo (2.19)

$$\Delta \hat{\rho} = \hat{I}_z \tag{2.20}$$

No estado de equilíbrio térmico,

$$\Delta \hat{\rho}(0) = \hat{I}_z \tag{2.21}$$

Doravante, a expressão *matriz densidade* será utilizada para designar o operador dado em (2.19).

2.4. Rotações sobre o sistema de spins

Em praticamente todos os cálculos de RMN, é necessário determinar o efeito de rotações sobre uma determinada componente α do *spin*, \hat{I}_{α} . Em tais cálculos, surgem expressões do tipo

$$\hat{R} = e^{-i\phi \hat{\ell}_{\beta}} \hat{I}_{\alpha} e^{i\phi \hat{\ell}_{\beta}}, \quad \alpha, \beta = x, y, z$$
(2.22)

onde ϕ é um parâmetro auxiliar. Tais expressões já são conhecidas e podem ser calculadas utilizando a expansão em série de potências das exponenciais e as relações canônicas de comutação entre os operadores \hat{I}_x , \hat{I}_y e \hat{I}_z [17,26]:

$$\begin{bmatrix} \hat{I}_x, \hat{I}_y \end{bmatrix} = i\hat{I}_z, \quad \begin{bmatrix} \hat{I}_y, \hat{I}_z \end{bmatrix} = i\hat{I}_x, \quad \begin{bmatrix} \hat{I}_z, \hat{I}_x \end{bmatrix} = i\hat{I}_y$$
(2.23)

Como exemplo, será calculado o caso de (2.22) em que $\beta = z$, ou seja,

$$\hat{R} = e^{-i\phi\hat{l}_z} \hat{I}_{\alpha} e^{i\phi\hat{l}_z}$$
(2.24)

Utilizando a expansão em série das exponenciais e agrupando convenientemente os termos:

$$e^{-i\phi\hat{l}_{z}}\hat{I}_{\alpha}e^{i\phi\hat{l}_{z}} = \left(\hat{1} - i\phi\hat{l}_{z} - \frac{\phi^{2}}{2!}\hat{I}_{z}^{2} + i\frac{\phi^{3}}{3!}\hat{I}_{z}^{3} + \dots\right)\hat{I}_{\alpha}\left(\hat{1} + i\phi\hat{l}_{z} - \frac{\phi^{2}}{2!}\hat{I}_{z}^{2} - i\frac{\phi^{3}}{3!}\hat{I}_{z}^{3} + \dots\right) =$$

$$= \hat{I}_{\alpha} + i\phi\underbrace{\left(\hat{I}_{\alpha}\hat{I}_{z} - \hat{I}_{z}\hat{I}_{\alpha}\right)}_{(A)} - \frac{\phi^{2}}{2!}\underbrace{\left(\hat{I}_{\alpha}\hat{I}_{z}^{2} - 2\hat{I}_{z}\hat{I}_{\alpha}\hat{I}_{z} + \hat{I}_{z}^{2}\hat{I}_{\alpha}\right)}_{(B)} + i\frac{\phi^{3}}{3!}\underbrace{\left(\hat{I}_{z}^{3}\hat{I}_{\alpha} - 3\hat{I}_{z}^{2}\hat{I}_{\alpha}\hat{I}_{z} + 3\hat{I}_{z}\hat{I}_{\alpha}\hat{I}_{z}^{2} + \hat{I}_{\alpha}\hat{I}_{z}^{3}\right)}_{(C)} + \dots$$

$$(2.25)$$

Cada termo indicado entre parênteses pode ser simplificado:

(A):
$$\hat{I}_{\alpha}\hat{I}_{z}-\hat{I}_{z}\hat{I}_{\alpha}=\begin{bmatrix}\hat{I}_{\alpha},\hat{I}_{z}\end{bmatrix}$$

(B):
$$\hat{I}_{\alpha}\hat{I}_{z}^{2} - 2\hat{I}_{z}\hat{I}_{\alpha}\hat{I}_{z} + \hat{I}_{z}^{2}\hat{I}_{\alpha} = \begin{bmatrix}\hat{I}_{z}, \begin{bmatrix}\hat{I}_{\alpha}, \hat{I}_{z}\end{bmatrix}$$
(2.26)

(C):
$$\hat{I}_{z}^{3}\hat{I}_{\alpha} - 3\hat{I}_{z}^{2}\hat{I}_{\alpha}\hat{I}_{z} + 3\hat{I}_{z}\hat{I}_{\alpha}\hat{I}_{z}^{2} + \hat{I}_{\alpha}\hat{I}_{z}^{3} = \left[\hat{I}_{z}, \left[\hat{I}_{z}, \left[\hat{I}_{z}, \hat{I}_{\alpha}\right]\right]\right]$$

50

$$e^{-i\phi \hat{l}_{z}} \hat{I}_{\alpha} e^{i\phi \hat{l}_{z}} = \hat{I}_{\alpha} + i\phi [\hat{I}_{\alpha}, \hat{I}_{z}] - \frac{\phi^{2}}{2!} [\hat{I}_{z}, [\hat{I}_{\alpha}, \hat{I}_{z}]] + \frac{i\phi^{3}}{3!} [\hat{I}_{z}, [\hat{I}_{z}, [\hat{I}_{z}, \hat{I}_{\alpha}]]] + \dots$$
(2.27)

O cálculo final, por exigir as relações (2.23), dependerá de α . Tomando, primeiro, $\alpha = x$:

$$e^{-i\phi\hat{l}_z}\hat{I}_x e^{i\phi\hat{l}_z} = \hat{I}_x \cos\phi + \hat{I}_y sen\phi$$
(2.28)

e, em seguida¹, $\alpha = y$:

$$e^{-i\phi\hat{l}_z}\hat{I}_y e^{i\phi\hat{l}_z} = \hat{I}_y \cos\phi - \hat{I}_x sen\phi$$
(2.29)

Uma lista mais completa de rotações é encontrada na referência [17]. Adiante, serão utilizadas também as seguintes relações:

$$e^{i\phi \hat{l}_x} \hat{I}_z e^{-i\phi \hat{l}_x} = I_z \cos\phi + I_y sen\phi$$

$$e^{i\phi \hat{l}_x} \hat{I}_y e^{-i\phi \hat{l}_x} = I_y \cos\phi - I_z sen\phi$$
(2.30)

2.5. Interação Zeeman

A hamiltoniana Zeeman[11,21,22,25] de um *spin* nuclear com momento magnético $\mu = \gamma \hbar I$ na presença de um campo magnético estacionário (independente do tempo) $\vec{B} = B_0 \hat{z}$ é dada por (2.9). A separação entre os níveis de energia, para I > 0 e $\gamma > 0$, é **sempre** igual a $\hbar \omega_0$, como exibido na figura 2.1.

O movimento do *spin* nuclear pode ser analisado de acordo com as equações (1.61) e (1.62). O propagador que descreve a evolução do sistema será dado por

$$\hat{U}(t) = e^{-i\frac{\hat{H}}{\hbar}t} = e^{i\gamma B_0 \hat{I}_z t} = e^{i\omega_0 \hat{I}_z t}$$
(2.31)

¹ Obviamente, se $\alpha = z$, $e^{-i\phi \hat{l}_z} \hat{I}_z e^{i\phi \hat{l}_z} = \hat{I}_z$

Figura 2.1. Diagramas de níveis de energia Zeeman para diversos spins I.

A matriz densidade no instante t, de acordo com (1.61),

$$\Delta \hat{\rho}(t) = e^{i\omega_0 \hat{l}_z t} \Delta \hat{\rho}(0) e^{-i\omega_0 \hat{l}_z t} = e^{i\omega_0 \hat{l}_z t} \hat{l}_z e^{-i\omega_0 \hat{l}_z t}$$
(2.32)

Com o intuito de determinar a evolução da magnetização, que é proporcional ao momento angular \hat{I} , serão determinados os valores esperados de \hat{I}_x , \hat{I}_y e \hat{I}_z em função do tempo. Lembrando que[27]

$$tr\{\hat{A}\hat{B}\} = tr\{\hat{B}\hat{A}\}$$
$$tr\{\hat{A}\hat{B}\hat{C}\} = tr\{\hat{C}\hat{A}\hat{B}\} = tr\{\hat{B}\hat{C}\hat{A}\}$$
(2.33)

e utilizando (1.12) e (1.61),

$$\left\langle \hat{I}_{z} \right\rangle (t) = tr \left\{ \hat{I}_{z}(t) \Delta \hat{\rho}(t) \right\} = tr \left\{ \hat{I}_{z}(t) e^{i\omega_{0}\hat{I}_{z}t} \Delta \hat{\rho}(0) e^{-i\omega_{0}\hat{I}_{z}t} \right\} = tr \left\{ e^{-i\omega_{0}\hat{I}_{z}t} \hat{I}_{z}(t) e^{i\omega_{0}\hat{I}_{z}t} \Delta \hat{\rho}(0) \right\} = = tr \left\{ \hat{I}_{z}(t) e^{-i\omega_{0}\hat{I}_{z}t} e^{i\omega_{0}\hat{I}_{z}t} \Delta \hat{\rho}(0) \right\} = tr \left\{ \hat{I}_{z}(t) \Delta \hat{\rho}(0) \right\} = \left\langle \hat{I}_{z} \right\rangle (0)$$

$$\therefore \quad \left\langle \hat{I}_{z} \right\rangle (t) = \left\langle \hat{I}_{z} \right\rangle (0)$$

$$(2.34)$$

ou seja, a componente \hat{I}_z é independente do tempo.

Para obter os valores esperados de $\hat{I}_x e \hat{I}_y$, será calculado o valor esperado de \hat{I}_+ ,

$$\left\langle \hat{I}_{+} \right\rangle(t) = tr\left\{ \hat{I}_{+}(t)\Delta\hat{\rho}(t) \right\} = tr\left\{ \hat{I}_{+}(t)e^{i\omega_{0}\hat{I}_{z}t}\Delta\hat{\rho}(0)e^{-i\omega_{0}\hat{I}_{z}t} \right\} = tr\left\{ e^{i\omega_{0}\hat{I}_{z}t}\hat{I}_{+}e^{-i\omega_{0}\hat{I}_{z}t}\Delta\hat{\rho}(0) \right\}$$
(2.35)

Agora, é necessário mostrar que

$$e^{i\omega_0 \hat{I}_z t} \hat{I}_+ e^{-i\omega_0 \hat{I}_z t} = e^{i\omega_0 t} \left(\hat{I}_+ \right)_{t=0}$$
(2.36)

Partindo da definição de propagador, $\hat{U}(t) = e^{-i\frac{\hat{H}}{\hbar}t}$ e utilizando (2.13),

$$\frac{d}{dt}\hat{U}(t) = -i\frac{\hat{H}}{\hbar}\hat{U} = i\omega_0\hat{I}_z\hat{U}, \ \frac{d}{dt}\hat{U}^+(t) = -i\omega_0\hat{U}^+\hat{I}_z$$
(2.37)

lembrando que \hat{I}_z é auto-adjunto ($\hat{I}_z = \hat{I}_z^+$). Então

$$\frac{d}{dt}(\hat{U}\hat{I}_{+}\hat{U}^{+}) = \left(\frac{d}{dt}\hat{U}\right)\hat{I}_{+}\hat{U}^{+} + \hat{U}\hat{I}_{+}\frac{d}{dt}\hat{U}^{+} = i\omega_{0}\hat{I}_{z}\hat{U}\hat{I}_{+}\hat{U}^{+} - i\omega_{0}\hat{U}\hat{I}_{+}\hat{U}^{+}\hat{I}_{z} = i\omega_{0}\hat{U}\hat{I}_{z}\hat{I}_{+}\hat{U}^{+} - i\omega_{0}\hat{U}\hat{I}_{+}\hat{I}_{z}\hat{U}^{+} = i\omega_{0}\hat{U}[\hat{I}_{z},\hat{I}_{+}]\hat{U}^{+}$$
(2.38)

já que \hat{I}_z comuta com \hat{U} e \hat{U}^+ (que são funções de \hat{I}_z devido ao hamiltoniano),

$$[\hat{I}_{z}, \hat{I}_{+}] = [\hat{I}_{z}, \hat{I}_{x}] + i[\hat{I}_{z}, \hat{I}_{y}] = i\hat{I}_{y} + \hat{I}_{x} = \hat{I}_{+}$$

$$(2.39)$$

ou seja,

$$\frac{d}{dt}\left(\hat{U}\hat{I}_{+}\hat{U}^{+}\right) = i\omega_{0}\hat{U}\hat{I}_{+}\hat{U}^{+}$$
(2.40)

Enfim, (2.40) será integrada. Utilizando a condição inicial:

$$\hat{U}(0) = e^{-i\frac{\hat{H}}{\hbar}_{0}} = \hat{1} \quad \therefore \quad \left(\hat{U}\hat{I}_{+}\hat{U}^{+}\right)_{t=0} = \hat{I}_{+}\Big|_{t=0}$$
(2.41)

logo,

$$\hat{U}\hat{I}_{+}\hat{U}^{+} = e^{i\omega_{0}t}\left(\hat{I}_{+}\right)_{t=0}$$
(2.42)

53

e, substituindo \hat{U} e \hat{U}^+ , obtém-se (2.36); substituindo esta em (2.12),

$$\langle \hat{I}_{+} \rangle (t) = tr \left\{ e^{i\omega_{0}t} \hat{I}_{+} \hat{\rho}(0) \right\} = e^{i\omega_{0}t} tr \left\{ \hat{I}_{+} (0) \hat{\rho}(0) \right\} = e^{i\omega_{0}t} \langle \hat{I}_{+} \rangle (0)$$
 (2.43)

Expandindo (2.43) nas partes real e imaginária:

$$\langle \hat{I}_{x} \rangle(t) + i \langle \hat{I}_{y} \rangle(t) = \left[\cos(\omega_{0}t) + i \operatorname{sen}(\omega_{0}t) \right] \left[\langle \hat{I}_{x} \rangle(0) + i \langle \hat{I}_{y} \rangle(0) \right] \Rightarrow$$

$$\Rightarrow \begin{cases} \langle \hat{I}_{x} \rangle(t) = \langle \hat{I}_{x} \rangle(0) \cos(\omega_{0}t) - \langle \hat{I}_{y} \rangle(0) \operatorname{sen}(\omega_{0}t) \\ \langle \hat{I}_{y} \rangle(t) = \langle \hat{I}_{x} \rangle(0) \operatorname{sen}(\omega_{0}t) + \langle \hat{I}_{y} \rangle(0) \cos(\omega_{0}t) \end{cases}$$

$$(2.44)$$

Estas variações correspondem a rotações em torno do campo magnético aplicado ao longo da direção *z*, ou seja, o valor esperado do vetor momento angular executa um movimento de precessão em torno do campo magnético aplicado com freqüência dada por $\omega_0 = \gamma B_0$, a **freqüência de Larmor**[28]. Este é exatamente o resultado que seria obtido tratando o problema classicamente, com uma magnétização sujeita ao torque de um campo magnético estático $\vec{B}_0 = B_0 \hat{z}$ e um campo magnético oscilante na freqüência de Larmor \vec{B}_1 , no plano *xy*.[21,29]

2.5.1. Sistema girante de coordenadas

O efeito deste movimento de precessão pode ser eliminado através da mudança apropriada do sistema de referência solidário à precessão, ou seja, que gira em torno do eixo *z* com freqüência $\omega_R \approx \omega_0$; esse será o sistema girante de coordenadas e nele a precessão Zeeman é, praticamente, eliminada. Essa mudança de referencial, que será realizada como explicado no final do capítulo 1, é muito útil para facilitar a compreensão do fenômeno da RMN e de seus métodos[17,21,29], como se verá a seguir.

O operador densidade nesse sistema pode ser escrito como

$$\Delta \hat{\rho}_{R}(t) = e^{i\omega_{R}\hat{l}_{z}t} \Delta \hat{\rho}(t) e^{-i\omega_{R}\hat{l}_{z}t}$$
(2.45)

e, substituindo (2.32)

$$\Delta \hat{\rho}_{R}(t) \stackrel{(2.32)}{=} e^{i\omega_{R}\hat{I}_{z}t} \left(e^{-i\omega_{0}\hat{I}_{z}t} \Delta \hat{\rho}(0) e^{i\omega_{0}\hat{I}_{z}t} \right) e^{-i\omega_{R}\hat{I}_{z}t} = e^{i(\omega_{R}-\omega_{0})\hat{I}_{z}t} \Delta \hat{\rho}(0) e^{-i(\omega_{R}-\omega_{0})\hat{I}_{z}t}$$
(2.46)

Para o caso de ressonância, onde $\omega_R = \omega_0$,

$$\Delta \hat{\rho}_R = \Delta \hat{\rho}(0) \tag{2.47}$$

Doravante, todas as outras interações dos *spins* nucleares com os campos magnético ou elétrico internos ou externos à amostra serão analisadas nesse referencial.

2.5.2. Efeitos dos campos de radiofreqüência sobre os spins nucleares

Em RMN, além do campo magnético estacionário aplicado ao longo de *z*, é aplicado um segundo campo magnético \vec{B}_1 , com $B_1 \ll B_0$, que oscila no plano *xy* com freqüência de Larmor, $\omega_{RF} \approx \gamma B_0$. Em campos magnéticos estáticos típicos usados em RMN, de *l* a *10 T*, a freqüência de Larmor assume valores de *10* a *400 MHz*, dependendo do núcleo. Essas freqüências encontram-se na faixa de ondas de rádio e, por esta razão, \vec{B}_1 é denominado de **campo de radiofreqüência** (**RF**)[17,21,23,24,29].

Sendo uma perturbação dependente do tempo, com energia igual à separação entre níveis adjacentes de energia referentes à interação Zeeman, ela será responsável pela excitação dos *spins* nucleares. Esses campos são aplicados com freqüência igual à do sistema girante de coordenadas, sendo vistos como estacionários nesse referencial e expressos por:

$$\vec{B}_{1}(t) = B_{1}\left[\cos(\omega_{RF}t + \phi)\hat{x} + sen(\omega_{RF}t + \phi)\hat{y}\right]$$
(2.48)

A fase ϕ indicará a direção do campo ao longo do plano xy em t = 0. Por exemplo, para $\phi = 0^{\circ}$, 90°, 180° e 270°, as respectivas direções serão x, y, -x e -y, como é possível observar a partir da figura (2.2).

Figura 2.2. Orientação do campo magnético oscilante no plano xy.

Assim, a hamiltoniana que descreve o efeito do campo de RF no sistema girante de coordenadas terá cada componente dada por:

$$\hat{H}_{RF\alpha} = -\gamma \hbar \hat{I}_{\alpha} B_{1\alpha} \tag{2.49}$$

com $\alpha = x, y, -x, -y$, definindo a orientação de \vec{B}_1 .

Pela expressão (1.61),

$$\Delta\hat{\rho}(t) = e^{i\gamma B_{1\alpha}\hat{I}_{\alpha}t} \Delta\hat{\rho}(0) e^{-\gamma B_{1\alpha}\hat{I}_{\alpha}t}$$
(2.50)

e a aplicação de um pulso de RF (sempre em ressonância) resulta na rotação da componente do operador momento angular em torno do campo de RF, $\vec{B}_{1\alpha}$, por um ângulo $\beta_{\alpha} = \gamma B_{1\alpha} t$, onde t é a duração do pulso.

Por exemplo, se o pulso for aplicado ao longo da direção x do sistema girante de coordenadas,

 \vec{B}_{1x} , de modo que $\beta_x = \gamma B_{1x}t = \frac{\pi}{2}$, sobre o operador densidade $\Delta \hat{\rho}(0) = \hat{I}_z$, o resultado será uma

rotação de $\frac{\pi}{2}$ para \hat{I}_z em torno do eixo x, levando-o para a direção y, segundo (2.28).

$$\hat{\rho}(t) = e^{i\gamma\beta_{1x}\hat{I}_{x}t}\hat{I}_{z}e^{-i\gamma\beta_{1x}\hat{I}_{x}t} = \hat{I}_{z}\cos\left(\frac{\pi}{2}\right) + \hat{I}_{y}sen\left(\frac{\pi}{2}\right)$$

$$\therefore \quad \hat{\rho}(t) = \hat{I}_{y}$$
(2.51)

Duplicando a duração do pulso ou a intensidade de \vec{B}_1 , $\beta_x = \pi$ e o resultado será a inversão do *spin*.

Tais resultados podem ser generalizados: no sistema girante de coordenadas o efeito da aplicação dos pulsos de RF sobre o sistema de *spins* pode ser representado por matrizes de rotação em torno dos eixos x, y, -x e -y, ou em torno de um eixo oblíquo qualquer. Os efeitos de campos locais ao longo da direção z, por exemplo, a interação Zeeman, também podem ser descritos como rotações em torno desse eixo.

2.5.3. O sinal de RMN sob interação Zeeman

Após um pulso de $\frac{\pi}{2}$, o operador \hat{I}_y evoluirá apenas sob a ação do campo magnético estacionário \vec{B}_0 e, no sistema fixo de coordenadas, segundo (2.29)

$$\hat{\rho}(t) = e^{i\gamma B_0 \hat{I}_x t} \hat{I}_y e^{-i\gamma B_0 \hat{I}_x t} = \hat{I}_y \cos(\omega_0 t) - \hat{I}_x sen(\omega_0 t)$$
(2.52)

Ou seja, o operador densidade estará executando um movimento de precessão com a freqüência de Larmor em torno de \vec{B}_0 , no plano *xy*.

Considerando que o momento de dipolo magnético do núcleo é dado por

$$\hat{\mu}_i = \gamma \hbar \hat{I}_i \tag{2.53}$$

57

e que, para um número muito grande de núcleos idênticos, a magnetização total é dada por

$$\hat{M} = \sum_{i} \left\langle \hat{\mu}_{i} \right\rangle \tag{2.54}$$

(onde um fator multiplicativo constante que foi omitido), o resultado (2.52) pode ser estendido para a magnetização transversal esperada, que executará o mesmo movimento de precessão

$$\langle M_{xy}(t) \rangle = \langle \hat{M}_{y} \rangle \cos(\omega_{0}t) - \langle \hat{M}_{x} \rangle sen(\omega_{0}t)$$
 (2.55)

A mesma bobina que gera o campo de RF é utilizada para detectar o sinal de RMN, o qual resulta da precessão descrita em (2.55). Essa precessão da magnetização gera uma variação de fluxo magnético no interior da bobina, o qual, pela **lei de Faraday-Lenz**, resulta na geração de uma força eletromotriz oscilante na freqüência de Larmor denominada de **sinal livre de indução por** \vec{B}_1 ou, em inglês, de *free induction decay*, de onde vem a sigla *FID*[21].

2.6. Interação quadrupolar elétrica

A interação quadrupolar elétrica tem sua hamiltoniana dada, em primeira ordem[17,21,25], por:

$$H_{Q} = \frac{\hbar \omega_{Q}}{6} \left[3\hat{I}_{z}^{2} - I(I+1)\hat{\mathbf{l}} \right]$$
(2.56)

Após um pulso de RF de $\frac{\pi}{2}$ não seletivo (que excita todas as transições simultaneamente) na direção y sobre \hat{I}_z , o operador \hat{I}_x evoluirá apenas sob as interações Zeeman e quadrupolar. No sistema girante de coordenadas, a matriz densidade será obtida a partir das matrizes de \hat{H}_Q e \hat{I}_x ,

$$\hat{\rho}(t) = e^{-i\frac{\hat{H}_{Q}t}{\hbar}} \hat{I}_{x} e^{i\frac{\hat{H}_{Q}t}{\hbar}}$$
(2.57)

Logo, os elementos de matriz de $\hat{\rho}(t)$ na base comum de autoestados de \hat{I}_z e \hat{I}^2 , $\{m\}$, serão dados por

$$\left\langle m' \left| \hat{\rho}(t) \right| m \right\rangle = e^{-\frac{i}{\hbar} (E_{m'} - E_{m})t} \left\langle m' \left| \hat{I}_{x} \right| m \right\rangle$$
(2.58)

Serão analisados os espectros quadrupolares obtidos dessa forma para dois casos: *spins* $\frac{3}{2} e \frac{7}{2}$.

2.6.1. Spin
$$\frac{3}{2}$$

Para spin $\frac{3}{2}$ na base $\left\{ \left| \frac{3}{2} \right\rangle, \left| \frac{1}{2} \right\rangle, \left| -\frac{1}{2} \right\rangle, \left| -\frac{3}{2} \right\rangle \right\}$, a matriz da hamiltoniana quadrupolar será

$$\left(\hat{H}_{Q}\right) = \frac{\hbar\omega_{Q}}{2} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.59)

e a matriz do operador densidade será dada por

$$(\hat{\rho}) = \frac{1}{2} \begin{bmatrix} 0 & \sqrt{3}e^{-i\omega_{Q}t} & 0 & 0\\ \sqrt{3}e^{i\omega_{Q}t} & 0 & 2 & 0\\ 0 & 2 & 0 & \sqrt{3}e^{i\omega_{Q}t}\\ 0 & 0 & \sqrt{3}e^{-i\omega_{Q}t} & 0 \end{bmatrix}$$
(2.60)

Substituindo (2.60) e as matrizes definidas em (2.9) na equação (2.12), chega-se a

$$\left\langle \hat{I}_{x}(t) + i\hat{I}_{y}(t) \right\rangle = \frac{3}{2} (e^{i\omega_{Q}t} + e^{-i\omega_{Q}t}) + 2$$
 (2.61)

de onde, com as intensidades normalizadas, é obtido o espectro,

$$\left\langle \hat{I}_{x}(t) + i\hat{I}_{y}(t) \right\rangle_{N} = \frac{3}{4} (e^{i\omega_{Q}t} + e^{-i\omega_{Q}t}) + 1$$
 (2.62)

cuja decomposição espectral corresponde a duas linhas centradas em $-\omega_Q$ e ω_Q com amplitude $\frac{3}{4}$ e outra posicionada em 0 com amplitude 1, como mostra a figura 2.3.

2.6.2. *Spin*
$$\frac{7}{2}$$

As operações realizadas nesse tópico são análogas às do anterior.

Para *spin*
$$\frac{7}{2}$$
 na base $\left\{ \left| \frac{7}{2} \right\rangle, \left| \frac{5}{2} \right\rangle, \left| \frac{3}{2} \right\rangle, \left| \frac{1}{2} \right\rangle, \left| -\frac{1}{2} \right\rangle, \left| -\frac{3}{2} \right\rangle, \left| -\frac{5}{2} \right\rangle, \left| -\frac{7}{2} \right\rangle \right\}$, a matriz da hamiltoniana

quadrupolar será

$$(\hat{H}_{Q}) = \frac{\hbar \omega_{Q}}{2} \begin{bmatrix} 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \end{bmatrix}$$
 (2.63)

e a matriz do operador densidade será dada por

$$(\hat{\rho}) = \frac{1}{2} \begin{bmatrix} 0 & \sqrt{7}e^{-i3\omega_{Q}t} & 0 & 0 & 0 & 0 & 0 & 0 \\ \sqrt{7}e^{i3\omega_{Q}t} & 0 & 2\sqrt{3}e^{-i2\omega_{Q}t} & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\sqrt{3}e^{i2\omega_{Q}t} & 0 & \sqrt{15}e^{-i\omega_{Q}t} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{15}e^{i\omega_{Q}t} & 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & \sqrt{15}e^{i\omega_{Q}t} & 0 & 0 \\ 0 & 0 & 0 & \sqrt{15}e^{-i\omega_{Q}t} & 0 & 2\sqrt{3}e^{i2\omega_{Q}t} & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\sqrt{3}e^{-i2\omega_{Q}t} & 0 & \sqrt{7}e^{i3\omega_{Q}t} \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{7}e^{-i3\omega_{Q}t} & 0 \end{bmatrix}$$
(2.64)

Substituindo (2.64) e as matrizes definidas em (2.10) na equação (2.12), chega-se a

$$\left\langle \hat{I}_{x}(t) + i\hat{I}_{y}(t) \right\rangle = \frac{7}{2} \left(e^{i3\omega_{Q}t} + e^{-i3\omega_{Q}t} \right) + 6\left(e^{i2\omega_{Q}t} + e^{-i2\omega_{Q}t} \right) + \frac{15}{2} \left(e^{i\omega_{Q}t} + e^{-i\omega_{Q}t} \right) + 8$$
(2.65)

de onde, com as intensidades normalizadas, é obtido o espectro, representado na figura 7.4:

$$\left\langle \hat{I}_{x}(t) + i\hat{I}_{y}(t) \right\rangle_{N} = \frac{7}{16} \left(e^{i3\omega_{Q}t} + e^{-i3\omega_{Q}t} \right) + \frac{3}{4} \left(e^{i2\omega_{Q}t} + e^{-i2\omega_{Q}t} \right) + \frac{15}{16} \left(e^{i\omega_{Q}t} + e^{-i\omega_{Q}t} \right) + 1$$
(2.66)

Figura 2.4: Representação do espectro do núcleo quadrupolar de *spin* $\frac{7}{2}$ sob efeito apenas da interação quadrupolar.

2.7. A detecção em fase e quadratura

O sinal adquirido pela sonda de RMN contém as freqüências de ressonância do sistema, que são definidas, neste caso, pelas interações Zeeman e quadrupolar elétrica. Após ser detectado pela sonda, o sinal é eletronicamente processado através de várias etapas consecutivas. Para explicar de forma mais simplificada este processamento, assume-se aqui que o sinal detectado pela sonda refere-se apenas a uma freqüência de ressonância, ω_r , sem levar em conta os efeitos de relaxação; ele será, então, definido simplificadamente por $s(t) = a \cos(\omega_r t)$. Essas etapas envolvem:

- i) pré-amplificação;
- ii) dois processos paralelos:

ii-1) divisão do sinal pré-amplificado em dois com mesmas fases e amplitudes, $A(t) = B(t) = b \cos(\omega_r t);$

ii-2) outro sinal, de referência, é gerado pelo sintetizador, com freqüência $\omega_{ref} \sim \omega_r$. Este sinal de referência é decomposto em dois, através de um divisor em quadratura, dados por $f(t) = c \cos(\omega_{ref} t)$

e
$$q(t) = c \cos\left(\omega_{ref}t + \frac{\pi}{2}\right);$$

iii) os sinais definidos nos itens ii-1) e ii-2) são adequadamente combinados através de misturadores eletrônicos e filtrados, produzindo os seguintes sinais: $F(t) = d \cos[(\omega_r - \omega_{ref})t]]$ e $Q(t) = d \cos[(\omega_r - \omega_{ref})t + \frac{\pi}{2}].$

Após esses processamentos eletrônicos, a freqüência do sinal de RMN é levada da faixa de RF (~ 10 MHz) para a faixa de áudio (~1kHz), facilitando sua digitalização. Além disso, estes sinais apresentam quadratura de fase e podem ser escritos na forma complexa: S(t) = F(t) + i Q(t), sendo os sinais F e Q denominados, respectivamente, Fase e Quadratura.[14] Este procedimento de detecção em quadratura é de fundamental importância para o processamento do sinal através da transformada de Fourier, visto que elimina a duplicidade das linhas que decorreria da detecção simples ($s(t) = a \cos(\omega_r t)$), e permite a manipulação da fase do sinal detectado, de fundamental importância para a ciclagem de fases.[30]

2.8. Hamiltoniana de interação entre tipos diferentes de núcleos

Nas seções anteriores, foi analisado o comportamento de sistemas com um único tipo de núcleo sob campos magnéticos externos. Em uma amostra, entretanto, além dessas interações existem interações entre *pares spin-spin*, que serão brevemente analisadas agora.[31]

Quando a amostra se encontra imersa nos campos magnéticos estático e de RF, o hamiltoniano do sistema pode ser escrito na seguinte forma:

$$\hat{H} = \hat{H}_z + \hat{H}_{\text{int}} + \hat{H}_{RF} \tag{2.67}$$

onde

$$\hat{H}_{z} = -\hbar \sum_{i=1}^{n} \omega_{0}^{(i)} \hat{I}_{z}^{(i)}$$

$$\hat{H}_{int} = \hbar \sum_{i=1}^{n} \sum_{j \le i} \omega_{ij} \hat{H}_{ij}$$
(2.68)

As contribuições adimensionais \hat{H}_{ij} são responsáveis por quaisquer interações entre pares de *spins*, com as constantes ω_{ij} fornecendo as intensidades dos respectivos acoplamentos. A soma inclui termos com i = j, mas não engloba as interações *Zeeman* e de *deslocamento químico*.

O hamiltoniano correspondente ao campo de RF para *um único spin* é dado, partindo de (2.48) e (2.49), por

$$\hat{H}_{RF} = -\hbar\gamma B_1 \Big[\cos(\omega_{RF}t + \phi) \hat{I}_x + sen(\omega_{RF}t + \phi) \hat{I}_y \Big]$$
(2.69)

Para n spins de uma mesma espécie,

$$\hat{H}_{RF} = -\hbar B_1 \sum_{i=1}^{n} \gamma_i \left[\cos(\omega_{RF} t + \phi) \hat{I}_x^{(i)} + sen(\omega_{RF} t + \phi) \hat{I}_y^{(i)} \right]$$
(2.70)

Os operadores $\hat{I}_{\alpha}^{(i)}$, $\alpha = x$, *y*, *z*, são definidos no espaço dos operadores do sistema de vários *spins*, formado pelo produto tensorial dos espaços referentes a cada *spin*:

$$\hat{I}_{\alpha}^{(i)} = \hat{1}^{(1)} \otimes \hat{1}^{(2)} \otimes \dots \otimes \hat{1}^{(i-1)} \otimes \hat{I}_{\alpha} \otimes \hat{1}^{(i+1)} \otimes \dots \otimes \hat{1}^{(n)}$$

$$(2.71)$$

onde, para $\alpha \in \beta$ quaisquer,

$$\left[\hat{I}_{\alpha}^{(i)}, \hat{I}_{\beta}^{(j)}\right] = 0, i \neq j, \forall \alpha, \beta$$
(2.72)

sendo obedecidas as *relações canônicas de comutação* para i = j. Como no caso de um único *spin*, é conveniente analisar o comportamento do sistema em um referencial girante, onde a precessão Zeeman *pode ser* eliminada. Tal mudança será dada através do operador evolução

$$\hat{U} = \exp\left[it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]$$
(2.73)

O hamiltoniano de radiofreqüência transformado, $\hat{H}_{\scriptscriptstyle RF}^{\scriptscriptstyle (T)}$, será dado por

$$\hat{H}_{RF}^{(T)} = \hat{U}\hat{H}_{RF}\hat{U}^{+} = -\hbar B_{1} \exp\left[it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]\sum_{j=1}^{n}\gamma_{j}\left[\cos(\omega_{RF}t+\phi)\hat{I}_{x}^{(j)} + sen(\omega_{RF}t+\phi)\hat{I}_{y}^{(j)}\right] \times \exp\left[-it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]$$
(2.74)

A mudança de referencial será dada pelos termos

$$\exp\left[it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]\hat{I}_{x}^{(j)}\exp\left[-it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right] = \exp\left[it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]\hat{I}_{y}^{(j)}\exp\left[-it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]$$

onde, segundo (2.71) e (2.72), apenas termos para os quais s = j serão relevantes. Utilizando (2.27) e (2.28),

$$\exp\left[it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]\hat{I}_{x}^{(j)}\exp\left[-it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]^{(2.27)}=\hat{I}_{x}^{(j)}\cos\left(\omega_{0}^{(j)}t\right)-\hat{I}_{y}^{(j)}sen\left(\omega_{0}^{(j)}t\right)\\\exp\left[it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]\hat{I}_{y}^{(j)}\exp\left[-it\sum_{s=1}^{n}\omega_{0}^{(s)}\hat{I}_{z}^{(s)}\right]^{(2.28)}=\hat{I}_{y}^{(j)}\cos\left(\omega_{0}^{(j)}t\right)+\hat{I}_{x}^{(j)}sen\left(\omega_{0}^{(j)}t\right)$$
(2.75)

o que permite retornar a (2.74):

$$H_{RF}^{(T)} = -\hbar B_1 \sum_{j=1}^n \gamma_j \left\{ \cos(\omega_{RF} t + \phi) \left[\hat{I}_x^{(j)} \cos(\omega_0^{(j)} t) - \hat{I}_y^{(j)} sen(\omega_0^{(j)} t) \right] + sen(\omega_{RF} t + \phi) \left[\hat{I}_y^{(j)} \cos(\omega_0^{(j)} t) + \hat{I}_x^{(j)} sen(\omega_0^{(j)} t) \right] \right\}$$
(2.76)

Utilizando identidades trigonométricas de soma e diferença nos argumentos de senos e cossenos, é obtida a expressão:

$$H_{RF}^{(T)} = -\hbar B_1 \sum_{j=1}^n \gamma_j \left\{ \cos\left[\left(\omega_{RF} - \omega_0^{(j)} \right) t + \phi \right] \hat{l}_x^{(j)} + sen\left[\left(\omega_{RF} - \omega_0^{(j)} \right) t + \phi \right] \hat{l}_y^{(j)} \right\}$$
(2.77)

64

No caso de *múltiplos campos de RF* indexados por *r*, a expressão para $\hat{H}_{RF}^{(T)}$ é obtida através das substituições $\omega_{RF} \rightarrow \omega_{RF}^{(r)}$, $\gamma_j B_1 \rightarrow \omega_{j,r}$ e $\phi \rightarrow \phi_r$:

$$H_{RF}^{(T)} = -\hbar \sum_{j,r} \omega_{j,r} \left\{ \cos\left[\left(\omega_{RF}^{(r)} - \omega_{0}^{(j)} \right) t + \phi_{r} \right] \hat{I}_{x}^{(j)} + sen\left[\left(\omega_{RF}^{(r)} - \omega_{0}^{(j)} \right) t + \phi_{r} \right] \hat{I}_{y}^{(j)} \right\}$$
(2.78)

Os cálculos realizados até aqui se aplicam a sistemas com *n* spins de uma mesma espécie. Se, entretanto, várias espécies de spins estiverem presentes, uma análise mais pormenorizada deverá ser feita. Em primeiro lugar, será definida a seguinte notação[9,32]: para N_s espécies nucleares, cada uma com n_r núcleos, serão definidas as freqüências médias correspondentes a cada espécie nuclear *r* como

$$\overline{\omega}_{0}^{(r)} = \frac{1}{n_{r}} \sum_{i=1}^{n_{r}} \omega_{0}^{\{ri\}}$$
(2.79)

onde, para indicar o *i-ésimo* núcleo da *r-ésima* espécie nuclear, é definido o índice[9,32]

$$\{ri\} = \sum_{j=0}^{r-1} n_j + i , n_0 \equiv 0$$
(2.80)

sujeito às condições:

$$\begin{cases} 1 \le r \le N_s \\ 1 \le i \le n_r \end{cases}$$
(2.81)

O campo de radiofreqüência, nessa condição, será definido, por praticidade, em termos de tais freqüências médias:

$$\vec{B}_{1}(t) = \sum_{r=1}^{N_{s}} B_{1}^{(r)} \left[\cos\left(\overline{\omega}_{0}^{(r)}t + \phi_{r}\right) \hat{x} + sen\left(\overline{\omega}_{0}^{(r)}t + \phi_{r}\right) \hat{y} \right]$$
(2.82)

(doravante, será utilizado o sub-índice θ também na designação das radiofreqüências, em lugar do *RF*). Considerando uma amostra com *N* núcleos, o momento magnético total será dado, em analogia com (2.4), por

$$\vec{\mu} = \hbar \sum_{i=1}^{N} \gamma_i \vec{I}^{(i)} , \hat{I}^{(i)} = \hat{I}_x^{(i)} \hat{x} + \hat{I}_y^{(i)} \hat{y} + \hat{I}_z^{(i)} \hat{z}$$
(2.83)

e a respectiva hamiltoniana será obtida segundo (2.3):

$$\hat{H}_{RF} = -\sum_{r=1}^{N_s} \sum_{i=1}^{N} \gamma_i B_1^{(r)} \Big[\cos\left(\overline{\omega}_0^{(r)} t + \phi_r\right) \hat{x} + sen\left(\overline{\omega}_0^{(r)} t + \phi_r\right) \hat{y} \Big]$$
(2.84)

A mudança para o referencial girante será obtida através do operador evolução que atua sobre o subespaço referente $\{ri\}[9,32]$:

$$\hat{U} = \exp\left[it\sum_{r=1}^{N_s}\sum_{i=1}^{n_r}\overline{\omega}_0^{(r)}\hat{I}_z^{\{ri\}}\right]$$
(2.85)

Convém ressaltar que o índice composto $\{ri\}$ permite escrever, de forma sucinta, o somatório sobre todos os núcleos da amostra. Assim, no hamiltoniano transformado, deverão ser tomadas todas as diferenças possíveis entre as freqüências:

$$H_{RF}^{(T)} = -\hbar \sum_{r,s=1}^{N_s} \sum_{i=1}^{N} \gamma_i B_1^{(r)} \left\{ \cos\left[\left(\overline{\omega}_0^{(r)} - \overline{\omega}_0^{(s)} \right) t + \phi_r \right] \hat{I}_x^{(i)} + sen\left[\left(\overline{\omega}_0^{(r)} - \overline{\omega}_0^{(s)} \right) t + \phi_r \right] \hat{I}_y^{(i)} \right\}$$
(2.86)

Em geral, a diferença $(\overline{\omega}_0^{(r)} - \overline{\omega}_0^{(s)})$ entre *diferentes espécies* de núcleos (carbono e hidrogênio, por exemplo) é muito maior do que $\gamma_i B_1^{(r)}$. Além disso, os acoplamentos de interação ω_{ij} e as diferenças $(\overline{\omega}_0^{\{ri\}} - \overline{\omega}_0^{(r)})$ entre *espécies iguais* podem ser muito menores do que as intensidades dos campos de RF. Resumindo,

$$\left|\overline{\omega}_{0}^{(r)} - \overline{\omega}_{0}^{(s)}\right| \gg \left|\gamma_{i}B_{1}^{(r)}\right| \gg \left|\overline{\omega}_{0}^{\{rk\}} - \overline{\omega}_{0}^{(r)}\right| \gg \left|\omega_{pq}\right|, \ p \neq q \ , r \neq s$$

$$(2.87)$$

Sob essa condição, a hamiltoniana (2.86) poderá ser aproximada por:

$$H_{RF}^{(T)} \approx -\hbar \sum_{r=1}^{N_s} \omega_1^{(r)} \sum_{i=1}^{n_r} \left[\cos(\phi_r) \hat{I}_x^{\{ri\}} + sen(\phi_r) \hat{I}_y^{\{ri\}} \right] = -\hbar \sum_{r,i} \omega_1^{(r)} \vec{I}^{\{ri\}} \bullet \hat{u}_{\phi_r}$$
(2.88)

com as definições

$$\omega_{1}^{(r)} \equiv \gamma_{i} B_{1}^{(r)}, \hat{u}_{\phi_{r}} = \cos \phi_{r} \hat{x} + sen \phi_{r} \hat{y}, \vec{I}^{\{ri\}} \equiv \hat{I}_{x}^{\{ri\}} \hat{x} + \hat{I}_{y}^{\{ri\}} \hat{y} + \hat{I}_{z}^{\{ri\}} \hat{z}$$
(2.89)

Da mesma forma, o propagador que descreverá a ação do pulso de RF será dado por

$$\hat{U}_{RF} = \exp\left[i\sum_{r,i}\theta_r \vec{I}^{\{ri\}} \bullet \hat{u}_{\phi_r}\right], \theta_r = \omega_1^{(r)} \Delta t_r$$
(2.90)

onde θ_r é o ângulo de rotação em torno de \hat{u}_{ϕ_r} , para cada subespaço associado a r, e Δt_r é a duração do pulso correspondente.

2.9. Contextualização

Este capítulo encerra a primeira parte dessa dissertação, que corresponde à descrição quântica da RMN. Os conceitos abordados aqui são vitais para a compreensão do método de tomografia analisado nos capítulos 3 e 4, que utiliza seqüências de pulsos não-seletivos com ciclagem de fases para seleção de coerências. Particularmente, o conteúdo fundamental para entender toda a proposta da dissertação é explorado nessa primeira parte e na terceira.

Capítulo 3: Operadores de polarização

"Aos espíritos não afeitos à Matemática, poderá parecer insatisfatório o caráter abstrato de nossos conhecimentos físicos. Do ponto de vista artístico ou imaginativo, é, talvez, lamentável, mas do ponto de vista prático, não tem conseqüência alguma. A abstração, difícil como é, constitui a fonte do poder prático".

Bertrand Russell, ABC da Relatividade

3.1. Introdução

O objetivo deste capitulo é, através de propriedades gerais dos coeficientes de Clebsch-Gordan[22,33,34], das funções de Wigner[33,34] e dos operadores de polarização, analisar o comportamento destes últimos sob **rotações** (ou **pulsos de radiofreqüência**, como visto no capítulo 2), já que é em termos deles que a matriz densidade será expandida. Talvez este seja o capítulo mais matemático de todos. Algumas propriedades serão demonstradas em detalhe, mas certas definições, cuja demonstração fugiria ao objetivo desta dissertação, serão apenas citadas com a referência adequada. Esse material é fundamental para a compreensão do método de tomografia utilizado, que será explicado em detalhes no próximo capítulo.

3.2. Definições algébricas fundamentais

Para tomografar a matriz do operador densidade, é necessário expandi-la em uma base conveniente. Se o sistema for constituído por um núcleo de *spin* $S = \frac{1}{2}$, a matriz será 2×2 , e a base mais simples é aquela constituída pelas **matrizes de Pauli** ($\sigma_x, \sigma_y, \sigma_z$) juntas com a matriz identidade ($\sigma_0 \equiv \hat{1}$). Entretanto, para sistemas com $S > \frac{1}{2}$ as matrizes pertencerão a espaços de Liouville-von Neumann de dimensão maior do que 4 e, nesse caso, a matriz identidade σ_0 e as projeções do operador momento angular, proporcionais às matrizes $\sigma_x, \sigma_y, \sigma_z$, não serão suficientes para gerá-los. Embora uma base possa ser formada pelos produtos tensoriais dessas matrizes, em RMN, pelo menos nos experimentos apresentados nesta dissertação, a base mais adequada é aquela formada pelos **operadores de polarização**[33,34] $\hat{T}_{L,M}(S)$ pela maneira como se comportam sob rotações. Tais operadores são chamados de **tensores irredutíveis esféricos**, cujas propriedades serão analisadas a seguir. Deve ficar claro que os $\hat{T}_{L,M}(S)$ formam uma base ortonormal, sendo a expansão da matriz densidade em termos deles legítima.

Como serão utilizadas representações matriciais, foi escolhido o seguinte produto escalar entre duas matrizes *A* e *B* quadradas quaisquer, de mesma dimensão[20,27,35,36]:

$$A \bullet B \equiv tr\{A^+B\} \tag{3.1}$$

Esse é o **produto escalar de Hilbert-Schmidt**[36]. Um dado conjunto de matrizes $\{B_r\}$ será uma **base** se e somente se, para toda matriz *A*, existir um conjunto de números complexos $\{a_r\}$ tais que *A* possa ser expandida na forma:

$$A = \sum_{r} a_r B_r \tag{3.2}$$

A base $\{B_r\}$ será **ortonormal** se e somente se:

$$B_i \bullet B_j = tr\{B_i^+B_j\} = \delta_{i,j} \tag{3.3}$$

e, nesse caso, os coeficientes da expansão (3.2) serão dados por

$$a_i = B_i \bullet A \tag{3.4}$$

Uma base $\{B_r\}$ obedece à seguinte relação de completeza:

$$\sum_{r} \left(B_r^+ \right)_{i,j} \left(B_r \right)_{k,l} = \delta_{i,l} \delta_{j,k}$$
(3.5)
Para provar essa relação, primeiro uma matriz A qualquer é expandida em termos de $\{B_r\}$:

$$A = \sum_{r} (B_{r} \bullet A) B_{r} = \sum_{r} \left[\sum_{i,j} (B_{r}^{+})_{i,j} (A)_{j,i} \right] B_{r} = \sum_{r} \left[\sum_{i,j} (B_{r}^{+})_{i,j} B_{r} \right] (A)_{j,i} = \sum_{i,j} \left[\sum_{r} (B_{r}^{+})_{i,j} B_{r} \right] (A)_{j,i}$$
(3.6)

Em seguida, por conveniência, B_r é expandida na **base canônica**:

$$B_{r} = \sum_{i,j} (B_{r})_{i,j} \hat{e}_{i,j}$$
(3.7)

$$A = \sum_{i,j} \left[\sum_{r} (B_{r}^{+})_{i,j} \sum_{k,l} (B_{r})_{k,l} \hat{e}_{k,l} \right] (A)_{j,i} = \sum_{i,j} \sum_{k,l} \left[\sum_{r} (B_{r}^{+})_{i,j} (B_{r})_{k,l} \right] \hat{e}_{k,l} (A)_{j,i} = \sum_{k,l} \left\{ \sum_{i,j} \left[\sum_{r} (B_{r}^{+})_{i,j} (B_{r})_{k,l} \right] (A)_{j,i} \right] \hat{e}_{k,l}$$
(3.8)

Fazendo o mesmo com A, o resultado é imediato.

$$A = \sum_{k,l} (A)_{k,l} \hat{e}_{k,l}$$
(3.9)

Comparando (3.8) e (3.9),

$$(A)_{k,l} = \sum_{i,j} \left[\sum_{r} \left(B_r^+ \right)_{i,j} \left(B_r \right)_{k,l} \right] (A)_{j,i}$$

$$\therefore \sum_{r} \left(B_r^+ \right)_{i,j} \left(B_r \right)_{k,l} = \delta_{i,l} \delta_{j,k}$$
(3.10)

3.3. Coeficientes de Clebsch-Gordan e funções de Wigner

Seja um sistema quântico com dois *spins* acoplados, designados pelos subíndices 1 e 2, com operadores momento angular \hat{L}_1 e \hat{L}_2 e projeções nas direções x, y e z:

$$spin \ 1 \begin{cases} \hat{L}_{1x} \\ \hat{L}_{1y} \\ \hat{L}_{1z} \end{cases}, \ spin \ 2 \begin{cases} \hat{L}_{2x} \\ \hat{L}_{2y} \\ \hat{L}_{2z} \end{cases}$$

Cada spin terá seu respectivo espaço de estados e, em geral, as bases para tais espaços são escolhidas como formadas pelos autoestados comuns a \hat{L}_i^2 e \hat{L}_{iz} , i = 1,2, denotados por $|l_i, m_i\rangle$; assim, o autoespaço do *spin* 1 será $\{l_1, m_1\rangle\}$ e o autoespaço do *spin* 2 será $\{l_2, m_2\rangle\}$, lembrando que:

$$\hat{L}_{i}^{2}|l_{i},m_{i}\rangle = \hbar^{2}l_{i}(l_{i}+1)|l_{i},m_{i}\rangle$$
$$\hat{L}_{iz}|l_{i},m_{i}\rangle = \hbar m_{i}|l_{i},m_{i}\rangle$$

Para determinar as propriedades desse sistema, é possível trabalhar com os operadores citados na base $|l_1, l_2, m_1, m_2\rangle = |l_1, m_1\rangle \otimes |l_2, m_2\rangle$ ou com os operadores $\hat{L} = \hat{L}_1 + \hat{L}_2$ e sua projeção na direção z, \hat{L}_z , utilizando a base $|L, M\rangle$ de autoestados comuns a \hat{L}^2 , \hat{L}_z , \hat{L}_1^2 e \hat{L}_2^2 , onde

$$\hat{L}^{2}|L,M\rangle = \hbar^{2}L(L+1)|L,M\rangle$$
$$\hat{L}_{z}|L,M\rangle = \hbar M|L,M\rangle$$

As bases $|l_1, l_2, m_1, m_2\rangle$ e $|L, M\rangle$ são relacionadas por meio dos **coeficientes de Clebsch-Gordan**, $C_{l_1, m_1, l_2, m_2}^{L, M}$. Em outras palavras, os coeficientes de Clebsch-Gordan representam a amplitude de probabilidade de que \hat{L}_1 e \hat{L}_2 estejam acoplados fornecendo um momento angular resultante L e projeção M em z,[22] ou seja:

$$\begin{aligned} \left| l_1 - l_2 \right| &\leq L \leq l_1 + l_2 \\ M &= m_1 + m_2 \end{aligned}$$

Os operadores de polarização $\hat{T}_{L,M}(S)$ são caracterizados pela maneira como se transformam sob rotações, como será visto adiante. A representação de seus elementos de matriz utilizada aqui envolve os coeficientes de Clebsch-Gordan, que podem ser calculados explicitamente pela expressão[33]:

$$C_{a\alpha b\beta}^{c\gamma} = \frac{\delta_{\gamma,\alpha+\beta}}{\Delta(a,b,c)} \left[\frac{(a+\alpha)!(a-\alpha)!(c+\gamma)!(c-\gamma)!(2c+1)}{(b+\beta)!(b-\beta)!} \right]^{\frac{1}{2}} \times \sum_{z} \frac{(-1)^{a-\alpha+z}(a+b-\gamma-z)!(b+c-\alpha-z)!}{z!(a-\alpha-z)!(c-\gamma-z)!(a+b+c+1-z)!}$$
(3.11)

onde

$$\Delta(a,b,c) = \left[\frac{(a+b-c)!(a-b+c)!(-a+b+c)!}{(a+b+c+1)!}\right]^{\frac{1}{2}}$$
(3.12)

Nas demonstrações subseqüentes, serão amplamente utilizadas as seguintes propriedades[33]:

$$C_{a,\alpha,b,\beta}^{c,\gamma} = (-1)^{a+b-c} C_{b,\beta,a,\alpha}^{c,\gamma}$$

$$C_{a,\alpha,b,\beta}^{c,\gamma} = (-1)^{b+\beta} \sqrt{\frac{2c+1}{2a+1}} C_{a,-\gamma,b,\beta}^{a,-\alpha}$$
(3.13)

$$C_{a,\alpha,b,\beta}^{c,\gamma} = \left(-1\right)^{a+b-c} C_{a,-\alpha,b,-\beta}^{c,-\gamma}$$
(3.14)

Definindo:

$$\Pi_{ab...c} = \left[(2a+1)(2b+1)...(2c+1) \right]^{\frac{1}{2}}$$
(3.15)

então

$$\sum_{a,\alpha} (-1)^{a-\alpha} \prod_{a}^{2} C^{c,\gamma}_{a,\alpha,b\beta} C^{b,\beta'}_{a,\alpha,c,\gamma'} = \prod_{b,c} \delta_{\gamma,-\gamma'} \delta_{\beta,-\beta'}$$
(3.16)

e

$$\sum_{\alpha,\gamma} C^{c,\gamma}_{a,\alpha,b,\beta} C^{c,\gamma}_{a,\alpha,b',\beta'} = \frac{\prod_{c}^{2}}{\prod_{b}^{2}} \delta_{b,b'} \delta_{\beta,\beta'}$$
(3.17)

Rotações no espaço de estados podem ser convenientemente descritas em termos das **funções de** Wigner[33,34] $D_{m,m'}^{l}$ e dos operadores correspondentes. Quando a rotação opera sobre um autoestado comum a \hat{L}^2 e \hat{L}_z , ela o levará a uma combinação de estados com o mesmo valor *l*. Para $|l,m\rangle$,

$$\hat{D}(\alpha,\beta,\gamma)|l,m\rangle = \sum_{m'=-l}^{l} D_{m',m}^{l}(\alpha,\beta,\gamma)|l,m'\rangle$$
(3.18)

onde os coeficientes $D_{m',m}^{l}$ serão os elementos da matriz de rotação e α , β e γ são os **ângulos de** Euler[33,34]. Como

$$\hat{D}(\alpha,\beta,\gamma) = e^{-i\alpha\hat{L}_z} e^{-i\beta\hat{L}_y} e^{-i\gamma\hat{L}_z}$$
(3.19)

então

$$D_{m',m}^{l} = \langle l, m' | \hat{D}(\alpha, \beta, \gamma) | l, m \rangle = e^{-i\alpha m'} e^{-i\gamma m} \langle l, m' | e^{-i\beta \hat{L}_{y}} | l, m \rangle$$
(3.20)

ou, definindo as funções de Wigner reduzidas

$$d_{m',m}^{l}(\beta) = \langle l,m' | e^{-i\beta \hat{L}_{y}} | l,m \rangle$$
(3.21)

(3.20) se torna

$$D_{m',m}^{l} = e^{-i(m'\alpha + m\gamma)} d_{m',m}^{l}$$
(3.22)

Para o cálculo das funções $d_{m,m'}^{l}(\beta)$ é extremamente útil a expressão[33]:

$$d_{m,m'}^{l}(\beta) = \left[(l+m)!(l-m)!(l+m')!(l-m')! \right]^{\frac{1}{2}} \sum_{k} (-1)^{k} \frac{\left[\cos\left(\frac{\beta}{2}\right) \right]^{2l-2k+m-m'} \left[sen\left(\frac{\beta}{2}\right) \right]^{2k-m+m'}}{k!(l+m-k)!(l-m'-k)!(m'-m+k)!}$$
(3.23)

Tais funções obedecem à propriedade:

$$d_{m,m'}^{l}(\beta) = (-1)^{m-m'} d_{-m,-m'}^{l}(\beta)$$
(3.24)

3.4. Operadores de polarização

Os operadores de polarização $\hat{T}_{L,M}(S)$, onde L e M obedecem

$$M = -L, -L + 1, ..., L - 1, L$$
$$L = 0, 1, ..., 2S$$

são representados por matrizes quadradas $(2S+1) \times (2S+1)$ cujos elementos podem ser expressos em termos dos coeficientes de Clebsch-Gordan como[33]

$$\left[\hat{T}_{L,M}(S)\right]_{\sigma',\sigma} = \sqrt{\frac{2L+1}{2S+1}} C^{S,\sigma'}_{S,\sigma,L,M}$$
(3.25)

onde

 $\sigma, \sigma' = -S, -S + 1, \dots, S$

Convém lembrar que, como os coeficientes de Clebsch-Gordan se originam da soma de momentos angulares, eles se anulam sempre que o vínculo $\sigma' = \sigma + M$ não for satisfeito. Os operadores de polarização obedecem à seguinte relação[33]:

$$\hat{T}_{L,M}^{+}(S) = (-1)^{M} \hat{T}_{L,-M}(S)$$
(3.26)

O índice L é denominado de **grau do operador** (no inglês, *rank*), enquanto que o índice M é denominado **ordem de coerência**.[33,34] Para que a matriz densidade possa ser expandida em termos dos operadores de polarização, é necessário que eles formem uma base do espaço de *spins S*. Isso realmente ocorre. Para verificar, (3.25) é substituída em (3.10) e então é utilizada (3.26),

$$\sum_{L,M} [\hat{T}_{L,M}^{+}(S)]_{,j} [\hat{T}_{L,M}(S)]_{k,l} = \sum_{L,M} [(-1)^{M} \hat{T}_{L,-M}(S)]_{l,j} [\hat{T}_{L,M}(S)]_{k,l} =$$

$$= \sum_{L,M} (-1)^{M} [\hat{T}_{L,-M}(S)]_{l,j} [\hat{T}_{L,M}(S)]_{k,l} = \sum_{L,M} (-1)^{M} \sqrt{\frac{2L+1}{2S+1}} C_{S,j,L,-M}^{S,i} \sqrt{\frac{2L+1}{2S+1}} C_{S,l,L,M}^{S,k} =$$

$$= \frac{1}{2S+1} \sum_{L,M} (-1)^{M} (2L+1) C_{S,j,L,-M}^{S,i} C_{S,l,L,M}^{S,k}$$
(3.27)

mas, utilizando (3.13) e (3.14),

$$C_{S,j,L,-M}^{S,i} = (-1)^{S+L-S} C_{L,-M,S,j}^{S,i} = (-1)^{L} C_{L,-M,S,j}^{S,i} = (-1)^{L} (-1)^{L+S-S} C_{L,M,S,-j}^{S,-i} = C_{L,M,S,-j}^{S,-i}$$

$$C_{S,l,L,M}^{S,k} = (-1)^{S+L-S} C_{L,M,S,l}^{S,k} = (-1)^{-L} C_{L,M,S,l}^{S,k}$$
(3.28)

Como *L* e *M* são inteiros, $(-1)^{M} = (-1)^{-M}$; voltando a (3.27),

$$\sum_{L,M} \left[\hat{T}_{L,M}^{+}(S) \right]_{i,j} \left[\hat{T}_{L,M}^{-}(S) \right]_{k,l} = \frac{1}{2S+1} \sum_{L,M} (-1)^{-M} (2L+1) C_{L,M,S,-j}^{S,-i} (-1)^{L} C_{L,M,S,l}^{S,k} = \frac{1}{2S+1} \sum_{L,M} (-1)^{L-M} (2L+1) C_{L,M,S,-j}^{S,-i} C_{L,M,S,l}^{S,k}$$
(3.29)

A fórmula (3.16) pode ser agora utilizada:

$$\Pi_{L}^{2} = 2L + 1$$

$$\Pi_{S,S} = 2S + 1$$
(3.30)

$$\sum_{L,M} (-1)^{L-M} (2L+1) C_{L,M,S,-j}^{S,-i} C_{L,M,S,l}^{S,k} = \sum_{L,M} (-1)^{L-M} \prod_{L}^{2} C_{L,M,S,-j}^{S,-i} C_{L,M,S,l}^{S,k} = (2S+1) \delta_{-i,-l} \delta_{-j,-k} = (2S+1) \delta_{i,l} \delta_{j,k}$$
(3.31)

logo, aplicando esse resultado em (3.29),

$$\sum_{L,M} \left[\hat{T}_{L,M}^{+}(S) \right]_{i,j} \left[\hat{T}_{L,M}(S) \right]_{k,l} = \frac{1}{2S+1} (2S+1) \delta_{i,l} \delta_{j,k}$$

$$\therefore \sum_{L,M} \left[\hat{T}_{L,M}^{+}(S) \right]_{i,j} \left[\hat{T}_{L,M}(S) \right]_{k,l} = \delta_{i,l} \delta_{j,k}$$
(3.32)

ou seja, os $\{\hat{T}_{L,M}(S)\}$ formam uma base no espaço de *spins S*. Além disso, tal base é ortonormal, o que será verificado agora. Com o auxílio de (3.26):

$$\hat{T}_{L,M} \bullet \hat{T}_{P,Q} = tr\{\hat{T}_{L,M}^{+}, \hat{T}_{P,Q}\} = \sum_{i,j} (\hat{T}_{L,M}^{+})_{i,j} (\hat{T}_{P,Q})_{j,i} = \sum_{i,j} [(-1)^{M} \hat{T}_{L,-M}]_{i,j} (\hat{T}_{P,Q})_{j,i} = \sum_{i,j} (-1)^{M} (\hat{T}_{L,-M})_{i,j} (\hat{T}_{P,Q})_{j,i}$$

$$(3.33)$$

mas, por (3.25),

$$\left[\hat{T}_{L,-M} \left(S \right) \right]_{i,j} = \sqrt{\frac{2L+1}{2S+1}} C^{S,i}_{S,j,L,-M}$$

$$\left[\hat{T}_{P,Q} \left(S \right) \right]_{j,i} = \sqrt{\frac{2P+1}{2S+1}} C^{S,j}_{S,i,P,Q}$$

$$(3.34)$$

dessa forma,

$$\hat{T}_{L,M} \bullet \hat{T}_{P,Q} = \sum_{i,j} (-1)^{M} \sqrt{\frac{2L+1}{2S+1}} C^{S,i}_{S,j,L,-M} \sqrt{\frac{2P+1}{2S+1}} C^{S,j}_{S,i,P,Q} = = \frac{(-1)^{M} \sqrt{(2L+1)(2P+1)}}{2S+1} \sum_{i,j} C^{S,i}_{S,j,L,-M} C^{S,j}_{S,i,P,Q}$$
(3.35)

Utilizando (3.13) e (3.14),

$$C_{S,i,P,Q}^{S,j} = (-1)^{P+Q} \sqrt{\frac{2S+1}{2S+1}} C_{S,-j,P,Q}^{S,-i} = (-1)^{P+Q} C_{S,-j,P,Q}^{S,-i}$$
(3.36)

$$C_{S,-j,P,Q}^{S,-i} = (-1)^{S+P-S} C_{S,j,P,-Q}^{S,i} = (-1)^{P} C_{S,j,P,-Q}^{S,i}$$
(3.37)

então

$$C_{S,i,P,Q}^{S,j} = (-1)^{P+Q} (-1)^{P} C_{S,j,P,-Q}^{S,i} = (-1)^{Q} C_{S,j,P,-Q}^{S,i}$$
(3.38)

e a soma em (3.35) se torna

$$\sum_{i,j} C_{S,j,L,-M}^{S,i} C_{S,i,P,Q}^{S,j} = \sum_{i,j} C_{S,j,L,-M}^{S,i} (-1)^{\mathcal{Q}} C_{S,j,P,-Q}^{S,i} = (-1)^{\mathcal{Q}} \sum_{i,j} C_{S,j,L,-M}^{S,i} C_{S,j,P,-Q}^{S,i}$$
(3.39)

Essa última soma pode se simplificar com o auxílio de (3.17), tornando-se

$$\sum_{i,j} C_{S,j,L,-M}^{S,i} C_{S,j,P,-Q}^{S,i} = \frac{2S+1}{2L+1} \delta_{L,P} \delta_{M,Q}$$
(3.40)

Substituindo esse resultado em (3.39) e retornando a (3.35), a verificação é obtida:

$$\sum_{i,j} C_{S,j,L,-M}^{S,i} C_{S,i,P,Q}^{S,j} = (-1)^{Q} \frac{2S+1}{2L+1} \delta_{L,P} \delta_{M,Q}$$
(3.41)

$$\hat{T}_{L,M} \bullet \hat{T}_{P,Q} = \delta_{L,P} \delta_{M,Q}$$
(3.42)
Ou seja, os $\{\hat{T}_{L,M}(S)\}$ formam uma base ortonormal.

Qualquer matriz quadrada $(2S+1) \times (2S+1) \hat{A}$ (com *S* inteiro ou semi-inteiro), então, poderá ser expandida em termos dos operadores de polarização $\hat{T}_{L,M}(S)$:

$$\hat{A} = \sum_{L=0}^{2S} \sum_{M=-L}^{L} a_{L,M} \hat{T}_{L,M}(S)$$
(3.43)

com os coeficientes da expansão obtidos por meio de (3.1):

$$a_{L,M} = tr\left\{\hat{T}_{L,M}^{+}(S)\hat{A}\right\}$$
(3.44)

Se a matriz \hat{A} for hermitiana, $(\hat{A} = \hat{A}^{+})$, então

$$a_{L,M}^* = (-1)^M a_{L,-M}$$
(3.45)

Uma rotação $\hat{D}(\alpha, \beta, \gamma)$ dos tensores de polarização pode ser escrita em termos das funções de Wigner $D_{m,m'}^{l}$ da forma[33,34]:

$$\hat{D}(\alpha,\beta,\gamma)\hat{T}_{l,m}\hat{D}^{+}(\alpha,\beta,\gamma) = \sum_{m'} D^{l}_{m',m}(\alpha,\beta,\gamma)\hat{T}_{l,m'}$$
(3.46)

79

3.5. Contextualização

Como foi mencionado na introdução, este é o mais matemático (e, talvez, abstrato) de todos os capítulos dessa dissertação. Entretanto, os conceitos aqui mostrados são de vital importância na compreensão dos detalhes do método de tomografia a ser exposto, sendo necessários não somente no próximo capítulo, onde o método é explicado, mas também no capítulo 7, na construção de um teste experimental em particular (criação de estados com apenas coerências de determinadas ordens).

Capítulo 4: Tomografia da Matriz Densidade

"É uma longa cadeia, mas cada elo é verdadeiro".

Sir Arthur Conan Doyle, As Aventuras de Sherlock Holmes

4.1. Introdução

O âmago do trabalho desenvolvido nesta dissertação encontra-se neste capítulo. O método de tomografia discutido[9,32] é geral e não se aplica apenas para computação quântica. Tendo como base os conceitos matemáticos expostos no capítulo 3, a seqüência de pulsos com ciclagem de fases será obtida e serão explicados os programas de reconstrução da matriz do operador densidade e de simulações. A listagem completa dos programas encontra-se nos apêndices C e D.

4.2. Rotações sobre o operador densidade

Para descrever as rotações do operador densidade, ou melhor, do operador $\Delta \hat{\rho}$, este será expandido na **base ortonormal** $\{\hat{T}_{l,m}(S)\}$:

$$\Delta \hat{\rho} = \sum_{l=1}^{2S} \sum_{m=-l}^{l} a_{l,m} \hat{T}_{l,m}$$
(4.1)

(o somatório não engloba l = 0 por razões que ficarão claras adiante). Por uma questão de praticidade, na tomografia da matriz do operador densidade, a expressão *seleção de coerências* será utilizada no sentido de *obter as contribuições para a matriz associadas a operadores de polarização com o mesmo valor de m*.

Aplicando a rotação $\hat{D}(\alpha, \beta, \gamma)$ a essa expansão:

$$\hat{D}(\alpha,\beta,\gamma)\Delta\hat{\rho}\hat{D}^{+}(\alpha,\beta,\gamma) = \hat{D}(\alpha,\beta,\gamma)\left(\sum_{l,m}a_{l,m}\hat{T}_{l,m}\right)\hat{D}^{+}(\alpha,\beta,\gamma) =$$

$$= \sum_{l,m}a_{l,m}\hat{D}(\alpha,\beta,\gamma)\hat{T}_{l,m}\hat{D}^{+}(\alpha,\beta,\gamma)$$
(4.2)

Utilizando (3.46) e (3.22), essa expressão pode ser simplificada:

$$\hat{D}(\alpha,\beta,\gamma)\Delta\hat{\rho}\hat{D}^{+}(\alpha,\beta,\gamma) = \sum_{l,m} a_{l,m} \sum_{m'} D^{l}_{m',m}(\alpha,\beta,\gamma)\hat{T}_{l,m'} = \sum_{l,m} a_{l,m} \sum_{m'} e^{-i(m'\alpha+m\gamma)} d^{l}_{m',m}\hat{T}_{l,m'}$$
(4.3)

ou, reorganizando a soma:

$$\hat{D}(\alpha,\beta,\gamma)\Delta\hat{\rho}\hat{D}^{+}(\alpha,\beta,\gamma) = \sum_{l,m} a_{l,m} e^{-im\gamma} \sum_{m'} e^{-im'\alpha} d^{l}_{m',m}(\beta)\hat{T}_{l,m'}$$
(4.4)

Qualquer rotação de um sistema de coordenadas que leve (x,y,z) a (x',y',z') pode ser tratada como uma rotação de um ângulo Ω em torno do eixo $n(\Theta, \Phi)$, onde $\Theta \in \Phi$ são os mesmos nos dois sistemas (lembrando que os três eixos rotacionam solidariamente), como ilustrado na figura 4.1:

Figura 4.1. Descrição simplificada de rotações.

Nesse caso:

$$0 \le \Omega \le \pi$$
$$0 \le \Theta \le \pi$$
$$0 \le \Phi < 2\pi$$

Os **ângulos de Euler** (α, β, γ) e os ângulos (Ω, Θ, Φ) estão relacionados por[33]:

$$\cos\left(\frac{\Omega}{2}\right) = \cos\left(\frac{\beta}{2}\right)\cos\left(\frac{\alpha+\gamma}{2}\right)$$

$$tg\Theta = \frac{tg\left(\frac{\beta}{2}\right)}{sen\left(\frac{\alpha+\gamma}{2}\right)}$$

$$\Phi = \frac{\pi}{2} + \frac{\alpha-\gamma}{2}$$
(4.5)

Para o eixo de rotação contido no plano transversal, $\Theta = \frac{\pi}{2}$; se fizer um ângulo ϕ com o eixo x, $\Phi = \phi$; para rotações de θ em torno do eixo, $\Omega = \theta$, logo:

$$tg\left(\frac{\pi}{2}\right) \to \infty \Rightarrow \frac{tg\left(\frac{\beta}{2}\right)}{sen\left(\frac{\alpha+\gamma}{2}\right)} \to \infty \Rightarrow \alpha+\gamma=0 \therefore \gamma=-\alpha$$
(4.6)

$$\phi = \frac{\pi}{2} + \alpha \therefore \alpha = \phi - \frac{\pi}{2} \tag{4.7}$$

$$\cos\left(\frac{\theta}{2}\right) = \cos\left(\frac{\beta}{2}\right) \therefore \beta = -\theta \tag{4.8}$$

Nos experimentos de RMN, θ indica a rotação associada ao pulso, Θ o ângulo entre os campos magnético estático e oscilante (como eles são perpendiculares, $\Theta = \frac{\pi}{2}$) e Φ fornece a fase do pulso.

Substituindo (4.6), (4.7) e (4.8) em (3.22):

$$D_{m',m}^{l}(\alpha,\beta,\gamma) = e^{-im'\left(\phi-\frac{\pi}{2}\right)} d_{m',m}^{l}(-\theta) e^{-im\left(\frac{\pi}{2}-\phi\right)} = e^{i\left(\phi-\frac{\pi}{2}\right)(m-m')} d_{m',m}^{l}(-\theta) \equiv D_{m',m}^{l}\left(\phi-\frac{\pi}{2},-\theta,\frac{\pi}{2}-\phi\right)$$

$$D_{m',m}^{l}\left(\phi-\frac{\pi}{2},-\theta,\frac{\pi}{2}-\phi\right) \equiv D_{m',m}^{l}(\theta,\phi)$$
(4.9)

A primeira equação explicita os ângulos de Euler envolvidos e a segunda simplesmente indica quais as variáveis de que depende $D_{m',m}^{l}$.

Algumas manipulações serão úteis para simplificar (4.3). Para isso, serão analisadas rotações sobre $\hat{T}_{l,m}$. Substituindo (4.9) em (3.46)

$$\hat{D}(\alpha,\beta,\gamma)\hat{T}_{l,m}\hat{D}^{+}(\alpha,\beta,\gamma) = \sum_{m'} e^{i\left(\phi - \frac{\pi}{2}\right)(m-m')} d^{l}_{m',m}(-\theta)\hat{T}_{l,m'}$$
(4.10)

e substituindo (4.10) em (4.3),

$$\hat{D}(\alpha,\beta,\gamma)\Delta\hat{\rho}\hat{D}^{+}(\alpha,\beta,\gamma) = \sum_{l}\sum_{m,m'} a_{l,m} e^{i\left(\phi-\frac{\pi}{2}\right)(m-m')} d_{m',m}^{l}(-\theta)\hat{T}_{l,m'}$$
(4.11)

Finalmente, é obtida uma expressão para o operador $\Delta \hat{\rho}$ rotacionado, $\Delta \widetilde{\rho}$,

$$\Delta \widetilde{\rho} = \sum_{l} \sum_{m,m'} a_{l,m} e^{i\left(\phi - \frac{\pi}{2}\right)(m-m')} d_{m',m}^{l} (-\theta) \widehat{T}_{l,m'}$$
(4.12)

4.3. Valor esperado para a magnetização

De acordo com a expressão (2.12), o valor esperado da magnetização seria dado simplesmente por

$$M(t) = tr\left\{\Delta\hat{\rho}(t)\hat{I}_{+}\right\}$$

mas, por um motivo que ficará claro ao final deste capítulo, será acrescentada uma fase do receptor,

$$M(t) = tr \left\{ \Delta \hat{\rho}(t) \hat{I}_{+} \right\} e^{i\alpha}$$
(4.13)

O objetivo deste item será encontrar uma expressão para M(t) em termos dos operadores de polarização. Para tal, é necessário observar que, em t = 0, todos os núcleos são rotacionados e $\Delta \hat{\rho}(0) = \Delta \tilde{\rho}$, equação (4.12). A partir daí, o sistema evoluirá sob o hamiltoniano

$$\hat{H} = \hat{H}_o \tag{4.14}$$

onde \hat{H}_{Q} é o hamiltoniano associado à interação quadrupolar, sempre utilizando sua aproximação em primeira ordem. Tal operador é diagonal na base formada pelos autoestados comuns a \hat{S}^{2} e \hat{S}_{z} que, por simplicidade, será denotada por $\{v_{j}\}$.

O operador evolução será dado por

$$\hat{U}_{F} = e^{-i\frac{t}{\hbar}\hat{H}_{Q}}$$
(4.15)

Em um tempo *t* qualquer,

$$\Delta \hat{\rho}(t) = \hat{U}_F \Delta \tilde{\rho} \hat{U}_F^+ \tag{4.16}$$

e, dessa forma,

$$M(t) = tr \left\{ \hat{U}_F \Delta \tilde{\rho} \hat{U}_F^{\dagger} \hat{I}_+ \right\} e^{i\alpha}$$
(4.17)

Por enquanto, será analisado apenas o traço em (4.17). Como o traço de uma matriz independe da base, escolhendo $\langle v_j \rangle$ e utilizando a propriedade (2.17), com

$$A = \left(\hat{U}_{F}\right)$$

$$B = \left(\Delta \widetilde{\rho} \hat{U}_{F}^{+} \hat{I}_{+}\right)$$
(4.18)

então

$$tr\left\{\hat{U}_{F}\Delta\tilde{\rho}\hat{U}_{F}^{+}\hat{I}_{+}\right\} = tr\left\{\Delta\tilde{\rho}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right\}$$
(4.19)

Utilizando (4.12),

$$tr\left\{\Delta\tilde{\rho}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right\} = \sum_{j}\left\langle j\left|\Delta\tilde{\rho}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right|j\right\rangle =$$

$$= \sum_{j}\left\langle j\left|\sum_{l}\sum_{m,m'}a_{l,m}e^{i\left(\phi-\frac{\pi}{2}\right)(m-m')}d_{m',m}^{l}(-\theta)\hat{T}_{l,m'}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right|j\right\rangle =$$

$$= \sum_{l}a_{l,m}\sum_{m,m'}e^{i\left(\phi-\frac{\pi}{2}\right)(m-m')}d_{m',m}^{l}(-\theta)\sum_{j}\left\langle j\left|\hat{T}_{l,m'}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right|j\right\rangle =$$

$$= \sum_{l}a_{l,m}\sum_{m,m'}e^{i\left(\phi-\frac{\pi}{2}\right)(m-m')}d_{m',m}^{l}(-\theta)r\left\{\hat{T}_{l,m'}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right\}$$

$$(4.20)$$

Nota-se o aparecimento dos operadores de polarização, mas essa expressão ainda pode ser simplificada. Mais uma vez, a atenção maior será dada ao traço. Como

$$tr\left\{\hat{T}_{l,m'}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right\} = \sum_{r,s} \left(\hat{T}_{l,m'}\right)_{r,s} \left(\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right)_{s,r}$$
(4.21)

e, por sua vez,

$$\begin{bmatrix} \hat{U}_{F}^{+} \hat{I}_{+} \hat{U}_{F} \end{bmatrix}_{s,r} = \langle s | \hat{U}_{F}^{+} \hat{I}_{+} \hat{U}_{F} | r \rangle = \langle s | e^{i\frac{t}{\hbar} \hat{H}} \hat{I}_{+} e^{-i\frac{t}{\hbar} \hat{H}} | r \rangle = \langle s | e^{i\frac{t}{\hbar} E_{s}} \hat{I}_{+} e^{-i\frac{t}{\hbar} E_{r}} | r \rangle = e^{i\frac{t}{\hbar} E_{s}} e^{-i\frac{t}{\hbar} E_{r}} \langle s | \hat{I}_{+} | r \rangle = e^{i\frac{t}{\hbar} E_{s}} e^{-i\frac{t}{\hbar} E_{r}} \langle \hat{I}_{+} \rangle_{s,r}$$

$$(4.22)$$

definindo

$$\lambda_s \equiv e^{-i\frac{E_s}{\hbar}t} \tag{4.23}$$

então

$$tr\left\{\hat{T}_{l,m'}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right\} = \sum_{r,s}\lambda_{s}^{*}\lambda_{r}\left(\hat{I}_{+}\right)_{s,r}\left(\hat{T}_{l,m'}\right)_{r,s}$$
(4.24)

O termo $\lambda_s^* \lambda_r = e^{-i\frac{E_r - E_s}{\hbar}t}$ fornece uma oscilação na respectiva freqüência de Bohr associada aos

níveis r e s do sistema.

Uma fórmula mais simples pode ser encontrada analisando a forma geral das matrizes de \hat{I}_+ e $\hat{T}_{l,m'}$. Os elementos $[\hat{I}_+]_{s,r}$ serão dados por

$$(\hat{I}_{+})_{s,r} = \langle I, s | \hat{I}_{+} | I, r \rangle = \sqrt{I(I+1) - r(r+1)} \delta_{s,r+1} = (\hat{I}_{+})_{s,r} \delta_{s,r+1}$$
(4.25)

Por outro lado, os elementos $(\hat{T}_{l,m'})_{r,s}$ serão dados por (3.25),

$$\left[\hat{T}_{l,m'}(S)\right]_{r,s} = \sqrt{\frac{2l+1}{2S+1}} C^{S,r}_{S,s,l,m'}$$
(4.26)

onde os índices estão sujeitos à restrição (que resulta das regras de soma de momentos angulares)

$$r = s + m' \tag{4.27}$$

ou seja, sempre que (4.27) não for válida, os coeficientes de Clebsh-Gordan se anularão. Logo, pode-se escrever

$$\left[\hat{T}_{l,m'}(S)\right]_{r,s} = \left[\hat{T}_{l,m'}(S)\right]_{r,s} \delta_{r,s+m'}$$
(4.28)

Por (4.25) e (4.28),

$$(\hat{I}_{+})_{s,r}(\hat{T}_{l,m'})_{r,s} = (\hat{I}_{+})_{s,r}\,\delta_{s,r+1}(\hat{T}_{l,m'})_{r,s}\,\delta_{r,s+m'}$$
(4.29)

As duas deltas podem ser reduzida a uma apenas:

$$\delta_{s,r+1}\delta_{r,s+m'} = \delta_{m',-1} \tag{4.30}$$

$$\left(\hat{I}_{+}\right)_{s,r}\left(\hat{T}_{l,m'}\right)_{r,s} = \left(\hat{I}_{+}\right)_{s,r}\left(\hat{T}_{l,-1}\right)_{r,s}\delta_{m',-1}$$
(4.31)

e, voltando a (4.24),

$$tr\left\{\hat{T}_{l,m'}\hat{U}_{F}^{+}\hat{I}_{+}\hat{U}_{F}\right\} = \delta_{m',-1}\sum_{r,s}\lambda_{s}^{*}\lambda_{r}\left(\hat{I}_{+}\right)_{s,r}\left(\hat{T}_{l,-1}\right)_{r,s}$$
(4.32)

Agora, a partir de (4.32) e (4.20), é possível retornar ao traço em (4.17), identificando as freqüências de Bohr, onde se localizarão as linhas do espectro de RMN:

$$tr\{\Delta \widetilde{\rho} \hat{U}_{F}^{+} \hat{I}_{+} \hat{U}_{F}\} = \sum_{l,m} a_{l,m} \sum_{m'} e^{i(m-m')\left(\phi - \frac{\pi}{2}\right)} d_{m',m}^{l} (-\theta) \delta_{m',-1} \sum_{r,s} \lambda_{s}^{*} \lambda_{r} \left(\hat{I}_{+}\right)_{s,r} \left[\hat{T}_{l,-1}(S)\right]_{r,s} = \sum_{l,m} a_{l,m} e^{i(m+1)\left(\phi - \frac{\pi}{2}\right)} d_{-1,m}^{l} (-\theta) \sum_{r,s} \lambda_{s}^{*} \lambda_{r} \left(\hat{I}_{+}\right)_{s,r} \left[\hat{T}_{l,-1}(S)\right]_{r,s}$$

$$(4.33)$$

e, explicitamente para a magnetização,

$$M(t) = \sum_{l,m} a_{l,m} e^{i(m+1)\left(\phi - \frac{\pi}{2}\right) + i\alpha} d_{-1,m}^{l} \left(-\theta\right) \sum_{r,s} \lambda_{s}^{*} \lambda_{r} \left(\hat{I}_{+}\right)_{s,r} \left[\hat{T}_{l,-1}(S)\right]_{r,s}$$
(4.34)

Como será visto logo adiante, o termo $d_{-1,m}^{l}(-\theta)$ está diretamente relacionado à seleção da ordem de coerências e, na aplicação dos pulsos de tomografia, é conveniente que ele atinja o valor mais alto possível. As funções $d_{1,-m}^{l}(-\theta)$ possuem menor ângulo de maximização do que as $d_{-1,m}^{l}(-\theta)$; logo, se as primeiras forem utilizadas, os pulsos poderão ser mais curtos e vários fatores experimentais que podem levar a distorções nos resultados (capítulo 8) serão minimizados. Pela propriedade (3.24),

$$d_{-1,m}^{l}(-\theta) = (-1)^{-1-m} d_{1,-m}^{l}(-\theta) = -(-1)^{m} d_{1,-m}^{l}(-\theta)$$
(4.35)

É conveniente manter todos os termos com índice m negativo. O operador densidade é hermitiano, logo

$$a_{l,m}^* = (-1)^m a_{l,-m} \Longrightarrow a_{l,m} = (-1)^m a_{l,-m}^*$$
(4.36)

e, assim,

$$d_{-1,m}^{l}(-\theta)a_{l,m} = -d_{1,-m}^{l}(-\theta)a_{l,-m}^{*}$$
(4.37)

Surge um sinal negativo em (4.37) que, por comodidade, poderá ser eliminado na expressão final da magnetização utilizando a propriedade (3.26):

$$\left[\hat{T}_{l,-1}(S)\right]_{r,s} = -\left[\hat{T}_{l,1}^+(S)\right]_{r,s}$$
(4.38)

Substituindo (4.38) e (4.37) em (4.34),

$$M(t) = \sum_{l,m} (-1)^{m} a_{l,-m}^{*} e^{i(m+1)\left(\phi - \frac{\pi}{2}\right) + i\alpha} (-1)^{m} d_{1,-m}^{l} (-\theta) \sum_{r,s} \lambda_{s}^{*} \lambda_{r} \left(\hat{I}_{+}\right)_{s,r} \left[\hat{T}_{l,1}^{+}(S)\right]_{r,s} =$$

$$= \sum_{l,m} a_{l,-m}^{*} e^{i(m+1)\left(\phi - \frac{\pi}{2}\right) + i\alpha} d_{1,-m}^{l} (-\theta) \sum_{r,s} \lambda_{s}^{*} \lambda_{r} \left(\hat{I}_{+}\right)_{s,r} \left[\hat{T}_{l,1}^{+}(S)\right]_{r,s}$$

$$(4.39)$$

A soma em *m* abrange um intervalo simétrico, $|m| \le l$, logo, o índice pode ser alterado: $m \to -m$

$$M(t) = \sum_{l,m} a_{l,m}^* e^{i(1-m)\left(\phi - \frac{\pi}{2}\right) + i\alpha} d_{l,m}^l (-\theta) \sum_{r,s} \lambda_s^* \lambda_r (\hat{I}_+)_{s,r} [\hat{T}_{l,1}^+(S)]_{r,s}$$
(4.40)

Definindo as grandezas

$$f_{s,r} \equiv \lambda_s^* \lambda_r \tag{4.41}$$

$$(A_{l})_{s,r} \equiv (\hat{I}_{+})_{s,r} [\hat{T}_{l,1}^{+}(S)]_{r,s}$$
(4.42)

$$S_{s,r} \equiv \sum_{l,m} a_{l,m}^* e^{i(1-m)\left(\phi - \frac{\pi}{2}\right) + i\alpha} d_{1,m}^l (-\theta) (A_l)_{s,r}$$
(4.43)

então

$$M(t) = \sum_{s,r} f_{s,r} S_{s,r}$$
(4.44)

Como já foi mencionado, $f_{s,r}$ são as oscilações nas freqüências de Bohr e indicam a **localização** das linhas espectrais; já $S_{s,r}$ são as **intensidades** dessas linhas.

4.4. Tomografia da matriz densidade

Foi obtida uma expressão para a magnetização; o objetivo deste item é obter um modo de selecionar as coerências para tomografar a matriz do operador densidade. Isso será feito utilizando a média temporal de sinais obtidos com pulsos de diferentes fases, convenientemente parametrizadas.

Tomando uma média de vários sinais da forma

$$\overline{S}_{r,s} = \frac{1}{N_p} \sum_{n=0}^{N_p - 1} S_{r,s}(\phi_n, \alpha_n)$$
(4.45)

então

$$\overline{S}_{r,s} = \frac{1}{N_p} \sum_{n=0}^{N_p - 1} \sum_{l,m} a_{l,m}^* e^{i(1-m)\left(\phi_n - \frac{\pi}{2}\right) + i\alpha_n} d_{l,m}^l (-\theta) (A_l)_{s,r}$$
(4.46)

Para ângulos ϕ_n e α_n dados por

$$\begin{cases} \phi_n = 2\pi \frac{n}{N_p} + \frac{\pi}{2} \\ \alpha_n = 2\pi n \frac{(m'-1)}{N_p} \end{cases}$$

$$(4.47)$$

o expoente em (4.46) é simplificado para

$$(1-m)\left(\phi_{n}-\frac{\pi}{2}\right)+\alpha_{n}=(1-m)\left(2\pi\frac{n}{N_{p}}+\frac{\pi}{2}-\frac{\pi}{2}\right)+2\pi n\frac{(m'-1)}{N_{p}}=2\pi\frac{n}{N_{p}}(m'-m)$$
(4.48)

e, para a soma,

$$\sum_{n} e^{i(1-m)\left(\phi_{n} - \frac{\pi}{2}\right)} e^{i\alpha_{n}} = \sum_{n} e^{i2\pi \frac{n}{N_{p}}(m'-m)} = N_{p}\delta_{m,m'}, \quad N_{p} \ge 1 + m'$$
(4.49)

Dessa forma,

$$\overline{S}_{r,s} = \frac{1}{N_p} \sum_{l,m} a_{l,m}^* N_p \delta_{m,m'} d_{l,m}^l (-\theta) (A_l)_{r,s} = \sum_l a_{l,m'}^* d_{l,m'}^l (-\theta) (A_l)_{r,s}$$

$$\therefore \overline{S}_{r,s} (m') = \sum_l a_{l,m'}^* d_{l,m'}^l (-\theta) (A_l)_{r,s}$$
(4.50)

Fica evidente, agora, a razão do acréscimo da fase α ao sinal em (4.13): ela permite obter a delta de Kronecker para a seleção dos elementos da matriz do operador densidade. Utilizando (4.27) e (4.30) uma vez mais, (4.50) pode ser reescrita como:

$$\overline{S}_{r,r+1}(m') = \sum_{l} a_{l,m'}^{*} d_{1,m'}^{l} (-\theta) (A_{l})_{r,r+1}$$
(4.51)

Pela forma matricial dos operadores de polarização[33], é possível verificar que $\hat{T}_{0,0} \propto \hat{1}$ e, como foi demonstrado no capítulo 2, expressão (2.17), componentes proporcionais à identidade não são acessíveis nos experimentos de RMN. Assim, é definida a variável *l*', que omite o termo l = m = 0 da expansão:

$$\overline{S}_{r,r+1}(m') = \sum_{l=l'}^{2S} a_{l,m'}^* d_{1,m'}^l (-\theta) (A_l)_{r,r+1}$$

$$l' = \max(1,m')$$
(4.52)

A expressão (4.50) corresponde ao sistema linear

$$AX = B \tag{4.53}$$

com

$$(A)_{i,l-l'+1} = (A_l)_{i,i+1}$$

$$(X)_{l-l'+1} = a_{l,m'}^* d_{1,m'}(-\theta)$$

$$(B)_i = \overline{S}_{i,i+1}(m')$$
(4.54)

onde, naturalmente,

$$i = 1, 2, ..., 2S$$

 $l = l', l'+1, ..., 2S$
(4.55)

Para cada média fixando um valor de *m*', os respectivos coeficientes $a_{l,m'}$ são encontrados. Apenas os coeficientes para $m' \ge 0$ precisam ser encontrados, pois os demais podem ser obtidos a partir de (4.36).

Por fim, é necessário analisar a solubilidade do sistema. Nos casos m' = 0 e m' = 1, necessariamente l' = 1 e a matriz dos coeficientes será quadrada, $(A)_{2Sx2S}$, originando um sistema determinado. Para m' > 1, essa matriz será retangular, com número de equações maior do que o número de incógnitas; entretanto, como cada coluna l - l' + 1 de A é proporcional ao vetor formado pelos elementos não-nulos de $\hat{T}_{l,1}$ e, como estes são linearmente independentes, as colunas de Atambém serão. A independência linear das colunas da matriz dos coeficientes do sistema assegura a solubilidade.

Para resolver o sistema, com o detalhe de que o número de equações é maior do que o número de incógnitas, foi adotado o método dos mínimos quadrados.

4.5. Etapa computacional

4.5.1. Organização dos programas

Do ponto de vista experimental/computacional, o processo de tomografia consiste na aplicação de uma série de pulsos com ângulos de nutação θ e fases de transmissão ϕ_n e recepção α_n escolhidas adequadamente, sendo que as amplitudes dos espectros associados a cada coerência são gravadas em um arquivo e carregadas posteriormente por um programa que, a partir delas, reconstrói a matriz.

São utilizados, basicamente, três programas, a partir do momento em que o estado que se deseja tomografar é construído:

- AMPVARIAN: Nesse programa estão contidas as informações referentes aos pulsos de tomografia ângulos de nutação, a coerência e o número de vezes em que serão utilizados. Sua função é gerar um arquivo final com as *amp*litudes dos espectros na forma em que seriam gravadas pelo espectrômetro no caso do LEAR, é utilizado o equipamento *VARIAN*-INOVA de 400 MHz.
- SELCOER: Acionado pelo AMPVARIAN, que lhe dá informações sobre o ângulo de nutação e a coerência selecionada, simula a aplicação dos pulsos com ciclagem das fases. Se algum fator a mais está sendo considerado, como interação quadrupolar ou não-homogeneidade do campo de RF, seu nome sofre uma alteração (SELCOERQ ou SELCOERQB1, respectivamente).
- **RECONSTRUIR:** É o programa que, a partir do arquivo com amplitudes gravadas pelo espectrômetro / AMPVARIAN, reconstrói a matriz do operador densidade.

4.5.2. Seleção de coerências

O programa SELCOER, que simula a aplicação de pulsos para selecionar as coerências do estado a ser tomografado tem como base as relações (4.47) para os ângulos de transmissão e recepção. Os pulsos são simulados através do ciclo:

```
r1=0;
for n=0:(Np-1)
  fi=2*pi*n/Np + pi/2; % Fase de transmissao
  alfa=2*pi*n*(m-1)/Np; % Fase da recepcao
  h=teta*(cos(fi)*X+sin(fi)*Y); % Campo de RF
  U1=expm(i*h); %
  U2=U1'; % Operadores evolucao associados ao campo de RF
  r=U1*mdens*U2*exp(i*alfa); % Transientes
  r1=r1+r; % Soma dos varios transientes
end
r0=r1/Np; % Operador densidade final
```

O programa contendo tal ciclo é acionado várias vezes por um outro programa com informações sobre o ângulo θ dos pulsos aplicados, o AMPVARIAN. A escolha de tais ângulos não é uma tarefa meramente matemática, dependendo das características da amostra e do espectrômetro utilizado. Embora o mais natural seja selecionar os valores de θ para os quais as funções $d_{m',m}^{l}$ sejam maximizadas, muitas vezes isso exige a aplicação de pulsos muito longos, onde problemas relacionados a interações existentes na amostra ou imperfeições dos campos magnéticos do espectrômetro podem se sobressair. Isso será discutido no capítulo 7.

Uma vez que cada coerência é selecionada, as amplitudes de seu espectro devem ser obtidas. Para elaborar tal rotina, foi utilizada a expressão (2.12):

$$M(t) = tr\left\{\Delta\hat{\rho}(t)\hat{I}_{+}\right\} = \sum_{j=1}^{2S+1} \langle j | \Delta\hat{\rho} | j \rangle = \sum_{j=1}^{2S+1} \langle j | \Delta\hat{\rho} \sum_{I=1}^{2S+1} | i \rangle \langle i | \hat{I}_{+} | j \rangle = \sum_{i,j} \langle j | \Delta\hat{\rho} | i \rangle \langle i | \hat{I}_{+} | j \rangle$$
(4.56)

Entretanto, (4.56) pode ser simplificada através de (4.25):

$$M(t) = \sum_{i,j} \langle j | \Delta \hat{\rho} | i \rangle \langle i | \hat{I}_{+} | j \rangle = \sum_{i,j} \langle j | \Delta \hat{\rho} | i \rangle \langle i | \hat{I}_{+} | j \rangle \delta_{i,j+1} = \sum_{j} \langle j | \Delta \hat{\rho} | j + 1 \rangle \langle j + 1 | \hat{I}_{+} | j \rangle = \sum_{j} \langle j + 1 | \Delta \hat{\rho}^{*} | j \rangle \langle j + 1 | \hat{I}_{+} | j \rangle$$

$$(4.57)$$

Dessa forma, a obtenção das amplitudes se reduz a uma multiplicação termo-a-termo de matrizes, como mostrado no quadro a seguir.

```
IM=IMAIS(S);
r0t=r0';
aux1=r0t.*IM;
for k=1:2*S
    amp(k)=aux1(k,k+1);
end
```

4.5.3. Reconstrução do operador densidade

Uma vez que as amplitudes dos espectros de tomografía foram registradas em um arquivo, no formato de gravação do espectrômetro utilizado, elas são inseridas no programa de reconstrução, o RECONSTRUIR. Esse programa lê as amplitudes e as separa em uma matriz de tal forma que cada coluna corresponda a um dado valor de *m*:

```
% Processo de separacao dos dados nas colunas da matriz segundo a
respectiva coerencia
aux2=0;
for m=0:2*S
    ml=m+1;
    numang=angulovarian(ml);
    aux1=0;
    for p=1:(2*S*numang)
        SRV(p,ml)=amp(p+aux1+aux2);
        SIV(p,ml)=amp(p+aux1+aux2+1);
        aux1=aux1+1;
    end
    aux2=aux2+numang*2*2*S;
end
MATRIZS=SRV+i*SIV; % Matriz final de amplitudes
```

Os ângulos utilizados para selecionar cada coerência estão registrados na tabela no início,

```
% Tabela com os angulos a serem utilizados
tabang(1,1)=0.96;
tabang(2,1)=0.462;
tabang(3,1)=0.268;
tabang(1,2)=0;
tabang(1,3)=0.606;
tabang(2,3)=0.292;
```

```
tabang(1, 4) = 1.23;
tabang(2, 4) = 0.68;
tabang(3, 4) = 0.426;
tabanq(1, 5) = 1.02;
tabang(2, 5) = 0.604;
tabang(1,6)=1.094;
tabang(2, 6) = 0.73;
tabanq(1,7) = 1.404;
tabang(2,7) = 0.928;
tabang(1,8)=1.426;
% Numero de vezes em que o VARIAN pulsa para cada coerencia (macro
arraysmp)
angulovarian(1) = 3;
angulovarian(2)=1;
angulovarian(3) = 2;
angulovarian(4) = 3;
angulovarian(5) = 2;
angulovarian(6) = 2;
angulovarian(7) = 2;
angulovarian(8)=1;
% Numero de valores de l, para um dado m, em que cada angulo e'
utilizado
repet(1, 1) = 2;
repet(2,1)=2;
repet(3,1)=3;
repet(1,2)=7;
repet(1,3)=3;
repet(2,3)=3;
repet(1,4)=1;
repet(2, 4) = 2;
repet(3,4)=2;
repet(1, 5) = 2;
repet(2, 5) = 2;
repet(1, 6) = 2;
repet(2, 6) = 1;
repet(1,7)=1;
repet(2,7)=1;
repet(1,8)=1;
```

Essas tabelas devem ser comparadas às 7.2 e 7.3. Com todos esses dados, o sistema linear é resolvido pelo método dos mínimos quadrados - há uma função, listada no apêndice B, que calcula a matriz A dos coeficientes. São obtidos os $(X)_{l-l'+1}$ da relação (4.54), que são divididos pelas respectivas funções $d_{m',m}^{l}$ para chegar aos $a_{l,m}$. O último passo é fazer a soma (4.1).

```
x=LSQR(A,B.',[],100); % Resolucao do sistema por minimos quadrados
for q=1:rpt
    adlm=x(q+aux2);
    dlm=d(q+nl+aux2,1,m,-teta);
    % Matriz densidade
    DR=DR+conj(adlm)*TLM(S,q+nl+aux2,m)/dlm;
    end
    aux2=aux2+rpt;
```

Como pode ser visto na listagem fornecida no apêndice D, esse programa também compara o resultado obtido experimentalmente com o que seria esperado teoricamente, calculando a fidelidade (ver capítulo 6).

4.6. Contextualização

Com esse capítulo, encerra-se a segunda parte dessa dissertação, que compreende a explicação do método de tomografia. Os programas aqui expostos serão utilizados em todas as etapas dos capítulos 6 ao 8, das simulações às reconstruções relacionadas a elas e aos dados experimentais. Aqueles que quiserem apenas se familiarizar com método de tomografia em aplicações que não necessariamente envolvam o contexto da CQ podem ir diretamente aos capítulos 7 e 8, que propõem testes experimentais e apresentam os resultados obtidos.

Capítulo 5: Conceitos Importantes de Computação Quântica

"Ou seriam vocês alguma coisa que não admite perguntas humanas?"

William Shakespeare, Macbeth

5.1. Introdução

A terceira parte desta dissertação aqui se inicia. Este capítulo é uma breve introdução à computação quântica, ramo ao qual o método de tomografia analisado na dissertação será aplicado. Embora possa parecer insólito, o *bit quântico (q-bit)* emerge naturalmente a partir do *bit clássico*, o *c-bit*.[37,38] O q-bit é uma mera superposição dos dois estados da base do espaço de Hilbert de dimensão 2, um conceito básico para os conhecedores de mecânica quântica.

Após a explicação desses dois elementos, são apresentadas algumas operações lógicas, na forma de operações unitárias, incluindo a intrinsecamente quântica *Hadamard*. A análise da concatenação de várias operações pode ser facilitada através de diagramas especiais utilizados para representá-las, os *circuitos quânticos*; suas convenções, construções e os diversos símbolos são tratados desde o princípio básico. Finalizando, por se tratar de um problema em que as vantagens da computação quântica sobre a clássica ficam mais evidentes, e por ser razoavelmente simples implementá-lo por RMN, é explicado o **algoritmo de busca de Grover**.[18,19,37-40] Este capítulo e o seguinte podem ser omtidos na leitura dos que quiserem apenas conhecer o método de tomografia, e não necessariamente sua aplicação no contexto da CQ.

5.2. Bits clássicos e quânticos

5.2.1. Bits clássicos (c-bits)

Os **bits** são as unidades fundamentais de informação, podendo assumir os valores lógicos 0 e 1. Nos computadores clássicos, os bits são representados pela presença ou não de correntes elétricas em componentes eletrônicos dentro de chips: a presença de corrente indica o estado lógico 1 e sua ausência, o estado lógico 0. Tais valores, evidentemente, são mutuamente excludentes. Doravante, para distingüi-los dos equivalentes quânticos, eles serão denotados por **c-bits** (*<u>c</u>lássicos)*[37,38].

Seus dois estados possíveis serão representados por um par de vetores ortonormais denotados por $|0\rangle e |1\rangle$; os quatro estados (ou combinações) possíveis para um sistema de dois c-bits serão representados por quatro vetores ortonormais em quatro dimensões, formados pelo produto tensorial dos dois c-bits:

$$|0\rangle \otimes |0\rangle, |0\rangle \otimes |1\rangle, |1\rangle \otimes |0\rangle, |1\rangle \otimes |1\rangle$$
(5.1)

Para facilitar a notação, podem ser adotadas as representações

$$|0\rangle|0\rangle, |0\rangle|1\rangle, |1\rangle|0\rangle, |1\rangle|1\rangle$$
(5.2)

$$|00\rangle, |01\rangle, |10\rangle, |11\rangle$$
 (5.3)

ou, então, utilizada a representação dos números dos kets escritos na aritmética de base 2,

$$|00\rangle \leftrightarrow |0\rangle_{2} \qquad (0.2^{1} + 0.2^{0} = 0)$$

$$|01\rangle \leftrightarrow |1\rangle_{2} \qquad (0.2^{1} + 1.2^{0} = 1)$$

$$|10\rangle \leftrightarrow |2\rangle_{2} \qquad (1.2^{1} + 0.2^{0} = 2)$$

$$|11\rangle \leftrightarrow |3\rangle_{2} \qquad (1.2^{1} + 1.2^{0} = 3)$$

(5.4)

Os estados de *n* c-bits serão representados por 2^n vetores ortonormais em 2^n dimensões,

$$\left|x\right\rangle_{n}, 0 \le x < 2^{n} \tag{5.5}$$

101

obtidos por n produtos tensoriais de n pares de vetores ortonormais. Dentro dos *bras* e *kets*, os números serão escritos sem vírgulas, exceto quando isso der margem a alguma imprecisão.

Cada c-bit pode ser escrito na forma de matrizes coluna. Definindo

$$|0\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix}, \quad |1\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix} \tag{5.6}$$

os produtos tensoriais serão dados por

$$\begin{pmatrix} y_{0} \\ y_{1} \end{pmatrix} \begin{pmatrix} z_{0} \\ y_{1} z_{1} \end{pmatrix} = \begin{pmatrix} y_{0} z_{0} \\ y_{0} z_{1} \\ y_{1} z_{0} \\ y_{1} z_{1} \end{pmatrix}, \quad \begin{pmatrix} x_{0} \\ x_{0} \end{pmatrix} \begin{pmatrix} y_{0} \\ y_{1} \end{pmatrix} \begin{pmatrix} z_{0} \\ z_{1} \end{pmatrix} = \begin{pmatrix} x_{0} y_{0} z_{0} \\ x_{0} y_{1} z_{0} \\ x_{0} y_{1} z_{0} \\ x_{1} y_{0} z_{0} \\ x_{1} y_{0} z_{1} \\ x_{1} y_{1} z_{0} \\ x_{1} y_{1} z_{1} \end{pmatrix}, \quad \dots$$
(5.7)

Por exemplo, para o vetor coluna de 8 dimensões representando 5 na base de 3 c-bits,

e, da mesma forma, para representar 3 em um sistema de 2 c-bits,

$$3 = 1.2^{1} + 1.2^{0}$$

$$|3\rangle_{2} = |11\rangle = |1\rangle|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \leftarrow 0 \\ \leftarrow 1\\ \leftarrow 2\\ \leftarrow 3 \end{pmatrix} (5.9)$$

ou seja, como **regra geral**, o vetor coluna representando $|x\rangle_n$ terá 1 na posição x e 0 em todas as outras.[37,38]

Existem apenas duas operações reversíveis para um único c-bit: identidade e inversão.

(i) Identidade Î

$$\hat{1}|0\rangle = |0\rangle \hat{1}|1\rangle = |1\rangle$$

$$\hat{1}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$(5.10)$$

(ii) Inversão (NOT) \hat{X}

$$\hat{X}|0\rangle = |1\rangle \\ \hat{X}|1\rangle = |0\rangle$$

$$(\hat{X}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \sigma_x$$

$$(5.11)$$

Por (5.11), a identificação entre a matriz de NOT e a matriz σ_x de Pauli é direta.

Várias operações podem ser feitas em sistemas de 2 c-bits. Como exemplo:

(iii) A inversão \hat{S}

$$\hat{S}|xy\rangle = |yx\rangle \tag{5.12}$$

onde sua designação vem do inglês swap.

Por notação, cada c-bit será designado por inteiros, 0, 1, 2, ..., associados à potência de 2 que ele representar. Para a expansão binária do número *x* em 4 c-bits, por exemplo,

$$x = x_{3}.2^{3} + x_{2}.2^{2} + x_{1}.2^{1} + x_{0}.2^{0} = x_{3}.8 + x_{2}.4 + x_{1}.2 + x_{0}.1$$

$$|x\rangle_{4} = |x_{3}x_{2}x_{1}x_{0}\rangle = |x_{3}\rangle|x_{2}\rangle|x_{1}\rangle|x_{0}\rangle = |x_{3}\rangle\otimes|x_{2}\rangle\otimes|x_{1}\rangle\otimes|x_{0}\rangle$$
(5.13)

e uma operação \hat{A} que atue **apenas** no c-bit 2 apenas será representada por

$$\hat{A}_{2} = \hat{1} \otimes \hat{A} \otimes \hat{1} \otimes \hat{1}$$

$$\hat{A}_{2} [|x_{3}\rangle \otimes |x_{2}\rangle \otimes |x_{1}\rangle \oplus |x_{0}\rangle] = |x_{3}\rangle \otimes \hat{A}_{2} |x_{2}\rangle \otimes |x_{1}\rangle \otimes |x_{0}\rangle$$
(5.14)

Existem operações sobre um ou vários c-bits que, apesar de não apresentarem problemas formais, atuam de maneira que não seja possível interpretá-las clássica ou fisicamente. Por exemplo a operação \hat{Z} :

$$\hat{Z}|0\rangle = |0\rangle \hat{Z}|1\rangle = -|1\rangle$$

$$(\hat{Z}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma_z$$

$$(5.15)$$

Tal operação sobre $|1\rangle$ conduz a $|1\rangle$ que, embora possa ser descrito matematicamente, não possui sentido fisicamente: apenas $|0\rangle$ e $|1\rangle$ fazem sentido do ponto de vista da computação clássica. As únicas operações reversíveis de significado clássico levam a permutações em $\{|0\rangle, |1\rangle\}$.

Entretanto, uma operação de 1 c-bit sem significado clássico, como \hat{Z} , pode ser usada em conjunto com outras do mesmo tipo e produzir resultados válidos nesse contexto.

Outros exemplos de operações:

(iv) $\hat{A} = \frac{1}{2} (\hat{1} + \hat{Z}_1 \hat{Z}_0)$

$$\hat{A}|00\rangle = \frac{|00\rangle}{2} + \frac{|00\rangle}{2} = |00\rangle$$

$$\hat{A}|11\rangle = \frac{|11\rangle}{2} + \frac{\hat{Z}|1\rangle\hat{Z}|1\rangle}{2} = \frac{|11\rangle}{2} + \frac{(-|1\rangle)(-|1\rangle)}{2} = \frac{|11\rangle}{2} + \frac{|11\rangle}{2} = |11\rangle$$

$$\hat{A}|01\rangle = \frac{|01\rangle}{2} + \frac{\hat{Z}|0\rangle\hat{Z}|1\rangle}{2} = \frac{|01\rangle}{2} + \frac{(|0\rangle)(-|1\rangle)}{2} = \frac{|01\rangle}{2} - \frac{|01\rangle}{2} = 0$$

$$\hat{A}|10\rangle = \frac{|10\rangle}{2} + \frac{\hat{Z}|1\rangle\hat{Z}|0\rangle}{2} = \frac{|10\rangle}{2} + \frac{(-|1\rangle)(|0\rangle)}{2} = \frac{|10\rangle}{2} - \frac{|10\rangle}{2} = 0$$
(5.16)

Essa operação atua como a identidade sobre $|00\rangle$ e $|11\rangle$ e produz o resultado nulo sobre $|01\rangle$ e $|10\rangle$, algo que não tem significado clássico.

Operadores atuando em diferentes c-bits (como \hat{X}_1 e \hat{Z}_0) podem comutar, mesmo que não haja comutação quando atuarem no mesmo c-bit (como \hat{X} e \hat{Z}).

(v) C-NOT ou XOR reversível

$$\hat{C}|x\rangle|y\rangle = |x\rangle|y \oplus x\rangle \tag{5.17}$$

onde \oplus designa a **adição módulo 2**, definida em (5.35). Aplicando tal porta em cada estado da base computacional do sistema de 2 c-bits:

$$\hat{C}|00\rangle = |00\rangle$$

$$\hat{C}|10\rangle = |11\rangle$$

$$\hat{C}|01\rangle = |01\rangle$$

$$\hat{C}|11\rangle = |10\rangle$$
(5.18)

A porta \hat{C} inverte o segundo c-bit, **alvo**, apenas se o primeiro c-bit, **controle**, tiver valor *I*. Sua representação matricial é:

$$(\hat{C}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 (5.19)

(vi) Hadamard

$$\hat{H}_{d} = \frac{\hat{X} + \hat{Z}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
(5.20)

$$\hat{H}_{d}|0\rangle = \frac{1}{\sqrt{2}} \left(\hat{X} + \hat{Z}\right)|0\rangle = \frac{|1\rangle + |0\rangle}{\sqrt{2}}$$

$$\hat{H}_{d}|1\rangle = \frac{1}{\sqrt{2}} \left(\hat{X} + \hat{Z}\right)|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$
(5.21)

A aplicação de \hat{H}_d em $|1\rangle$ produz um resultado sem significado clássico. Entretanto, essa porta é de fundamental importância em computação quântica, o que será explicado no próximo item.

Nessa seção, os 2^n estados de *n* c-bits foram representados como 2^n vetores ortonormais formando a base de um espaço vetorial de dimensão 2^n construído com *n* produtos tensoriais de *n* espaços bidimensionais. É importante ressaltar, entretanto, que embora as únicas operações com significado clássico consistam em permutações dos vetores da base, essas operações podem ser construídas através de outras sem significado clássico, que multiplicam os vetores da base por escalares ou constituam combinações lineares não triviais.

5.2.2. Bits quânticos (q-bits)

Uma ampliação do conceito de estado do c-bit leva ao **bit quântico**, denotado por **q-bit** (*quântico*); trata-se de expandir o conjunto dos 2^n estados ortonormais clássicos (base clássica) em vetores unitários arbitrários pertencentes ao espaço de todas as combinações lineares destes estados, com coeficientes complexos. O estado geral de um único q-bit é a superposição dos dois estados da base clássica,

106

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle, |\alpha|^2 + |\beta|^2 = 1$$
 (5.22)

O estado geral de *n* q-bits tem a forma

$$\left|\psi\right\rangle = \sum_{0 \le x < n} \alpha_x \left|x\right\rangle_n, \quad \sum_{0 \le x < n} \left|\alpha_x\right|^2 = 1$$
(5.23)

Entre os sistemas físicos que podem ser descritos em termos de estados que são generalizações dos bits clássicos está o spin nuclear.[18,19,36,40]

Enquanto que o estado mais geral possível de dois c-bits tem a forma

$$|\psi\rangle = |x_1\rangle|x_0\rangle \tag{5.24}$$

o estado mais geral de dois q-bits, por sua vez, terá a forma

$$|\psi\rangle = \alpha_3 |3\rangle_2 + \alpha_2 |2\rangle_2 + \alpha_1 |1\rangle_2 + \alpha_0 |0\rangle_2 = \alpha_3 |1\rangle |1\rangle + \alpha_2 |1\rangle |0\rangle + \alpha_1 |0\rangle |1\rangle + \alpha_0 |0\rangle |0\rangle$$
(5.25)

Caso este estado seja o produto tensorial de dois q-bits $|\phi\rangle$ e $|\phi\rangle$,

$$|\varphi\rangle = \alpha|1\rangle + \beta|0\rangle, |\phi\rangle = \gamma|1\rangle + \delta|0\rangle |\varphi\rangle|\phi\rangle = (\alpha|1\rangle + \beta|0\rangle)(\gamma|1\rangle + \delta|0\rangle) = \alpha\gamma|1\rangle|1\rangle + \alpha\delta|1\rangle|0\rangle + \beta\gamma|0\rangle|1\rangle + \beta\delta|0\rangle|0\rangle$$
(5.26)

então, necessariamente, em (5.29),

$$\alpha_0 \alpha_3 = \alpha_1 \alpha_2 \tag{5.27}$$

Em geral, essa decomposição nem sempre é possível. Estados de n q-bits que não podem ser decompostos são denominados de **emaranhados**.

Algoritmos quânticos são construídos sobre operações que atuam linearmente sobre o estado, preservando a norma, ou seja, são *unitárias*,
$$|\psi\rangle \rightarrow \hat{U}|\psi\rangle, \hat{U} unitário$$
 (5.28)

107

As operações clássicas, permutações dos 2^n vetores da base clássica, são casos especiais de (5.28). Uma permutação arbitrária de *n* c-bits pode ser expressa como o produto de *trocas* (5.12) de 2 c-bits.

Visualizando os 2^n estados de *n* c-bits como 2^n vetores ortonormais $|x\rangle_n$ que constituem a base de um espaço vetorial, e as operações reversíveis que podem ser realizadas sobre eles como permutações de tais vetores, então a generalização para *n* c-bits é direta: os estados de q-bits consistem de todas as combinações lineares normalizadas dos vetores clássicos, e as operações reversíveis sobre eles são todas unitárias. Enquanto que é necessário apenas *1 bit de informação* para especificar o estado do c-bit, são necessários vários bits para especificar o q-bit.[36]

O caráter quântico do q-bit se manifestaria em sua medida: ao contrário dos c-bits, seu estado seria destruído na aquisição da informação que ele carrega. Isso não ocorre em computação quântica por RMN[18,19,36,40], já que o estado é construído pelo número grande de núcleos contidos na amostra em análise (e constitui uma mistura estatística), e a medida do FID não perturba o sistema o bastante para destruir esse estado. Para n q-bits no estado (5.23), a única maneira de extrair informações é medindo o estado, ou seja, submetendo-o a um dispositivo que produz um inteiro x tal que $0 \le x < 2^n$, com probabilidade associada $p_x = |\alpha_x|^2$. Medições são as únicas operações irreversíveis sobre q-bits; todas as outras são unitárias.

Convém ressaltar que um q-bit no estado

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) \tag{5.29}$$

não é a mesma coisa que um q-bit no estado $|0\rangle$ ou $|1\rangle$ com iguais probabilidades, mesmo que, em cada caso, uma medida indicaria 0 ou 1 com iguais probabilidades. Para notar a diferença, basta aplicar a transformação Hadamard (5.20) no q-bit antes de a medida ser feita. Em (5.29),

$$\hat{H}_{d}|\psi\rangle = |0\rangle \tag{5.30}$$

e uma medida após \hat{H}_d forneceria apenas θ como resultado. Para $|\psi\rangle = |0\rangle$ ou $|\psi\rangle = |1\rangle$, uma medida após \hat{H}_d continuará a fornecer θ ou I. Em suma, um q-bit em superposição de estados clássicos é diferente de um q-bit em um ou outro estado. Superposições não possuem análogos clássicos, são entidades inerentemente quânticas.

Uma operação de vital importância é a soma módulo 2, denotada por \oplus e definida em (5.31):

$$\begin{cases} n \oplus 0 = n \\ n \oplus 1 = 1 - n \end{cases}$$
(5.31)

onde n pode ser igual a 0 ou 1. Dessa forma, sua tabela verdade será:

Tabela 5.1 - Tabela verdade para \oplus , soma módulo 2

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

5.3. Circuitos quânticos

Circuitos quânticos[36-38] são diagramas que permitem visualizar o efeito de uma seqüência de portas lógicas sobre vários q-bits; em alguns casos, eles são mais cômodos do que as respectivas fórmulas.

Nos circuitos, cada q-bit é representado por uma linha horizontal fina (também chamada de *fio*), enquanto que um conjunto de q-bits pode ser representado por uma linha horizontal espessa (também denominada de *barra*). Portas de vários q-bits são representadas por quadrados sobre as várias linhas, como exibido na figura 5.5, e/ou utilizando linhas verticais, como será visto adiante.

(a)

$$|a\rangle = \hat{p} = |b\rangle$$
 $|\psi\rangle = \hat{Q} = |\phi\rangle$
 $|\psi\rangle = \hat{Q} = |\phi\rangle$

Figura 5.5: Em (a), a porta \hat{P} de 1 q-bit atua sobre o estado inicial $|a\rangle$, originando $|b\rangle$; em (b), a atuação da porta de vários q-bits \hat{Q} é representada de duas formas, atuando sobre o estado $|\Psi\rangle$ fornecendo $|\Phi\rangle$.

Por convenção, os q-bits de entrada aparecem à esquerda do diagrama e os q-bits de saída à direita, sempre como vetores de estado. A vantagem de tal convenção é que o diagrama pode ser lido da esquerda para a direita, como em um texto ocidental, com as portas lidas na ordem em que atuam. Entretanto, há a desvantagem de contradizer a notação usual em física, onde um símbolo como $\hat{U}\hat{V}\hat{W}|\psi\rangle$ especifica o resultado da atuação sobre o estado $|\psi\rangle$ primeiro de \hat{W} , depois de \hat{V} e, por último, de \hat{U} . Assim, para representar

$$\left|\phi\right\rangle = \hat{U}\hat{V}\hat{W}\left|\psi\right\rangle \tag{5.32}$$

o circuito terá o aspecto

$$\left|\psi\right\rangle - W - V - U - \left|\phi\right\rangle$$

com os operadores na seqüência oposta à da equação.

Em operações controladas, o q-bit de controle é representado por um fio tendo sobre ele um ponto preto •; o q-bit alvo é ligado ao de controle por uma linha vertical terminando em uma caixa contendo a operação, como ilustra a figura 5.6.

Figura 5.6: Atuação da porta \hat{P} sobre o estado inicial $|ab\rangle$, sendo $|a\rangle$ o q-bit de controle e $|b\rangle$ o q-bit alvo, originando $|ac\rangle$.

Em particular, a porta C-NOT é denotada por um ponto sobre o q-bit de controle, ligado ao q-bit alvo por uma linha vertical que termina em um círculo aberto, denotando a *adição módulo 2*, como exibido na figura 5.7.

Figura 5.7: Porta C-NOT sobre $|ab\rangle$, tendo o primeiro q-bit como o de controle, originando $|a, b \oplus a\rangle$.

Já a porta de inversão é obtida utilizando três C-NOTs, como ilustrado na figura 5.8, junto com uma representação alternativa mais concisa.

Figura 5.8: Representações da porta de inversão: como composição de três C-NOTs ou através de uma notação mais concisa.

5.4. O algoritmo de busca de Grover

Um algoritmo de busca clássica necessita da ordem de N operações para encontrar um item específico em uma lista desorganizada contendo N elementos. O **algoritmo quântico de Grover**[36,38,39], por outro lado, necessita apenas da ordem de \sqrt{N} operações, sendo quadraticamente mais rápido. Esse algoritmo necessita de uma subrotina quântica que indique, quando apresentada a um inteiro de n bits, se esse inteiro é o elemento procurado, a, ou não, retornando essa informação na forma do valor da função f(x) que satisfaz:

$$f(x) = \begin{cases} 0, & x \neq a \\ 1, & x = a \end{cases}$$
(5.33)

111

Classicamente, essa rotina operaria sobre os diferentes números da lista de candidatos até que o resultado *I* fosse alcançado. O aumento de velocidade na busca quântica reside na implementação da subrotina que calcula f(x) na forma de uma transformação unitária \hat{U}_f que atua sobre o registro de entrada de *n* q-bits, que contém *x*, sendo $N = 2^n$ e um registro de saída de *I* q-bit, que pode assumir os valores 0 ou *I*, dependendo se *x* é ou não o número *a*:

$$\hat{U}_{f}(|x\rangle_{n}|y\rangle_{1}) = |x\rangle_{n}|y \oplus f(x)\rangle_{1}$$
(5.34)

O primeiro passo para implementar o algoritmo é colocar o registro de saída no estado

$$\hat{H}_{d}|1\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle\right) \tag{5.35}$$

O estado a ser submetido a \hat{U}_f será, então:

$$|x\rangle_{n} \otimes \hat{H}_{d}|1\rangle = \frac{1}{\sqrt{2}} \left(|x\rangle_{n}|0\rangle - |x\rangle_{n}|1\rangle\right)$$
(5.36)

Assim, a ação de \hat{U}_f será multiplicar o estado de (n+1) q-bits por -1 se, e somente se, x = a:

$$U_{f}\left(\left|x\right\rangle_{n}\otimes\hat{H}_{d}\left|1\right\rangle\right)=\left(-1\right)^{f(x)}\left(\left|x\right\rangle_{n}\otimes H_{d}\left|1\right\rangle\right)$$
(5.37)

Sobre o registro de saída de I q-bit, \hat{U}_f atua como a identidade, mas sobre o registro de entrada de *n* q-bits, ela atua como a transformação unitária \hat{V} definida por:

$$\hat{V}|x\rangle = (-1)^{f(x)}|x\rangle = \begin{cases} |x\rangle, & x \neq a \\ -|a\rangle, & x = a \end{cases}$$
(5.38)

Uma outra forma de escrever \hat{V} , que será mais conveniente para analisar o funcionamento do algoritmo, é:

$$\hat{V} = \hat{1} - 2|a\rangle\langle a| \tag{5.39}$$

Como \hat{U}_f é linear, \hat{V} também o será. Atuando sobre uma superposição geral $|\psi\rangle$ dos estados da base computacional, \hat{V} altera o sinal da componente do estado ao longo de $|a\rangle$, mas mantém inalteradas as componentes ortogonais a $|a\rangle$:

$$V|\psi\rangle = |\psi\rangle - 2|a\rangle\langle a|\psi\rangle \tag{5.40}$$

Uma vez que \hat{U}_f atua como a identidade no registro de saída (que permanecerá no estado $\hat{H}_d |1\rangle$), a discussão subseqüente ficará restrita ao estado de entrada.

Prosseguindo na análise do algoritmo, é conveniente transformar o registro de entrada em uma superposição uniforme de todas as possíveis entradas:

$$|\phi\rangle = H_d^{\otimes n} |0\rangle_n = \frac{1}{2^{\frac{n}{2}}} \sum_{x=0}^{2^n-1} |x\rangle_n$$
 (5.41)

Além de \hat{V} , o algoritmo necessita de uma segunda transformação unitária \hat{W} que atue sobre o registro de entrada de maneira similar a \hat{V} , sem depender de *a*:

$$\hat{W} = 2|\phi\rangle\langle\phi| - \hat{1} \tag{5.42}$$

Uma vez construídas fisicamente \hat{V} e \hat{W} , o algoritmo de Grover pode ser diretamente executado. Ele consiste em simplesmente aplicar várias vezes o produto $\hat{W}\hat{V}$ ao registro de entrada, que se encontra inicialmente no estado $|\phi\rangle$.

As transformações $\hat{W} \in \hat{V}$, ao atuarem sobre $|\phi\rangle$ ou $|a\rangle$, fornecem combinações lineares desses dois estados. Como, segundo (5.41),

$$\langle a | \phi \rangle = \langle \phi | a \rangle = \frac{1}{2^{\frac{n}{2}}}$$
(5.43)

independentemente de a, as combinações terão coeficientes reais e serão dadas por:

$$\begin{cases} \hat{V}|a\rangle = -|a\rangle \\ \hat{W}|a\rangle = \frac{2}{2^{\frac{n}{2}}}|\phi\rangle - |a\rangle \end{cases}, \begin{cases} \hat{V}|\phi\rangle = |\phi\rangle - \frac{2}{2^{\frac{n}{2}}}|a\rangle \\ 2^{\frac{n}{2}} \\ W|\phi\rangle = |\phi\rangle \end{cases}$$
(5.44)

Tendo em vista esses fatos, uma visão geométrica[38] facilita o entendimento do problema. Começando com o estado $|\phi\rangle$ e fazendo qualquer seqüência desses dois operadores atuar sucessivamente, o resultado sempre estará contido no plano gerado pelos vetores/estados $|\phi\rangle$ e $|a\rangle$. Por (5.41), lembrando que os estados estão normalizados, o cosseno do ângulo γ entre eles será

$$\cos \gamma = \frac{1}{2^{\frac{n}{2}}} = \frac{1}{\sqrt{N}}$$
(5.45)

e se tornará menor conforme N aumentar; assim, para N grande os dois estados serão aproximadamente perpendiculares. É útil definir o vetor $|a_{\perp}\rangle$ perpendicular a $|a\rangle$ e que faz um

ângulo $\theta = \frac{\pi}{2} - \gamma \text{ com } |\phi\rangle$, como ilustra a figura 5.11.

Figura 5.11. Definição de $\left|a_{\perp}\right\rangle$ e linhas especulares para \hat{W} e \hat{V} .

Assim, $|\phi\rangle$ poderá ser escrito como:

$$\left|\phi\right\rangle = \left\langle a_{\perp} \left|\phi\right\rangle \left|a_{\perp}\right\rangle + \left\langle a \left|\phi\right\rangle \right|a\right\rangle \tag{5.46}$$

onde

$$\begin{cases} sen\theta = \cos\gamma = \frac{1}{2^{\frac{n}{2}}} = \frac{1}{\sqrt{N}} \\ \cos\theta = sen\gamma \end{cases}$$
(5.47)

Como \hat{W} deixa $|\phi\rangle$ invariante e inverte a direção de qualquer vetor ortogonal a esse estado, sua ação geométrica sobre qualquer vetor no plano bidimensional contendo $|\phi\rangle$ e $|a\rangle$ é, simplesmente, substituir o vetor por sua reflexão ao longo da direção de $|\phi\rangle$. Por outro lado, \hat{V} inverte a direção de $|a\rangle$ e deixa qualquer vetor ortogonal a ele invariante; assim, sua atuação sobre um vetor qualquer do plano é substituir esse vetor por sua reflexão ao longo de $|a_{\perp}\rangle$. O produto $\hat{W}\hat{V}$ de reflexões é uma rotação. O ângulo de rotação pode ser obtido considerando o efeito de $\hat{W}\hat{V}$ sobre $|a_{\perp}\rangle$,

$$|a_{\perp}\rangle = \cos\sec\gamma|\phi\rangle - \cot g\gamma|a\rangle$$
 (5.48)

ou seja,

$$\hat{V}|a_{\perp}\rangle = \left(\hat{l} - 2|a\rangle\langle a|\right)a_{\perp}\rangle = \operatorname{cossec}\gamma|\phi\rangle - \operatorname{cot}g\gamma|a\rangle = |a_{\perp}\rangle \quad (\hat{V} \text{ deixa } |a_{\perp}\rangle \text{ invariante })$$

$$\hat{W}\hat{V}|a_{\perp}\rangle = \left(2|\phi\rangle\langle\phi| - \hat{l}\right)a_{\perp}\rangle = 2\operatorname{sen}\gamma|\phi\rangle - |a_{\perp}\rangle = 2\cos\theta|\phi\rangle - |a_{\perp}\rangle \quad (5.49)$$

$$(\hat{W}\hat{V} \text{ reflete } |a_{\perp}\rangle \text{ com relação a } |\phi\rangle \text{ ou rotaciona } |a_{\perp}\rangle \text{ de } 2\theta)$$

Para θ pequeno,

$$\begin{cases} sen \theta \approx \theta \approx 2^{-\frac{n}{2}} \\ \cos \theta \approx 1 \end{cases}$$
(5.50)

e

$$\hat{W}\hat{V}|a_{\perp}\rangle = 2|\phi\rangle - |a_{\perp}\rangle \tag{5.51}$$

como representado na figura 5.12.

Figura 5.12. Ação de $\hat{W}\hat{V}$ sobre $|a_{\perp}\rangle$.

Dessa forma, o resultado de $\hat{W}\hat{V}$ sobre qualquer vetor nesse plano é rotacioná-lo de 2θ no sentido de $|a_{\perp}\rangle$ para $|\phi\rangle$. Então, sua aplicação sobre $|\phi\rangle$ equivale a rotacionar $|a_{\perp}\rangle$ de 3θ .; aplicá-

lo uma segunda vez equivale à rotação de $|a_{\perp}\rangle$ de 50. Cada aplicação subseqüente aumenta o

ângulo entre o estado final e $|a_{\perp}\rangle$ de 2 θ . Como $\theta \approx 2^{-\frac{n}{2}}$, após $\frac{\pi}{2} \frac{1}{2\theta} \approx \frac{\pi}{4} 2^{\frac{n}{2}}$ vezes, o estado resultante será, aproximadamente, ortogonal a $|a_{\perp}\rangle$, ou seja, próximo de $|a\rangle$. Conseqüentemente, uma medida do registro de entrada fornecerá *a* com probabilidade próxima de *1*.

5.5. Contextualização

Os conceitos necessários de computação quântica para entender o que será exibido nos próximos capítulos foram explicados aqui. Em particular, a implementação experimental em RMN será discutida no capítulo 6. No capítulo 8 estão os resultados, sendo também exibidas as características da amostra e do aparato experimental de RMN.

Capítulo 6: Computação Quântica via Ressonância Magnética Nuclear

"A aproximação e a semelhança andam juntas, porquanto nenhuma semelhança é exata".

Jacob Bronowski, Ciência e Valores Humanos

6.1. Introdução

O capítulo 1 foi inteiramente dedicado a explicar o operador densidade, distinguindo os casos do estado puro e da mistura estatística. Em RMN, devido a algumas sutilezas tratadas no capítulo 2, não necessariamente o operador densidade é manipulado, mas sim, o *operador densidade parcial*. É a partir dele que surgem os *estados pseudo-puros*,[1,15,16,18,19,41,42] assunto do primeiro tópico do presente capítulo. Em seguida, as operações propostas para serem implementadas, que tiveram uma análise formal no capítulo anterior, são colocadas no contexto da RMN. Uma síntese do método utilizado para construir os estados e as portas lógicas adotado nesse trabalho, os *SMPs*, é fornecida para, por fim, serem mostradas simulações das operações citadas, embora nem todas tenham sido implementadas experimentalmente (ver capítulo 8). Contrariando o senso comum, o problema aqui apresentado é: conhecendo-se o resultado final almejado, procurar determinar as condições ótimas que levam o sistema a esse resultado.

6.2. Os estados pseudo-puros

Uma condição necessária para a computação quântica é que o operador densidade do sistema esteja, no instante inicial, em um estado puro. Entretanto, o sistema de spins utilizado em RMN encontra-se, inicialmente, em equilíbrio térmico com sua vizinhança e, conseqüentemente, seu operador densidade está em uma mistura estatística de estados. Isso pode ser verificado calculando $tr\{\hat{\rho}^2\}$. Na aproximação de altas temperaturas, o operador densidade pode ser expandido da forma (2.15),

118

$$\hat{\rho} = \frac{e^{-\frac{\hat{H}}{kT}}}{Z} \approx \frac{\hat{1}}{Z} + \alpha \hat{I}_z , \quad \alpha \equiv \frac{\hbar \omega_0}{ZkT}$$
(6.1)

onde a **função de partição do sistema** Z é dada por (1.45) e (1.47) ou, no caso, utilizando o fato de que o traço de $\hat{\rho}$ deve ser unitário, por

$$Z = 2I + 1 \tag{6.2}$$

onde I é o spin do núcleo analisado. Prosseguindo,

$$\hat{\rho}^{2} = \frac{1}{Z^{2}}\hat{1} + 2\frac{\alpha}{Z}\hat{I}_{z} + \alpha^{2}\hat{I}_{z}^{2}$$
(6.3)

$$tr\{\hat{\rho}^{2}\} = \frac{1}{Z^{2}}Z + 2\frac{\alpha}{Z} tr\{\hat{l}_{z}\} + \alpha^{2}tr\{\hat{l}_{z}\} = \frac{1}{Z} + \alpha^{2}tr\{\hat{l}_{z}\}$$
(6.4)

Evidentemente, o inverso da função de partição é menor do que *I*. A condição $\alpha \ll 1$ é necessária para que a aproximação de altas temperaturas seja válida, logo também $\alpha^2 \ll 1$. O parâmetro $tr\{\hat{I}_z^2\}$ assume valores que, quando multiplicados por α^2 , também fornecerão um resultado muito menor do que *I*. Dessa forma, unindo as duas condições:

Ou seja, de acordo com a demonstração do capítulo 2, o operador densidade inicial não está em um estado puro. Esse problema pode ser resolvido utilizando nos experimentos, além dos pulsos de radiofreqüência, operações não-unitárias, produzindo um estado que se comporte, matematicamente, como um estado puro. Estes são os **estados pseudo-puros**[1,15,16,18,19,41,42] $\Delta \rho_0^{ab}$, que serão definidos a seguir. Como a componente proporcional à identidade não evolui no tempo (capítulo 2), é permitido trabalhar apenas com a parte dependente do tempo, dada pelo operador **densidade parcial**, $\Delta \hat{\rho}_0$, de (2.18). Este operador fornecerá os estados pseudo-puros.[16] Assim,

$$\Delta \hat{\rho}_0 = \hat{\rho} - \frac{1}{Z} \hat{1} \tag{6.6}$$

Caso apenas operações unitárias \hat{U}_i sejam aplicadas ao estado inicial do sistema, o resultado final será

$$\Delta \hat{\rho}_F = \hat{U}_1 \Delta \hat{\rho}_0 \hat{U}_1^+ \tag{6.7}$$

Operações unitárias não alteram os autovalores de uma matriz, ou seja, nesse caso não seria medida nenhuma alteração. Para, então, obter os estados pseudo-puros a partir do estado de equilíbrio, são necessárias operações não-unitárias. Um exemplo é a realização de médias temporais, procedimento que será, de fato, utilizado.

Na prática, uma operação unitária \hat{U}_i é aplicada sobre o sistema, o sinal é medido e espera-se o retorno ao estado inicial de equilíbrio, quando esse procedimento é repetido *n* vezes. Isso é sintetizado em (6.8):

$$\Delta \hat{\rho}_{1} = \hat{U}_{1} \Delta \hat{\rho}_{0} \hat{U}_{1}^{+}$$

$$\Delta \hat{\rho}_{2} = \hat{U}_{2} \Delta \hat{\rho}_{0} \hat{U}_{2}^{+}$$

$$\Delta \hat{\rho}_{3} = \hat{U}_{3} \Delta \hat{\rho}_{0} \hat{U}_{3}^{+}$$

$$\vdots$$

$$\Delta \hat{\rho}_{n} = \hat{U}_{n} \Delta \hat{\rho}_{0} \hat{U}_{n}^{+}$$
(6.8)

O operador densidade final será obtido pela média dos diversos $\Delta \hat{\rho}_{\rm n}$,

$$\left\langle \Delta \hat{\rho} \right\rangle = \frac{1}{n} \sum_{i=1}^{n} \Delta \hat{\rho}_{i} = \frac{1}{n} \sum_{i=1}^{n} \hat{U}_{i} \Delta \hat{\rho}_{0} \hat{U}_{i}$$
(6.9)

120

sendo as operações \hat{U}_i fornecidas, como será visto adiante, pelos SMP's.

A relação completa das matrizes correspondentes aos estados pseudo-puros para *spins* $\frac{3}{2} e \frac{7}{2}$ é fornecida no Apêndice A.

6.3. Operações a serem implementadas

6.3.1. Portas Toffoli

As portas Toffoli[38,40], \hat{T}_i , i = 1, 2, 3, invertem o *i*-ésimo bit (alvo) apenas se os outros dois bits (controle) forem iguais a *1*. Analiticamente, podem ser escritas como:

$$\hat{T}_{1}|x, y, z\rangle = |x \oplus yz, y, z\rangle$$

$$\hat{T}_{2}|x, y, z\rangle = |x, y \oplus xz, z\rangle$$

$$\hat{T}_{3}|x, y, z\rangle = |x, y, z \oplus xy\rangle$$
(6.10)

As representações matriciais de cada uma são dadas no apêndice E.

6.3.2. Algoritmo de busca de Grover

A discussão feita no item 5.5 será, agora, colocada no contexto da RMN, ou seja, com a utilização do operador densidade e dos estados pseudo-puros. O operador de busca de Grover $\hat{G} \equiv \hat{W}\hat{V}$, será diferente para cada estado procurado e, por se tratar de um conceito geral de CQ, sua construção deve ser feita utilizando os **estados puros**. O operador densidade $|\phi\rangle\langle\phi|$, referente ao estado em (5.41) será construído a partir da Hadamard de três q-bits $(\hat{H}_d^{\otimes 3})$ sobre $|000\rangle\langle000|$:

$$\left|\phi\right\rangle\!\left\langle\phi\right| = \left(\hat{H}_{d}^{\otimes3}\right)000\left\rangle\!\left\langle000\left|\left(\hat{H}_{d}^{\otimes3}\right)^{+}\right. = \left(\hat{H}_{d}^{\otimes3}\right)\!\hat{\rho}_{000}\left(\hat{H}_{d}^{\otimes3}\right)^{+}\right.$$
(6.11)

De (6.11), é obtido o operador \hat{W} de (5.42):

$$\hat{W} = 2|\phi\rangle\langle\phi| - \hat{1} \tag{6.12}$$

121

Esse operador é geral e independe do estado procurado. Para o estado $|abc\rangle$ (notação (5.3)), o operador \hat{V} em (5.39) é construído:

$$\hat{\rho}_{abc} \equiv \left| abc \right\rangle \! \left\langle abc \right| \tag{6.13}$$

$$\hat{V} = \hat{1} - 2\hat{\rho}_{abc} \tag{6.14}$$

Assim, é definido o operador de busca de Grover no formalismo do operador densidade. O apêndice E mostra as matrizes dos operadores \hat{G}_{abc} para os vários estados a serem procurados.

Para simular a aplicação desse algoritmo em RMN, o estado sobre o qual o operador deve ser aplicado é, exatamente, o **estado pseudo-puro**. É obtida uma superposição $\Delta \hat{\rho}_{sup}$ repetindo a operação (6.11) sobre o estado $\Delta \hat{\rho}_{0}^{000}$:

$$\Delta \hat{\rho}_{\rm sup} = \left(\hat{H}_d^{\otimes 3}\right) \Delta \hat{\rho}_{000} \left(\hat{H}_d^{\otimes 3}\right)^+ \tag{6.15}$$

O estado já pode ser iniciado em (6.15) optimizando, por exemplo, um SMP para construí-lo (ver próximo item). Sobre esse estado de superposição, construído em RMN, é aplicado o operador de Grover,

$$G\Delta\hat{
ho}_{\rm sup}G^+$$

O apêndice C mostra a listagem do programa utilizado para simular essa aplicação. A figura 6.1 mostra o estado de superposição (6.15), e as figuras 6.3 e 6.4 mostram as simulações para a procura dos estados *000* e *011*. Apenas as partes reais são mostradas, pois as imaginárias são desprezíveis.

Figura 6.1. Partes real (a) e imaginária (b) do estado inicial (6.15).

As fidelidades (ver item 6.4.1) relativas a cada aplicação, obtidas através do programa de simulação listado no item C.2, são mostradas na tabela 6.1.

Tabela 6.1- Fidelidades relativas ao número de vezes em que o operador de Grover é aplicado sobre (6.15)									
Aplicação	0	1	2	3	4	5	6	7	8
Fidelidade	0,000	0,7500	0,9375	0,2344	0,1289	0,4834	0,9998	0,5165	0,1206

A figura 6.2 permite uma melhor visão da evolução das fidelidades. O comportamento periódico do algoritmo pode ser observado, onde fidelidades máximas são obtidas com *2* e *6* aplicações.

Figura 6.2. Evolução das fidelidades para cada aplicação do operador de Grover.

Figura 6.3. Partes reais dos estados referentes à aplicação do operador de Grover \hat{G}_{000} sobre o estado (6.15). Entre parênteses, o número de vezes que o operador foi aplicado.

Figura 6.4. Partes reais dos estados referentes à aplicação do operador de Grover \hat{G}_{011} sobre o estado (6.15). Entre parênteses, o número de vezes que o operador foi aplicado.

6.4. Pulsos fortemente modulados - SMP's

Em geral, pulsos cujo campo magnético seja dado pela expressão (2.48), onde a amplitude, a fase e a freqüência são mantidas constantes, denominam-se **pulsos retangulares**. Estes são, talvez, os mais utilizados em RMN, onde é possível encontrar, analiticamente, uma combinação de tais pulsos e períodos de evolução sob as hamiltonianas de interação do sistema para manipular o estado inicial e levá-lo ao estado desejado. Entretanto, nem todas as operações lógicas necessárias para implementar os algoritmos ou até mesmo construir os estados de entrada para CQ podem ser obtidas utilizando métodos analíticos, sendo então utilizados procedimentos numéricos.

Nas propostas de implementação experimental das operações explicadas nos itens anteriores foram considerados os **pulsos modulados**, que contrastam com os pulsos retangulares pela variação, ao longo da duração do pulso, da amplitude e da fase; o campo magnético é representado, então, da seguinte forma:

$$\vec{B}_1(t) = B_1(t) \{ \cos[\omega t + \phi(t)]\hat{x} + sen[\omega t + \phi(t)]\hat{y} \}$$

$$(6.16)$$

Numericamente, é procurada uma forma temporal (*modulação*) das curvas de amplitude $B_1(t)$ e de fase $\phi(t)$ para a promoção de rotações específicas sobre o sistema de *spins*. O processo de optimização dos pulsos modulados requer a definição de uma **medida de fidelidade** e do **conjunto de variáveis a serem optimizadas**.[9,10] A escolha de tais variáveis depende da forma como os parâmetros do pulso de RF são apresentados.

6.4.1. Medida da fidelidade

Para dois estados/vetores $|u\rangle \in |v\rangle$, a projeção de $|u\rangle$ sobre $|v\rangle$, $proj(|u\rangle, |v\rangle)$, será dada por:

$$proj(|u\rangle, |v\rangle) = \frac{\langle u|v\rangle}{\sqrt{\langle u|u\rangle\langle v|v\rangle}} |v\rangle = P|v\rangle, P = \frac{\langle u|v\rangle}{\sqrt{\langle u|u\rangle\langle v|v\rangle}}$$
(6.17)

A fidelidade entre dois estados[9,10] será definida exatamente como o coeficiente P da projeção de um sobre o outro. No caso da projeção do estado teórico $\hat{\rho}_{teo}$ que se deseja alcançar sobre o estado optimizado numericamente $\hat{\rho}_{num}$,

$$P = \frac{\hat{\rho}_{teo} \bullet \hat{\rho}_{num}}{|\hat{\rho}_{teo}||\hat{\rho}_{num}|} = \frac{tr\{\hat{\rho}_{teo}\hat{\rho}_{num}^+\}}{\sqrt{tr\{\hat{\rho}_{teo}^2\}tr\{\hat{\rho}_{num}^2\}}}$$
(6.18)

onde foi utilizado o produto escalar dado por (3.1). Se as matrizes forem proporcionais, |P|=1, podendo ser definidas matrizes paralelas e anti-paralelas, para as quais P igual a 1 e -1, respectivamente.

A fidelidade Q entre dois operadores [9,10], por sua vez, é definida como sendo a média das projeções das componentes A_i transformadas pelas operações teórica \hat{U}_{teo} e optimizada numericamente \hat{U}_{num} , onde A_i , $i = 1,...,N^2$, é uma base ortonormal qualquer para operadores no espaço de Hilbert *N*-dimensional:

$$Q(\hat{U}_{teo}, \hat{U}_{num}) = \frac{1}{N^2} \sum_{i=1}^{N^2} (\hat{U}_{teo} A_i \hat{U}_{teo}^+) \bullet (\hat{U}_{num} A_i \hat{U}_{num}^+)$$
(6.19)

É possível alcançar uma expressão mais simples (e prática) desenvolvendo (6.19). Em primeiro lugar, o produto escalar será escrito explicitamente através de (3.1):

$$Q(\hat{U}_{teo},\hat{U}_{num}) = \frac{1}{N^2} \sum_{i=1}^{N^2} tr \left\{ \hat{U}_{teo} A_i \hat{U}_{teo}^+ \right\}^+ \left(\hat{U}_{num} A_i^+ \hat{U}_{num}^+ \right) \right\}^{(2.33)} = \frac{1}{N^2} \sum_{i=1}^{N^2} tr \left\{ \hat{U}_{num}^+ \hat{U}_{teo} A_i \hat{U}_{teo}^+ \hat{U}_{num} A_i^+ \right\}$$
(6.20)

Como A_i pode ser uma base qualquer, será utilizada agora a base canônica, cujos elementos de matriz são dados por:

$$\left(e_{i,j}\right)_{r,s} = \delta_{i,r}\delta_{j,s} \tag{6.21}$$

Para isso, a soma em um único índice *i* converte-se em duas somas, cada uma de *I* até *N* e o operador $\hat{U}_{teo}^{+}\hat{U}_{num}$ será expandido como:

$$\hat{U}_{teo}^{+}\hat{U}_{num} = \sum_{r=1}^{N} \sum_{s=1}^{N} a_{r,s} e_{r,s}$$
(6.22)

Substituindo (6.22) em (6.20), o argumento do traço fornecerá:

$$\hat{U}_{num}^{+}\hat{U}_{teo}A_{i}\hat{U}_{teo}^{+}\hat{U}_{num}A_{i}^{+} = \sum_{m,n}a_{m,n}^{*}e_{n,m}e_{i,j}\sum_{r,s}a_{r,s}e_{r,s}e_{j,i} = \sum_{m,n,r,s}a_{m,n}^{*}a_{r,s}e_{n,m}e_{i,j}e_{r,s}e_{j,i}$$
(6.23)

Para simplificar a soma, convém analisar o produto de dois elementos da base canônica. Pela definição dos elementos do produto de matrizes, se C = AB, então $c_{i,k} = \sum_{j} a_{i,j} b_{j,k}$, ou seja:

$$(e_{m,n}e_{r,s})_{i,k} = \sum_{j} (e_{m,n})_{i,j} (e_{r,s})_{j,k} = \sum_{j} \delta_{m,i} \delta_{n,j} \delta_{r,j} \delta_{s,k}$$

$$= \delta_{m,i} \delta_{s,k} \delta_{n,r} = (e_{m,s})_{i,k} \delta_{n,r} = (e_{m,s} \delta_{n,r})_{i,k}$$

$$\therefore \quad e_{m,n}e_{r,s} = e_{m,s} \delta_{n,r}$$

$$(6.24)$$

Utilizando, então, (6.24) em (6.23) sucessivamente:

$$\hat{U}_{num}^{+}\hat{U}_{teo}A_{i}\hat{U}_{teo}^{+}\hat{U}_{num}A_{i}^{+} = \sum_{m,n,r,s} a_{m,n}^{*}a_{r,s} \underbrace{e_{n,m}e_{i,j}}_{e_{n,j}\delta_{m,i}} e_{r,s}e_{j,i} = \sum_{n,r,s} a_{i,n}^{*}a_{r,s} \underbrace{e_{n,j}e_{r,s}}_{e_{n,s}\delta_{j,r}} e_{j,i} = \sum_{n,s,s} a_{i,n}^{*}a_{j,s} \underbrace{e_{n,s}e_{j,i}}_{e_{n,j}\delta_{s,j}} = \sum_{n} a_{i,n}^{*}a_{j,j}e_{n,i}$$
(6.25)

Assim, através de (6.25), $Q(\hat{U}_{teo}, \hat{U}_{num})$ torna-se:

$$Q(\hat{U}_{teo}, \hat{U}_{num}) = \frac{1}{N^2} \sum_{i,j} tr\left\{\sum_{n} a_{i,n}^* a_{j,j} e_{n,i}\right\} = \frac{1}{N^2} \sum_{i,j} a_{j,j} tr\left\{\sum_{n} a_{i,n}^* e_{n,i}\right\}$$
(6.26)

Como o traço é a soma dos termos da diagonal, o único termo que contribuirá em (6.26) é aquele para o qual n = i:

$$Q(\hat{U}_{teo}, \hat{U}_{num}) = \frac{1}{N^2} \sum_{i,j} a_{j,j} a_{i,i}^* = \frac{1}{N^2} \sum_i a_{i,i}^* \sum_j a_{j,j} = \frac{1}{N^2} tr \{\hat{U}_{num}^+ \hat{U}_{teo}\} tr \{\hat{U}_{teo}^+ \hat{U}_{num}\}$$

$$\therefore \quad Q(\hat{U}_{teo}, \hat{U}_{num}) = \left| \frac{tr \{\hat{U}_{teo}^+ \hat{U}_{num}\}}{N} \right|^2$$
(6.27)

6.4.2. Variáveis optimizadas

As operações consideradas foram optimizadas levando em consideração uma seqüência de transições discretas nos parâmetros dos pulsos de RF e, entre tais transições, os parâmetros do pulso são mantidos constantes. A denominação **pulsos fortemente modulados** (**SMP**, do inglês *Strongly Modulating Pulses*)[9,10,18,32] é devida a tais saltos descontínuos, representados na figura 6.5[9,10].

Figura 6.5. Ilustração da forma de um SMP. Em cada segmento, as linhas contínuas representam a intensidade do campo de RF e as pontilhadas, as fases.[9,10]

A hamiltoniana de evolução \hat{H}_e para cada segmento do SMP é representada por:

$$\hat{H}_{e} = \gamma B_{k} t_{k} \left[\cos(\phi_{k}) \hat{X} + sen(\phi_{k}) \hat{Y} \right] + \hat{H}_{Q} t_{k}$$
(6.28)

Cada segmento k é caracterizado por 3 parâmetros: B_k , $t_k e \phi_k$ que representam, respectivamente, a intensidade, duração e fase do pulso. Convém notar que a hamiltoniana quadrupolar estava presente.

O procedimento de optimização adotado foi o **algoritmo Simplex Nelder-Mead**.[43] Maiores informações podem ser encontradas na referência [9] e na dissertação de mestrado do aluno Arthur Gustavo de Araújo Ferreira, cujo desenvolvimento ocorreu paralelamente a esse trabalho.

6.5. Simulações de implementações através de SMP's

Evidentemente, o primeiro passo para realizar operações lógicas é a construção dos estados pseudo-puros. O apêndice C mostra a listagem do programa que simulava essa ação, recebendo como entrada a tabela com parâmetros dos SMPs. Nesse apêndice, pode ser também verificada a listagem do programa análogo que simulava a construção das portas lógicas.

Para esta dissertação, o algoritmo de Grover não foi implementado. Entretanto, a forma dos operadores é dada no apêndice E. Espera-se que isso, juntamente com a discussão apresentada neste capítulo e no anterior, possibilite a implementação no futuro.

Os estados e operações apresentados nesse item foram construídas a partir de SMPs gerados pelo mestrando Arthur Gustavo de Araújo Ferreira.

6.5.1. Os estados pseudo-puros

Para construir os estados pseudo-puros, foram utilizadas médias sobre 4 SMPs, cada um composto por 10 segmentos. O programa que simula a construção desses estados a partir dos parâmetros repassados pelo mestrando Arthur Ferreira encontra-se no item C.3. As figuras 6.6 e 6.7 exibem as simulações dos estados. Os respectivos resultados experimentais encontram-se nas figuras 8.16 e 8.17. No processo de optimização, foi considerado $f_Q = 7kHz$.

A tabela 6.2 mostra as fidelidades entre os estados teóricos (fornecidos no apêndice A) e os simulados, calculadas utilizando a expressão (6.18).

Tabela 6.2 - Fidelidades entre os estados pseudo-puros teóricos e simulados.

Estado	000	001	010	011	100	101	110	111
Fidelidade	1,0000	0,9997	0,9989	0,9987	0,9979	0,9992	1,0000	1,0000

Figura 6.6. Simulações dos estados pseudo-puros construídos por SMPs: 000 (i), 001 (ii), 010 (iii) e 011 (iv). À esquerda, partes reais e, à direita, imaginárias.

Figura 6.7. Simulações dos estados pseudo-puros construídos por SMPs: 100 (i), 101 (ii), 110 (iii) e 111 (iv). À esquerda, partes reais e, à direita, imaginárias.

As partes imaginárias possuem elementos com intensidades muito baixas, e em todos os casos a fidelidade foi alta. Através dos estados mostrados neste item e no capítulo 8, pode-se notar que todas as optimizações para construção dos estados pseudo-puros foram bem sucedidas.

6.5.2. Porta Toffoli 1

O programa que simula a construção destes estados a partir dos parâmetros repassados pelo mestrando Arthur Ferreira se encontra no item C.3. A única operação optimizada a tempo para o término desta dissertação foi a Toffoli $1, \hat{T}_1$, dada na primeira das (E.1). A construção da operação lógica é mais simples do que a dos estados pseudo-puros, já que não envolve médias temporais. Foram adotados, no caso, 20 segmentos para o SMP. A matriz obtida foi:

$$\left[T_{1}^{(opt)}\right] = \begin{bmatrix} -0,3087 & -0,0026 & -0,0628 & -0,0191 & 0,0432 & -0,0410 & 0,0042 & 0,0255 \\ 0,0086 & -0,4064 & 0,0545 & -0,0059 & 0,0038 & 0,0011 & -0,0043 & -0,0253 \\ -0,0485 & 0,0406 & -0,3711 & -0,0095 & 0,0195 & -0,0098 & 0,0176 & -0,0236 \\ 0,0579 & -0,0370 & -0,0362 & -0,0063 & -0,0226 & 0,0230 & -0,0075 & -0,3580 \\ 0,0067 & -0,0253 & 0,0314 & 0,0106 & -0,3698 & 0,0416 & 0,0104 & -0,0463 \\ -0,0143 & 0,0101 & -0,0069 & 0,0030 & 0,0527 & -0,3756 & -0,0087 & 0,0376 \\ -0,0193 & -0,0070 & 0,0064 & -0,0507 & -0,0128 & -0,0189 & -0,4299 & -0,0289 \\ -0,0222 & -0,0266 & -0,0372 & -0,3638 & 0,0052 & 0,0006 & -0,0470 & -0,0259 \end{bmatrix} + \\ +i \begin{bmatrix} 0,9198 & 0,0167 & -0,0089 & -0,0129 & -0,0374 & 0,0198 & -0,0325 & 0,0616 \\ -0,0104 & 0,9134 & 0,0025 & -0,0310 & -0,0383 & 0,0102 & -0,0029 & -0,0282 \\ -0,0353 & 0,0358 & 0,9258 & -0,0440 & 0,301 & -0,0025 & -0,0032 & -0,0309 \\ -0,0330 & 0,0001 & 0,0118 & -0,0277 & -0,0484 & 0,0309 & -0,0298 & 0,9301 \\ 0,0593 & 0,0266 & -0,0074 & -0,0046 & 0,9258 & 0,0362 & -0,0311 & 0,0201 \\ -0,0464 & -0,0046 & -0,0075 & -0,0011 & 0,0068 & 0,9265 & -0,0168 & -0,0065 \\ 0,0255 & -0,0023 & 0,0118 & -0,0189 & 0,0275 & 0,0078 & 0,9029 & 0,0167 \\ -0,0071 & 0,0194 & 0,0248 & 0,9311 & 0,0096 & 0,0020 & -0,0251 & 0,0130 \end{bmatrix}$$

(6.29)

A fidelidade entre essa operação e a teórica foi 0,9958, calculada pela expressão (6.27). É interessante notar que, devido a um equívoco no *processo de optimização*, a matriz resultante estava mais próxima de $i\hat{T}_1 = e^{i\frac{\pi}{2}}\hat{T}_1$. Por se tratar de uma fase global, ela não interferiu no resultado esperado, tampouco na fidelidade. Assim como na construção dos estados pseudo-puros, pode-se dizer que a optimização foi bem sucedida.

6.5.3. Contextualização

Neste capítulo, uma boa idéia de como transpor as operações realizadas em CQ para o universo da RMN foi dada através da análise do algoritmo de busca de Grover. As definições de fidelidade utilizadas nos próximos capítulos foram explicadas formalmente. Além disso, os estados e operações obtidos experimentalmente, exibidos no capítulo 8, foram aqui simulados tendo em vista os parâmetros dos SMPs utilizados no espectrômetro. Pelas fidelidades altas nas simulações dos estados pseudo-puros e na porta *Toffoli 1* realizadas dessa forma, espera-se que o procedimento de optimização do mestrando Arthur Ferreira tenha sido bem sucedido, o que será corroborado no último capítulo dessa dissertação. Infelizmente, nem todas as operações exibidas puderam ser optimizadas a tempo. As portas *Toffoli 2* e *3*, além do próprio algoritmo de busca de Grover ficarão como propostas para trabalhos futuros.

Capítulo 7: Análises de alguns fatores experimentais

"Não sei porque, mas nunca vi uma máquina que, perfeita na descrição dos filósofos, seja depois perfeita em seu funcionamento mecânico. Enquanto que a foice de um camponês, que nenhum filósofo jamais descreveu, funciona como se deve".

Umberto Eco, O nome da rosa

7.1. Introdução

Aqui, tem início a parte experimental desta dissertação. Neste capítulo, **apenas resultados de simulações serão exibidos**, baseados em alguns testes simples propostos não apenas para verificar a eficiência do método de tomografia para núcleos de *spin* $\frac{7}{2}$, mas também a maneira como fatores intrínsecos ao próprio aparato experimental podem influir na construção dos estados a serem tomografados. Em particular, serão analisadas, características experimentais importantes que podem influir no resultado obtido: interação quadrupolar, não-homogeneidade do campo de radiofreqüência (NHRF) e imprecisão na calibração dos pulsos (ICP). Na análise do efeito da interação quadrupolar serão exibidas simulações para *spin* $\frac{3}{2}$, que podem ser comparadas com as obtidas na referência [9]. Elas serão aqui repetidas para verificar a coerência entre os programas utilizados nesses dois trabalhos. Entretanto, nas demais seções serão mostradas apenas simulações referentes ao sistema de interesse dessa dissertação, o *spin* $\frac{7}{2}$.

Todos os ângulos mostrados a seguir estão em **radianos**. Todas as matrizes são apresentadas normalizadas e seus valores numéricos podem ser conferidos no apêndice F.

7.2. Testes preliminares

7.2.1. Estado de equilíbrio

O teste mais indicado para ser o primeiro, por sua simplicidade, é a reconstrução do estado de equilíbrio \hat{I}_z . Para realizá-lo, basta deixar a amostra imersa no campo magnético estático pelo tempo necessário para que o alinhamento dos *spins* ocorra e, em seguida, aplicar os pulsos de tomografia. O resultado esperado, para *spins* $\frac{3}{2}$ e $\frac{7}{2}$ é exibido na figura 7.1 (as partes imaginárias das matrizes são nulas).

Figura 7.1. Partes reais das matrizes \hat{I}_z para *spin* $\frac{3}{2}$ (a) e $\frac{7}{2}$ (b).

7.2.2. Criação de \hat{I}_y

Um pulso $\frac{\pi}{2}$ com fase em -*x* é aplicado ao estado de equilíbrio, gerando o estado \hat{I}_y . Durante a aplicação da seqüência de tomografia, se esse estado foi de fato atingido, apenas o espectro correspondente à primeira coerência (m = -I, +I) deve ter amplitudes não-nulas. As partes imaginárias normalizadas destes estados são exibidas na figura 7.2 para os casos de *spin* $\frac{3}{2}$ e $\frac{7}{2}$ (as partes reais são nulas).

Figura 7.2. Partes imaginárias das matrizes \hat{I}_y para *spin* $\frac{3}{2}$ (a) e $\frac{7}{2}$ (b).

Evidentemente, mudando-se a fase do pulso, pode ser criada uma combinação linear de \hat{I}_x e \hat{I}_y , sendo a simulação do estado final extremamente simples.

7.2.3. Criação de coerências

Este teste consiste em, através de uma seqüência constituída de pulsos simples e períodos de evolução livre, obter estados que apresentem apenas coerências de certas ordens pré-determinadas. Para sistemas de *spin* $\frac{3}{2}$ é possível obter facilmente estados que apresentem apenas coerências de ordem ímpar ou par, e esse teste já foi realizado anteriormente [9]; entretanto, para *spin* $\frac{7}{2}$, como será mostrado, a situação se torna um pouco mais complexa.

Em primeiro lugar, é necessário notar que a **evolução livre** altera o **grau** l, enquanto que os **pulsos** alteram a **ordem de coerência** m. Para aumentar a ordem de m para m', é necessário primeiro aumentar o grau de l até m', sempre obedecendo os vínculos para os $\hat{T}_{l,m}(S)$ (ver capítulo

$$m = -l, -l + 1, ..., l - 1, l$$

 $l = 0, 1, ..., 2S$

7.2.3.1. Mudança de grau

Durante evoluções livres, o operador evolução será dado por:

$$\hat{U}_{e} = e^{-i\frac{H_{Q}}{\hbar}t}, \quad \hat{H}_{Q} = \frac{\hbar\omega_{Q}}{6} \left[3\hat{I}_{z}^{2} - I(I+1)\hat{I}\right]$$
(7.1)

onde a hamiltoniana quadrupolar já foi vista na equação (2.56). Nesse caso, se o operador $\hat{T}_{l,m}(S)$ evoluir sob o efeito de \hat{U}_e , o resultado final $\tilde{T}_{l,m}(S)$ será

$$\widetilde{T}_{l,m} = \hat{U}_e \hat{T}_{l,m} \hat{U}_e^+ = \sum_{l'} b_{l,l'} \hat{T}_{l',m}$$
(7.2)

Assim, a informação a respeito da presença da componente $\hat{T}_{l',m}(S)$ está contida no coeficiente $b_{l,l'}$. Para que a componente $\hat{T}_{L,m}(S)$ seja alcançada, é conveniente calcular a projeção de $\tilde{T}_{l,m}(S)$ sobre $\hat{T}_{L,m}(S)$:

$$tr\left\{\hat{T}_{L,m}^{+}\tilde{T}_{l,m}^{-}\right\} = tr\left\{\hat{T}_{L,m}^{+}\hat{U}_{e}\hat{T}_{l,m}\hat{U}_{e}^{+}\right\} = tr\left\{\hat{T}_{L,m}^{+}\sum_{l'}b_{l,l'}\hat{T}_{l',m}^{-}\right\} = \sum_{l'}b_{l,l'}tr\left\{\hat{T}_{L,m}^{+}\hat{T}_{l',m}^{-}\right\}^{(3.42)} = \sum_{l'}b_{l,l'}\delta_{L,l'} = b_{l,L}$$
(7.3)

ou seja,

$$b_{l,L} = tr\left\{\hat{T}_{L,m}^{+}e^{-i\frac{\hat{H}_{Q}}{\hbar}t}\hat{T}_{l,m}e^{i\frac{\hat{H}_{Q}}{\hbar}t}\right\}$$
(7.4)

7.2.3.2. Mudança de ordem

Nesse caso, o formalismo de rotações visto no capítulo 3 deve ser aplicado ao operador $\hat{T}_{l,m}(S)$. Em termos das funções de Wigner $\hat{D}(\alpha, \beta, \gamma)$, seguindo o desenvolvimento dos capítulos 3 e 4:

$$\hat{D}(\alpha,\beta,\gamma)\hat{T}_{l,m}\hat{D}^{+}(\alpha,\beta,\gamma) = \sum_{m'=-l}^{l} D_{m',m}^{l}(\alpha,\beta,\gamma)\hat{T}_{l,m'} \\
D_{m',m}^{l}(\alpha,\beta,\gamma) = e^{-i(m'\alpha+m\gamma)}d_{m',m}^{l}(\beta)$$

$$\hat{D}\hat{T}_{l,m}\hat{D}^{+} = \sum_{m'=-l}^{l} e^{-i(m'\alpha+m\gamma)}d_{m',m}^{l}(\beta)\hat{T}_{l,m'}$$
(7.5)

Aplicando as condições (4.6), (4.7) e (4.8), assumindo os pulsos na direção -y ($\phi = -\frac{\pi}{2}$) e lembrando que *m* e *m*' são inteiros, (7.5) se reduz a:

$$\hat{D}\hat{T}_{l,m}\hat{D}^{+} = (-1)^{m} \sum_{m'=-l}^{l} (-1)^{-m'} d_{m',m}^{l} (-\theta)\hat{T}_{l,m'}$$
(7.6)

onde, por simplicidade, a dependência angular doravante será omitida de \hat{D} . Como o operador densidade possui contribuições da forma $\hat{T}_{l,m} + \hat{T}^+_{l,m}$, será necessário analisar rotações sobre esses fatores. Para isso, falta aplicar (7.6) sobre $\hat{T}^+_{l,m}$, o que será feito com o auxílio de (3.26):

$$\hat{D}\hat{T}_{l,m}^{+}\hat{D}^{+} \stackrel{(3.26)}{=} (-1)^{m}\hat{D}\hat{T}_{l,-m}\hat{D}^{+} =$$

$$= (-1)^{m} (-1)^{m} \sum_{m'=-l}^{l} (-1)^{-m'} d_{m',m}^{l} (-\theta)\hat{T}_{l,m'} = \sum_{m'=-l}^{l} (-1)^{-m'} d_{m',m}^{l} (-\theta)\hat{T}_{l,m'}$$
(7.7)

Somando as expressões (7.6) e (7.7):

$$\hat{D}(\hat{T}_{l,m} + \hat{T}_{l,m}^{+})\hat{D}^{+} = \sum_{m'=-l}^{l} \left[(-1)^{m-m'} d_{m',m}^{l} (-\theta) + (-1)^{m'} d_{m',-m}^{l} (-\theta) \right] \hat{T}_{l,m'}$$
(7.8)

Reescrevendo a soma:

$$\hat{D}(\hat{T}_{l,m} + \hat{T}_{l,m}^{+})\hat{D}^{+} = \sum_{m'=-l}^{-1} \left[(-1)^{m-m'} d_{m',m}^{l} (-\theta) + (-1)^{m'} d_{m',m}^{l} (-\theta) \right] \hat{T}_{l,m'} + \left[(-1)^{m} d_{0,m}^{l} (-\theta) + d_{0,m}^{l} (-\theta) \right] \hat{T}_{l,0} + \sum_{m'=1}^{l} \left[(-1)^{m-m'} d_{m',m}^{l} (-\theta) + (-1)^{m'} d_{m',m}^{l} (-\theta) \right] \hat{T}_{l,m'}$$

$$(7.9)$$

O próximo passo para encontrar uma expressão mais adequada é trabalhar a primeira soma. Fazendo a mudança $m' \rightarrow -m'$

$$\sum_{m'=-l}^{-1} \left[(-1)^{m-m'} d_{m',m}^{l} (-\theta) + (-1)^{m'} d_{m',-m}^{l} (-\theta) \right] \hat{T}_{l,m'} =$$

$$= \sum_{m'=1}^{l} \left[(-1)^{m+m'} d_{-m',m}^{l} (-\theta) + (-1)^{m'} d_{-m',-m}^{l} (-\theta) \right] \hat{T}_{l,-m'}$$
(7.10)

e utilizando as propriedades (3.24) e (3.26), chega-se a:

$$\sum_{m'=-l}^{-1} \left[\left(-1\right)^{m-m'} d_{m',m}^{l} \left(-\theta\right) + \left(-1\right)^{m'} d_{m',-m}^{l} \left(-\theta\right) \right] \hat{T}_{l,m'} = \sum_{m'=1}^{l} \left[\left(-1\right)^{m'} d_{m',-m}^{l} \left(-\theta\right) + \left(-1\right)^{m-m'} d_{m',m}^{l} \left(-\theta\right) \right] \hat{T}_{l,m'}$$
(7.11)

Retornando, então, à expressão (7.9), é obtida a relação final, que será utilizada para determinar os parâmetros a serem utilizados no experimento:

$$\hat{D}(\hat{T}_{l,m} + \hat{T}_{l,m}^{+})\hat{D}^{+} = \left[(-1)^{m} d_{0,m}^{l}(-\theta) + d_{0,-m}^{l}(-\theta)\right]\hat{T}_{l,0} + \sum_{m'=1}^{l} \left[(-1)^{m'} d_{m',-m}^{l}(-\theta) + (-1)^{m-m'} d_{m',m}^{l}(-\theta)\right] \hat{T}_{l,m'} + \hat{T}_{l,m'}^{+}$$

$$(7.12)$$

7.2.3.3. Construção do experimento

A hamiltoniana quadrupolar comuta com o estado de equilíbrio, logo, para haver mudanças no estado, inicialmente é necessário aplicar um pulso. É interessante ressaltar que[33]:

$$\hat{1} \propto \hat{T}_{0,0}
\hat{I}_{z} \propto \hat{T}_{1,0}$$

$$\hat{I}_{x} \propto \left(\hat{T}_{1,1} + \hat{T}_{1,1}^{+}\right)$$
(7.13)

Após um pulso $\frac{\pi}{2}$ na direção *y*, será criado o estado \hat{I}_x . Para aumentar a ordem de coerência, é necessário primeiro aumentar o valor de *l*. Nesse ponto, é conveniente simplificar a expressão (7.4):

$$b_{l,L} = tr\left\{\hat{T}_{L,m}^{+}e^{-i\frac{\omega_{Q}}{6}[3\hat{I}_{z}^{2}-I(I+1)\hat{I}]_{t}}\hat{T}_{l,m}e^{i\frac{\omega_{Q}}{6}[3\hat{I}_{z}^{2}-I(I+1)\hat{I}]_{t}}\right\} = tr\left\{\hat{T}_{L,m}^{+}e^{-i\hat{I}_{z}^{2}\frac{\omega_{Q}t}{2}}\hat{T}_{l,m}e^{i\hat{I}_{z}^{2}\frac{\omega_{Q}t}{2}}\right\}$$
(7.14)

e, fazendo a mudança de variável $\eta = \frac{\omega_Q}{2}t$:

$$b_{l,L} = tr\left\{\hat{T}_{L,m}^{+}e^{-i\hat{l}_{z}^{2}\eta}\hat{T}_{l,m}e^{i\hat{l}_{z}^{2}\eta}\right\}$$
(7.15)

Assim, a determinação dos pontos de máximo valor (em módulo) de (7.15) permite encontrar o período de evolução livre que maximiza a transferência de grau.

O apêndice B exibe a listagem do programa que manipula as expressões (7.12) e (7.15) (*Transferência de grau*), e o apêndice C mostra o de simulação, que determina a matriz densidade resultante ao final de cada etapa (*Teste de criação de coerências*). A seguir, são mostrados os passos propostos para os experimentos para *spins* $\frac{3}{2}$ e $\frac{7}{2}$, lembrando que o estado inicial é sempre $(\hat{T}_{1,1} + \hat{T}_{1,1}^+)$, ou seja, l = m = 1. Além disso, l = 0 pode ser desconsiderado nos cálculos, pois está relacionado apenas com m = 0, e a contribuição de $\hat{T}_{0,0}$ não é acessível por RMN (ver expressões (2.16) e (7.13)).

• *spin* $\frac{3}{2}$: Nesse caso, há apenas três valores de *l* e a construção do experimento se torna mais fácil. Em primeiro lugar, basta calcular o máximo de $b_{1,3}$, para, a partir daí, criar coerências pares ou ímpares.

$$b_{1,3} = tr \left\{ \hat{T}_{3,1} e^{-i\hat{l}_z^2 \eta} \hat{T}_{1,1} e^{-i\hat{l}_z^2 \eta} \right\}$$
(7.16)

A figura 7.3 mostra o comportamento de $b_{1,3}$ para $0 \le \eta \le \pi$.

Figura 7.3. Transferência de grau para *spin* $\frac{3}{2}$.

Verificando diretamente no gráfico a máxima transferência de grau ocorrerá em $\eta = \frac{\pi}{2}$, ou seja, em

 $t = \frac{\pi}{\omega_Q}$. Após a transferência, o estado do sistema será proporcional a $(\hat{T}_{3,1} + \hat{T}_{3,1}^+)$ (o coeficiente $b_{1,2}$

se anula em $\eta = \frac{\pi}{2}$). Assim, utilizando (7.12):

$$\hat{D}(\hat{T}_{3,1} + \hat{T}_{3,1}^{+})\hat{D}^{+} = \left[d_{0,-1}^{3}(-\theta) + d_{0,1}^{3}(-\theta)\right]\hat{T}_{3,0} + \\ + \sum_{m'=1}^{3} \left[\left(-1\right)^{m'} d_{m',-1}^{3}(-\theta) + \left(-1\right)^{1-m'} d_{m',1}^{3}(-\theta)\right] \left(\hat{T}_{3,m'} + \hat{T}_{3,m'}^{+}\right) = \\ = \left[d_{0,-1}^{3}(-\theta) + d_{0,1}^{3}(-\theta)\right]\hat{T}_{3,0} + \left\{d_{1,1}^{3}(-\theta) - d_{1,-1}^{3}(-\theta)\right] \left(\hat{T}_{3,1} + \hat{T}_{3,1}^{+}\right) + \\ + \left[d_{2,-1}^{3}(-\theta) - d_{2,1}^{3}(-\theta)\right] \left(\hat{T}_{3,2} + \hat{T}_{3,2}^{+}\right) + \left[d_{3,1}^{3}(-\theta) - d_{3,-1}^{3}(-\theta)\right] \left(\hat{T}_{3,3} + \hat{T}_{3,3}^{+}\right)\right\}$$
(7.17)

As contribuições (em módulo) de cada componente de (7.17) se encontram na figura 7.4. Como esperado, a única contribuição com peso não-nulo em $\theta = 0$ é a referente a m = 1, já que isso corresponde a uma rotação de $\theta = 0$ sobre o estado proporcional a $(\hat{T}_{3,1} + \hat{T}_{3,1}^+)$. Assim, analisando os gráficos representados na figura 7.4, $\theta = 0,96$ permite a criação de coerências das ordens ímpares, I

e 3, com contribuição da diagonal (ordem 0), enquanto que $\theta = \frac{\pi}{2}$ permite a criação das coerências

de ordem 0 e 2.

Figura 7.4. Transferência de ordem sobre o estado proporcional a $(\hat{T}_{3,1} + \hat{T}_{3,1}^+)$ - coeficientes dados na equação (7.17).

A seqüência a ser utilizada está representada na figura 7.5. Os pulsos são dados na direção -y

$$(\phi = -\frac{\pi}{2}).$$

Figura 7.5. Seqüência de pulsos utilizada para criar estados com coerências de ordens pares ou ímpares. Os ângulos de nutação estão indicados sobre os pulsos; em ambos, $\phi = -\frac{\pi}{2}$.
As simulações obtidas para cada instante indicado na figura serão mostradas a seguir. O estado em t_1 é a magnetização de equilíbrio, \hat{I}_z , enquanto que no instante t_2 , será \hat{I}_x ; ambas estão exibidas na figura 7.6.

Figura 7.6. Estado nos instantes t_1 (a) e t_2 (b) para *spin* $\frac{3}{2}$.

Após o tempo de espera/evolução t_e , ou seja, em t_3 , o estado normalizado é mostrado na figura 7.7.

Figura 7.7. Partes real (a) e imaginária (b) do estado referente ao instante t_3 para spin $\frac{3}{2}$.

O estado em t_4 dependerá do ângulo θ escolhido. A figura 7.8 mostra os estados referentes a cada escolha. Como as partes imaginárias possuem elementos não nulos com valores da ordem de 10^{-16} , resultado de erros numéricos do próprio MATLAB, foram representadas apenas as partes reais das matrizes.

Figura 7.8. Partes reais dos estados referentes ao instante t_4 obtidos com (a) $\theta = 0.96$ (coerências ímpares) e (b) $\theta = \frac{\pi}{2}$ (coerências pares) no caso de *spin* $\frac{3}{2}$.

Como é possível observar, para $\theta = 0,96$ as coerências de ordem 2 são nulas, enquanto que para $\theta = \frac{\pi}{2}$ apenas a diagonal e as coerências de ordem 2 estão presentes, em concordância com o obtido na referência[9].

• *spin* $\frac{7}{2}$: A matriz nesse caso é maior e, conseqüentemente, o número de coerências também

será, o que gerará algumas dificuldades adicionais. É necessário analisar todos os coeficientes $b_{I,L}$ dados por

$$b_{1,L} = tr \left\{ \hat{T}_{L,m}^{+} e^{-i\hat{t}_{z}^{2}\eta} \hat{T}_{1,m}^{-} e^{i\hat{t}_{z}^{2}\eta} \right\}$$
(7.18)

com L = 2, ..., 7. A figura 7.9 mostra a evolução desses coeficientes para $0 \le \eta \le \pi$.

Figura 7.9. Transferência de grau para *spin* $\frac{7}{2}$.

Pelo gráfico, em $\eta = \frac{\pi}{2}$, ou seja, em $t = \frac{\pi}{\omega_Q}$, a transferência de grau para L = 7 é maximizada,

embora também surjam grandes contribuições para $L = 5 \ e \ 3$, enquanto as demais se anulam. Assim, após esse intervalo de tempo, o estado do sistema terá as contribuições $(\hat{T}_{3,1} + \hat{T}_{3,1}^+)$, $(\hat{T}_{5,1} + \hat{T}_{5,1}^+) e (\hat{T}_{7,1} + \hat{T}_{7,1}^+)$. Utilizando (7.12):

$$\hat{D}(\hat{T}_{3,1} + \hat{T}_{3,1}^{+})\hat{D}^{+} = \left[d_{0,-1}^{3}(-\theta) - d_{0,1}^{3}(-\theta)\right]\hat{T}_{3,0} + \sum_{m'=1}^{3}\left[(-1)^{m'}d_{m',-1}^{3}(-\theta) + (-1)^{1-m'}d_{m',1}^{3}(-\theta)\right]\hat{T}_{3,m'} + \hat{T}_{3,m'}^{+})$$

$$\hat{D}(\hat{T}_{5,1} + \hat{T}_{5,1}^{+})\hat{D}^{+} = \left[d_{0,-1}^{5}(-\theta) - d_{0,1}^{5}(-\theta)\right]\hat{T}_{5,0} + \sum_{m'=1}^{5}\left[(-1)^{m'}d_{m',-1}^{5}(-\theta) + (-1)^{1-m'}d_{m',1}^{5}(-\theta)\right]\hat{T}_{5,m'} + \hat{T}_{5,m'}^{+}) \quad (7.19)$$

$$\hat{D}(\hat{T}_{7,1} + \hat{T}_{7,1}^{+})\hat{D}^{+} = \left[d_{0,-1}^{7}(-\theta) - d_{0,1}^{7}(-\theta)\right]\hat{T}_{7,0} + \sum_{m'=1}^{7}\left[(-1)^{m'}d_{m',-1}^{7}(-\theta) + (-1)^{1-m'}d_{m',1}^{7}(-\theta)\right]\hat{T}_{7,m'} + \hat{T}_{7,m'}^{+})$$

Para a primeira das (7.19), o gráfico de criação das coerências está mostrado na figura 7.3. A figura 7.10 mostra os gráficos para a segunda e terceira das (7.19).

Figura 7.10. Transferência de ordem para estados proporcionais a $(\hat{T}_{5,1} + \hat{T}_{5,1}^+) e(\hat{T}_{7,1} + \hat{T}_{7,1}^+)$ - coeficientes dados pela segunda e terceira das (7.19).

É de se esperar, analisando todos os gráficos, que as coerências surjam, em ordem decrescente de intensidade, com m = 2, 4 e 6.

Conforme pode ser verificado pela figura 7.10, a criação de coerências de ordens ímpares envolve o surgimento de um grande número de outras componentes, o que dificulta a análise dos dados e, portanto, não será considerada aqui.

A seqüência utilizada é a mesma representada na figura 7.4. As matrizes esperadas nos instantes

$$t_3$$
 (após um período de evolução livre de $t = \frac{\pi}{\omega_Q}$) e t_4 (após o pulso de $\frac{\pi}{2}$ na direção -y), são

exibidas na figura 7.11. Como no caso desse exemplo para *spin* $\frac{3}{2}$, os elementos das partes imaginárias das matrizes são desprezíveis devido a erros do próprio MATLAB. Assim, foram mostradas apenas as partes reais.

Figura 7.11. Partes reais dos estados referentes aos instantes t_3 (a) e t_4 (b) para spin $\frac{7}{2}$ ($\theta = \frac{\pi}{2}$).

7.3. Escolha dos ângulos de nutação dos pulsos de tomografia

Os ângulos para os quais as funções $d_{m',m}^l$ são maximizadas constituem a escolha mais natural para ângulos de nutação dos pulsos de tomografia. Entretanto, ela pode levar a pulsos muito longos, o que permitiria que as imperfeições analisadas nos próximos itens tivessem um efeito proeminente. Como será verificado, isso constitui um problema principalmente no caso do *spin* $\frac{7}{2}$ onde, para coerências mais altas, os ângulos que maximizam essas funções são grandes. Além disso, para esse caso, como o número de coerências é considerável, se for utilizado um ângulo para obter cada elemento da matriz, o tempo para rodar a seqüência de tomografía será muito grande.

Para o *spin* $\frac{3}{2}$, nenhum desses fatores constituiu um entrave e os ângulos são mostrados na tabela 7.1[9,32].

Tabela 7.1 - Ângulos de nutação para os pulsos de tomografia para *spin* $\frac{3}{2}$.[9,32]

1	m=0	m=1	m=2	m=3
-				m 5
1	$\frac{\pi}{2}$		-	-
2	$\frac{\pi}{4}$	0	$\frac{\pi}{3}$	-
3	0,54		0,60	1,23

Para *spin* $\frac{7}{2}$, uma opção para compensar o tempo despendido na tomografia é procurar ângulos que não necessariamente maximizem uma dada função $d_{m',m}^{l}$, mas que, para um dado *m*, façam com que os valores dessas funções associados a dois ou mais valores de *l* sejam altos o bastante para ter uma grande sensibilidade a essas componentes. A tabela 7.2 ilustra a escolha seguindo esse critério.

m=0m=1 m=2 *m=3* m=4m=5m=6m=71 -_ _ _ 0.960 2 3 0,606 1,230 --_ 0,462 0 4 -_ 0,68 1,020 5 1,094 1,404 0,268 0,292 6 0,426 0,604 7 0,730 0,928 1,426

Tabela 7.2 - Primeira escolha para ângulos de nutação para os pulsos de tomografia para spin $\frac{7}{2}$.

Entretanto, para tornar o processo de tomografía mais rápido e minimizar a influência, durante esses pulsos, dos fatores experimentais que serão analisados a seguir, a tomografía pode ser feita utilizando apenas ângulos pequenos. A tabela 7.3. mostra uma outra possível escolha de ângulos levando isso em consideração.

l	m=0	m=1	<i>m=2</i>	m=3	<i>m=4</i>	m=5	m=6	m =7
1			-	-	-	-	-	-
2				-	-	-	-	-
3		0,25 0 0,25 0,50	0,25	0,50	-	-	-	-
4	0,25				0.50	-	-	-
5							-	-
6				0,50	0,50 0,60	0,70	-	
7							0,70	

Tabela 7.3 - Segunda escolha para ângulos de nutação para os pulsos de tomografia para spin $\frac{7}{2}$.

É necessário um certo cuidado na escolha dos ângulos e, nesse último caso, eles foram selecionados de tal forma que as funções $d_{m',m}^{l}$, para todos os valores de *l* relativos a cada *m*, preservassem valores relativamente altos (embora não alcançassem a intensidade das escolhas da tabela 7.2). As funções cuja dependência é senoidal não apresentam tanto problema no uso de ângulos baixos, uma vez que a expansão em série de Taylor possui o termo linear como sendo o de ordem mais baixa; já as funções com dependência angular cossenoidal são mais problemáticas por possuírem, como

termo de mais baixa ordem na expansão, o quadrático (além do termo de ordem *zero*). Essas características podem gerar problemas na análise dos sinais, onde as componentes senoidais podem ofuscar as cossenoidais. Dessa forma, não é aconselhável utilizar ângulos muito baixos para todas as componentes; mesmo assim, foi possível escolher ângulos na tabela 7.3 bem menores do que os da tabela 7.2 para uma dada coerência.

A intensidade das linhas espectrais, como foi mostrado no capítulo 4, é proporcional às funções $d_{m',m}^{l}$. Uma maneira de comparar a intensidade dos sinais provenientes das duas escolhas de ângulos é, exatamente, calcular a razão entre essas funções para cada contribuição definida por *l* e *m*. O caso mais extremo corresponde ao elemento referente a l = m = 8, onde o sinal para a tabela 7.2 é 8,5 vezes mais intenso do que para a tabela 7.3. Em grande parte dos casos, esse fator fica em torno de 2, havendo ocasiões em que os sinais referentes a ambas as tabelas são praticamente iguais. De maneira geral, para linhas espectrais menos intensas, pode ser feita uma compensação tomando um número maior de médias.

7.4. Efeitos de fatores experimentais

Até agora, todas as simulações foram realizadas considerando pulsos perfeitos; entretanto, devido a fatores relativos à amostra utilizada ou às condições experimentais, essa situação ideal não é possível. Com base em experimentos realizados visando a implementação das operações descritas nesse trabalho (ver capítulo 8), foram selecionados para análise alguns fatores que poderiam interferir de forma negativa nos resultados. Serão mostradas a seguir as influências desses fatores nos testes descritos anteriormente.

Em todos os testes, uma vez que o estado desejado (\hat{l}_z , \hat{l}_y , coerências de determinadas ordens) era criado, sua tomografia era simulada: os programas relacionados à simulação da aplicação dos pulsos com a ciclagem de fases para seleção de coerências (*AMPVARIAN* e *SELCOER*) eram utilizados (modificados em cada seção para incluir os fatores experimentais sob análise) e, então, o programa de reconstrução da matriz densidade (*RECONSTRUIR*) era acionado.

7.4.1. Interação quadrupolar

Os testes foram feitos utilizando dois parâmetros fundamentais, listados para cada *spin* a seguir: a freqüência quadrupolar, um fator intrínseco da amostra utilizada, e a duração do pulso de $\frac{\pi}{2}$. Esse último parâmetro foi escolhido devido ao processo de calibração (potência *versus* duração) adotado para o pulso, explicado na seção 8.3.

• spin $\frac{3}{2}$: No caso das amostras utilizadas em trabalhos anteriores, a freqüência quadrupolar era de aproximadamente *16 kHz*; com a sonda utilizada, era possível obter um pulso $\frac{\pi}{2}$ com uma potência tal que o tempo de pulso era da ordem de 4 µs.[9,32]

• spin $\frac{7}{2}$: No caso da amostra de CsPFO, utilizada nas tentativas de implementação desta dissertação, a freqüência quadrupolar era de aproximadamente 7 *kHz*; foram utilizadas várias sondas, onde o tempo para um pulso de $\frac{\pi}{2}$ variou entre 5 e $12\mu s$ (detalhes da instrumentação e da amostra serão fornecidos no capítulo 8).

No apêndice C encontra-se a listagem dos programas utilizados para simular os pulsos para implementação dos testes. Nas linhas referentes à aplicação dos pulsos, estão incluídos os hamiltonianos de RF e da interação quadrupolar, sendo que este último foi omitido anteriormente para a análise de pulsos perfeitos. A interação quadrupolar será incluída tanto nos pulsos para criação dos estados como naqueles de tomografía. Para criação dos estados, o segmento do programa será

```
h2=-teta1*X + Q*wq*teta1*2*tp90/pi;
U2=expm(i*h2);
r2=U2*r1*U2';
```

e, para a ciclagem de fases da tomografia,

```
tp=teta*2*tp90/pi; % Tempo de atuacao do pulso
hq=HQ(S)*wq*tp; % Hamiltoniana quadrupolar
.
.
h=teta*(cos(fi)*X-sin(fi)*Y) +hq; % Campo de RF e interação
quadrupolar
```

Na avaliação do teste de criação de $\hat{I}y$, foram adotadas as seguintes fidelidades:

 $PI \equiv$ fidelidade entre o estado obtido após o pulso $\frac{\pi}{2}$ (com efeito da interação quadrupolar) e o estado \hat{I}_y (resultado esperado) ;

 $P2 \equiv$ fidelidade entre o estado obtido após o pulso $\frac{\pi}{2}$ e o estado final reconstruído pelo método de tomografía (com efeito da interação quadrupolar nos dois processos);

 $P3 \equiv$ fidelidade entre o estado final reconstruído pelo método de tomografia (com efeito da interação quadrupolar) e o estado \hat{I}_{y} (resultado esperado).

Para o teste de criação de coerências de ordens selecionadas, as seguintes fidelidades foram adotadas:

 $RI \equiv$ fidelidade entre o estado no instante t_4 (com efeito da interação quadrupolar) e o estado esperado com pulsos ideais no mesmo instante;

 $R2 \equiv$ fidelidade entre o estado no instante t_4 e o estado final reconstruído pelo método de tomografia (com efeito da interação quadrupolar nos dois processos);

 $R3 \equiv$ fidelidade entre o estado esperado com pulsos ideais em t_4 e o estado final reconstruído pelo método de tomografia (com efeito da interação quadrupolar).

As fidelidades *P3* e *R3* são equivalentes às que serão utilizadas para analisar os dados experimentais no capítulo 8 relacionando o estado desejado e o reconstruído; as fidelidades *P2* e *R2* servem para verificar o quanto o método de tomografia influencia no resultado obtido. Assim, por essas definições, espera-se que (P2 > P1, P3) e (R2 > R1, R3). Convém ressaltar que simulações da interferência da interação quadrupolar nos pulsos de tomografia não foram feitas em trabalhos anteriores[9,32].

• *spin* $\frac{3}{2}$: A figura 7.12 exibe a reconstrução do estado de equilíbrio considerando a evolução

quadrupolar durante os pulsos de tomografia.

Figura 7.12. Simulação da influência da interação quadrupolar nos pulsos de tomografia de \hat{I}_z para *spin* $\frac{3}{2}$. Partes real (a) e imaginária (b) para o estado reconstruído.

A fidelidade entre esse estado e \hat{I}_z é 0,9979. Nota-se, entretanto, o aparecimento de elementos na diagonal da parte imaginária, embora com intensidade bem menor do que as dos respectivos elementos na parte real. Isso é uma distorção relativamente grave, já que o operador densidade é

hermitiano (implicando que a diagonal da sua parte imaginária deve ser nula). A explicação reside no fato de que os pulsos de seleção de coerência, como já foi dito, não são mais ideais. É importante ressaltar que, apesar disso, o traço do operador tomografado permanece *nulo*.

A figura 7.13 mostra a simulação da criação de \hat{I}_y considerando a interação quadrupolar durante o pulso.

Figura 7.13. Partes real (a) e imaginária (b) do estado \hat{I}_y criado considerando a interação quadrupolar no pulso $\frac{\pi}{2}$ para *spin* $\frac{3}{2}$.

A fidelidade entre esse estado e o \hat{I}_y é 0,9831. O efeito da interação quadrupolar é o surgimento de uma contribuição real, porém os elementos da diagonal da parte imaginária são todos nulos. A figura 7.14 ilustra o resultado da aplicação do processo de tomografia ao estado representado na figura 7.13, onde foi considerado o efeito da interação quadrupolar nos pulsos de seleção de coerências.

Figura 7.14. Partes real (a) e imaginária (b) do estado \hat{I}_y de *spin* $\frac{3}{2}$ reconstruído considerando a interação quadrupolar nos pulsos de criação de estado e de tomografia.

Todas as fidelidades obtidas estão resumidas na tabela 7.4.

Tabela 7.4 - Fidelidades para o teste de criação de \hat{I}_y em *spin* $\frac{3}{2}$.

	2			
<i>P1</i>	P2	<i>P3</i>		
0,9831	0,99999	0,9834		

Conforme verificado na simulação da tomografia de \hat{I}_z , há o surgimento de uma diagonal imaginária, apesar de ser pouco intensa. O valor alto de *P2*, junto com o valor obtido para a fidelidade daquele teste, indicam que, nesses dois casos, o processo de tomografia pouco influencia o resultado obtido. Como as fidelidades *P1* e *P3*, contêm diferença na quarta casa decimal, podem ser tomadas como iguais. Os valores altos indicam que a influência da interação quadrupolar é mínima.

Será analisado agora o efeito da interação quadrupolar no terceiro teste, descrito no item 7.2.3, a **criação de estados apenas com coerências de determinadas ordens**. A figura 7.15 mostra os estados finais no instante t_4 , considerando a interação quadrupolar apenas nos pulsos de criação do estado.

É importante notar que tais resultados concordam com os contidos na referência [9], mais precisamente na página 109. Entre esses estados e os exibidos na figura 7.8 é calculada a fidelidade RI.

Figura 7.15. Estados no instante t_4 para coerências pares (i) e ímpares (ii) para *spin* $\frac{3}{2}$ considerando a interação quadrupolar na criação. À esquerda, parte real e, à direita, parte imaginária.

A figura 7.16 ilustra os estados finais reconstruídos, considerando a interação quadrupolar em todos os processos, da criação de coerências aos pulsos de tomografia.

Figura 7.16. Estados no instante t_4 para coerências pares (i) e ímpares (ii) para *spin* $\frac{3}{2}$ considerando a interação quadrupolar da criação ao processo de tomografía. À esquerda, parte real e, à direita, parte imaginária.

A fidelidade R2 é determinada entre os estados das figuras 7.15 e 7.16, enquanto que R3 é determinada através dos estados das figuras 7.16 e 7.8. Todas as fidelidades encontram-se na tabela 7.5.

Tabela 7.5 - Fidelidades para os testes de criações de coerências de ordens pares ou ímpares para spin $\frac{3}{2}$

Teste	<i>R1</i>	<i>R2</i>	<i>R3</i>
Coerências pares	0,9680	0,9888	0,9781
Coerências ímpares	0,9560	0,9997	0,9593

Mesmo visualmente, comparando as duas últimas figuras, é possível perceber, como constatado anteriormente, que a influência do processo de tomografia no resultado final é mínima; isso é confirmado pelos altos valores de *R2*. De fato, a interação quadrupolar nos pulsos de seleção de coerências nem foi considerada em trabalhos anteriores[9,32]. Entretanto, a interação quadrupolar nos pulsos de criação de estado possui uma influência sensivelmente maior, como pode ser constatado pelos valores de *R1* e *R3*; mesmo assim, esses dois parâmetros estão bem próximos e, por *R3*, pode ser constatado que, se fossem considerados na simulação prévia pulsos de criação de estado como rotações perfeitas, o erro não seria tão grande.

A principal conclusão é que, para spin $\frac{3}{2}$, segundo o valor de f_Q analisado, **a influência da interação quadrupolar nos pulsos de tomografia é ínfima** e pode até ser desconsiderada, como o foi em trabalhos anteriores. Já nos pulsos de criação de estado, essa influência, embora perceptível, não afeta de maneira significativa os resultados.

• spin $\frac{7}{2}$: Como a duração do pulso $\frac{\pi}{2}$ variava de acordo com as condições experimentais, serão feitas análises para durações de 5, 8 e 12 μ s para os testes propostos, considerando as duas escolhas de ângulos para tomografia, dadas pelas tabelas 7.2 e 7.3.

As figuras 7.17 e 7.18 mostram **reconstruções do estado de equilíbrio** considerando a interação quadrupolar nos pulsos de tomografia. As fidelidades obtidas encontram-se na tabela 7.6.

Duração do pulso $\frac{\pi}{2}$ (μ s)	Ângulos grandes (tabela 7.2)	Ângulos pequenos (tabela 7.3)					
5	0,9930	0,9998					
8	0,9818	0,9996					
12	0,9571	0,9991					

Tabela 7.6 - Fidelidades para tomografia de \hat{I}_z para *spin* $\frac{1}{2}$.

Nota-se que, com o uso dos ângulos de nutação menores, a fidelidade no caso de duração do pulso $\frac{\pi}{2}$ de $12\mu s$ chega a ser superior à do pulso $\frac{\pi}{2}$ de $5\mu s$ para ângulos grandes. As contribuições na diagonal da parte imaginária, entretanto, surgem mesmo com essa última escolha de ângulos, embora sejam pouco intensas.

A figura 7.19 mostra a **simulação da criação de** \hat{I}_y considerando a interação quadrupolar durante o pulso de $\frac{\pi}{2}$, para cada uma de suas durações. Há o aparecimento de uma componente real e, na parte imaginária, notam-se contribuições de coerência de ordem 2 bem evidentes. O valor baixo da fidelidade *P1* para o pulso de $\frac{\pi}{2}$ de *12 µs* mostra como a interação quadrupolar nesse caso já começa a alterar drasticamente o estado esperado, mesmo antes de a tomografía ser realizada, o que pode ser notado visualmente pela figura. Entretanto, **todos os elementos da diagonal imaginária são nulos**.

Simulações do estado obtido após o processo de tomografia ser realizado são mostradas nas figuras 7.20 e 7.21, com as três durações do pulso de $\frac{\pi}{2}$ analisadas e levando em consideração cada uma das escolhas de ângulos de nutação, respectivamente das tabelas 7.2 e 7.3.

As diversas fidelidades obtidas estão resumidas na tabela 7.7.

Figura 7.17. Reconstrução de \hat{I}_z considerando a interação quadrupolar nos pulsos de tomografia para *spin* $\frac{7}{2}$. Ângulos de nutação dados pela tabela 7.2. Duração do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii). À esquerda, parte real e à direita, imaginária.

Figura 7.18. Reconstrução de \hat{I}_z considerando a interação quadrupolar nos pulsos de tomografia para *spin* $\frac{7}{2}$. Ângulos de nutação dados pela tabela 7.3. Duração do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii). À esquerda, parte real e à direita, imaginária.

Figura 7.19. Partes real (esquerda) e imaginária (direita) para estados \hat{I}_y para *spin* $\frac{7}{2}$ obtidos com duração do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii) considerando a atuação da interação quadrupolar durante a criação do

Figura 7.20. Simulação da influência da interação quadrupolar nos pulsos de tomografia de \hat{I}_y para *spin* $\frac{7}{2}$ com ângulos dados pela tabela 7.2. Partes reais (à direita) e imaginárias (à esquerda) para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii).

Figura 7.21. Simulação da influência da interação quadrupolar nos pulsos de tomografia de \hat{I}_y para *spin* $\frac{7}{2}$ com ângulos dados pela tabela 7.3. Partes reais (à direita) e imaginárias (à esquerda) para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii).

Figura 7.22. Simulação da influência da interação quadrupolar na criação do estado com coerências de ordens pares para *spin* $\frac{7}{2}$. Partes reais (à direita) e imaginárias (à esquerda) para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii).

Figura 7.23. Simulação da influência da interação quadrupolar da criação do estado de coerências de ordens pares para *spin* $\frac{7}{2}$ aos pulsos de tomografia. Tempos do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii). Partes real (esquerda) e imaginária (direita). Ângulos de tomografia dados pela tabela 7.2.

Figura 7.24. Simulação da influência da interação quadrupolar da criação do estado de coerências de ordens pares para *spin* $\frac{7}{2}$ aos pulsos de tomografia. Tempos do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii). Partes real (esquerda) e imaginária (direita). Ângulos de tomografia dados pela tabela 7.3.

Tabela 7.8 - Fidelidades obtidas para a influência da interação quadrupolar sobre o teste de criação de

· · · · · ·	7
coerências de ordens pares para spin	$\overline{\mathbf{r}}$
	7

Duração do		Grandes ângulos (tabela 7.2)		Pequenos ângulos (tabela 7.3)	
pulso $\frac{\pi}{2}$ (µs)	R1	R2	R3	R2	R3
5	0,9111	0,9750	0,9176	0,9772	0,9163
8	0,7695	0,9188	0,7673	0,9325	0,7565
12	0,5020	0,7464	0,4364	0,8666	0,4433

Já é possível perceber, analisando a figura 7.22, que a influência quadrupolar na criação do estado já muda sensivelmente o resultado esperado, sendo essa diferença bem mais evidente no caso de spin $\frac{7}{2}$ do que no caso do $\frac{3}{2}$; para o pulso $\frac{\pi}{2}$ de $5\mu s$, já surge uma parcela imaginária relativamente intensa e, para o pulso $\frac{\pi}{2}$ de $12\mu s$, a fidelidade *R1* atinge um valor muito baixo, comprometendo drasticamente o resultado.

Nas figuras 7.23 e 7.24 aparecem as contribuições na diagonal imaginária devidas ao processo de tomografia. Comparando os valores das fidelidades *R2* (teste de \hat{I}_y) e *P2*, nota-se em ambas as escolhas de ângulos de nutação que as alterações devidas à tomografia são bem mais evidentes no teste presente, pois *R2* < *P2*. O ganho de fidelidade *R2* torna-se mais evidente com a escolha dos ângulos da tabela 7.3 exatamente para o pulso $\frac{\pi}{2}$ de *12µs*.

Nas duas últimas durações do pulso, nota-se a diminuição de *R3* com relação a *R1*. Analisando as fidelidades *R3*, há uma diferença mínima para cada valor do pulso, nas duas escolhas dos ângulos de nutação, mas aparentemente os ângulos da tabela 7.2 são mais vantajosos. Embora isso seja esperado, pois essa escolha maximiza a sensibilidade a cada coerência, a diferença é pequena, chegando a *1,4%* no caso extremo, não sendo possível uma conclusão definitiva. É importante ressaltar que algumas vantagens experimentais do uso dos ângulos grandes dos pulsos de tomografía, como o aumento na intensidade do sinal discutido no item 7.3, não foram levadas em consideração nessas simulações.

Ocorre também o fenômeno aparente relatado no teste de \hat{I}_y , onde o processo de tomografía aumenta a fidelidade, sendo válida a mesma justificativa.

A conclusão desses testes é que, ao contrário do caso do *spin* $\frac{3}{2}$, os efeitos da interação quadrupolar nos pulsos de criação de estado e tomografía não podem ser ignorados para *spin* $\frac{7}{2}$, se tornando evidentes para o valor considerado para f_Q . O aparecimento de contribuições na diagonal imaginária pelo processo de tomografía é notável, e o mesmo acaba sendo prejudicado. É altamente recomendável, portanto, obter a menor duração possível para o pulso de $\frac{\pi}{2}$ para minimizar o problema.

7.4.2. Não-homogeneidade do campo de radiofreqüência (NHRF)

Além do efeito da interação quadrupolar durante os pulsos, analisado no item anterior, é necessário, muitas vezes, levar em conta não-homogeneidades do campo de RF (NHRF). Para as implementações experimentais, cujos resultados se encontram no capítulo 8, foram testadas duas sondas convencionalmente utilizadas para espectroscopia de sólidos. Embora o campo \vec{B}_1 pudesse ser significativamente não-uniforme ao longo do volume compreendido por cada bobina de RF, sempre foi utilizado um bulbo esférico de dimensões reduzidas para acondicionar a amostra, e o mesmo era mantido centralizado nas bobinas, o que contribuiu para minimizar tal efeito. Tudo indicaria uma variação muito pequena do campo de RF ao longo da amostra. Tendo em vista esses fatores, simulações avançadas da variação do campo de RF ao longo da sonda ou da amostra fugiriam ao escopo deste trabalho.

Se o campo de radiofreqüência sofre variações espaciais, diferentes pontos da amostra responderão a um pulso de maneiras diversas, sendo essa diferença tanto maior quanto maior for a não-homogeneidade do campo. O sinal captado ao final seria a soma dos emitidos por todas as

moléculas com as respostas variadas. Para simular essa não-homogeneidade, foi adotado um modelo extremamente simples, com a intensidade B_1 na forma de uma gaussiana. Nesse item, são apresentadas simulações referentes apenas aos testes com *spin* $\frac{7}{2}$. Nos pulsos de criação de estado e de tomografia, eram somados vários sinais da forma

$$B = e^{-\frac{x^2}{a}}$$
(7.20)

onde x é uma variável utilizada para representar a variação espacial de \vec{B}_1 : quanto maior x, menos intenso o campo se torna. Nos pulsos de construção do estado, o programa recebeu a seguinte alteração:

```
% Parametros da gaussiana
NP=1000; % Numero de pontos considerados para B1 gaussiano
N=5; % Valor maximo do vetor de pontos para B1
a=250; % Largura da gaussiana
r0=0; % Valor inicial da matriz densidade
% Rotacao sobre o estado de equilibrio
for n=0:1/NP:N
B1=exp(-n^2/a); % Distribuicao gaussiana de B1
H1=B1*teta*X; % Contribuicao do hamiltoniano de RF - rotacao
de teta em X
U=expm(i*H1); % Operador evolucao
r0=r0+U*Ieq*U'; % Soma das diversas matrizes
end
```

enquanto que, para os pulsos de tomografia,

```
170
```

```
r1=0;
for s=0:1/NL:P
    B1=exp(-s^2/a); % Distribuicao gaussiana de B1
    r=0;
    for n=0:(Np-1)
        fi=2*pi*n/Np + pi/2; % Fase de transmissao
        alfa=2*pi*n*(m-1)/Np; % Fase da recepcao
        h=B1*teta*(cos(fi)*X-sin(fi)*Y); % Campo de RF
        U1=expm(i*h); %
        U2=U1';
                      % Operadores evolucao associados ao campo de
RF
        r=r+U1*mdens*U2*exp(-i*alfa); % Transientes
    end
    r=r/NL; % Transiente final considerando campo gaussiano
    r1=r1+r; % Soma dos varios transientes
end
r0=r1/(P*NL+1); % Operador densidade final
```

Para definir a gaussiana, foram utilizados *1000* pontos, com $0 \le x \le 5$. A variação considerada para o campo foi de *10%*. Isso é razoável, pois na referência[9] encontra-se uma avaliação da nãohomogeneidade do campo de RF de *5%* para a sonda modelo VT CP/MAS de *7 mm*, uma das utilizadas em testes no capítulo 8. Ademais, não é recomendável a utilização de sondas com graves problemas de homogeneidade de campo em CQ (e tampouco, em espectroscopia em geral).

A figura 7.25 mostra a forma do campo \vec{B}_1 considerado, e a figura 7.26 exibe a reconstrução do estado de equilíbrio considerando esse campo nos pulsos de tomografia para as duas escolhas de ângulos de nutação.

Em todos os testes exibidos, o estado inicial é o estado de equilíbrio. O campo representado na figura 7.25 indica que as rotações não serão perfeitas. Dessa forma, espera-se que, ao longo das seqüências de pulsos, sempre apareça uma pequena contribuição do estado imediatamente anterior à

aplicação do pulso em questão, referente à parcela de spins que sentiram o campo com intensidade mais baixa.

Figura 7.25. Forma considerada do campo de radiofreqüência.

A figura 7.26 mostra a simulação da **reconstrução de** \hat{I}_z com NHRF nos pulsos de tomografia. Ambos os estados forneceram fidelidade *1,0000* com relação ao \hat{I}_z teórico. As partes imaginárias possuíam todos os elementos com valores da ordem de 10^{-17} , sendo atribuídos a erros numéricos do MATLAB.

Figura 7.26. Partes reais do estado \hat{I}_z para *spin* $\frac{7}{2}$ reconstruído considerando NHRF nos pulsos de tomografia. Ângulos de nutação dados pela tabela 7.2 (a) e 7.3 (b).

Pelos valores numéricos das matrizes apresentadas na figura 7.26, dados no apêndice F, é possível observar que elas são iguais dentro da precisão do programa. Pelo menos nesse teste, portanto, a não-homogeneidade do campo de radiofreqüência não influi no processo de tomografia, não importando a escolha dos ângulos de nutação.

Na avaliação do teste de criação de $\hat{I}y$, foram adotadas as seguintes fidelidades:

 $PI \equiv$ fidelidade entre o estado obtido após o pulso $\frac{\pi}{2}$ (considerando NHRF) e o estado \hat{l}_y (resultado esperado) ;

P2 ≡ fidelidade entre o estado obtido após o pulso $\frac{\pi}{2}$ e o estado final reconstruído pelo método de tomografia (considerando NHRF nos dois processos);

 $P3 \equiv$ fidelidade entre o estado final reconstruído pelo método de tomografia (com NHRF) e o estado \hat{I}_y (resultado esperado).

Para o teste de criação de coerências de ordens pares, as seguintes fidelidades foram adotadas:

 $RI \equiv$ fidelidade entre o estado no instante t_4 (com efeito da não-homogeneidade do campo RF) e o estado esperado com pulsos ideais no mesmo instante;

 $R2 \equiv$ fidelidade entre o estado no instante t_4 (com efeito da não-homogeneidade do campo de RF) e o estado final reconstruído pelo método de tomografia;

 $R3 \equiv$ fidelidade entre o estado esperado com pulsos ideais em t_4 e o estado final reconstruído pelo método de tomografia.

A figura 7.27 mostra a simulação da **criação de** \hat{I}_y considerando a não-homogeneidade de \vec{B}_1 durante o pulso de $\frac{\pi}{2}$, e a figura 7.28 mostra a simulação da tomografia para cada uma das escolhas dos ângulos de nutação. As fidelidades estão mostradas na tabela 7.9.

Figura 7.27. Criação de \hat{l}_y para *spin* $\frac{7}{2}$ considerando NHRF. Partes real (a) e imaginária (b).

Figura 7.28. Reconstrução de \hat{I}_y para *spin* $\frac{7}{2}$ considerando NHRF para ângulos de tomografia dados pelas tabelas 7.2 (i) e 7.3 (ii) . À esquerda, partes reais e, à direita, partes imaginárias.

Tabela 7.9 - Fidelidades para os testes de \hat{I}_y envolvendo NHRF para spin $\frac{7}{2}$.P1Grandes ângulos (tabela 7.2)Pequenos ângulos (tabela 7.2)Pequenos ângulos (tabela 7.2)

D1	Granaes anguio	os (tadela 7.2)	requenos angulos (tabela 7.5)		
I I	P2	<i>P3</i>	P2	<i>P3</i>	
0,9979	1,0000	0,9984	1,0000	0,9984	

Pelas representações numéricas, fornecidas no apêndice F, é possível observar que existe uma pequena diferença entre as duas reconstruções. Entretanto, são mínimas, levando o MATLAB a fornecer as mesmas fidelidades nos dois casos. Como dito anteriormente, nota-se a pequena contribuição relativa a \hat{I}_z na parte real.

A figura 7.29 mostra a simulação da criação do estado de coerências de ordens pares considerando a não-homogeneidade de RF durante o pulso de $\frac{\pi}{2}$, e a figura 7.30 mostra a simulação da tomografia para cada uma das escolhas dos ângulos de nutação. As fidelidades estão mostradas na tabela 7.10.

Figura 7.29. Criação do estado com coerências pares para *spin* $\frac{7}{2}$ considerando a NHRF. Partes real (a) e imaginária (b).

Figura 7.30. Efeito da NHRF da criação de estado de coerências pares para *spin* $\frac{7}{2}$ ao processo de tomografía com ângulos de nutação dados pelas tabelas 7.2 (a) e 7.3 (b). Apenas as partes reais são mostradas.

Tabela 7.10 - Fidelidades para o teste de criação do estado com coerências de ordens pares.

D1	Grandes ângi	ılos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	
Λ Ι	<i>R2</i>	<i>R3</i>	R2	<i>R3</i>
0,9208	0,9877	0,9116	0,9779	0,9254

Nesse teste, também, todas as fidelidades foram altas, não havendo diferenças significativas entre as duas escolhas de ângulos. Nota-se, finalmente, o aparecimento de contribuições na diagonal imaginária, embora bem pouco intensas.

A principal conclusão desta seção é que a NHRF, por si só, não altera muito os resultados esperados. Segundo o modelo proposto, esse fator é bem menos relevante do que a interação quadrupolar.

7.4.3. Imprecisão na calibração dos pulsos (ICP)

O processo de calibração dos pulsos é explicado no capítulo 8. Nos experimentos a calibração foi feita visualmente, encontrando o máximo de uma curva, e um eventual erro por parte do observador, embora pequeno se a curva estiver bem definida, pode causar distorções em todos os resultados. Isso foi considerado através de um fator multiplicativo ε em todos os ângulos de nutação, dos pulsos de criação de estado aos de tomografia, como ilustram os respectivos quadros:

h = teta * E * (cos(fi) * X - sin(fi) * Y)

Partindo do pressuposto de que esse erro era pequeno, foi adotado o valor $\varepsilon = 0,9$. Na avaliação do teste de criação de $\hat{I}y$, foram adotadas as seguintes fidelidades:

 $PI \equiv$ fidelidade entre o estado obtido após o pulso $\frac{\pi}{2}$ (com ICP) e o estado \hat{I}_y (resultado esperado);

 $P2 \equiv$ fidelidade entre o estado obtido após o pulso $\frac{\pi}{2}$ e o estado final reconstruído pelo método de tomografia (com ICP nos dois processos);

 $P3 \equiv$ fidelidade entre o estado final reconstruído pelo método de tomografia (com ICP) e o estado \hat{I}_y (resultado esperado).

Para o teste de criação de coerências de ordens pares, as seguintes fidelidades foram adotadas:

 $RI \equiv$ fidelidade entre o estado no instante t_4 (com ICP) e o estado esperado com pulsos ideais no mesmo instante;

 $R2 \equiv$ fidelidade entre o estado no instante t_4 e o estado final reconstruído pelo método de tomografia (com ICP nos dois processos);

 $R3 \equiv$ fidelidade entre o estado esperado com pulsos ideais em t_4 e o estado final reconstruído pelo método de tomografia (com ICP).

A figura 7.31 mostra a simulação da **criação de** \hat{I}_y considerando a ICP e a figura 7.32 mostra a simulação da tomografia para cada uma das escolhas dos ângulos de nutação.

Figura 7.31. Criação de \hat{I}_y para *spin* $\frac{7}{2}$ considerando ICP. Partes real (a) e imaginária (b).

As fidelidades estão mostradas na tabela 7.11.

Tabela 7.11 - Fidelidades para os testes envolvendo ICP sobre \hat{I}_y para *spin* $\frac{7}{2}$.

D1	Grandes ângulo	os (tabela 7.2)	Pequenos ângulos (tabela 7.3)		
r1	P2	<i>P3</i>	P2	<i>P3</i>	
0,9877	0,9999	0,9894	0,9999	0,9900	

Analogamente à NHRF, é esperado que, com a ICP, as rotações não sejam perfeitas. Isso é diretamente percebido aqui na rotação de $\frac{\pi}{2}$, onde se observa uma pequena contribuição de \hat{I}_z nas figuras 7.31 e 7.32. Entretanto, todas as fidelidades são altíssimas, implicando que nesse teste o efeito é praticamente desprezível.

Figura 7.32. Reconstrução de \hat{l}_y para *spin* $\frac{7}{2}$ considerando ICP, para ângulos de tomografia dados pela tabelas 7.2 (i) e 7.3 (ii). À esquerda, partes reais e, à direita, partes imaginárias.

A figura 7.33 mostra a simulação da **criação do estado de coerências de ordens pares** considerando a ICP, e a figura 7.34 mostra a simulação da tomografia para cada uma das escolhas dos ângulos de nutação. As fidelidades estão mostradas na tabela 7.12.

Figura 7.33. Criação do estado de coerências de ordens pares para spin $\frac{7}{2}$ considerando ICP. Partes real (a) e imaginária (b).
D 1	Grandes ângu	los (tabela 7.2)	Pequenos ângulos (tabela 7.3)	
ΛI	<i>R2</i>	<i>R3</i>	R2	<i>R3</i>
0,5765	0,9977	0,5727	0,9907	0,5355

Tabela 7.12 - Fidelidades para o teste de criação do estado com coerências de ordens pares envolvendo ICP.

Nesse caso, o efeito da ICP é notável: embora a influência no processo de tomografia seja mínima, como atestam os altos valores das fidelidades *R2*, a criação do estado é prejudicada: os valores das fidelidades *R1* e *R3* são bem baixos.

Figura 7.34. Reconstrução do estado de coerências de ordens pares para *spin* $\frac{7}{2}$ considerando ICP, para ângulos de tomografia dados pela tabelas 7.2 (i) e 7.3 (ii). À esquerda, partes reais e, à direita, partes imaginárias.

A conclusão dessa seção, com base na análise da criação do estado com coerências pares, é que uma pequena imprecisão na calibração dos pulsos é extremamente prejudicial ao resultado final, ainda mais do que a interação quadrupolar.

7.4.4. Conjugação dos fatores

Uma situação mais realista, esperada ao lidar com os equipamentos no LEAR ou em qualquer outro laboratório de ressonância magnética, envolve a conjugação dos fatores analisados anteriormente: interação quadrupolar, inerente à amostra, não-homogeneidade do campo de radiofreqüência, que pode ocorrer em maior ou menor grau nas sondas de RMN, e imprecisão na calibração do pulso, que depende do observador. Tendo em vista isso, os testes anteriores serão aqui

repetidos, para *spin* $\frac{7}{2}$.

As figuras 7.35 e 7.36 mostram o efeito da interação quadrupolar, NHRF e ICP na **tomografia do estado de equilíbrio**, para cada duração considerada do pulso de $\frac{\pi}{2}$ e para cada escolha de ângulos de nutação. As fidelidades entre esses estados e \hat{I}_z são mostradas na tabela 7.13.

Tabela 7.13 - Fidelidades para reconstrução de \hat{I}_z , para *spin* $\frac{7}{2}$ tendo em vista interação quadrupolar, NHRF,

e ICP.		
Duração do		
pulso $\frac{\pi}{2}$ (µs)	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)
5	0,9930	0,9998
8	0,9818	0,9996
12	0,9573	0,9991

Comparando essas fidelidades com as da tabela 7.6, nota-se que a introdução da NHRF e da ICP não influencia significativamente no processo de tomografia do estado de equilíbrio.

Figura 7.35. Influência da interação quadrupolar, NHRF e ICP nos pulsos de tomografia de \hat{I}_z para *spin* $\frac{7}{2}$. Durações dos pulsos de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos de nutação dados pela tabela 7.2.

Figura 7.36. Influência da interação quadrupolar, NHRF e ICP nos pulsos de tomografia de \hat{I}_z para *spin* $\frac{7}{2}$. Durações dos pulsos de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos de nutação dados pela tabela 7.3.

A figura 7.37 mostra o a **criação do estado** \hat{I}_y com interação quadrupolar, NHRF e ICP na de criação do estado. As figuras 7.38 e 7.39 mostram os estados reconstruídos com esses três fatores nos pulsos de tomografia. Os testes foram feitos para cada duração considerada do pulso de $\frac{\pi}{2}$, para cada escolha dos ângulos de nutação. As fidelidades encontram-se na tabela 7.14.

Tabela 7.14 - Fidelidades obtidas para o teste de criação de \hat{I}_y envolvendo interação quadrupolar, NHRF e ICP para *spin* $\frac{7}{2}$.

Duração do	ração do Grandes ângulos (tabela 7.2)		Pequenos ângulos (tabela 7.3)		
pulso $\frac{\pi}{2}$ (µs)	P1	P2	Р3	P2	Р3
5	0,9530	0,9985	0,9616	0,9987	0,9630
8	0,9162	0,9962	0,9257	0,9983	0,9280
12	0,8848	0,9866	0,8547	0,9969	0,8605

Comparando as tabelas 7.14 e 7.7, nota-se que nesse teste a conjugação de fatores já pode ser notada, mesmo no processo de tomografia, associado a *P2*.

A figura 7.40 mostra o estado com coerências pares considerando interação quadrupolar e nãohomogeneidade de campo de RF nos pulsos de criação, e as figuras 7.41 e 7.42 mostram o estado reconstruído com os dois fatores nos pulsos de tomografia. Os testes foram feitos para cada duração considerada do pulso de $\frac{\pi}{2}$ e para cada escolha dos ângulos de nutação. As fidelidades obtidas encontram-se na tabela 7.15.

Figura 7.37. Estado \hat{I}_y para *spin* $\frac{7}{2}$ construído considerando interação quadrupolar, NHRF e ICP para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias.

Figura 7.38. Estado \hat{I}_y para *spin* $\frac{7}{2}$ reconstruído considerando interação quadrupolar, NHRF e ICP da criação do estado aos pulsos de tomografia para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos de nutação dados pela tabela 7.2.

Figura 7.39. Estado \hat{I}_y para *spin* $\frac{7}{2}$ reconstruído considerando interação quadrupolar, NHRF e ICP da criação do estado aos pulsos de tomografía para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos de nutação dados pela tabela 7.3.

interação quadrupolar, NHRF e ICP para spin $\frac{7}{2}$ Duração do Grandes ângulos (tabela 7.2) Pequenos ângulos (tabela 7.3) pulso $\frac{\pi}{2}$ (µs) R1 **R**2 *R3* **R**2 *R3* 0,3216 0,9366 0,3471 0,9705 0,3148

0,3352

0,2500

0,8117

0,6545

Tabela 7.15 - Fidelidades obtidas para o teste de criação do estado de coerências de ordens pares envolvendo

Nesse teste, a conjugação de fatores pôde ser melhor notada. Comparando as tabelas 7.8 e 7.15, verifica-se que as respectivas fidelidades R2 são menores, mostrando o quanto o processo de tomografia é afetado quando, último caso, a interação quadrupolar, NHRF e ICP são consideradas. Mesmo no caso do pulso de $\frac{\pi}{2}$ de 5 μ s a diminuição de R3 é evidente; essa variação aumenta com a

duração do pulso de $\frac{\pi}{2}$.

5

8

12

0,3371

0,2749

A principal conclusão desses testes é que todas essas imperfeições experimentais devem ser levadas em consideração ao interpretar os resultados obtidos. A NHRF, embora tenha se revelado de influência mínima quando considerada em separado, quando aliada à interação quadrupolar e à ICP, pode agravar a distorção dos resultados. Particularmente, a redução da influência desse último fator, que pode ser alcançada através de um cuidadoso processo de calibração, pode aumentar drasticamente as fidelidades R1 e R3, como foi observado nas simulações em que não era levado em consideração.

0,3399

0,2431

0,9152

0,7998

Figura 7.40. Estado com coerências de ordens pares para *spin* $\frac{7}{2}$ obtido considerando interação quadrupolar, NHRF e ICP nos pulsos de criação. Tempos dos pulsos $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias.

Figura 7.41. Estado com coerências de ordens pares para *spin* $\frac{7}{2}$ considerando interação quadrupolar, NHRF e ICP da criação de estado aos pulsos de tomografia. Tempos dos pulsos $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos de nutação dados pela tabela 7.2.

Figura 7.42. Estado com coerências de ordens pares para *spin* $\frac{7}{2}$ considerando interação quadrupolar, NHRF e ICP da criação de estado aos pulsos de tomografia. Tempos dos pulsos $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos de nutação dados pela tabela 7.3.

7.5. Conclusões

As influências de todos os fatores considerados podem ser melhor medidas nos testes de **criação de coerências de ordens pares**. Um fato que se destacou nessas simulações foi o surgimento de **contribuições na diagonal imaginária**, embora o traço dos estados permaneça nulo. Todos esses fatores (mesmo quando conjugados) influenciam muito pouco no processo de tomografia: eles se tornam mais evidentes nos pulsos de criação de estados. Embora fossem analisadas duas escolhas para os ângulos de nutação dos pulsos de tomografia (tabelas 7.2 e 7.3), características relacionadas à intensidade do sinal medido não foram levadas em conta nas simulações.

Nos testes envolvendo a **influência da interação quadrupolar**, ficou evidente que é primordial a utilização de um equipamento que forneça pulsos $\frac{\pi}{2}$ com duração curta (até *8 µs* o resultado ainda é satisfatório).

Para a NHRF, os valores altos das fidelidades na tabela 7.9 indicam que, se o campo for razoavelmente homogêneo, esse fator por si só não provocará graves distorções no resultado esperado.

Por outro lado, a **ICP** apenas já é suficiente para distorcer os resultados, o que pode ser verificado pelos valores baixos das fidelidades na tabela 7.12.

Tais fatores, quando conjugados, reproduzindo uma situação mais próxima da realidade, provocam grandes distorções nos resultados esperados (tabela 7.15). É altamente recomendável, portanto, extremo cuidado na calibração dos pulsos e a obtenção de um equipamento que ofereça homogeneidade no campo de RF e durações curtas para os pulsos de $\frac{\pi}{2}$.

7.6. Contextualização

As implementações experimentais para *spin* $\frac{7}{2}$ de todos os testes aqui analisados são fornecidas no capítulo 8 e todos os fatores considerados neste capítulo serão levados em consideração na interpretação dos resultados. Detalhes de instrumentação, algumas vezes citados aqui, serão fornecidos no último capítulo.

Capítulo 8: Resultados Experimentais

"Você deve saber que a ciência se preocupa mais com fenômenos do que com causas".

Stanislaw Lem, Solaris

8.1. Introdução

Neste último capítulo, são apresentados os aspectos experimentais envolvidos e todos os resultados. Em primeiro lugar, é descrita a amostra utilizada, sua preparação e acondicionamento. Em seguida, as sondas utilizadas têm suas características principais expostas para, finalmente, serem mostrados os resultados. Todos os testes descritos no capítulo anterior foram implementados. Os estados pseudo-puros e uma porta Toffoli foram construídos utilizando SMPs, como descrito no capítulo 6. Por fim, é apresentada uma proposta de sonda para implementações de CQ via RMN.

8.2. Amostra utilizada

Primeiramente, tentou-se utilizar uma amostra semelhante às utilizadas nos trabalhos anteriores[1-4,9,18,32]; neles, foi utilizada o dodecil sulfato de sódio (DSS) CH₃(CH₂)₁₁OSO₃Na misturado com água deuterada e decanol em proporções bem definidas. A Doutora Débora Terezia Balogh, do Grupo de Polímeros "Prof. Bernhard Gross" do IFSC obteve o dodecil sulfato de césio CH₃(CH₂)₁₁OSO₃Cs (DSC) por meio de troca iônica. Entretanto, houve algumas dificuldades em, ao misturar esse composto com água deuterada e dacanol, obter um composto que apresentasse a fase líquido-cristalina adequada para os experimentos de CQ. Assim, optou-se por utilizar o composto descrito a seguir.

8.2.1. Estrutura

A amostra utilizada neste trabalho foi o cristal-líquido obtido pela mistura de água deuterada (D₂O) com o composto Pentadecafluorooctanoato de césio (CsPFO), fornecido pelo Professor Patrick Judeinstein, do Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université de Paris-Sud, França e cuja fórmula estrutural é apresentada na figura 8.1.

Figura 8.1. Fórmula estrutural do composto CsPFO.

A amostra final constitui um cristal líquido liotrópico nemático.[44,45] A orientação, imposta pelo campo magnético estático, das moléculas do CL possibilita a produção de um gradiente de campo elétrico não-nulo no espaço intermolecular e com uma direção preferencial com relação ao campo magnético principal. Os núcleos de ¹³³Cs, que ficam dissociados da cadeia principal na matriz líquido-cristalina, por possuírem spin $\frac{7}{2}$, interagem através do acoplamento quadrupolar que, em perturbação de primeira ordem, é descrito pela hamiltoniana (2.56). A freqüência de ressonância do ¹³³Cs, no campo magnético estático do espectrômetro utilizado VARIAN-INOVA de 400 MHz, é de *54,44 MHz*. Os cristais líquidos, dependendo de sua composição e temperatura, apresentam fases intermediárias entre o ordenamento bem definido das moléculas em uma fase sólida cristalina e a ausência de ordenamento em uma fase líquida. Por esse motivo, essas fases são conhecidas como *mesofases*.

Os cristais líquidos liotrópicos possuem suas fases dependentes tanto da temperatura quanto da concentração das diversas substâncias que constituem o material. Normalmente, são compostos por uma molécula anfifilica – ou seja, que possui uma parte hidrofílica e uma parte hidrofóbica – formada por uma cabeça polar e uma cauda apolar constituída por alguma cadeia de

hidrocarbonetos. Essas moléculas são diluídas em algum solvente cuja polaridade irá determinar as orientações da cabeça e da cauda das moléculas nas estruturas do CL. Na fase nemática, não existe um ordenamento translacional e a variação da posição das moléculas ao longo do tempo não possui nenhuma direção preferencial. No entanto, diferentemente dos líquidos, existe um certo grau de ordenamento direcional em que as moléculas possuem uma orientação média não-nula ao longo do tempo do tempo e ao longo do espaço para grandes distâncias comparadas à dimensão das moléculas.[9,45]

No caso do trabalho aqui relatado, o solvente polar utilizado foi água deuterada (D_2O). Devido ao grande momento de dipolo magnético nuclear do hidrogênio na água, ocorre um alargamento das linhas espectrais do césio da ordem do acoplamento quadrupolar. Por causa disso, é utilizada a água deuterada já que, como o momento de dipolo magnético do deutério é *6,5* vezes menor do que o do próton, o alargamento dipolar é bastante reduzido.

8.2.2. Preparação

O CsPFO se apresenta na forma de grânulos azulados. A preparação da amostra a ser utilizada é razoavelmente simples e consiste nos seguintes passos:[44]

- Mistura de CsPFO e D₂O, em uma proporção de *37,5%* em massa do sólido com relação à massa total da solução em recipiente posteriormente selado.
- Agitação mecânica da solução por, aproximadamente, 10 minutos.
- Centrifugação a 4000 rpm por 90 minutos.
- Passagem por ultrassom por, aproximadamente, 10 minutos.

O segundo e o terceiro passos devem ser repetidos até que o produto resultante seja incolor e não sejam visíveis quaisquer glânulos do soluto. O material final é um líquido viscoso e semitransparente. Após o acondicionamento na sonda de RF, na primeira utilização, a amostra deve ser deixada por volta de *30 minutos* imersa no campo magnético estático. Em seguida, deve ser aquecida gradativamente até *60 °C* para, depois, ser resfriada à temperatura ambiente (*23 °C*).

Trata-se de um produto estável, que mantém suas características por, pelo menos, *1 ano* quando mantido em ambiente com temperatura constante. Além de um preparo relativamente fácil, a estrutura da amostra faz com que apenas a interação quadrupolar elétrica seja intensa, sendo válida, então, para os núcleos de ¹³³Cs, a descrição feita no item 2.6.

8.2.3. Acondicionamento

Em todos os experimentos, a amostra foi acondicionada em um bulbo esférico de vidro da Wilmad, modelo 529-A com capacidade para *18 \muL*, especialmente confeccionado para experimentos de RMN. As dimensões encontram-se na figura 8.2.

Figura 8.2. Bulbo utilizado para acondicionar a amostra para os experimentos.

8.2.4. Medida do tempo de relaxação longitudinal – T₁

Utilizando a sonda VT CP/MAS de 7mm, cujas especificações se encontram no item 8.3.1, foi determinado o tempo de relaxação longitudinal T_I da amostra, segundo o *método de inversão-recuperação*[29], onde a curva resultande deve ser ajustada pela expressão:

$$M(t) = M_{\infty} \left(1 - 2e^{-\frac{t}{T_1}} \right)$$
(8.1)

O gráfico encontra-se na figura 8.3.

Figura 8.3. Determinação do T_1 dos núcleos de ¹³³Cs da amostra CsPFO/D₂O utilizada nos experimentos relatados nesse capítulo.

O ajuste forneceu o valor

$$T_1 = (0,253 \pm 0,003)s$$

Para considerar uma margem de segurança na orientação dos núcleos da amostra, o tempo de repetição dos experimentos adotado foi de *1,8 s* (como assinalado na figura 8.3).

O acondicionamento do bulbo no interior da bobina de cada sonda podia ser feito de várias maneiras. Seria importante que fosse mantido no centro da bobina, região de maior homogeneidade do campo de RF. Para a sonda VT CP/MAS 7 mm, isso foi feito utilizando um cilindro padrão empregado para rotação de amostras sólidas em torno do ângulo mágico e uma tampa de teflon com um furo central atravessando-a do topo ao fundo, por onde passava o menisco do bulbo. Já para a

sonda VT CP/MAS de 5 mm, o acondicionamento foi obtido envolvendo o bulbo em papel parafinado com sucessivas camadas, suficientes para que ele ficasse fixo na bobina.

8.3. Sondas utilizadas

Para determinar a duração do pulso de $\frac{\pi}{2}$, era fixada uma potência (a maior possível) e adquiridos vários espectros aplicando o pulso na direção *y* e medindo a intensidade espectral relacionada à projeção do estado resultante ao longo de *x*. A duração do pulso era aumentada gradativamente e, ao final, escolhia-se aquela referente à máxima projeção, significando que a magnetização havia sido levada totalmente ao eixo *x*. Isso era verificado através do módulo da amplitude da linha central do espectro. Como a duração do pulso e o ângulo de nutação são diretamente proporcionais, os tempos referentes a outros ângulos são imediatamente obtidos. Adicionalmente, o pulso era aplicado com o dobro da duração, correspondendo a um pulso π para verificar a máxima minimização do sinal.[9]

Tal procedimento simples de calibração dos pulsos (incluindo a relação linear entre duração e ângulo de nutação) foi válido porque, no presente caso, a freqüencia do campo de RF esteve sempre muito maior do que as freqüências quadrupolares observadas (que variavam com a temperatura) na amostra. Caso essa condição não fosse observada, problemas de seletividade do pulso poderiam surgir[46].

8.3.1. Sonda VT CP/MAS 7 mm

Essa sonda possui uma bobina solenoidal de *4* espiras completas com diâmetro médio de *8,6 mm* e comprimento longitudinal de *6,2 mm*, como mostrado na figura 8.4.

Figura 8.4. Dimensões da bobina da sonda VT CP/MAS 7 mm comparando-a com o bulbo (a) e posição do bulbo no interior da bobina (b).

A figura 8.5 exibe os pontos para calibração do pulso $\frac{\pi}{2}$ e o espectro obtido após a aplicação do

mesmo (comparar com a figura 2.4).

Figura 8.5. Calibração do pulso $\frac{\pi}{2}$ (a) e espectro obtido após o pulso com a intensidade selecionada (b) para a sonda VT CP/MAS 7 mm.

Pelos pontos observados na figura 8.5 (a), foi selecionada, para essa sonda, 7,5 μ s para duração do pulso de $\frac{\pi}{2}$. É importante notar que é possível obter pulsos π e com nutações até maiores sem problemas com o equipamento ou seletividade.

8.3.2. Sonda VT CP/MAS 5 mm

Ao contrário da sonda anterior, esse modelo não permite que a bobina seja desmontada para averiguação das medidas. Supõe-se que ela tenha também *4* voltas completas, com comprimento longitudinal total de *7,8 mm* e diâmetro para encaixe do rotor de pouco mais de *5 mm*.

A figura 8.6 exibe os pontos para calibração do pulso $\frac{\pi}{2}$ e o espectro obtido após a aplicação do mesmo (comparar com a figura 2.4).

Figura 8.6. Calibração do pulso $\frac{\pi}{2}$ (a) e espectro obtido após o pulso com a intensidade selecionada (b) para a sonda VT CP/MAS 5 mm.

Pelos pontos observados na figura 8.6 (a), foi selecionada, para essa sonda, 5,5 μ s para duração do pulso de $\frac{\pi}{2}$. Como no caso anterior, é possível obter pulsos π e com nutações até maiores sem problemas com o equipamento.

8.4. Resultados e análises

Em primeiro lugar, são analisados os resultados dos testes propostos no capítulo 7, com os estados reconstruídos utilizando os dois conjuntos de ângulos de nutação dos pulsos de tomografia, tabelas 7.2 e 7.3. Em seguida, são apresentados os resultados de construção dos estados pseudopuros e da aplicação em alguns deles da porta Toffoli 1 através de SMPs, que já haviam sido simulados no capítulo 6. Estas aplicações de CQ, entretanto, foram tomografadas utilizando apenas os ângulos da tabela 7.3.

8.4.1. Testes

Na análise dos testes, foi adotada a seguinte convenção:

 $FE \equiv$ fidelidade entre o estado experimental e seu equivalente teórico;

 $FS \equiv$ fidelidade entre o estado experimental e o simulado.

Os estados teóricos $\hat{I}z$, $\hat{I}y$ e de coerências de ordens pares são mostrados nas figuras 7.1, 7.2 e 7.11(b) respectivamente.

Para nortear as simulações, foi utilizado o estado de *coerências de ordens pares*. Ele foi escolhido por ser, de certa forma, mais geral do que os outros dois. Por possuir coerências de várias ordens (m = 0, 2, 4, 6, 8), sua expansão exige componentes ao longo de um número maior de operadores $\hat{T}_{l.m.}$

Para cada sonda e cada escolha de ângulos de nutação dos pulsos de tomografia, foi calculada sua fidelidade *FE*. Tendo esse parâmetro, eram inseridos valores de *a* e ε (definidos no capítulo 7) no programa de simulação até que fosse obtido um estado onde *FS* \approx *FE*. As escolhas de *a* e ε eram feitas tendo em vista as condições experimentais associadas. Em particular, para ε , eram utilizadas as curvas de calibração, dadas nas figuras 8.5(a) e 8.6(a).

Definidos os parâmetros, estes eram, então, utilizados para simular \hat{I}_z e \hat{I}_y . Todos estão indicados para cada sonda ao final na tabela 8.5.

8.4.1.1. Sonda VT CP/MAS 7 mm

As figuras 8.7 e 8.9 mostram os resultados dos testes utilizando, para tomografia, os ângulos das tabelas 7.2 e 7.3, respectivamente. A freqüência quadrupolar e a temperatura para cada medida são mostradas na tabela 8.1.

Tabela 8.1 - Temperatura e freqüência quadrupolar para cada teste envolvendo a sonda VT CP/MAS 7 mm.

	Grandes ângulos (tabela 7.2)			Pequenos ângulos (tabela 7.3)		
	\hat{I}_z	\hat{I}_y	Coerências de ordens pares	\hat{I}_z	\hat{I}_y	Coerências de ordens pares
f_0 (Hz)	4965	5824	5159	5027	5968	5306
T (°C)	22,5	21,1	22,2	22,4	21,0	22,0

A variação da freqüência quadrupolar se deve única e exclusivamente à mudança de temperatura em cada experimento. Simulações dos resultados são exibidas nas figuras 8.8 e 8.10. Todas as fidelidades envolvidas são dadas na tabela 8.2.

Figura 8.7. Tomografia do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.2.

Figura 8.8. Simulação do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.2.

Figura 8.9. Tomografia do estado de equilíbrio (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.3.

Figura 8.10. Simulação do estado de equilíbrio (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.3.

	Îz		ĺ	v	Coerências de	ncias de ordens pares	
	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	
FE	0,9947	0,9984	0,7655	0,6301	0,7789	0,7204	
FS	0,9921	0,9998	0,9577	0,9553	0,7775	0,7236	

Tabela 8.2 - Fidelidades experimentais para cada teste envolvendo a sonda VT CP/MAS 7 mm.

Na referência [9] foram realizadas avaliações de NHRF para essa sonda e foi adotado o desvio de 5%, alcançado nas simulações através de a = 490. A figura 8.11 mostra a curva utilizada para o campo de RF.

Figura 8.11: Forma considerada no campo de RF para simulações dos resultados experimentais.

Pela figura 8.5(a) é possível perceber que a curva de calibração foi muito bem definida, sendo adquiridos pontos com incremento em t de 0,1 μ s. Não faria sentido, então considerar ICP alta, sendo logo no princípio experimentados valores que obedecessem $\varepsilon \ge 0,9$. Com o valor de a definido, foram feitas simulações para vários valores de ε nessa faixa. Por se tratar do primeiro caso analisado, nessa sonda a varredura foi mais minuciosa, utilizando até três casas decimais para obter um valor de FS o mais próximo possível de FE. Por fim, foram selecionados $\varepsilon = 0,959$ para grandes ângulos (tabela 7.2) e $\varepsilon = 0,945$ para pequenos ângulos (tabela 7.3). Além de serem extremamente próximos (diferindo de 1,5%), os valores altos condizem com a alta precisão da calibração do pulso.

8.4.1.2. Sonda VT CP/MAS 5 mm

As figuras 8.12 e 8.14 mostram os resultados dos testes utilizando, para tomografia, os ângulos das tabelas 7.2 e 7.3, respectivamente. A freqüência quadrupolar e a temperatura para cada medida são mostradas na tabela 8.3, lembrando que a variação da freqüência quadrupolar se deve à mudança de temperatura em cada experimento.

Tabela 8.3 - Temperatura e freqüência quadrupolar para cada teste envolvendo a sonda VT CP/MAS 5 mm.

	Grandes ângulos (tabela 7.2)			Pequer	Pequenos ângulos (tabela 7.3)		
	\hat{I}_z	\hat{I}_y	Coerências de ordens pares	\hat{I}_z	\hat{I}_y	Coerências de ordens pares	
f_{Q} (Hz)	6482	5434	5921	7031	5568	7142	
T (°C)	20,0	21,5	21,0	19,5	21,5	19,2	

Simulações dos resultados são exibidas nas figuras 8.13 e 8.15. Todas as fidelidades envolvidas são dadas na tabela 8.4.

Tabela 8.4 - Fidelidades experimentais para cada teste envolvendo a sonda VT CP/MAS 5 mm.

	Îz		Î	v	Coerências de ordens pares	
	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)
FE	0,9966	0,9966	0,8150	0,7928	0,7525	0,5838
FS	0,9928	0,9998	0,9773	0,9748	0,7612	0,6456

Essa sonda e a anterior originam-se do mesmo fabricante e, assumindo que foi procurado manter o compromisso com a homogeneidade do campo de RF, aqui repetiu-se o mesmo perfil mostrado na figura 8.11, com a = 490.

Figura 8.12. Tomografia do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 5 mm utilizando os ângulos da tabela 7.2.

Figura 8.13. Simulação do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 5 mm utilizando os ângulos da tabela 7.2.

Figura 8.14. Tomografia do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 5 mm utilizando os ângulos da tabela 7.3.

Figura 8.15. Simulação do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a sonda VT CP/MAS 5 mm utilizando os ângulos da tabela 7.3.

Mais uma vez, houve cuidado em definir muito bem a curva de calibração, mostrada na figura 8.6(a) e nas simulações a procura logo se restringiu a valores obedecendo $\varepsilon \ge 0.9$. Ao final, foram obtidos $\varepsilon = 0.95$ para grandes ângulos (tabela 7.2) e $\varepsilon = 0.93$ para pequenos ângulos (tabela 7.3). Foram realizadas algumas simulações considerando até três casas decimais, como no item anterior, mas as fidelidades não sofriam grandes variações. Nesse caso, não houve como obter uma concordância tão boa quanto a exibida na tabela 8.2.

8.4.1.3. Análises

A tabela 8.5 mostra os vários parâmetros utilizados nas simulações dos resultados experimentais.

	7 n	nm	5 mm		
	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	Grandes ângulos (tabela 7.2)	Pequenos ângulos (tabela 7.3)	
а	490		490		
ε	0,959	0,945	0,95	0,93	

Tabela 8.5 - Parâmetros utilizados nas simulações finais dos testes em cada sonda.

A pequena diferença entre os valores de ε para uma mesma sonda mostra a coerência dos resultados, e pode ser creditada a uma pequena perda de sintonia ao longo dos experimentos, que são relativamente longos. Para obter espectros bem definidos, optou-se por tomar, para cada coerência, o número de médias obedecendo a progressão *128, 144, ..., 240*. No caso da tomografia utilizando grandes ângulos, a não ser para ordens *I* e 7, mais de um ângulo é utilizado (ver tabela 7.2) e o processo completo leva cerca de 1 hora e 30 minutos. Utilizando ângulos pequenos, o tempo se reduz para pouco mais de 40 minutos.

Analisando visualmente os resultados experimentais e suas respectivas simulações, nota-se que os formatos das matrizes são bem reproduzidos.

- Î_z: A concordância é quase perfeita, mas esse estado possui coerências apenas de ordem 0, de forma que não é um bom parâmetro para analisar o método de tomografia.
- Î_y: Experimentalmente, nota-se o aparecimento de contribuições na parte real de coerências de ordem *I* e, na parte imaginária, de coerências de ordem *2* (bem menos intensas); além disso, os elementos mais intensos são exatamente aqueles que deveriam aparecer teoricamente, ou seja, os que ocupam a coerência de ordem *I* na parte imaginária. Esses aspectos são reproduzidos nas simulações exibidas nas figuras 8.8(ii), 8.10(ii), 8.13(ii) e 8.15(ii) e já haviam sido previstos no capítulo 7.
- Coerências de ordens pares: Os elementos que se sobressaem na parte real são aqueles que deveriam aparecer teoricamente. As simulações, com a introdução das imperfeições experimentais, reproduzem relativamente bem a parte real e fornecem uma contribuição imaginária intensa, mas que não tem necessariamente o mesmo aspecto da que é obtida experimentalmente.

Ainda com relação ao formato das matrizes, assim como havia sido previsto no capítulo 7, verifica-se experimentalmente as contribuições na diagonal imaginária em todos os estados experimentais. Além da razão considerada anteriormente, de que com a introdução de todos os fatores experimentais os pulsos de seleção de coerências perdem uma parte de sua eficácia e podem provocar distorções no resultado obtido, há uma outra que deve ser aqui mencionada: existem desvios de fase no espectro de RMN que, por motivos técnicos, não podem ser totalmente corrigidos. Contudo, o traço dos estados se mantém nulo.

Em praticamente todos os estados experimentais os valores de *FE* para ângulos grandes de tomografia (tabela 7.2) ficaram maiores do que para ângulos pequenos de tomografia (tabela 7.3), com a diferença chegando a 2,2% para o estado de coerências de ordens pares para a sonda de 5 mm. A única exceção é o \hat{I}_z para a sonda de 7 mm, mas a diferença é mínima, 0,37%. Isso condiz com o esperado, já que os ângulos da tabela 7.2 foram selecionados exatamente para maximizar a sensibilidade às várias componentes $\hat{T}_{I,m}$, além de originarem sinais com intensidade maior.
Utilizando um modelo extremamente simples para a NHRF, junto com um fator bem determinado, a interação quadrupolar, e a pequena imprecisão relativa à calibração dos pulsos, os formatos das matrizes experimentais foram bem reproduzidos. Entretanto, alguns problemas se sobressaem. Embora os valores de *FE* e *FS* para os estados de coerências de ordens pares ficassem próximas nas duas sondas, quando os parâmetros dessa simulação eram utilizados para tratar \hat{I}_y , *FS* > *FE*. Isso, com certeza, se deve a fatores que não foram levados em consideração, que serão brevemente discutidos agora.

• Efeito da susceptibilidade magnética sobre a homogeneidade de campo magnético estático

 \vec{B}_0 : A figura 8.4 exibe o acondicionamento da amostra na bobina de RF. A amostra ocupa o bulbo até uma certa altura do menisco e, na interface amostra / ar, há uma descontinuidade no campo magnético (susceptibilidade). Se essa interface não ficar bem acima da bobina, esse efeito exercerá influência sobre o resultado final. Entretanto, quanto mais próxima a interface ficar do bulbo, maiores serão os benefícios devidos à homogeneidade do campo na amostra. Nos arranjos experimentais utilizados nas implementações desse trabalho, a interface ficava bem próxima ao bulbo. Um fator que limita sua altura no menisco é a selagem do mesmo: como ela era feita através de um maçarico, se houvesse amostra próxima do fim do menisco, ela sofreria degradações devido à alta temperatura. Assim, a amostra deveria preencher o bulbo até uma pequena altura, o que colocava a interface ainda dentro da bobina. Seria interessante, em experimentos futuros, tentar aumentar a altura da amostra no interior do menisco e verificar o quanto isso influiria no resultado final.

- Imprecisão na fase dos pulsos de RF: Na referência [9] é realizado um cálculo desse parâmetro, que fica em 1,4°. Esse fator afetaria principalmente o processo de seleção de coerências, uma vez que o mesmo é feito por meio de pulsos sucessivos com ciclagem de fase.
- *Relaxação:* Em todos os experimentos aqui realizados, a duração total das seqüências é bem menor do que os tempos de relaxação da amostra. O que seria mais longo é o tempo de espera t_e

na seqüência de criação do estado de coerências de ordens pares. Ele atinge um valor máximo de 9,69.10⁻⁵ s = 96,9 μ s (sonda de 7mm, grandes ângulos). A medida de T_1 é exibida no item 8.2.4, enquanto que uma medida preliminar revelou $T_2 \sim 6.10^{-3}$ s. A influência desse fator, portanto, seria de fato desprezível. Isso foi verificado por meio de simulações baseadas em um modelo extremamente simples, onde o estado no instante t_3 (figura 7.5), era multiplicado termo-a-termo pela matriz *R* cujos elementos eram dados por

$$(R)_{i,j} = e^{-\frac{t_e}{T_1}} \delta_{i,j} + e^{-\frac{t_e}{T_2}} (1 - \delta_{i,j})$$
(8.2)

Para reproduzir mais fielmente a situação real, seriam necessários modelos mais sofisticados, o que fugiria do objetivo da presente dissertação. Nos experimentos de criação de \hat{I}_y , a ICP atuaria, de certa forma, como relaxação longitudinal, já que o pulso $\frac{\pi}{2}$ produz uma rotação imperfeita e, ao final, há uma magnetização residual na direção *z*.

Todos esses últimos fatores influem de maneira bem menos significativa no resultado esperado, mas em seu conjunto podem fazer uma grande diferença. Até mesmo um modelo mais preciso para a NHRF, levando em conta o desenho da bobina, pode melhorar a fidelidade das simulações. O objetivo de tais testes simples é exatamente mensurar como tais fatores podem influir no resultado esperado. Isso é de vital importância em CQ, que depende fundamentalmente da precisão na aplicação das operações lógicas. A solução desses problemas na construção dos SMPs pode ser tão ou mais difícil do que no método de tomografia. Aliás, como já havia sido notado no capítulo 7, nos altos valores de *P2* e *R2* nas tabelas 7.14 e 7.15 para pulsos de $\frac{\pi}{2}$ com durações parecidas com as utilizadas aqui, a influência do processo de reconstrução dos estados no resultado final é mínima (desconsiderando imprecisão nas fases).

8.4.2. Estados pseudo-puros e Toffoli 1

As figuras 8.16 e 8.17 exibem os estados pseudo-puros obtidos com as optimizações do mestrando Arthur Ferreira. Eles devem ser comparados com as simulações mostradas, respectivamente, nas figuras 6.6 e 6.7. Esses estados foram reconstruídos utilizando os ângulos da tabela 7.3. As fidelidades entre cada estado experimental e seu respectivo teórico (apêndice A) encontram-se na tabela 8.6.

 Tabela 8.6 - Fidelidade para os estados pseudo-puros obtidos experimentalmente por SMPs.

Estado	000	001	010	011	100	101	110	111
Fidelidade	0,8467	0,9514	0,8230	0,7393	0,8286	0,9194	0,9275	0,8958

Comparando essa tabela e a 6.2, nota-se que todas as fidelidades ficaram abaixo do verificado nas simulações das construções dos SMPs. Entre os fatores que possam ter contribuído para isso, está o fato de que, nas optimizações dos SMPs, não terem sido levadas em conta as imperfeições por parte do aparato experimental discutidas nesse capítulo e no anterior: NHRF, ICP, além daquelas enumeradas no final do último item desse capítulo. Entretanto, como é possível notar analisando visualmente as figuras 8.16 e 8.17, todos os estados obtidos possuem, qualitativamente, o aspecto daqueles que deveriam ser reproduzidos.

As figuras 8.18 e 8.19 mostram a aplicação da porta *Toffoli 1*, construída por meio dos SMPs, cuja representação matricial simulada encontra-se em (6.29), em alguns dos estados pseudo-puros mostrados nas duas últimas figuras. As fidelidades obtidas encontram-se na tabela 8.7.

Tabela 6. 7 - Fidendades para os estados oblidos a partir da aplicação da porta <i>Tojjon 1</i> .									
Estado inicial	010	011	100	101	111				
Estado final esperado	010	111	100	101	011				
Fidelidade	0,6122	0,6215	0,7467	0,5778	0,7617				

Tabela 8.7 - Fidelidades para os estados obtidos a partir da aplicação da porta Toffoli 1.

Figura 8.16. Estados pseudo-puros obtidos experimentalmente, equivalentes aos mostrados na figura 6.4: 000 (i), 001 (ii), 010 (iii), 011 (iv). À esquerda, partes reais e, à direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

Figura 8.17. Estados pseudo-puros obtidos experimentalmente, equivalentes aos mostrados na figura 6.5: 100 (i), 101 (ii), 110 (iii), 111 (iv). À esquerda, partes reais e, à direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

Figura 8.18. Implementação experimental da porta Toffoli 1 sobre os estados 010 (i), 011(ii) e 100 (iii). À esquerda, partes reais e, à direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

0.5

1

-0.

Figura 8.19. Implementação experimental da porta Toffoli 1 sobre os estados 101 (i) e 111(ii). À esquerda, partes reais e, à direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

Houve uma redução drástica nas fidelidades entre os estados experimentais antes (figuras 8.16 e 8.17) e após a aplicação da porta *Toffoli 1* (figuras 8.18 e 8.19), quando comparados com os estados teóricos (apêndice A), embora cada estado apresente o aspecto do resultado desejado, o que significa que a porta lógica atuou de maneira razoavelmente adequada. Analogamente ao caso anterior, isso pode ser creditado ao fato de as imperfeições experimentais analisadas no presente capítulo e no 7 não terem sido levadas em consideração nas optimizações dos SMPs. Como as fidelidades dos estados iniciais já eram razoavelmente baixas, houve um acúmulo de erros durante a aplicação da porta lógica.

8.5. Propostas

Para contornar problemas relativos à NHRF e à susceptibilidade magnética da amostra, foi construída uma sonda especialmente para aplicações em CQ, constituída de uma única bobina senoidal de *12* voltas completas, com o bulbo mantido fixo no centro de tal forma que, de cada lado, fiquem *6* voltas. As dimensões encontram-se na figura 8.20. Tal arranjo foi proposto pelo Engenheiro Doutor Edson Luiz Gea Vidoto, técnico do Grupo de Ressonância Magnética, Espectroscopia e Magnetismo do IFSC.

Figura 8.20. Bobina desenvolvida para experimentos de CQ.

O bulbo é mantido em uma posição fixa através de um suporte cilíndrico de PVC tendo o seu desenho vazado, formado por duas peças que se encaixam envolvendo-o totalmente, com uma abertura para a saída do menisco. A bobina fica perpendicular ao campo magnético estático e, assim, o menisco pode ter uma altura maior do que a permitida nas sondas convencionais utilizadas nesse capítulo, onde a bobina é inclinada para experimentos de rotação em torno do ângulo mágico (MAS). Uma desvantagem dessa sonda é a impossibilidade de retirar a amostra sem destruir a bobina.

8.6. Conclusão

Nesse capítulo, diversos aspectos da teoria apresentada desde o início dessa dissertação puderam ser verificados. A análise dos testes preliminares, item 8.4.1, comprovou diversos fatores que já haviam sido previstos nas simulações do capítulo 7: maior eficiência dos ângulos de tomografia da tabela 7.2 em relação aos da tabela 7.3, contribuições na diagonal da parte imaginária e, finalmente, distorções no formato geral das matrizes, que podem ser em maior ou menor grau dependendo das condições experimentais (NHRF, ICP, duração dos pulsos, etc.).

Entretanto, em todos os experimentos, desde os testes até as implementações de CQ através dos SMPs, as matrizes obtidas possuíam o aspecto dos resultados esperados, do ponto de vista qualitativo. Isso pode levar a uma discussão a respeito de quão confiável é o critério da fidelidade para analisar os estados experimentais. Esse critério, exposto formalmente no capítulo 6, é baseado no produto escalar, que não é uma operação unívoca: dado um estado, é possível encontrar vários diferentes que, quando comparados a ele dessa maneira, forneçam valores próximos (ou até mesmo valores iguais) para a fidelidade. Reciprocamente, em alguns resultados mostrados nesse trabalho, foram obtidos valores razoavelmente baixos para esse parâmetro, mas as duas matrizes analisadas possuíam aspectos semelhantes. Assim, é recomendável, na análise de resultados, haver o julgamento visual dos estados envolvidos para determinar se a implementação está ou não no caminho adequado. Fica, como uma questão em aberto, a proposta/seleção de um novo critério para comparação dos estados e operações envolvidas, que seja tão rigoroso matematicamente quanto as fidelidades aqui utilizadas.

Conclusões e perspectivas

Esse trabalho permitiu a análise da aplicabilidade do método de reconstrução de estados quânticos por meio de rotações globais do sistema de *spins* em sistemas de 3 q-bits utilizando núcleos quadrupolares de *spin* $\frac{7}{2}$. Sua eficácia foi comprovada através da reconstrução de estados relacionados à CQ, como analisado no último capítulo. As simulações apresentadas no capítulo 7 indicaram que a influência do processo de tomografia sobre o resultado final, considerando uma amostra com os tempos de relaxação da ordem daqueles apontados em 8.4.1.3, é mínima: a principal fonte de erros residiu nos pulsos de construção dos estados a serem tomografados. Convém ressaltar que o método é geral no contexto da RMN e não necessariamente precisa estar vinculado a aplicações relacionadas à CQ. Dessa forma, sua aplicação em estudos de núcleos quadrupolares isolados de *spin* $\frac{5}{2}$ e $\frac{9}{2}$ é possível também.

Com relação à preparação dos estados, os resultados dos testes descritos mostraram que, com conhecimentos maiores de fatores tais como não-homogeneidade dos campos magnéticos estático e de RF e erros fases deste último (por parte do equipamento) e relaxação (da amostra) os resultados finais podem ser melhorados. A consideração de um modelo extremamente simples para NHRF já permitiu reproduzir razoavelmente a influência desse fator nos dados experimentais, e os outros fatores citados nem foram levados em consideração neste trabalho. Analogamente, faz-se necessária a análise desses problemas nas optimizações numéricas dos SMPs para melhorar os resultados finais relativos à CQ.

Resumindo, para trabalhos futuros, recomenda-se:

- Análise mais refinada dos fatores experimentais descritos nesse trabalho, visando a melhoria da construção dos estados;
- Implementação do método em sistemas de núcleos quadrupolares isolados de spin $\frac{5}{2}$ ou $\frac{9}{2}$.

Os métodos explorados nesta dissertação e na do mestrando Arthur Ferreira ainda continuarão sendo desenvolvidos no LEAR, incluindo a tentativa de solução de todos os problemas encontrados e o desenvolvimento de portas lógicas e algoritmos quânticos. Nesse contexto, além de aplicações em CQ, o processo de tomografía de estados quânticos pode ser de grande importância para o desenvolvimento de novas seqüências de pulsos envolvendo spins quadrupolares, principalmente aquelas que envolvem análises da evolução temporal de coerências. O método de tomografía explorado, por ser relativamente curto (comparando com a reconstrução utilizando pulsos de excitação seletiva) é particularmente indicado na análise de fenômenos envolvendo relaxação. Isso está sendo explorado na tese de doutorado do estudante Ruben Auccaise Estrada, do CBPF.

Referências

- BONK, F. A. <u>Tomografía de estados quânticos em sistemas de núcleos quadrupolares com spin</u> <u>3/2:</u> uma aplicação da ressonância magnética nuclear à computação quântica. 2005. 116p. Tese (Doutorado em Física) - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2005.
- 2) BONK, F. A., *et al.* Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography. Journal of Magnetic Resonance, v.175, n.2, p.226-234. 2005.
- 3) BONK, F. A., *et al.* Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system. <u>Physical Review A</u>, v.69, n.4, p.0423221 0423229. 2004.
- 4) BULNES, J. D., *et al.* Quantum information processing through nuclear magnetic resonance. <u>Brazilian Journal of Physics</u>, v.35, n.3A, p.617-625. 2005.
- 5) KAMPERMANN, H. e W. S. VEEMAN. Quantum computing using quadrupolar spins in solid state NMR. <u>Quantum Information Processing</u>, v.1, n.5, p.327-344. 2002.
- 6) VEGA, S. Fictitious spin 1/2 operator formalism for multiple quantum NMR. Journal of <u>Chemical Physics</u>, v.68, n.12, p.5518-5527. 1978.
- 7) VEGA, S. e A. PINES. Operator Formalism for Double Quantum NMR. Journal of Chemical <u>Physics</u>, v.66, n.12, p.5624-5644. 1977.
- WOKAUN, A. e R. R. ERNST. Selective excitation and detection in multilevel spin systems application of single transition operators. <u>Journal of Chemical Physics</u>, v.67, n.4, p.1752-1758. 1977.
- 9) TELES, J. <u>Tomografia de estado quântico via ressonância magnética nuclear através de rotações globais do sistema de spins</u>. 2007. 170p. Tese (Doutorado em Física) Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2007.
- FORTUNATO, E. M., *et al.* Design of strongly modulating pulses to implement precise effective hamiltonians for quantum information processing. <u>Journal of Chemical Physics</u>, v.116, n.17, p.7599-7606. 2002.
- 11) COHEN-TANNOUDJI, C., B. DIU e F. LALOË. <u>Quantum mechanics</u>. New York: John-Wiley & Sons, v.1. 1977. 898 p.
- 12) FANO, U. Description of states in quantum mechanics by density matrix and operator techniques. <u>Reviews of Modern Physics</u>, v.29, n.1, p.74-93. 1957.
- 13) TER HAAR, D. Theory and Applications of the Density Matrix. <u>Reports on Progress in</u> <u>Physics</u>, v.24, p.304. 1961.
- 14) AZEVEDO, E. R. e T. J. BONAGAMBA. Chapter 1: Nuclear Magnetic Resonance Spectroscopy. In: D. R. Vij (Ed.). <u>Handbook of Applied Solid State Spectroscopy</u>. New York: Springer, 2006. p.1-63.

- 15) AZEVEDO, E. R., F. A. BONK e T. J. BONAGAMBA. Introdução à computação quântica via ressonância magnética nuclear (RMN). In: ESCOLA DO CBPF, 5., 2004, Rio de Janeiro. <u>Anais...</u> Rio de Janeiro: Centro Brasileiro de Pesquisas Físicas, 2004. v. 1., p. 39-68.
- 16) OLIVEIRA, I. S. e R. S. SARTHOUR. Computação quântica e informação quântica. In: ESCOLA DO CBPF, 5., 2004, Rio de Janeiro. <u>Anais...</u> Rio de Janeiro: Centro Brasileiro de Pesquisas Físicas, 2004. v. 2, p. 71-118.
- 17) GERSTEIN, B. C. e C. R. DYBOWSKI. <u>Transient techniques in NMR of solids</u>. London: Academic Press Inc., 1985. 296p.
- OLIVEIRA, I. S., et al. <u>NMR quantum information processing</u>. Amsterdam: Elsevier. 2007. 250 p.
- 19) OLIVEIRA, I. S., et al. Computação quântica via ressonância magnética nuclear. In: <u>Curso de Inverno de Computação Quântica via Ressonância Magnética Nuclear</u>. Instituto de Física de São Carlos, Universidade de São Paulo, 2005.
- 20) ZANI, S. L. <u>Álgebra linear</u>. São Carlos: ICMC, 2003. 167p.
- 21) SLICHTER, C. P. Principles of magnetic resonance. Heidelberg: Springer Verlag. 1990. 655 p.
- 22) COHEN-TANNOUDJI, C., B. DIU e F. LALOË. <u>Quantum mechanics</u>. New York: John-Wiley & Sons, v.2. 1977. 630 p.
- 23) FARRAR, T. C. Density matrices in NMR spectroscopy: part I. <u>Concepts in Magnetic</u> <u>Resonance</u>, v.2, p.1-12. 1990.
- 24) FARRAR, T. C. e J. E. HARRIMAN. <u>Density matrix theory and its applications in NMR</u> <u>spectroscopy</u> - an introduction to the theory and applications. Madison: The Farragut Press, 1992. 210 p.
- 25) MEHRING, M. <u>Principles of high resolution NMR in solids</u>. Berlin: Springer-Verlag, 1983. 343 p.
- 26) DUER, M. J. Introduction to solid-state NMR spectroscopy. Oxford: Blackwell Publishing Ltd., 2004. 349 p.
- 27) CAROLI, A., C. A. CALLIOLI e M. O. FEITOSA. <u>Matrizes, vetores, geometria analítica :</u> teoria e exercícios. São Paulo: Nobel. 1977. 167 p.
- 28) PURCELL, E. M. Eletricidade e magnetismo. São Paulo: Edgard Blücher Ltda., 1973. 424 p.
- 29) GIL, V. M. S. e C. F. G. C. GERALDES. <u>Ressonância magnética nuclear</u> fundamentos, métodos e aplicações. Lisboa: Fundação Calouste Gulbenkian. 2002. 1012 p.
- 30) REICHERT, D. e G. HEMPEL. Receiver imperfections and CYCLOPS: an alternative description. <u>Concepts in Magnetic Resonance</u>, v.14, n.2, p.130-139. 2002.
- 31) VANDERSYPEN, L. M. K. e I. L. CHUANG. NMR techniques for quantum control and computation. <u>Reviews of Modern Physics</u>, v.76, n.4, p.1037-1069. 2004.

- 32) TELES, J., *et al.* Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. Journal of Chemical Physics, v.126, n.15, p.1545061-1545068. 2007.
- 33) VARSHALOVICH, D. A., A. N. MOSKALEV e V. K. KHERSONSKII. <u>Quantum theory of angular momentum</u> irreducible tensors, spherical harmonics, vector coupling coefficients, 3nj symbols. Singapore: World Scientific, 1988. 514 p.
- 34) ZARE, R. N. <u>Angular momentum</u> understanding spatial aspects in chemistry and physics. New York: John Wiley & Sons. 1988. 349 p.
- 35) HOFFMAN, K. e R. KUNZE. Linear algebra. New Jersey: Prentice-Hall, Inc., 1971. 407 p.
- 36) NIELSEN, M. A. e I. CHUANG. <u>Computação quântica e informação quântica</u>. Porto Alegre: Bookman. 2005. 733 p.
- 37) MERMIN, N. D. From cbits to qbits: teaching computer scientists quantum mechanics. <u>American Journal of Physics</u>, v.71, n.1, p.23-30. 2003.
- 38) MERMIN, N. D. Lecture notes on quantum computation. 2006. Disponível em: http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html. Acessado em agosto de 2006.
- 39) GROVER, L. K. Quantum mechanics helps in searching for a needle in a haystack. <u>Physical</u> <u>Review Letters</u>, v.79, n.2, p.325-328. 1997.
- 40) STOLZE, J. e D. SUTER. <u>Quantum computing</u> a short course from theory to experiment. Berlin: Wiley-VCH. 2004. 244 p.
- 41) CHUANG, I. L., et al. Bulk quantum computation with nuclear magnetic resonance: theory and experiment. <u>Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences</u>, v.454, n.1969, p.447-467. 1998.
- 42) CORY, D. G., A. F. FAHMY e T. F. HAVEL. Ensemble quantum computing by NMR spectroscopy. <u>Proceedings of the National Academy of Sciences of the United States of</u> <u>America</u>, v.94, n.5, p.1634-1639. 1997.
- 43) NELDER, J. A. e R. MEAD. A simplex-method for function minimization. <u>Computer Journal</u>, v.7, n.4, p.308-313. 1965.
- 44) BODEN, N., K. W. JOLLEY e M. H. SMITH. Phase-diagram of the Cesium Pentadecafluorooctanoate (Cspfo)/H2O system as determined by Cs-133 nmr - comparison with the Cspfo/D2O system. Journal of Physical Chemistry, v.97, n.29, p.7678-7690. 1993.
- 45) KHETRAPAL, C. L., *et al.* <u>Nuclear magnetic resonance studies in lyotropic liquid crystals</u>. Berlin: Springer-Verlag. 1975. 100 p.
- 46) SMITH, M. E. e E. R. H. VAN ECK. Recent advances in experimental solid state NMR methodology for half-integer spin quadrupolar nuclei. <u>Progress in Nuclear Magnetic Resonance</u> <u>Spectroscopy</u>, v.34, n.2, p.159-201. 1999.

Apêndice A - Estados pseudo-puros para *spins* $\frac{3}{2}$ e $\frac{7}{2}$

Para o spin $\frac{3}{2}$, Z = 4 e os operadores densidade de desvio relativos aos estados $|ab\rangle$ (notação

(3.3)) serão dados por:

$$\Delta \rho_0^{ab} = \hat{\rho}_{ab} - \frac{1}{4}\hat{1} \tag{A.1}$$

A equivalência entre a notação de spin (utilizada rotineiramente em mecânica quântica) e de q-bits é a seguinte:

$$\begin{vmatrix} \frac{3}{2}, \frac{3}{2} \\ \leftrightarrow |00\rangle \\ \begin{vmatrix} \frac{3}{2}, \frac{1}{2} \\ \leftrightarrow |01\rangle \\ \begin{vmatrix} \frac{3}{2}, -\frac{1}{2} \\ \leftrightarrow |10\rangle \\ \end{vmatrix}$$
(A.2)
$$\begin{vmatrix} \frac{3}{2}, -\frac{3}{2} \\ \leftrightarrow |11\rangle$$

Logo, na base $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$,

Já para spin
$$\frac{7}{2}$$
, $Z = 8$ e

$$\Delta \rho_0^{abc} = \hat{\rho}_{abc} - \frac{1}{8}\hat{1}$$
(A.4)

sendo a seguinte equivalência entre a base computacional e a de spins:

$$\begin{vmatrix} \frac{7}{2}, \frac{7}{2} \\ \leftrightarrow |000\rangle & \left| \frac{7}{2}, -\frac{1}{2} \\ \right\rangle \leftrightarrow |100\rangle \\ \begin{vmatrix} \frac{7}{2}, \frac{5}{2} \\ \leftrightarrow |001\rangle & \left| \frac{7}{2}, -\frac{3}{2} \\ \right\rangle \leftrightarrow |101\rangle \\ \begin{vmatrix} \frac{7}{2}, \frac{3}{2} \\ \leftrightarrow |010\rangle & \left| \frac{7}{2}, -\frac{5}{2} \\ \right\rangle \leftrightarrow |110\rangle \\ \begin{vmatrix} \frac{7}{2}, \frac{1}{2} \\ \leftrightarrow |011\rangle & \left| \frac{7}{2}, -\frac{7}{2} \\ \right\rangle \leftrightarrow |111\rangle$$
(A.5)

As respectivas matrizes são mostradas em (A.6) e nas (A.7).

	(0,875	0	0	0	0	0	0	0)
	0	-0,125	0	0	0	0	0	0
	0	0	- 0,125	0	0	0	0	0
(, , , 000)	0	0	0	- 0,125	0	0	0	0
$(\Delta \rho_0^{(m)}) =$	0	0	0	0	-0,125	0	0	0
	0	0	0	0	0	-0,125	0	0
	0	0	0	0	0	0	-0,125	0
	0	0	0	0	0	0	0	- 0,125
	(-0,125	0	0	0	0	0	0	0)
	0	0,875	0	0	0	0	0	0
	0	0	- 0,125	0	0	0	0	0
$(\Lambda \hat{a}^{001})_{-}$	0	0	0	-0,125	0	0	0	0
$(\Delta \rho_0) =$	0	0	0	0	- 0,125	0	0	0
	0	0	0	0	0	- 0,125	0	0
	0	0	0	0	0	0	- 0,125	0
	0	0	0	0	0	0	0	-0,125
	(-0,125	0	0	0	0	0	0	0)
	0	- 0,125	0	0	0	0	0	0
	0	0	0,875	0	0	0	0	0
$(\Lambda \hat{o}^{010}) =$	0	0	0	- 0,125	0	0	0	0
$(\Delta \rho_0)^-$	0	0	0	0	-0,125	0	0	0
	0	0	0	0	0	-0,125	0	0
	0	0	0	0	0	0	-0,125	0
	(0	0	0	0	0	0	0	- 0,125
	(-0,125	0	0	0	0	0	0	0)
	0	- 0,125	0	0	0	0	0	0
	0	0	- 0,125	5 0	0	0	0	0
$(\Lambda \hat{o}_{\cdot}^{011}) =$	0	0	0	0,875	0	0	0	0
$(-\nu_0)^{-}$	0	0	0	0	- 0,125	0	0	0
	0	0	0	0	0	-0,125	0	0
	0	0	0	0	0	0	- 0,125	0
	(0	0	0	0	0	0	0	-0,125

(A.7-i)

	(-0,125	0	0	0	0	0	0	0)
(+ ^100)	0	-0,125	0	0	0	0	0	0
	0	0	-0,125	0	0	0	0	0
	0	0	0	-0,125	0	0	0	0
$(\Delta \rho_0) =$	0	0	0	0	0,875	0	0	0
	0	0	0	0	0	-0,125	0	0
	0	0	0	0	0	0	-0,125	0
	0	0	0	0	0	0	0	-0,125
	(-0,125)	0	0	0	0	0	0	0)
	0	-0,125	0	0	0	0	0	0
	0	0	-0,125	0	0	0	0	0
(A^{2101})	0	0	0	-0,125	0	0	0	0
$(\Delta \rho_0) =$	0	0	0	0	-0,125	0	0	0
	0	0	0	0	0	0,875	0	0
	0	0	0	0	0	0	-0,125	0
	0	0	0	0	0	0	0	-0,125
	(-0,125	0	0	0	0	0	0	0)
	0	-0,125	0	0	0	0	0	0
	0	0	-0,125	0	0	0	0	0
(A^{2110})	0	0	0	-0,125	0	0	0	0
$(\Delta \rho_0) =$	0	0	0	0	-0,125	0	0	0
	0	0	0	0	0	-0,125	0	0
	0	0	0	0	0	0	0,875	0
	0	0	0	0	0	0	0	-0,125
	(-0,125)	0	0	0	0	0	0	0)
(* 2111)	0	-0,125	0	0	0	0	0	0
	0	0	-0,125	0	0	0	0	0
	0	0	0	-0,125	0	0	0	0
$(\Delta \rho_0) =$	0	0	0	0	-0,125	0	0	0
	0	0	0	0	0	-0,125	0	0
	0	0	0	0	0	0	-0,125	5 0
	0	0	0	0	0	0	0	0,875)

É possível notar, pelas representações matriciais, que os estados pseudo-puros possuem traço nulo, ao contrário dos estados puros, que possuem traço unitário.

Apêndice B - Programas para cálculo numérico

As listagens dos programas são exibidas conforme a ordem em que eles devem ser construídos. Todos os programas foram feitos no MATLAB.

B.1. Operadores fundamentais de spin e hamiltoniana quadrupolar

• \hat{I}_z

```
% FUNCAO IZ Calcula a matriz Iz
% Autor: Carlos Alexandre Brasil (20/03/2006)
% Para utilizar: IZ(I) , onde I e´ o spin
function Z=IZ(I);
m = I: -1: -I;
             % formando a base de autoestados
j = length(m); % dimensao
Z=zeros(2*I+1); % Inicialmente a matriz e zerada
% calculo dos elementos da matriz
for a = 1:j
    for b = 1:j
        if (a==b)
            Z(a,b) = m(a);
        end
    end
end
% Correcao em 24/03/2007
```

• *Î*+

```
% FUNCAO IMAIS Calcula a matriz I+
% Autor: Carlos Alexandre Brasil (20/03/2006)
% Para utilizar: IMAIS(I) , onde I e´ o spin
function IM=IMAIS(I);
m = I:-1:-I; % indice m
```

• \hat{H}_{Q}

```
% FUNCTION HQ Calcula a Hamiltoniana quadrupolar
% Autor: Carlos Alexandre Brasil (21/03/2006)
% Para utilizar: HQ(I) , onde I e' o spin
% Necessita da funcao IZ
function Q = HQ(I);
m = I:-1:-I;
j = length(m); % variaveis auxiliares
A=IZ(I)^2;
AUX = (3*A)-(I*(I+1)*eye(j,j)); % determinacao da matriz
Q = (AUX/6);
```

• $\hat{I}_{x}, \hat{I}_{x}, \hat{I}_{y}$

% FUNCAO IMENOS Calcula a matriz I_ % Autor: Carlos Alexandre Brasil (21/03/2006) % Para utilizar: IX(I) , onde I e´ o spin % Necessita da funcao IMENOS e de funcoes correlacionadas function IMS=IMENOS(I); IMS = IMAIS(I)';

```
% FUNCAO IX Calcula a matriz Ix
% Autor: Carlos Alexandre Brasil (21/03/2006)
% Para utilizar: IX(I) , onde I e' o spin
% Necessita de IMAIS e IMENOS e de funcoes correlacionadas
function X=IX(I);
A = IMAIS(I);
B = IMENOS(I);
X = (A + B)/2;
```

```
% FUNCAO IY Calcula a matriz Iy
% Autor: Carlos Alexandre Brasil (21/03/2006)
% Para utilizar: IY(I) , onde I e' o spin
% Necessita de IMAIS e IMENOS e de funcoes correlacionadas
function Y=IY(I);
C = IMAIS(I);
D = IMENOS(I);
Y = -i*(C - D)/2;
```

B.2. Operadores de polarização

• Coeficientes de Clebsch-Gordan

```
% FUNCAO CG Calcula o coeficiente de Clebsch-Gordan
% Autor: Carlos Alexandre Brasil (30/03/2007)
% Para utilizar: CG(c,gama,a,alfa,b,beta)
% c e gama sao os indices superiores
% a, alfa, b e beta sao os indices inferiores (nessa ordem - ver
Varshalovich)
function C=CG(c,gama,a,alfa,b,beta);
% E utilizada a equacao (8.2.1-8), pagina 238 do Varshalovich
% Necessita, por sua vez, da expressao (1), secao 8.2, pagina 237
da mesma obra
if gama==(alfa+beta) % Delta de Kronecker igual a 1
    % Calculo de delta
    aux1=a+b-c;
                   %
                   8
    aux2=a-b+c;
                   00
    aux3=-a+b+c;
```

```
240
```

```
aux4=a+b+c+1; % Coeficientes dos fatoriais
   pl=prod(1:aux1); %
   p2=prod(1:aux2); %
    p3=prod(1:aux3); %
   p4=prod(1:aux4); % Fatoriais
    delta=sqrt(p1*p2*p3/p4); % Coeficiente delta
    % Calculo do fator que multiplica a soma
    aux5=a+alfa;
                  %
    aux6=a-alfa;
                 %
    aux7=c+gama;
                 90
    aux8=c-gama; % Coeficientes dos fatoriais - numerador
    aux9=2*c+1; % Fator do numerador
    aux10=b+beta; %
    aux11=b-beta; % Coeficientes dos fatoriais - denominador
   p5=prod(1:aux5); %
   p6=prod(1:aux6); %
   p7=prod(1:aux7); %
   p8=prod(1:aux8); % Fatoriais - numerador
   p10=prod(1:aux10); %
   pl1=prod(1:aux11); % Fatoriais - denominador
    raiz=sqrt(p5*p6*p7*p8*aux9/(p10*p11)); % Calculo da raiz
   mult=raiz/delta; % Fator multiplicativo
    % Determinacao dos limites inferior e superior da soma
    kmin=0; % Limite inferior
    k1=a+b-gama; %
    k2=b+c-alfa; %
    k3=a-alfa;
                % Fatoriais do numerador da soma
               00
    k4=c-gama;
    k5=a+b+c+1; %
   m1=min(k1,k2); %
   m2=min(m1,k3); % Variaveis auxiliares para determinacao do
valor maximo de k
   m3=min(m2,k4); %
    kmax=min(m3,k5); % Limite superior da soma
    % Determinacao do valor da soma
    soma=0; % Valor inicial da variavel
```

```
for k=kmin:kmax
        al=a+b-gama-k; %
        a2=b+c-alfa-k; % Coeficientes dos fatoriais do numerador
        a3=a-alfa-k;
                     % Coeficientes dos fatoriais do denominador
        a4=c-gama-k;
        a5=a+b+c+1-k; %
        f1=prod(1:a1); %
        f2=prod(1:a2); % Fatoriais do numerador
        f3=prod(1:a3); %
        f4=prod(1:a4); %
        f5=prod(1:a5); %
        f0=prod(1:k); % Fatoriais do denominador
        s=(-1)^(a-alfa+k)*f1*f2/(f0*f3*f4*f5); % k-esimo elemento
da soma
        soma=soma+s; % Resultado parcial da soma
    end
else % Delta de Kronecker igual a O
    mult=0; %
    soma=0; % Anulando o coeficiente
end
    C=mult*soma; % Coeficiente de Clebsh-Gordan
```

• Funções $d_{m,m'}^{l}$

```
% FUNCAO d Calcula a funcao de Wigner d com parametros l,m e m'
% para um dado angulo b
% Autor: Carlos Alexandre Brasil (03/04/2007)
% Para utilizar: d(l,m,m',b)
% E utilizada a equacao (4.3.4), pagina 76, do Varshalovich
function arg=d(l,m,ml,b);
%Calculo dos fatoriais
aux1=prod(1:(l+m));
aux2=prod(1:(l+m));
aux3=prod(1:(l+ml));
```

```
% Determinacao da raiz que multiplica a expressao
raiz=sqrt(aux1*aux2*aux3*aux4);
% Limites inferior e superior para o somatorio em k
kmin=max(0,(m-ml));
kmax=min((l+m),(l-ml));
% Argumentos
c=\cos(b/2);
s=sin(b/2);
% Calculo do somatorio
soma=0; % Valor inicial
for k=kmin:kmax
    a1=2*1-2*k+m-ml;
    a2=2*k-m+ml;
    a3=1+m-k;
    a4=l-ml-k;
    a5=ml-m+k;
   b3=prod(1:a3);
    b4=prod(1:a4);
    b5=prod(1:a5);
    c0=prod(1:k);
    den=c0*b3*b4*b5;
    soma=soma+(((-1)^k).*(c.^a1).*(s.^a2))/den;
end
% Retorno do resultado
arg=raiz*soma;
```

• Operadores de polarização $\hat{T}_{l,m}(S)$

```
% FUNCAO TLM Calcula os operadores de polarizacao
% Autor: Carlos Alexandre Brasil (30/03/2007)
% Para utilizar: TLM(S,L,M), onde S e o spin
function T=TLM(S,L,M);
% E utilizada a definicao (2.4-8), pagina 44 do Varshalovich
```

```
dim=2*S+1; % Dimensao da matriz
aux1=sqrt(2*L+1)/sqrt(dim); % Fator multiplicativo constante
tensor=zeros(dim); % Entrada inicial da matriz
for a=1:dim
sigmal=-a+(S+1);
for b=1:dim
sigma=-b+(S+1);
if sigmal==sigma+M
tensor(a,b)=aux1*CG(S,sigmal,S,sigma,L,M);
end
end
T=tensor;
```

• Transferência de grau

```
% PROGRAMA bll Apresenta a curva de transferencia de grau entre os
% tensores esfericos sob evolucao quadrupolar
% Grava tambem a tabela de resultados no arquivo b.txt
% Autor: Carlos Alexandre Brasil (22/08/2007)
% Lembrar que T=wq*t/2
clear;
% Variaveis ajustadas
S=7/2; % SPIN
1=1;
      % Grau inicial
      % Grau final
L=2;
m=1;
     % ordem de coerencia
% Matrizes utilizadas adiante
Z=IZ(S);
Z2=Z*Z;
T1=TLM(S,L,m)';
```

244

```
T2=TLM(S, l, m);
p=1; % Variavel auxiliar
% Calculo do coeficiente blL
for T=0:1/500:pi
    e=expm(-T*i*Z2);
    tr(p) = abs(trace(T1*e*T2*e'));
    p=p+1;
end
% Elaboracao do grafico
Taux=0:1/500:pi;
figure(100);
plot(Taux, tr);
% Definicao da tabela com os dados
tabela(:,1)=Taux(:);
tabela(:,2)=tr(:);
% Escrita do resultado no arquivo
dlmwrite('bll.txt',tabela,' ');
```

B.3. Funções relacionadas ao programa de reconstrução

• Matriz A_l – expressão (4.42)

```
% FUNCAO AL Calcula a matriz Al utilizada no processo de
tomografia
% Autor: Carlos Alexandre Brasil (01/05/2007)
% Para utilizar: AL(S,L), onde S e' o spin e L e' o grau
function A=AL(S,L);
MAIS=IMAIS(S); % Matriz do operador I+
T=TLM(S,L,-1); % Matriz do operador de polarizacao
dim=2*S+1; % Definindo a dimensao da matriz
A=zeros(dim); % Inicialmente, a matriz e' zerada
% Calculando os elementos de matriz
```

• Matriz A dos coeficientes do sistema linear – expressão (4.54)

```
% FUNCAO MATCOEF Calcula a matriz dos coeficientes A do sistema de
equacoes do
% processo de tomografia
% Autor: Carlos Alexandre Brasil (01/05/2007)
% Para utilizar: MATCOEF(S,M), onde S e' o spin e M e' a ordem
function MT=MATCOEF(S,M);
LL=max(1,M); % Variavel 1'
k=LL-1; % Variavel auxiliar
MT=zeros(2*S,2*S-k); % Inicialmente, a matriz e' zerada
% Calculando os elementos de matriz
for p=1:2*S
    for L=LL:2*S
        matriz=AL(S,L);
        MT(p, L-k) = matriz(p, p+1);
    end
end
```

Apêndice C - Programas de simulação

C.1. Tomografia

As listagens dos programas são exibidas conforme a ordem em que eles devem ser construídos. Todos os programas foram feitos no MATLAB. O programa de seleção de coerências foi apresentado em três opções exploradas no texto.

C.1.1. Seleção de coerências

• Pulsos perfeitos

```
% FUNCAO SELCOER Simula a selecao de coerencia atraves da
aplicacao de pulsos com variacoes sucessivas de fases, retornando
as amplitudes do espectro
% Autor: Carlos Alexandre Brasil (28/06/2007)
% Para utilizar: SELCOER(S,m,teta) onde S e' o spin, m a ordem e
% teta o angulo de nutacao
function amp=SELCOER(S,m,teta);
Np=2*S+1+m;
X=IX(S); %
Y=IY(S); % Matrizes Ix e Iy
% Leitura da matriz densidade/estado inicial
EIR=dlmread('eir.txt');
EII=dlmread('eii.txt');
mdens = EIR + i*EII;
% Selecao da coerencia
r1=0;
for n=0:(Np-1)
    fi=2*pi*n/Np + pi/2; % Fase de transmissao
    alfa=2*pi*n*(m-1)/Np; % Fase da recepcao
    h=teta*(cos(fi)*X-sin(fi)*Y); % Campo de RF
```

248

```
U1=expm(i*h); %
U2=U1'; % Operadores evolucao associados ao campo de RF
r=U1*mdens*U2*exp(-i*alfa); % Transientes
r1=r1+r; % Soma dos varios transientes
end
r0=r1/Np; % Operador densidade final
% Obtendo as amplitudes do espectro
IM=IMAIS(S);
r0t=r0';
aux1=r0t.*IM;
```

• Interação quadrupolar

```
% FUNCAO SELCOERQ Simula a selecao de coerencia atraves da
aplicacao de pulsos
% com variacoes sucessivas de fases, retornando as amplitudes do
espectro
% Interacao Quadrupolar incluida
% Autor: Carlos Alexandre Brasil (28/06/2007)
% Para utilizar: SELCOERq(S,m,teta,wq,tp90) onde S e' o spin, m a
ordem,
% teta o angulo de nutacao, wq a frequencia quadrupolar em Hz e
tp90 o tempo
% do pulso de 90 (os dois ultimos parametros como definidos no
VARIAN)
function amp=SELCOERQ(S,m,teta,wq,tp90);
Np=2*S+1+m;
X=IX(S); %
Y=IY(S); % Matrizes Ix e Iy
% Interacao quadrupolar
tp=teta*2*tp90/pi; % Tempo de atuacao do pulso
hq=HQ(S) *wq*tp; % Hamiltoniana quadrupolar
% Leitura da matriz densidade/estado inicial
EIR=dlmread('eir.txt');
EII=dlmread('eii.txt');
mdens = EIR + i*EII;
```

```
% Selecao da coerencia
r1=0;
for n=0:(Np-1)
    fi=2*pi*n/Np + pi/2; % Fase de transmissao
    alfa=2*pi*n*(m-1)/Np; % Fase da recepcao
    h=teta*(cos(fi)*X-sin(fi)*Y) +hq; % Campo de RF e interacao
quadrupolar
    U1=expm(i*h); %
   U2=U1';
                  % Operadores evolucao associados ao campo de RF
    r=U1*mdens*U2*exp(-i*alfa); % Transientes
    r1=r1+r; % Soma dos varios transientes
end
r0=r1/Np; % Operador densidade final
% Obtendo as amplitudes do espectro
IM=IMAIS(S);
rOt=rO';
aux1=r0t.*IM;
for k=1:2*S
   amp(k) = aux1(k, k+1);
end
```

• Interação quadrupolar e não-homogeneidade do campo de RF

```
% FUNCAO SELCOERQB1 Simula a selecao de coerencia atraves da
aplicacao de pulsos
% com variacoes sucessivas de fases, retornando as amplitudes do
espectro
% Interacao Quadrupolar incluida
% Autor: Carlos Alexandre Brasil (28/06/2007)
% Para utilizar: SELCOERQB1(S,m,teta,NL,P,a) onde S e' o spin, m a
ordem,
% teta o angulo de nutacao, NL e o numero de pontos considerados
para B1,
% P o valor maximo do vetor de B1 e a esta relacionado com a
largura da gaussiana
function amp=SELCOERQB1(S,m,teta,tp90,wq,NL,P,a);
Np=2*S+1+m;
```

250

```
X=IX(S); %
Y=IY(S); % Matrizes Ix e Iy
Q=HQ(S); % Hamiltoniana quadrupolar
% Leitura da matriz densidade/estado inicial
EIR=dlmread('eir.txt');
EII=dlmread('eii.txt');
mdens = EIR + i*EII;
% Selecao da coerencia
r1=zeros(2*S+1);
tp=teta*2*tp90/pi;
hq=Q*wq*tp;
for s=1:1/NL:P
    B1=exp(-s^2/a); % Distribuicao gaussiana de B1
    r=zeros(2*S+1);
    for n=0:(Np-1)
        fi=2*pi*n/Np + pi/2; % Fase de transmissao
        alfa=2*pi*n*(m-1)/Np; % Fase da recepcao
        h=B1*teta*(cos(fi)*X-sin(fi)*Y)+hq; % Campo de RF e
interacao quadrupolar
        U1=expm(i*h); %
        U2=U1';
                      % Operadores evolucao associados ao campo de
RF
        r=r+U1*mdens*U2*exp(-i*alfa); % Transientes
    end
    r=r/NL; % Transiente final considerando campo gaussiano
    r1=r1+r; % Soma dos varios transientes
end
r0=r1/(P*NL+1); % Operador densidade final
% Obtendo as amplitudes do espectro
IM=IMAIS(S);
r0t=r0';
aux1=r0t.*IM;
```
```
for k=1:2*S
    amp(k)=aux1(k,k+1);
end
```

C.1.2. Simulação da gravação das amplitudes espectrais

• Interação quadrupolar e não-homogeneidade do campo de RF

```
% FUNCAO AMPVARIAN Gera um arquivo com as amplitudes relacionadas
a uma
% dada matriz densidade no formato do VARIAN
% Considera a interacao quadrupolar e não-homogeneidade do campo
de RF
% Autor: Carlos Alexandre Brasil (28/06/2007)
function ap=AMPVARIAN(tp90,wq,NL,L,b);
S=7/2; % Valor do spin
% Construcao da matriz com os angulos de nutacao do VARIAN
angvarian=zeros(3,2*S+1); % Inicialmente a tabela de angulos e'
anulada.
angvarian(1,1)=pi/2; %
angvarian(2,1)=pi/4; %
angvarian(3,1)=0.54; %
angvarian(1,2)=0;
                     % spin 3/2
angvarian(1,3)=pi/3; %
angvarian(2,3)=0.60; %
angvarian(1,4)=1.23; %
%angvarian(1,1)=0.96;
                         %
%angvarian(2,1)=0.462;
                         8
%angvarian(3,1)=0.268;
                         00
                         90
%angvarian(1,2)=0;
%angvarian(1,3)=0.606;
                         90
%angvarian(2,3)=0.292;
                        00
%angvarian(1,4)=1.23;
                        00
%angvarian(2,4)=0.68;
                        % spin 7/2
%angvarian(3,4)=0.426; % (ANGULOS GRANDES)
%angvarian(1,5)=1.02;
                        00
%angvarian(2,5)=0.604;
                         90
%angvarian(1,6)=1.094;
                         8
%angvarian(2,6)=0.73;
                         8
%angvarian(1,7)=1.404;
                         90
%angvarian(2,7)=0.928;
                        8
%angvarian(1,8)=1.426;
                         00
```

```
angvarian(1,1)=0.25;
                        %
angvarian(1,2)=0;
                        00
angvarian(1,3)=0.25;
                       00
angvarian(1,4)=0.50; % spin 7/2
angvarian(1,5)=0.50; % (ANGULOS PEQUENOS)
angvarian(1,6)=0.60;
                      90
angvarian(1,7)=0.70;
                       00
angvarian(1, 8) = 0.70;
                       00
dimensao=7*2*S*2; % (Numero de angulos) x (2 vezes o spin) x 2
                  % O ultimo fator contabiliza as linhas reais e
imaginarias
% Vetor com o numero de angulos
nang(1)=3; %
nang(2)=1; %
nang(3)=2; % spin 3/2
nang(4)=1; %
%nang(1)=3; %
%nang(2)=1; %
%nang(3)=2; %
%nang(4)=3; % spin 7/2
%nang(5)=2; % (ANGULOS GRANDES)
%nang(6)=2; %
%nang(7)=2; %
%nang(8)=1; %
nang(1)=1; %
nang(2)=1; %
nang(3)=1; %
nang(4)=1; % spin 7/2
nang(5)=1; % (ANGULOS PEQUENOS)
nang(6)=1; %
nang(7)=1; %
nang(8)=1; %
amp=zeros(dimensao,1);
aux=0;
for m=0:2*S
    ml=m+1;
    n=nang(ml);
    for p=1:n
        teta=angvarian(p,ml);
        a=SELCOERQB1(S,m,teta,tp90,wq,NL,L,b);
```

```
ampr=real(a);
ampi=imag(a);
aux2=0;
for q=1:2*S
    amp(aux+q+aux2)=ampr(q);
    amp(aux+q+1+aux2)=ampi(q);
    aux2 = aux2 + 1;
    end
    aux = aux + 2*2*S;
    end
end
dlmwrite('amplitudes.txt',amp);
```

C.1.3. Teste de criação de coerências

```
% Programa simq Simulacao do efeito da nao-homogeneidade do campo
de RF - spin 7/2
% Autor: Carlos Alexandre Brasil (24/08/2007)
clear;
S=7/2; % Spin
X=IX(S); %
Y=IY(S); % Matrizes das magnetizacoes
Z=IZ(S); % e da interacao quadrupolar
Q=HQ(S);
% Interacao quadrupolar
tp90=12e-6; % Tempo do pulso de pi/2
            % Frequencia quadrupolar do nucleo em Hertz
wqHz=7000;
wq=wqHz*2*pi; % Frequencia quadrupolar do nucleo em radianos por
segundo
te=pi/wq;
           % Tempo de evolucao livre
teta1=pi/2; % Angulo do primeiro pulso
% Parametros da gaussiana
NL=1000; % Numero de pontos considerados para B1 gaussiano
```

```
254
```

```
L=5; % Valor maximo do vetor de pontos para B1
a=240; % Define a largura da gaussiana
% Grafico da gaussiana
t=0:1/NL:L;
BRF=exp(-t.^2/a); % Grafico da gaussiana utilizada
plot(t,BRF);
% Estado de equilibrio
EI=Z;
% Pulso 90 em y
r0=zeros(2*S+1);
hq=Q*wq*tp90;
for t=1:1/NL:L
   B1=exp(-t^2/a); % Distribuicao gaussiana de B1
   h=-B1*Y*pi/2+hq;
   U=expm(i*h);
    r0=r0+U*EI*U';
end
r0=r0/(L*NL+1); % Operador densidade final
NORM=abs(max(max(r0)));
rON=rO/NORM;
rOR=real(rON);
rOI=imaq(rON);
figure(100);
bar3(rOR);
figure(200);
bar3(r0I);
% Evolucao sob efeito da hamiltoniana quadrupolar
h1=Q*wq*te;
U1=expm(i*h1);
r1=U1*r0*U1';
N1=abs(max(max(r1))); % Determinacao da norma da matriz densidade
r1N=r1/N1; % Matriz densidade normalizada
```

```
figure(300);
bar3(real(r1N));
figure(400);
bar3(imag(r1N));
% Pulso para criacao de coerencias pares
r2=zeros(2*S+1);
tp=teta1*2*tp90/pi;
hq=Q*wq*tp;
for t=1:1/NL:L
    B1=exp(-t^2/a); % Distribuicao gaussiana de B1
    h=-teta1*B1*Y+hq;
    U=expm(i*h);
    r2=r2+U*r1N*U';
end
r2=r2/(L*NL+1); % Operador densidade final
NORM=abs(max(max(r2)));
r2N=r2/NORM;
r2R=real(r2N);
r2I=imag(r2N);
figure(500);
bar3(r2R);
figure(600);
bar3(r2I);
dlmwrite('coeparr.txt',r2R,' ');
dlmwrite('coepari.txt',r2I,' ');
ampvarian(tp90,wq,NL,L,a);
reconstruir;
```

C.2. Algoritmo de Grover

```
% Programa que simula a aplicacao do algoritmo de busca de Grover
% em RMN utilizando os estados pseudo-puros
clear;
```

```
Pr=dlmread('EP111.txt') % Estado procurado (puro)
N=5
Id=eye(8);
% Matriz da Operacao Hadamard
Hd=[1 1; 1 -1]/sqrt(2);
% Matriz da Operacao Hadamard sobre os 3 q-bits
Hd12=kron(Hd,Hd);
Hd3=kron(Hd12,Hd);
% Criacao do operador de Grover
% Leitura do estado puro 000 para criar a superposicao
EP000=dlmread('EP000.txt');
% Criacao da superposicao
SUP=Hd3*EP000*Hd3'
W=2*SUP-Id;
V=Id-2*Pr;
G=W*V;
% Aplicacao dos operadores (iteracoes de Grover) sobre a
% superposição obtida a partir do estado pseudo-puro
% Formacao da superposicao
EPP000=dlmread('EPP000.txt');
S1=Hd3*EPP000*Hd3';
A1=G*S1*G'
m=1;
for m=1:N
   A1=G*A1*G'
   m=m+1;
end
% Normalizacao
NORM = abs(max(max(A1)));
A1=A1/NORM;
```

```
figure(100);
bar3(real(A1));
%figure(200);
%bar3(imag(A1));
%dlmwrite('100_7.txt',real(A1));
% Fidelidade entre o estado procurado e o encontrado
dlmwrite('G111.txt',G);
PPS=dlmread('EPP111.txt');
F=abs(trace(A1*PPS)/sqrt(trace(A1*A1)*trace(PPS*PPS)))
```

C.3. Estados pseudo-puros

```
% Programa que simula a construcao de um estado pseud-puro atraves
de SMPs
% Autoria: Carlos Brasil e Arthur Ferreira (23/03/2007)
% ATENCAO: Adequado apenas para spin 7/2
clear
% Matrizes Ix, Iy e Iz
X = IX(7/2);
Y = IY(7/2);
Z = IZ(7/2);
Q=HQ(7/2); % Matriz da interacao quadrupolar
           % Frequencia quadrupolar do nucleo em Hertz
wqHz=7000;
wq=wqHz*2*pi; % Frequencia quadrupolar do nucleo em radianos por
segundo
% Estado inicial
EI=Z;
% Leitura dos parametros dos SMPs a partir do arquivo
PRM=dlmread('pps111.txt');
% Construcao dos SMP utilizando 40 pulsos, divididos em 4 medias
SMP1=eye(8); % Valor inicial da variavel
for p=1:10
    atp=PRM(p,1); %
    fi=PRM(p,2); % Identificando os parametros de cada pulso
    btp=PRM(p,3); %
```

```
h=atp*btp*(cos(fi)*X+sin(fi)*Y)+wq*btp*O; % Montando os
operadores evolucao
    U=expm(-h*i);
                                     % referentes a cada segmento
    SMP1=U*SMP1; % Construindo a matriz do SMP
end
SMP1CC=SMP1';
AUX1=SMP1*EI*SMP1CC;
SMP2=eye(8); % Valor inicial da variavel
for p=11:20
    atp=PRM(p,1); %
    fi=PRM(p,2); % Identificando os parametros de cada pulso
   btp=PRM(p,3); %
   h=atp*btp*(cos(fi)*X+sin(fi)*Y)+wq*btp*Q; % Montando os
operadores evolucao
    U=expm(-h*i);
                                     % referentes a cada segmento
    SMP2=U*SMP2; % Construindo a matriz do SMP
end
SMP2CC=SMP2';
AUX2=SMP2*EI*SMP2CC;
SMP3=eye(8); % Valor inicial da variavel
for p=21:30
    atp=PRM(p,1); %
    fi=PRM(p,2); % Identificando os parametros de cada pulso
   btp=PRM(p,3); %
    h=atp*btp*(cos(fi)*X+sin(fi)*Y)+wq*btp*Q; % Montando os
operadores evolucao
    U=expm(-h*i);
                                     % referentes a cada segmento
    SMP3=U*SMP3; % Construindo a matriz do SMP
end
SMP3CC=SMP3';
AUX3=SMP3*EI*SMP3CC;
SMP4=eye(8); % Valor inicial da variavel
for p=31:40
    atp=PRM(p,1); %
    fi=PRM(p,2); % Identificando os parametros de cada pulso
    btp=PRM(p,3); %
    h=atp*btp*(cos(fi)*X+sin(fi)*Y)+wq*btp*Q; % Montando os
operadores evolucao
    U=expm(-h*i);
                                     % referentes a cada segmento
    SMP4=U*SMP4; % Construindo a matriz do SMP
end
SMP4CC=SMP4';
AUX4=SMP4*EI*SMP4CC;
```

```
259
```

```
EF=(AUX1+AUX2+AUX3+AUX4)/4; % Estado final
% Normalizacao
NORMA=abs(max(max(EF)));
EF=EF/NORMA;
% Separacao entre as partes real e imaginaria
RE=real(EF);
IM=imag(EF);
% Escrita do resultado nos arquivos
dlmwrite('epp111r.txt',RE,' '); % Parte real da matriz densidade
dlmwrite('epp111i.txt',IM,' '); % Parte imaginaria da matriz
densidade
% Graficos da matriz densidade
figure(100); % Parte real
bar3(RE);
figure(200); % Parte imaginaria
bar3(IM);
% Calculo da fidelidade
TEOR=dlmread('EPP111.txt');
TEOI=dlmread('ZERO.txt');
TEO=TEOR+i*TEOI;
F=abs(trace(EF*TEO')/sqrt(trace(EF*EF')*trace(TEO*TEO')))
```

C.4. Portas lógicas

```
% Programa que simula a construcao de um estado pseudo-puro
atraves de SMPs
% Autoria: Carlos Brasil e Arthur Ferreira (23/03/2007)
% Atencao: Adequado apenas para spin 7/2
clear
% Matrizes Ix, Iy e Iz
X=IX(7/2);
Y=IY(7/2);
Z=IZ(7/2);
```

```
Z2=Z*Z; % Matriz utilizada adiante
Q=HQ(7/2); % Matriz utilizada adiante
wgHz=7000; % Frequencia quadrupolar do nucleo em Hertz
wq=wqHz*2*pi; % Frequencia quadrupolar do nucleo em radianos por
segundo
% Estado inicial
EI=Z;
% Leitura dos parametros dos SMPs a partir do arquivo
PRM=dlmread('tof1.txt');
% Construcao dos SMP utilizando 40 pulsos, divididos em 4 medias
SMP=eye(8); % Valor inicial da variavel
for p=1:20
    atp=PRM(p,1); %
    fi=PRM(p,2); % Identificando os parametros de cada pulso
   btp=PRM(p,3); %
    h=atp*btp*(cos(fi)*X+sin(fi)*Y)+wq*btp*Q; % Montando os
operadores evolucao
    U=expm(-h*i);
                                              % referentes a cada
segmento
    SMP=U*SMP; % Construindo a matriz do SMP
end
NORM=abs(max(max(SMP)));
SMP=SMP/NORM;
figure(100);
bar3(real(SMP));
figure (200);
bar3(imag(SMP));
SMPCC=SMP';
SMP
TOF1 = dlmread('TOFFTE01.txt');
F = (abs(trace(TOF1*SMP')/8))^2
```

Apêndice D - Programa de reconstrução

```
% PROGRAMA RECONSTRUIR Reconstroi a matriz densidade a partir das
amplitudes
% geradas pelo VARIAN
% Autor: Carlos Alexandre Brasil (08/05/2007)
clear;
S=7/2; % Valor do spin
amp=dlmread('experimento.txt'); % Leitura de todas as amplitudes
do arquivo
% Inicialmente as matrizes sao anuladas
SRV=zeros(2*S*2*S,2*S+1); %
SIV=zeros(2*S*2*S,2*S+1); % Partes real e imaginaria das
amplitudes como lidas no VARIAN
DR=zeros(2*S+1); % Matriz densidade
DRR=zeros(2*S+1); %
DRI=zeros(2*S+1); % Correcao do sinal
MATRIZS=zeros(2*S*2*S,2*S+1); % Matriz final, SR + i*SI
tabang=zeros(2*S, 2*S+1);
% Tabela com os angulos a serem utilizados
tabang(1, 1) = 0.96;
tabang(2,1)=0.462;
tabang(3, 1) = 0.268;
tabanq(1,2)=0;
tabanq(1,3) = 0.606;
tabang(2,3) = 0.292;
tabang(1,4)=1.23;
tabang(2, 4) = 0.68;
tabang(3, 4) = 0.426;
tabang(1, 5) = 1.02;
tabang(2, 5) = 0.604;
tabanq(1, 6) = 1.094;
tabang(2, 6) = 0.73;
tabang(1,7)=1.404;
tabang(2,7) = 0.928;
tabang(1, 8) = 1.426;
% Numero de vezes em que o VARIAN pulsa para cada coerencia (macro
arraysmp)
```

```
angulovarian(1) = 3;
angulovarian(2)=1;
angulovarian(3) = 2;
angulovarian(4) = 3;
angulovarian(5)=2;
angulovarian(6)=2;
angulovarian(7) = 2;
angulovarian(8)=1;
% Numero de valores de l, para um dado m, em que cada angulo e'
utilizado
repet(1, 1) = 2;
repet(2, 1) = 2;
repet(3, 1) = 3;
repet(1, 2) = 7;
repet(1, 3) = 3;
repet(2,3)=3;
repet(1,4)=1;
repet(2, 4) = 2;
repet(3, 4) = 2;
repet(1, 5) = 2;
repet(2,5)=2;
repet(1,6)=2;
repet (2, 6) = 1;
repet(1,7)=1;
repet(2,7) = 1;
repet(1,8)=1;
% Essas tabelas devem ser escolhidas conforme o sistema
% Processo de separacao dos dados nas colunas da matriz segundo a
respectiva coerencia
aux2=0;
for m=0:2*S
    ml=m+1;
    numang=angulovarian(ml);
    aux1=0;
    for p=1:(2*S*numang)
        SRV(p,ml) = amp(p+aux1+aux2);
        SIV(p,ml) = amp(p+aux1+aux2+1);
        aux1=aux1+1;
    end
    aux2=aux2+numang*2*2*S;
```

```
end
MATRIZS=SRV+i*SIV; % Matriz final de amplitudes
% Obtencao dos fatores de correcao das amplitudes
ampref=dlmread('ampref.txt'); % Espectro experimental
ampteo(1) = 7/16;
                   8
ampteo(2) = 3/4;
                   %
ampteo(3) = 15/16;
                  8
ampteo(4) = 1;
                  % Amplitudes do espectro teorico normalizado
ampteo(5) = 15/16;
                  8
ampteo(6) = 3/4;
                  %
ampteo(7) = 7/16;
                  8
cor=ampteo./ampref'; % Vetor com os fatores de correcao
% Construcao da matriz densidade
for m=0:2*S
    ml=m+1;
    A=matcoef(S,m); % Matriz dos coeficientes do sistema linear
    numang=angulovarian(ml); % Numero de angulos para esse valor
de m
    aux1=0;
    aux2=0;
    if (m==0)
        nl=0;
    else
        nl=m-1;
    end
    for r=1:numang
        rpt=repet(r,ml); % Numero de vezes de utilizacao do angulo
        teta=tabang(r,ml); % Angulo de nutacao
        for p=1:2*S
            B(2*S+1-p)=MATRIZS(p+aux1,ml)*cor(p); % Vetor com as
amplitudes experimentais
                                                    % multiplicadas
pelos respectivos fatores de correcao
            %B(p)=MATRIZS(p+aux1,ml)*cor(p);
        end
```

```
aux1=aux1+2*S;
        x=LSQR(A,B.',[],100); % Resolucao do sistema por minimos
quadrados
        for q=1:rpt
            adlm=x(q+aux2);
            dlm=d(q+nl+aux2,1,m,-teta);
            % Matriz densidade
            DR=DR+conj(adlm) *TLM(S,q+nl+aux2,m)/dlm;
        end
        aux2=aux2+rpt;
    end
end
DR=DRR+i*DRI;
% Definicao da parte abaixo da diagonal
for q=2:2*S+1
    for r=1:q-1
    DR(q,r) = conj(DR(r,q));
    end
end
DRR=real(DR); % Parte real da matriz densidade
DRI=imag(DR); % Parte imaginaria da matriz densidade
% Normalizacao
NOR=abs(max(max(DR))); % Determinacao da norma da matriz densidade
DRN=DR/NOR; % Matriz densidade normalizada
DRRN=real(DRN); % Parte real da matriz normalizada
DRIN=imag(DRN); % Parte imaginaria da matriz normalizada
dlmwrite('expr.txt',DRRN); %
dlmwrite('expi.txt',DRIN); % Escrita dos resultados nos arquivos
figure(100); %
```

```
bar3(DRRN); % Grafico da parte real da matriz normalizada
figure(200); %
bar3(DRIN); % Grafico da parte imaginaria da matriz normalizada
% Leitura do resultado teorico
DRT=dlmread('teor.txt'); % Parte real
DIT=dlmread('teoi.txt'); % Parte imaginaria
DT=DRT+i*DIT;
% Normalizacao
NORMT=abs(max(max(DT))); % Determinacao da norma
DTN=DT/NORMT; % Matriz densidade teorica normalizada
figure(300);
                 00
bar3(real(DTN)); % Grafico da parte real
figure(400);
                 00
bar3(imag(DTN)); % Grafico da parte imaginaria
% Calculo da fidelidade
F=abs(1-trace(DRN*DTN)/sqrt(trace(DRN*DRN)*trace(DTN*DTN)))
```

Apêndice E - Representações matriciais das operações de 3 q-bits propostas

As representações matriciais das operações apresentadas no capítulo 6 são dadas, na base $\{|000\rangle, |001\rangle, |010\rangle, |011\rangle, |100\rangle, |101\rangle, |110\rangle, |111\rangle\}.$

E.1. Portas Toffoli

(E.1)

E.2. Operadores de Grover

	0,75	0,25	0,25	0,25	0,25	0,25	0,25	0,25]	
	-0,25	-0,75	0,25	0,25	0,25	0,25	0,25	0,25	
	-0,25	0,25	-0,75	0,25	0,25	0,25	0,25	0,25	
$(\hat{c})_{-}$	-0,25	0,25	0,25	-0,75	0,25	0,25	0,25	0,25	
$(G_{000}) =$	-0,25	0,25	0,25	0,25	-0,75	0,25	0,25	0,25	
	-0,25	0,25	0,25	0,25	0,25	-0,75	0,25	0,25	
	-0,25	0,25	0,25	0,25	0,25	0,25	-0,75	0,25	
		0,25	0,25	0,25	0,25	0,25	0,25	-0,75	
	-							7	
	-0,75	-0,25	0,25	0,25	0,25	0,25	0,25	0,25	
	0,25	0,75	0,25	0,25	0,25	0,25	0,25	0,25	
	0,25	-0,25	-0,75	0,25	0,25	0,25	0,25	0,25	
$(\hat{G}_{001}) =$	0,25	-0,25	0,25	-0,75	0,25	0,25	0,25	0,25	
(001)	0,25	-0,25	0,25	0,25	-0,75	0,25	0,25	0,25	
	0,25	-0,25	0,25	0,25	0,25	-0,75	0,25	0,25	
	0,25	-0,25	0,25	0,25	0,25	0,25	-0,75	0,25	
	0,25	-0,25	0,25	0,25	0,25	0,25	0,25	-0,75	
	[-0.75]	0.25	-025	0.25	0.25	0.25	0.25	0 25]	
	0.25	-0.75	-0.25	0.25	0.25	0.25	0.25	0.25	
	0.25	0.25	0.75	0.25	0.25	0.25	0.25	0.25	
(2)	0.25	0.25	-0.25	-0,75	0,25	0,25	0,25	0.25	
$(G_{010}) =$	0,25	0,25	-0,25	0,25	-0,75	0,25	0,25	0,25	
	0.25								
	0,25	0,25	-0,25	0,25	0,25	-0,75	0,25	0,25	
	0,25	0,25 0,25	-0,25 -0,25	0,25 0,25	0,25 0,25	- 0,75 0,25	0,25 -0,75	0,25 0,25	
	0,25 0,25 0,25	0,25 0,25 0,25	- 0,25 - 0,25 - 0,25	0,25 0,25 0,25	0,25 0,25 0,25	- 0,75 0,25 0,25	0,25 - 0,75 0,25	0,25 0,25 -0,75	
	0,25 0,25 0,25	0,25 0,25 0,25	-0,25 -0,25 -0,25	0,25 0,25 0,25	0,25 0,25 0,25	-0,75 0,25 0,25	0,25 -0,75 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$	
	$\begin{bmatrix} 0,25\\ 0,25\\ 0,25\\ \end{bmatrix}$	0,25 0,25 0,25 0,25	-0,25 -0,25 -0,25 0,25	0,25 0,25 0,25 -0,25	0,25 0,25 0,25 0,25	-0,75 0,25 0,25 0,25	0,25 -0,75 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$	
	$\begin{bmatrix} 0,25\\ 0,25\\ 0,25\\ \end{bmatrix}$	0,25 0,25 0,25 0,25 -0,75	-0,25 -0,25 -0,25 0,25 0,25	0,25 0,25 0,25 -0,25 -0,25	0,25 0,25 0,25 0,25 0,25	-0,75 0,25 0,25 0,25 0,25	0,25 -0,75 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$ $\begin{array}{c} 0,25\\ 0,$	
	$\begin{bmatrix} 0,25\\ 0,25\\ 0,25\\ \end{bmatrix}$	0,25 0,25 0,25 0,25 -0,75 0,25	-0,25 -0,25 -0,25 0,25 -0,75	$0,25 \\ 0,25 \\ 0,25 \\ -0,25 \\ -0,25 \\ -0,25 \\ 0,25$	0,25 0,25 0,25 0,25 0,25 0,25	-0,75 0,25 0,25 0,25 0,25 0,25	0,25 -0,75 0,25 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$ $\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25 \end{array}$	
$(\hat{G}_{011}) =$	$\begin{bmatrix} 0,25\\ 0,25\\ 0,25\\ \end{bmatrix}$	0,25 0,25 0,25 0,25 -0,75 0,25 0,25	-0,25 -0,25 -0,25 0,25 -0,75 0,25	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ -0,25\\ -0,25\\ -0,25\\ 0,75\\ \end{array}$	0,25 0,25 0,25 0,25 0,25 0,25 0,25	-0,75 0,25 0,25 0,25 0,25 0,25 0,25	0,25 -0,75 0,25 0,25 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$ $\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25 \end{array}$	
$\left(\hat{G}_{011}\right) =$	$\begin{bmatrix} 0,25\\ 0,$	0,25 0,25 0,25 0,25 -0,75 0,25 0,25 0,25	-0,25 -0,25 -0,25 0,25 -0,75 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ -0,25\\ -0,25\\ -0,25\\ 0,75\\ -0,25\\ 0,75\\ -0,25\\ \end{array}$	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ -0,75\\ \end{array}$	-0,75 0,25 0,25 0,25 0,25 0,25 0,25 0,25	0,25 -0,75 0,25 0,25 0,25 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$ $\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25 \end{array}$	
$\left(\hat{G}_{011}\right) =$	$\begin{bmatrix} 0,25\\ 0,$	0,25 0,25 0,25 0,25 -0,75 0,25 0,25 0,25 0,25	-0,25 -0,25 -0,25 0,25 0,25 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ -0,25\\ -0,25\\ -0,25\\ 0,75\\ -0,25\\ -0,25\\ -0,25\\ \end{array}$	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ -0,75\\ 0,25\\ 0,25\\ \end{array}$	-0,75 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,2	0,25 -0,75 0,25 0,25 0,25 0,25 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$ $\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ \end{array}$	
$\left(\hat{G}_{011}\right) =$	$\begin{bmatrix} 0,25\\ 0,$	0,25 0,25 0,25 0,25 -0,75 0,25 0,25 0,25 0,25 0,25	-0,25 -0,25 -0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ \end{array}\\ -0,25\\ -0,25\\ -0,25\\ 0,75\\ -0,25\\ -0,25\\ -0,25\\ -0,25\\ \end{array}$	$\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ -0,75\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ \end{array}$	-0,75 0,2	$\begin{array}{c} 0,25 \\ -0,75 \\ 0,25 \\ 0,25 \\ 0,25 \\ 0,25 \\ 0,25 \\ 0,25 \\ 0,25 \\ -0,75 \end{array}$	$\begin{array}{c} 0,25\\ 0,25\\ -0,75 \end{array}$ $\begin{array}{c} 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ 0,25\\ \end{array}$	

(E.2)

$$(\hat{G}_{100}) = \begin{bmatrix} -0.75 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & -0.75 & 0.25 & 0.25 & -0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & -0.75 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & -0.75 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & -0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0.25 & 0.25 & 0.25 & 0.$$

(E.3)

Capítulo 6

(a) 0,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,000 0,000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,000 0,000 1,0000 0,0000 0,0000 1,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,0000 0,000 0,0000 0,0000 0,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,0000 0,0000 0,0000 0,0000 0,0000 0,000 0,000 0,0000 0,0000 0,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,0000 0,0000 0,000 0,000 0,000 0,000 0,000 0,000 0,0000 0,0	(b) 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
Figure 6.1 Partes real (a) e image	inária (h) do estado inicial (6 15)
rigura 0.1. i artes rear (a) e mag	
(1)	(2)
0.2381 -0.1429 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476	-0.1048 -0.1429 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
0,2381 0,0476 -0,1429 0,0476 0,0476 0,0476 0,0476 0,0476	-0,1048 0,0095 -0,1429 0,0095 0,0095 0,0095 0,0095 0,0095
0,2381 0,0476 0,0476 -0,1429 0,0476 0,0476 0,0476 0,0476	-0,1048 0,0095 0,0095 -0,1429 0,0095 0,0095 0,0095 0,0095
0,2381 0,0476 0,0476 0,0476 0,0476 -0,1429 0,0476 0,0476 0,0476	-0.1048 0.0095 0.0095 0.0095 -0.1429 0.0095 0.0095 0.0095
0,2381 0,0476 0,0476 0,0476 0,0476 0,0476 -0,1429 0,0476	-0,1048 0,0095 0,0095 0,0095 0,0095 0,0095 -0,1429 0,0095
0,2381 0,0476 0,0476 0,0476 0,0476 0,0476 0,0476 0,0476 -0,1429	-0,1048 0,0095 0,0095 0,0095 0,0095 0,0095 0,0095 -0,1429
	$ \begin{array}{c} (4) \\ -0,7993\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,2941\ 0,1142\ 1 & 1 & 1 & 1 \\ 0,2941\ 1 & 0,1142\ 1 & 1 & 1 & 1 & 1 \\ 0,2941\ 1 & 1 & 0,1142\ 1 & 1 & 1 & 1 \\ 0,2941\ 1 & 1 & 1 & 0,1142\ 1 & 1 & 1 \\ 0,2941\ 1 & 1 & 1 & 1 & 0,1142\ 1 & 1 \\ 0,2941\ 1 & 1 & 1 & 1 & 0,1142\ 1 & 1 \\ 0,2941\ 1 & 1 & 1 & 1 & 0,1142\ 1 & 1 \\ 0,2941\ 1 & 1 & 1 & 1 & 0,1142\ 1 \\ 0,2941\ 1 & 1 & 1 & 1 & 0,1142\ 1 \\ \end{array} $
1 0,444/0,444/0,444/0,444/0,444/0,444/0,444/0,444/ 0,4447 -0,1429 0,1527 0,1527 0,1527 0,1527 0,1527 0,1527	0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0063,0,0000,0,0000,0,0000,0,0000,0,0000,0,0000
0,4447 0,1527 -0,1429 0,1527 0,1527 0,1527 0,1527 0,1527	0,0063 0,0000 -0,1429 0,0000 0,0000 0,0000 0,0000 0,0000
0,4447 0,1527 0,1527 -0,1429 0,1527 0,1527 0,1527 0,1527	0,0063 0,0000 0,0000 -0,1429 0,0000 0,0000 0,0000 0,0000
0,4447 0,1527 0,1527 0,1527 -0,1429 0,1527 0,1527 0,1527 0,1527 0,4447 0,1527 0,1527 0,1527 0,1527 0,1527 -0,1429 0,1527 0,1527	0,0063 $0,0000$ $0,0000$ $0,0000$ $-0,1429$ $0,0000$ $0,0000$ $0,0000$
0.4447 0.1527 0.1527 0.1527 0.1527 0.1527 0.1527 0.1527	0,0063 0,0000 0,0000 0,0000 0,0000 0,0000 -0,1429 0,0000 0,0000
0,4447 0,1527 0,1527 0,1527 0,1527 0,1527 0,1527 -0,1429	0,0063 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 -0,1429
(7)	(8)
1 -0,4131 -0,4131 -0,4131 -0,4131 -0,4131 -0,4131 -0,4131	-0,7535 -0,3727 -0,3727 -0,3727 -0,3727 -0,3727 -0,3727 -0,3727
-0.4131 0.1337 0.1429 0.1337 0.1337 0.1337 0.1337 0.1337 0.1337	-0.37271 0.10761 1 1 1 1 1
-0,4131 0,1337 0,1337 0,1429 0,1337 0,1337 0,1337 0,1337	-0,3727 1 1 0,1076 1 1 1 1
-0,4131 0,1337 0,1337 0,1337 0,1429 0,1337 0,1337 0,1337	-0,3727 1 1 1 0,1076 1 1 1
-0,4131 0,1357 0,1337 0,1337 0,1337 0,1337 0,1429 0,1337 0,13371 -0,4131 0,1337 0,1337 0,1337 0,1337 0,1337 0,1429 0,12371	-0.37271 1 1 1 0,1076 1 1 -0.37271 1 1 1 1 0.1076 1
-0,4131 0,1337 0,1337 0,1337 0,1337 0,1337 0,1337 0,1337 0,1337	-0,3727 1 1 1 1 1 0,1076

Figura 6.2. Partes reais dos estados referentes à aplicação do operador de Grover \hat{G}_{000} sobre o estado

(6.15). Entre parênteses, o número de vezes que o operador foi aplicado.

	(1)	(2)								
	-0 1429 0 0476 0 0476 0 2381 0 0476 0 0476 0 0476 0 0476	-0 1429	0.0095	0.0095	-0 1047 0 0	095 0	0095 0	0095 0	0095	
	0.0476 -0.1429 0.0476 0.2381 0.0476 0.0476 0.0476 0.0476	0.0095	-0 1429	0.0095	-0 1047 0 0	095 0 0	0095 0	0095 0	0095	
	0,0476 0,0476 -0,1429 0,2381 0,0476 0,0476 0,0476 0,0476	0,0095	0.0095	-0 1429	-0 1047 0	0095 0,0	0095 (0095 0	0095	
	$0.2381 \ 0.2381 \ 0.2381 \ 1 \ 0.2381$	-0 1047	-0.1047	-0.1047	1 -0,1047 -0,	1047 -(00000 = 0	0 1047 -0	1047	
	0,2361,0,2361,0,2361,0,2361,1,0,2361,0,000,000,000,000,000,000,000,000,000	0.0095	0.0095	0.0005	-0.1047 -0	1/20 0	0095 (0,1047=0	0095	
	0,0476 0,0476 0,0476 0,2381 -0,1429 0,0476 0,0476 0,0476	0,0095	0,0095	0,0095	0,1047 0.0	14290,	1420 (00005 0	0095	
	0,0476 0,0476 0,0476 0,2381 0,0476 0,0476 0,0476 0,0476	0,0095	0,0095	0,0095	0,1047 0,0	093 - 0,	1429 (1420 0	,0095	
	0,0476 $0,0476$ $0,0476$ $0,2381$ $0,0476$ $0,0476$ $0,0476$ $0,0476$ $0,0476$	0,0095	0,0095	0,0095	-0,1047 0,0	095 0,0	0005 0	1,1429 0	1420	
-	(2)	0,0093	0,0095	0,0095	-0,1047 0,0	J095 0,	0095 0	,0093 -0	,1429	
	(3)	(4)								
	-0,1429 0,4667 0,4667 $-0,8667$ 0,4667 0,4667 0,4667 0,4667 0,4667	0,1142	1	1	0,2941 1	1		1	1	
	0,4667 -0,1429 0,4667 -0,8667 0,4667 0,4667 0,4667 0,4667	1	0,1142	1	0,2941 1	1		1	1	
	0,4667 0,4667 -0,1429 -0,8667 0,4667 0,4667 0,4667 0,4667	1	1	0,1142	0,2941 1		1	1	1	
	-0,8667 -0,8667 -0,8667 1 -0,8667 -0,8667 -0,8667 -0,8667	0,2941	0,2941	0,2941	-0,7993 0	,2941	0,2941	0,2941	0,2941	
	0,4667 0,4667 0,4667 -0,8667 -0,1429 0,4667 0,4667 0,4667	1	1	1	0,2941 (),1142	1	1	1	
	0,4667 0,4667 0,4667 -0,8667 0,4667 -0,1429 0,4667 0,4667	1	1	1	0,2941	1	0,1142	1	1	
	0,4667 0,4667 0,4667 -0,8667 0,4667 0,4667 -0,1429 0,4667	1	1	1	0,2941 1	Ĺ	1	0,1142	1	
	0,4667 0,4667 0,4667 -0,8667 0,4667 0,4667 0,4667 -0,1429	1	1	1	0,2941	1	1	1	0,1142	
	(5)	(6)								
	-0,1429 0,1527 0,1527 0,4447 0,1527 0,1527 0,1527 0,1527	0,1428	0,0000	0,0000	0,0063 0,0	0000 0	0,0000	0,0000 (0,0000	
	0,1527 -0,1429 0,1527 0,4447 0,1527 0,1527 0,1527 0,1527	0,0000	0,1428	0,0000	0,0063 0,0	0000 0	0000,	0,0000 (0,0000	
	0,1527 0,1527 -0,1429 0,4447 0,1527 0,1527 0,1527 0,1527	0,0000	0,0000	0,1428	0,0063 0,0	0000 0	0000	0,0000 (0,0000	
	0,4447 0,4447 0,4447 1 0,4447 0,4447 0,4447 0,4447	0,0063	0,0063	0,0063	1 0.	0063 0	0.0063	0,0063 (0.0063	
	0,1527 0,1527 0,1527 0,4447 -0,1429 0,1527 0,1527 0,1527	0,0000	0,0000	0,0000	0,0063 0,	1428 0), 0000	0,0000	0,0000	
	0,1527 0,1527 0,1527 0,4447 0,1527 -0,1429 0,1527 0,1527	0,0000	0,0000	0,0000	0,0063 0,	0000	0,1428	0,0000	0,0000	
	0,1527 0,1527 0,1527 0,4447 0,1527 0,1527 -0,1429 0,1527	0,0000	0,0000	0,0000	0,0063 0,	0000	0,0000	0,1428	0,0000	
	0,1527 0,1527 0,1527 0,4447 0,1527 0,1527 0,1527 -0,1429	0,0000	0,0000	0,0000	0,0063 0,	0000	0,0000	0,0000	-0,1428	
	(7)	(8)	<i>,</i>	<i>.</i>	· · · · ·				<i>,</i>	-
	01429 01337 01337 -04131 01337 01337 01337 01337	0 1076	1	1	-0 372	71	1	1	1	
	01337 01429 01337 -04131 01337 01337 01337 01337	1	0.10	76 1	-0 3727	1	1	1	1	
	0.1337 0.1337 0.1429 -0.4131 0.1337 0.1337 0.1337 0.1337	1	1	0.107	76 -0.3727	1	1	1	1	
	-0.4131 -0.4131 -0.4131 1 -0.4131 -0.4131 -0.4131 -0.4131	-0.3727	-0.372	7 -0.372	-0.7535	-0.372	7 -0.37	27 -0.372	27 -0.3727	
	0.1337 0.1337 0.1337 -0.4131 0.1429 0.1337 0.1337 0.1337	1	1	1	-0.3727	0.1076	5 1	1	1	
	0.1337 0.1337 0.1337 -0.4131 0.1337 0.1429 0.1337 0.1337	1	1	1	-0.3727	1	0.10	076 1	1	
	0.1337 0.1337 0.1337 -0.4131 0.1337 0.1337 0.1429 0.1337	1	1	1	-0.3727	1	1	0.10	76 1	
	0.1337 0.1337 0.1337 -0.4131 0.1337 0.1337 0.1337 -0.1429	1	1	1	-0.372	7 1	1	1	0.1076	
									V V / V	

Figura 6.3. Partes reais dos estados referentes à aplicação do operador de Grover \hat{G}_{011} sobre o estado (6.15). Entre parênteses, o número de vezes que o operador foi aplicado.

		(\mathbf{i})
	0,0000 $0,0000$ $-0,1429$ $0,0000$ $0,0000$ $0,0000$ $0,0000$ $0,0000$	
	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 -0,1429 0,0000	
	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1429	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
-	····· ································	(ii)
	-0,1380,0000,0001,0001,-0,0021,0,0032,-0,0012,-0,0012,-0,0011,0000,0000,0000	
	0,0001 = 0,0007 = 0,0002 = 0,0003 = 0,0002 = 0,0002 = 0,0002 = 0,0002 = 0,0002 = 0,0002 = 0,0004 = 0	
	-0.0021 0.0025 -0.0046 -0.1451 0.0001 -0.0006 -0.0023 -0.0010	
	0.0032 0.0074 0.0024 0.0001 -0.1488 -0.0033 0.0000 -0.0020	
	-0.0012 -0.0010 -0.0020 -0.0006 -0.0033 -0.1424 -0.0041 -0.0036	
	-0.0012 -0.0003 -0.0004 -0.0023 0.0000 -0.0041 -0.1438 -0.0056	
	-0.0012 - 0.0002 - 0.0004 - 0.001 - 0.0020 - 0.0036 - 0.0056 - 0.1422	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
-	·,····= ·,····= ·,···= ·,···= ·,···= ·,···= ·,···=	(iii)
	0.1500 0.0046 0.0011 0.0007 0.0026 0.0062 0.0070 0.0065	
	-0.036 - 0.0040 - 0.0011 - 0.0097 - 0.0020 - 0.0002 - 0.0070 - 0.0005 - 0.0046 - 0.1356 - 0.0066 - 0.0063 - 0.0042 - 0.0030 - 0.0008 - 0.0011 - 0.0008 - 0	
	-0,0040 -0,1550 0,0000 -0,0003 -0,0042 -0,0050 -0,0008 0,0011	
	-0,0011 0,0000 1 $-0,0020$ 0,0012 0,0008 $-0,0040$ 0,0008	
	-0.0026 - 0.0042 - 0.0012 - 0.0027 - 0.1368 - 0.0017 - 0.0028 - 0.0067	
	0.0062 -0.0030 0.0008 -0.0037 -0.0017 -0.1359 -0.0027 0.0059	
	0.0070 -0.0008 -0.0046 -0.0010 -0.0028 -0.0027 -0.1596 0.0059	
	-0.0065 0.0011 0.0008 -0.0064 0.0067 0.0059 0.0059 -0.1407	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
-	0,000 0,0011 0,0000 0,0001 0,0007 0,0007 0,0007 0,1007	(iv)
	0 1505 0 0014 0 0073 0 0050 0 0067 0 0034 0 0029 0 0064	
	-0.0014 -0.1528 -0.0075 -0.0030 -0.0007 -0.0034 -0.0007 -0.0058	
	0,0073 0,0007 -0,1391 -0,0008 -0,0009 -0,0007 -0,0006 -0,0064	
	-0.0050 0.0015 -0.0008 1 -0.0003 -0.0024 0.0086 0.0067	
	0.0067 0.0034 -0.0009 -0.0003 -0.1331 0.0050 0.0015 -0.0015	
	-0.0034 -0.0004 -0.0006 -0.0024 0.0050 -0.1421 0.0046 0.0100	
	0.0029 -0.0007 -0.0006 0.0086 0.0015 0.0046 -0.1449 0.0020	
	0.0064 -0.0058 -0.0064 0.0067 -0.0016 0.0100 0.0020 -0.1375	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000
	Figura 6.4. Simulações dos estados pseudo-puros cor	h_{i} nstruídos por SMPs: 000 (i) 001 (ii) 010 (iii) e 011 (iv) Å
	I Igara of a Dimanações dos estados pseudo paros con	1000000000000000000000000000000000000

esquerda, partes reais e, à direita, imaginárias.

						(i)								
	-0.1450 -0.0015 0.0014	0.0023 0.	0084 -0.0015	-0.0027	0.0119	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	-0.0015 -0.1434 0.0011	0.0004 -0	0.0057 0.0082	0.0037	0.00192	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0014 0.0011 -0.1439	0.0049 -0	0.0048 0.0036	0.0201	0.0046	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0023 0.0004 0.0049	-0.1454 -0	0.0035 0.0022	-0.0059	-0.0048	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0084 -0.0057 -0.0048	-0.0035 1	-0.0013	0.0030	0.0028	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	-0,0015 0,0082 0,0036	0,0021 -0	0,0013 -0,1352	0,0036	-0,0104	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0027 0,0037 0,0201	-0,0059 0,	.0030 0.0036 -	0,1386	0,0031	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0119 0,0019 0,0046	-0,0048 0,	0028 -0,0104 (),0031 -	-0,1485	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
-	, , , ,	· · · ·			<i>.</i>	(ii)					-	-		
	-0.1427 -0.0050 -0.0036	-0.0053 0	.0020 0.0011	0.0093 -	0.0053	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	-0.0050 -0.1451 -0.0007	0.0043 -(0.0065 0.0036	0.0042 (0,0004	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0.0036 -0.0007 -0.1422	-0.0022 0	0075 0.0007	0.0033 -	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	-0.0053 0.0043 -0.0022	-0.1387 -0	0033 0.0012	0.0000 -	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0020 -0.0065 0.0075	-0.0033 -0.	.1479 -0.0031	0.0003 (0.0016	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0,0011 0,0036 0,0007	0,0012 -0	.0031 1	-0,0048	-0,0020	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0093 0,0042 0,0033	0,0000 0.	,0003 -0,0048	-0,1411	0,0117	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0053 0,0004 -0,0006	-0,0002 0	,0016 -0,0020	0,0117	-0,1423	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
			· · ·			(iii)								
	-0.1420 0.0003 -0.0007	-0.0003 -0	0.0007 -0.0007	-0.0003	-0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0003 -0.1427 0.0006	-0.0002 -0	0.0005 0.0000	-0.0006	-0.0018	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	-0,0007 0,0006 -0,1419	-0,0003 -0	0,0017 -0,0003	-0,0004	-0,0007	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0003 -0,0002 -0,0003	-0,1426 -0	0,0007 0,0007	0,0000	0,0007	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0007 -0,0005 -0,0017	-0,0007 -0	,1419 0,0013	0,0000	0,0013	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0007 0,0000 -0,0003	0,0007 0,	,0013 -0,1445	0,0000	-0,0006	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0003 -0,0006 -0,0004	0,0000 0,0	0000 0,0000	ĺ	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	-0,0006 -0,0018 -0,0007	0,0007 0,0	0013 -0,0006	0,0001	-0,1445	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
-						(iv)								
	-0,1429 0,0000 0,0000	0,0000 0,0	000 0,0000 0,0	0,0 000	0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 -0,1429 0,0000	0,0000 0,0	000 0,0000 0,0	0,0 0000	0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 0,0000 -0,1429	0,0000 0,0	0000 0,0000 0,	0000 0,	0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 0,0000 0,0000	-0,1429 0,0	0000 0,0000 0,	0000 0,	0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 0,0000 0,0000	0,0000 -0,	1429 0,0000 0	,0000 0	,0000,	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 0,0000 0,0000	0,0000 0,0	0000 -0,1429 (),0000 (0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 0,0000 0,0000	0,0000 0,0	0000 0,0000 -0),1429 (0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	0,0000 0,0000 0,0000	0,0000 0,0	0000 0,0000 0	,0000	1	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
	Figura 6.5. Sim	ulações d	los estados	pseudo	o-puros	construío	dos po	r SMP	s: 100	(i), 10	01 (ii)	, 110	(iii) e	111

dos estados pseudo-puros construídos por SMPs: 100 (i (iv). À esquerda, partes reais e, à direita, imaginárias.

Capítulo 7

(a)					(b) 1,0000	0	0	0	0	0	0	0
	1.0000	0	0	0	0	0,7143	0	0	0	0	0	0
	-,	-	-	·	0	0	0,4286	0	0	0	0	0
	0	0,3333	0	0	0	0	0	0,1429	0	0	0	0
	0	0	-0.3333	0	0	0	0	0	- 0,1429	0	0	0
	-	-	-,	·	0	0	0	0	0	-0,4286	0	0
	0	0	0	-1,0000	0	0	0	0	0	0	-0,7143	0
					0	0	0	0	0	0	0	-1,0000
						~		3	7			

Figura 7.1. Partes reais das matrizes \hat{I}_z para *spin* $\frac{3}{2}$ (a) e $\frac{7}{2}$ (b).

Figura 7.11. Partes reais dos estados referentes aos instantes t_3 (a) e t_4 (b) para spin $\frac{7}{2}$

				(b)				
0,9988 0),0000	0,0000	0,0000		0,0480	0,0000	0,0000	0,0000
0,000 0),3339	0,0000	0,0000		0,0000	-0,0480	0,0000	0,0000
0,0000 (0,0000	-0,3339	0,0000		0,0000	0,0000	-0,0480	0,0000
0,0000 0	0000,	0,0000	-0,9988		0,0000	0,0000	0,0000	0,0480
0,0000 0	,0000	0,0000	0,7700	1	0,0000	0,0000	0,0000	0,010

Figura 7.12. Simulação da influência da interação quadrupolar nos pulsos de tomografia de \hat{I}_z para *spin* $\frac{3}{2}$.

Partes real (a) e imaginária (b) para o estado reconstruído.

(a)				(b)			
0,0146	0,1752	0,0140	0	0	-0,8633	-0,1105	-0,0095
0,1752	-0,0049	0	-0,0140	0,8633	0	-1,0000	-0,1105
0,0140	0	0,0049	-0,1752	0,1105	1,0000	0	-0,8633
0	-0,0140	-0,1752	-0,0146	0,0095	0,1105	0,8633	0

Figura 7.13. Partes real (a) e imaginária (b) do estado \hat{I}_y criado

considerando a interação quadrupolar no pulso
$$\frac{\pi}{2}$$
 para spin $\frac{3}{2}$.

(a)				(b)			
0,0144	0,1752	0,0277	0	0,0010	-0,8633	-0,1041	-0,0093
0,1752	-0,0049	0	-0,0277	0,8633	-0,0010	-1,0000	-0,1041
0,0277	0	0,0049	-0,1752	0,1041	1,0000	-0,0010	-0,8633
0	-0,0277	-0,1752	-0,0144	0,0093	0,1041	0,8633	0,0010

Figura 7.14. Partes real (a) e imaginária (b) do estado \hat{I}_y de *spin* $\frac{3}{2}$ reconstruído considerando

a interação quadrupolar nos pulsos de criação de estado e de tomografia.

	(i)	
-0,0071 -0,0141 0,9775	0,1095	0,0000 0,2334 -0,1762 0,0000
-0,0141 1,0000 0,0365	-0,9775	-0,2334 0,0000 0,0000 -0,1762
0,9775 0,0365 -1,0000	-0,0141	0,1762 0,0000 0,0000 -0,2334
0,1095 -0,9775 -0,0141	0,0071	0,0000 0,1762 0,2334 0,0000
	(ii)	
0,3562 0,4638 0,0582	-0,4745	0,0000 -0,0080 -0,2938 0,0000
0,4638 -0,3742 -1,0000	-0,0582	0,0080 0,0000 0,0000 -0,2938
0,0582 -1,0000 0,3742	0,4638	0,2938 0,0000 0,0000 0,0080
-0,4745 -0,0582 0,4638	-0,3562	0,0000 0,2938 -0,0080 0,0000
0,1712 0,0202 0,1020	0,5502	0,0000 0,2950 0,0000 0,0000

Figura 7.15. Estados no instante t_4 para coerências pares (i) e ímpares (ii) para *spin* $\frac{3}{2}$ considerando a interação quadrupolar na criação. À esquerda, parte real e, à direita, parte imaginária.

(a)

_

				(i)					
-0,0084	-0,0141	0,9925	0,1077	Ì	-0,0326	0,2336	0,0122	0,0000	
-0,0141	0,9995	0,0365	-0,9925		-0,2336	0,0326	-0,0000	0,0122	
0,9925	0,0365	-0,9995	-0,0141		-0,0122	0,0000	0,0326	-0,2336	
0,1077	-0,9925	-0,0141	0,0084		0,0000	-0,0122	0,2336	-0,0326	
				(ii))				
0,3508	0,4638	0,0944	-0,4665		0,0327	-0,0080	-0,2727	0,0000	
0,4638	-0,3752	-1,0000	-0,0944		0,0080	-0,0327	0,0000	-0,2727	
0,0944	-1,0000	0,3752	0,4638		0,2727	-0,0000	-0,0327	0,0080	
-0,4665	-0,0944	0,4638	-0,3508		0,0000	0,2727	-0,0080	0,0327	
Figura 7.16. Est	ados no ins	stante t_4 par	ra coerênci	ias p	oares (i) e ímp	oares (ii) p	ara spin $\frac{3}{2}$	- consideranc	lo a
interação quadr	upolar da c	riação ao p	processo de	e to	mografia. À e	squerda, p	arte real e	, à direita, pa	rte
			Im	agir	iaria.				
				(i))				
932 0 0,0000 -0),0000 -0,000) 0,0000 -0	,0000 -0,000	0	0,1167 0,0000	0,0000 0,00	00 0,0000 (0,0000 -0,0000	0,0000

0,9932 0 0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 0,1167 0,0000 0,0000 0,0000 0,0000 -0,0000 0,0000
0 0,7106 0 -0,0000 -0,0000 0,0000 0,0000 0,0000 0,0000 0,0167 0 0,0000 -0,0000 -0,0000 -0,0000 -0,0000
0,0000 0 0,4268 0 -0,0000 -0,0000 0,0000 0,0000 0,0000 0 -0,0500 0 -0,0000 0,0000 -0,0000 -0,0000
-0,0000 -0,0000 0 0,1424 0 -0,0000 -0,0000 0,0000 0,0000 0 -0,0834 0 0,0000 0,0000 -0,0000
-0,0000 -0,0000 -0,0000 0 -0,1424 0 0,0000 -0,0000 0,0000 0,0000 0 -0,0834 0 0,0000 -0,0000
0,0000 0,0000 -0,0000 0 -0,4268 0 0,0000 0,0000 -0,0000 0 -0,0000 0 -0,0000 0 0,0000
-0,0000 0,0000 0,0000 -0,0000 0,0000 0 -0,7106 0 0,0000 0,0000 -0,0000 -0,0000 0 0,0167 0
-0,0000 0,0000 0,0000 -0,0000 -0,0000 0,0000 0 -0,9932 0,0000 0,0000 0,0000 0,0000 -0,0000 0 0,1167
(ii)
0,9827 0 0,0000 -0,0000 0,0000 -0,0000 0,0000 -0,0000 0,1854 0 0,0000 -0,0000 -0,0000 -0,0000 0,0000 0,0000
0 0,7050 0 0,0000 -0,0000 0,0000 -0,0000 0,0000 0 0,0266 0 0,0000 -0,0000 -0,0000 -0,0000 -0,0000
0,0000 0 0,4242 0 0,0000 0,0000 0,0000 -0,0000 -0,0000 0 -0,0794 0 0,0000 -0,0000 -0,0000 0,0000
-0,0000 0,0000 0 0,1416 0 0,0000 -0,0000 0,0000 0,0000 0 -0,1325 0 0,0000 -0,0000 -0,0000
0,0000 -0,0000 0,0000 0 -0,1416 0 0,0000 -0,0000 0,0000 -0,0000 0 -0,1325 0 0,0000 -0,0000
-0,0000 0,0000 0,0000 0,0000 0 -0,4242 0 -0,0000 0,0000 0,0000 -0,0000 0 -0,0794 0 0,0000
0,0000 -0,0000 0,0000 -0,0000 0,0000 0 -0,7050 0 0,0000 0,0000 0,0000 -0,0000 0 0,0266 0
-0,0000 0,0000 -0,0000 -0,0000 -0,0000 0,0000 0 -0,9827 -0,0000 0,0000 -0,0000 0,0000 -0,0000 0 0,1854
(iii)
0,9617 0 -0,0000 0,0000 -0,0000 0,0000 -0,0000 0,0000 0,2743 0 -0,0000 -0,0000 0,0000 0,0000 0,0000 0,0000
0 0,6938 0 -0,0000 0,0000 0,0000 -0,0000 0 0,0396 0 0,0000 -0,0000 0,0000 0,0000
-0,0000 0 0,4191 0 -0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,1175 0 0,0000 0,0000 0,0000 0,0000
0,0000 -0,0000 0 0,1402 0 -0,0000 -0,0000 0,0000 0,0000 0 -0,0000 0 -0,1963 0 0,0000 0,0000 0,0000
-0,0000 0,0000 -0,0000 0 -0,1402 0 -0,0000 -0,0000 -0,0000 0,0000 -0,0000 0 -0,1963 0 -0,0000 0,0000
0,0000 0,0000 0,0000 -0,0000 0 -0,4191 0 -0,0000 -0,0000 -0,0000 -0,0000 0 -0,1175 0 -0,0000
-0,0000 -0,0000 0,0000 -0,0000 0 -0,0000 0 -0,6938 0 -0,0000 0,0000 -0,0000 0,0000 0 0,0396 0
0,0000 -0,0000 -0,0000 0,0000 -0,0000 0 -0,0000 0 -0,9617 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 0,0000 0 0,2743
Figura 7.17. Reconstrução de I_z considerando a interação quadrupolar nos pulsos de tomografia para spin

 $\frac{7}{2}$. Ângulos de nutação dados pela tabela 7.2. Duração do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii).

À esquerda, parte real e à direita, imaginária.

	(i)
0,9998 0 -0,0000 0,0000 0,0000 -0,0000 -0,0000	0,0181 0 -0,0000 0,0000 -0,0000 0,0000 0,0000 -0,0000
0 0,7145 0 -0,0000 0,0000 0,0000 0,0000 -0,0000	0 0,0026 0 -0,0000 0,0000 -0,0000 0,0000 0,0000
-0,0000 0 0,4288 0 -0,0000 0,0000 0,0000 0,0000	0,0000 0 -0,0077 0 0,0000 0,0000 -0,0000 0,0000
0,0000 -0,0000 0 0,1430 0 -0,0000 0,0000 0,0000	-0,0000 0,0000 0 -0,0129 0 -0,0000 -0,0000 -0,0000
0,0000 0,0000 -0,0000 0 -0,1430 0 -0,0000 0,0000	0,0000 -0,0000 -0,0000 0 -0,0129 0 -0,0000 -0,0000
0,0000 0,0000 0,0000 -0,0000 0 -0,4288 0 0,0000	-0,0000 0,0000 -0,0000 0,0000 0 -0,0077 0 -0,0000
-0,0000 0,0000 0,0000 0,0000 -0,0000 0 -0,7145 0	-0,0000 -0,0000 0,0000 0,0000 0,0000 0 0,0026 0
-0,0000 -0,0000 0,0000 0,0000 0,0000 0,0000 0 -0,9998	0,0000 -0,0000 -0,0000 0,0000 0,0000 0,0000 0 0,0181
(ii)
0.9996 0 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000	0.0289 0 -0.0000 0.0000 -0.0000 0.0000 -0.0000
0 0.7148 0 0.0000 0.0000 0.0000 0.0000	0 0.0041 0 0.0000 -0.0000 -0.0000 -0.0000
-0.0000 0 0.4292 0 0.0000 -0.0000 0.0000 0.0000	0.0000 0 -0.0124 0 -0.0000 0.0000 -0.0000 0.0000
0.0000 0.0000 0 0.1431 0 -0.0000 -0.0000 0.0000	-0.0000 -0.0000 0 -0.0207 0 0.0000 -0.0000 0.0000
-0.0000 0.0000 0.0000 0 -0.1431 0 -0.0000 0.0000	0.0000 0.0000 0.0000 0 -0.0207 0 0.0000 0.0000
0,0000 0,0000 -0,0000 -0,0000 0 -0,4292 0 0,0000	-0,0000 0,0000 -0,0000 -0,0000 0 -0,0124 0 -0,0000
0,0000 0,0000 0,0000 -0,0000 -0,0000 0 -0,7148 0	-0,0000 -0,0000 0,0000 0,0000 -0,0000 0 0,0041 0
-0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0 -0,9996	0,0000 0,0000 -0,0000 -0,0000 -0,0000 0,0000 0 0,0289
(1	iii)
0.9991 0 -0.0000 -0.0000 0.0000 0.0000 0.0000	0.0433 0 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000
0 0,7154 0 0,0000 -0,0000 0,0000 0,0000 0,0000	0 0,0062 0 -0,0000 0,0000 -0,0000 0,0000
-0,0000 0 0,4299 0 0,0000 -0,0000 0,0000 0,0000	0,0000 0 -0,0186 0 -0,0000 0,0000 -0,0000 -0,0000
-0,0000 0,0000 0 0,1434 0 0,0000 -0,0000 0,0000	-0,0000 0,0000 0 -0,0310 0 -0,0000 0,0000 -0,0000
0,0000 -0,0000 0,0000 0 -0,1434 0 -0,0000 0,0000	0,0000 -0,0000 0,0000 0 -0,0310 0 -0,0000 -0,0000
0,0000 0,0000 -0,0000 0,0000 0 -0,4299 0 0,0000	0,0000 0,0000 -0,0000 0,0000 0 -0,0186 0 -0,0000
0,0000 0,0000 0,0000 -0,0000 -0,0000 0 -0,7154 0	-0,0000 0,0000 0,0000 -0,0000 0,0000 0 0,0062 0
0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0 -0,9991	0,0000 -0,0000 0,0000 0,0000 0,0000 0,0000 0 0,0433

0,0000 0,000 0,0000 0,000

 $\frac{7}{2}$. Ângulos de nutação dados pela tabela 7.,3. Duração do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii). À esquerda, parte real e à direita, imaginária.

(i)

0,0360	0,2212	0,0272	0,0037	0,0004	0,0000	0,0000	0,0000	-0,0000	-0,6555	-0,0758	-0,0075	-0,0009	-0,0001	-0,0000	-0,0000
0,2212	0,0035	0,1917	0,0240	0,0028	0,0002	-0,0000	-0,0000	0,6555	0,0000	-0,8627	-0,1152	-0,0122	-0,0015	-0,0002	-0,0000
0,0272	0,1917	-0,0066	0,1067	0,0093	0,0000	-0,0002	-0,0000	0,0758	0,8627	0,0000	-0,9673	-0,1354	-0,0140	-0,0015	-0,0001
0,0037	0,0240	0,1067	-0,0036	-0,0000	-0,0093	-0,0028	-0,0004	0,0075	0,1152	0,9673	-0,0000	-1,0000	-0,1354	-0,0122	-0,0009
0,0004	0,0028	0,0093	-0,0000	0,0036	-0,1067	-0,0240	-0,0037	0,0009	0,0122	0,1354	1,0000	0,0000	-0,9673	-0,1152	-0,0075
0,0000	0,0002	0,0000	-0,0093	-0,1067	0,0066	-0,1917	-0,0272	0,0001	0,0015	0,0140	0,1354	0,9673	-0,0000	-0,8627	-0,0758
0,0000	-0,0000	-0,0002	-0,0028	-0,0240	-0,1917	-0,0035	-0,2212	0,0000	0,0002	0,0015	0,0122	0,1152	0,8627	-0,0000	-0,6555
0,0000	-0,0000	-0,0000	-0,0004	-0,0037	-0,0272	-0,2212	-0,0360	0,0000	0,0000	0,0001	0,0009	0,0075	0,0758	0,6555	-0,0000
							(i	i)							
0,0950	0,3612	0,0682	0,0144	0,0028	0,0004	0,0000	-0,0000	0,0000	-0,6447	-0,1104	-0,0160	-0,0032	-0,0007	-0,0001	-0,0000
0,3612	0,0084	0,3097	0,0608	0,0114	0,0014	0,0000	-0,0000	0,6447	0,0000	-0,8573	-0,1791	-0,0299	-0,0059	-0,0010	-0,0001
0,0682	0,3097	-0,0174	0,1712	0,0236	-0,0000	-0,0014	-0,0004	0,1104	0,8573	0,0000	-0,9660	-0,2165	-0,0356	-0,0059	-0,0007
0,0144	0,0608	0,1712	-0,0094	-0,0000	-0,0236	-0,0114	-0,0028	0,0160	0,1791	0,9660	0,0000	-1,0000	-0,2165	-0,0299	-0,0032
0,0028	0,0114	0,0236	-0,0000	0,0094	-0,1712	-0,0608	-0,0144	0,0032	0,0299	0,2165	1,0000	0 -0,96	560 -0,1°	791 -0,0	160
0,0004	0,0014	-0,0000	-0,0236	-0,1712	0,0174	-0,3097	-0,0682	0,0007	0,0059	0,0356	0,2165	0,9660	-0,0000	-0,8573	-0,1104
0,0000	0,0000	-0,0014	-0,0114	-0,0608	-0,3097	-0,0084	-0,3612	0,0001	0,0010	0,0059	0,0299	0,1791	0,8573	-0,0000	-0,6447
-0,0000	-0,0000	-0,0004	-0,0028	-0,0144	-0,0682	-0,3612	-0,0950	0,0000	0,0001	0,0007	0,0032	0,0160	0,1104	0,6447	0,0000
							(i	ii)							
0,2268	0,5628	0,1461	0,0439	0,0126	0,0031	0,0005	0,0000	-0,0000	-0,6174	- 0,1319	-0,0222	-0,0067	-0,0025	-0,0009	-0,0002
0,5628	0,0164	0,4739	0,1338	0,0369	0,0071	-0,0000	-0,0005	0,6174	-0,0000	-0,8454	-0,2530	-0,0613	-0,0189	-0,0052	-0,0009
0,1461	0,4739	-0,0412	0,2587	0,0524	0,0000	-0,0071	-0,0031	0,1319	0,8454	-0,0000	-0,9632	-0,3246	-0,0790	-0,0189	-0,0025
0,0439	0,1338	0,2587	-0,0216	0,0000	-0,0524	-0,0369	-0,0126	0,0222	0,2530	0,9632	0,0000	-1,0000	-0,3246	-0,0613	-0,0067
0,0126	0,0369	0,0524	0,0000	0,0216	-0,2587	-0,1338	-0,0439	0,0067	0,0613	0,3246	1,0000	-0,0000	-0,9632	-0,2530	-0,0222
0,0031	0,0071	0,0000	-0,0524	-0,2587	0,0412	-0,4739	-0,1461	0,0025	0,0189	0,0790	0,3246	0,9632	0,0000	-0,8454	-0,1319
0,0005	-0,0000	-0,0071	-0,0369	-0,1338	-0,4739	-0,0164	-0,5628	0,0009	0,0052	0,0189	0,0613	0,2530	0,8454	-0,0000	-0,6174
0,0000	-0,0005	-0,0031	-0,0126	-0,0439	-0,1461	-0,5628	-0,2268	0,0002	0,0009	0,0025	0,0067	0,0222	0,1319	0,6174	-0,0000
									^		7				π
Figur	a 7.19.	Partes r	eal (esq	uerda) e	e imagii	nária (di	ireita) pa	ra estad	os I_v pa	ra <i>spin</i>	- obti	dos com	ı duraçã	io do pu	lso —
2				. ,	2		· 1				2		,		2

de 5 (i), 8 (ii) e 12 µs (iii) considerando a atuação da interação quadrupolar durante a criação do estado.

2	7	n
L	1	Э

								(i)							
	0,0355	0,2212	0,0507	0,0063	0,0011	0,0001	0,0000	-0,0000	0,0050	-0,6555	-0,0588	-0,0039	-0,0005	-0,0001	-0,0000	-0,0000
	0,2212	0,0032	0,1917	0,0455	0,0050	0,0006	-0,0000	-0,0000	0,6555	-0,0004	-0,8627	-0,1064	-0,0096	-0,0012	-0,0001	-0,0000
	0,0507	0,1917	-0,0067	0,1067	0,0177	0,0000	-0,0006	-0,0001	0,0588	0,8627	-0,0021	-0,9673	-0,1346	-0,0122	-0,0012	-0,0001
	0,0063	0,0455	0,1067	-0,0037	-0,0000	-0,0177	-0,0050	-0,0011	0,0039	0,1064	0,9673	-0,0025	-1,0000	-0,1346	-0,0096	-0,0005
	0,0011	0,0050	0,0177	-0,0000	0,0037	-0,1067	-0,0455	-0,0063	0,0005	0,0096	0,1346	1,0000	-0,0025	-0,9673	-0,1064	-0,0039
	0,0001	0,0006	0,0000	-0,0177	-0,1067	0,0067	-0,1917	-0,0507	0,0001	0,0012	0,0122	0,1346	0,9673	-0,0021	-0,8627	-0,0588
	0,0000	-0,0000	-0,0006	-0,0050	-0,0455	-0,1917	-0,0032	-0,2212	0,0000	0,0001	0,0012	0,0096	0,1064	0,8627	-0,0004	-0,6555
_	-0,0000	-0,0000	-0,0001	-0,0011	-0,0063	-0,0507	-0,2212	-0,0355	0,0000	0,0000	0,0001	0,0005	0,0039	0,0588	0,6555	0,0050
								(ii)							
	0,0915	0,3612	0,1177	0,0210	0,0050	0,0009	0,0001	-0,0000	0,0207	-0,6447	-0,0449	0,0044	0,0003	0,0000	-0,0000	-0,0000
	0,3612	0,0066	0,3097	0,1091	0,0183	0,0030	-0,0000	-0,0001	0,6447	-0,0016	-0,8573	-0,1446	-0,0153	-0,0033	-0,0006	-0,0000
	0,1177	0,3097	-0,0182	0,1712	0,0430	0,0000	-0,0030	-0,0009	0,0449	0,8573	-0,0089	-0,9659	-0,2128	-0,0257	-0,0033	0,0000
	0,0210	0,1091	0,1712	-0,0096	-0,0000	-0,0430	-0,0183	-0,0050	-0,0044	0,1446	0,9659	-0,0103	-1,0000	-0,2128	-0,0153	0,0003
	0,0050	0,0183	0,0430	-0,0000	0,0096	-0,1712	-0,1091	-0,0210	-0,0003	0,0153	0,2128	1,0000	-0,0103	-0,9659	-0,1446	0,0044
	0,0009	0,0030	0,0000	-0,0430	-0,1712	0,0182	-0,3097	-0,1177	-0,0000	0,0033	0,0257	0,2128	0,9659	-0,0089	-0,8573	-0,0449
	0,0001	-0,0000	-0,0030	-0,0183	-0,1091	-0,3097	-0,0066	-0,3612	0,0000	0,0006	0,0033	0,0153	0,1446	0,8573	-0,0016	-0,644 /
-	-0,0000	-0,0001	-0,0009	-0,0050	-0,0210	-0,1177	-0,3612	2 -0,0915	0,0000	0,0000	-0,0000	-0,0003	-0,0044	0,0449	0,6447	0,0207
								(11	1)							
	0,2080	0,5628	0,2130	0,0438	0,0104	0,0033	0,0009	0,0000	0,0727	-0,6174	0,0610	0,0516	0,0114	0,0028	0,0002	-0,0001
	0,5628	0,0073	0,4739	0,2138	0,0498	0,0108	-0,0000	-0,0009	0,6174	-0,0062	-0,8454	-0,1478	-0,0089	-0,0057	-0,0023	0,0002
	0,2130	0,4739	-0,0455	0,2587	0,0871	-0,0000	-0,0108	-0,0033	-0,0610	0,8454	-0,0309	-0,9632	-0,3106	-0,0471	-0,0057	0,0028
	0,0438	0,2138	0,2587	-0,0229	0,0000	-0,0871	-0,0498	-0,0104	-0,0516	0,1478	0,9632	-0,0356	-1,0000	-0,3106	-0,0089	0,0114
	0,0104	0,0498	0,0871	0,0000	0,0229	-0,258/	-0,2138	-0,0438	-0,0114	0,0089	0,3106	1,0000	-0,0356	-0,9632	-0,14/8	0,0516
	0,0033	0,0108	-0,0000	-0,08/1	-0,258/	0,0455	-0,4/39	-0,2130	-0,0028	0,0057	0,04/1	0,3106	0,9632	-0,0309	-0,8454	0,0610
	0,0009	-0,0000	-0,0108	-0,0498	-0,2138	-0,4/39	-0,0073	-0,5628	-0,0002	0,0023	0,0057	0,0089	0,14/8	0,8454	-0,0062	-0,01/4
	0,0000	-0,0009	-0,0055	-0,0104	-0,0438	-0,2150	-0,3028	-0,2080	0,0001	-0,0002	-0,0028	-0,0114	-0,0310	-0,0010	0,0174	0,0727
	г.	7 30 G	1~1			~	1 1			c 1 î		/	^ 1		. 1 1 7	2 D (
	Elaura	7.20. Sim	nnacao da	intilienci	a da inter	acao dua	arupolar r	ios puisos a	e tomogi	ana de I_v	para spin	- com	angulos c	ados pela	i tabela /,	2. Partes
	Figura		,			.,	1	1	U		1 1	2	-	1	,	
	Figura		,			.,	1	1	U	,	1 1	2		1	,	
	rigura		,,			. , .					π	2			,	
	rigura		г.	eais (à dir	eita) e im	aginárias	(à esquer	da) para du	ração do	pulso de	$\frac{\pi}{2}$ de 5	2 (i), 8 (ii) 6	e 12 μs (ii	i).		
	Figura		ľ	eais (à dir	eita) e im	aginárias	(à esquer	da) para du	ração do	pulso de	$\frac{\pi}{2}$ de 5	2 (i), 8 (ii) e	e 12 μs (ii	i).	,	
_	Figura		ŗ	eais (à dir	eita) e im	aginárias	(à esquer	da) para du	ração do)	pulso de	$\frac{\pi}{2}$ de 5	2 (i), 8 (ii) 6	e 12 μs (ii	i).		
_	0,0360	0,2212	r 0,0354	eais (à dir 0,0054	eita) e im 0,0006	aginárias	(à esquer 0,0000	da) para du (1) 0,0000	ração do) 0,0015	pulso de -0,6555	$\frac{\pi}{2} \det 5$	2 (i), 8 (ii) 6 -0,0058	e 12 μs (ii -0,0007	i). -0,0001	-0,0000	-0,0000
_	0,0360 0,2212	0,2212 0,0035	0,0354 0,1917	eais (à dir 0,0054 0,0320	eita) e im 0,0006 0,0044	aginárias 0,0001 0,0003	(à esquer 0,0000 0,0000	da) para du (i) 0,0000 -0,0000	ração do) 0,0015 0,6555	-0,6555 -0,0003	$\frac{\pi}{2}$ de 5 -0,0712 -0,8627	2 (i), 8 (ii) 6 -0,0058 -0,1123	-0,0007 -0,0113	-0,0001 -0,0014	-0,0000 -0,0001	-0,0000
_	0,0360 0,2212 0,0354	0,2212 0,0035 0,1917	0,0354 0,1917 -0,0066	eais (à dir 0,0054 0,0320 0,1067	eita) e im 0,0006 0,0044 0,0124	aginárias 0,0001 0,0003 0,0000	(à esquer 0,0000 0,0000 -0,0003	da) para du (1 0,0000 -0,0001 -0,0001	ração do) 0,0015 0,6555 0,0712	-0,6555 -0,0003 0,8627	$\frac{\pi}{2}$ de 5 -0,0712 -0,8627 -0,0006	2 (i), 8 (ii) 6 -0,0058 -0,1123 -0,9673	-0,0007 -0,0113 -0,1343	-0,0001 -0,0014 -0,0135	-0,0000 -0,0001 -0,0014	-0,0000 -0,0000 -0,0001
_	0,0360 0,2212 0,0354 0,0054	0,2212 0,0035 0,1917 0,0320	0,0354 0,1917 -0,0066 0,1067	eais (à dir 0,0054 0,0320 0,1067 -0,0036	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0020	aginárias 0,0001 0,0003 0,0000 -0,0124	(à esquer 0,0000 0,0000 -0,0003 -0,0044	da) para du: 0,0000 -0,0000 -0,0001 -0,0006 0,0005 4	ração do) 0,0015 0,6555 0,0712 0,0058	-0,6555 -0,0003 0,8627 0,1123	$\frac{\pi}{2} \text{ de } 5$ -0,0712 -0,8627 -0,0006 0,9673 0,124	2 (i), 8 (ii) 6 -0,0058 -0,1123 -0,9673 -0,0005	-0,0007 -0,0113 -0,1343 -1,0000	-0,0001 -0,0014 -0,0135 -0,1343	-0,0000 -0,0001 -0,0014 -0,0113 0,1122	-0,0000 -0,0000 -0,0001 -0,0007
_	0,0360 0,2212 0,0354 0,0054 0,0006	0,2212 0,0035 0,1917 0,0320 0,0044 0,0002	0,0354 0,1917 -0,0066 0,1067 0,0124	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 0,0124	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 0,1067	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067	(à esquer 0,0000 0,0000 -0,0003 -0,0044 -0,0320	da) para du 0,0000 -0,0000 -0,0001 -0,00054 0,0054	ação do) 0,0015 0,6555 0,0712 0,0058 0,0007	-0,6555 -0,0003 0,8627 0,1123 0,0113	$\frac{\pi}{2} \text{ de } 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0125	2 (i), 8 (ii) 6 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1242	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 0.8(27	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 0,0212
_	0,0360 0,2212 0,0354 0,0054 0,0006 0,0001	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 0,0003	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 0.0044	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 0,03200	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 0,1917	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 0,0035	da) para du: 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 0,2312) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0001	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014	$\frac{\pi}{2} \text{ de } 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014	2 (i), 8 (ii) 6 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,9673	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 0,0003	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 -0,0712 0,6555
	0,0360 0,2212 0,0354 0,0054 0,0006 0,0000 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0003	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0044	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 -0,0320	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917	(à esquer 0,0000 0,0000 -0,0003 -0,0044 -0,0320 -0,0035 -0,0035	da) para du: 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 -0,2212 -0,0360	ração do 0,0015 0,6555 0,0712 0,0058 0,0007 0,0000 0,0000	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,00014	2 (i), 8 (ii) (ii) (ii) (ii) (ii) (ii) (ii) (i	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0123	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712	-0,0000 -0,0001 -0,0014 -0,0113 -0,8627 -0,0003 0,6555	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015
_	0,0360 0,2212 0,0354 0,0054 0,0006 0,0000 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0006	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 -0,0320 -0,0054	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354	(à esquer 0,0000 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212	da) para du: 0,0000 -0,0001 -0,0006 -0,0054 -0,0254 -0,0254 -0,0354 -0,2212 -0,0360	ração do 0,0015 0,6555 0,0712 0,0058 0,0007 0,0000 0,0000	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015
_	0,0360 0,2212 0,0354 0,0054 0,0006 0,0000 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0006	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 -0,0320 -0,0054	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212	da) para du: 0,0000 -0,0001 -0,0006 -0,0054 -0,0254 -0,0254 -0,0354 -0,0260 (ii	ração do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0000 0,0000 0,0000) 0,0001	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015
_	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0006	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001	da) para du: 0,0000 -0,0001 -0,0006 -0,0054 -0,0254 -0,0354 -0,2212 -0,0360 (ii 0,0000 0,0000	ração do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0000 0,0000 0,0000) 0,0061	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447	$\frac{\pi}{2} de 5$ $\frac{-0,0712}{-0,8627}$ $-0,0006$ $0,9673$ $0,1343$ $0,0135$ $0,0014$ $-0,0921$	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0013 0,0007 -0,0061	-0,0007 -0,0113 -0,134 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0954	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,2007	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 0,0174	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0004 0,0185 0,0800 0,01712	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,0320 -0,0054 0,0035 0,0171 0,0235	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0001 0,0006	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000	da) para du: (i) 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 -0,0354 -0,0354 (ii) 0,0000 -0,0001 0,0000	ração do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0000 0,0000) 0,0061 0,6447 0,0061	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,9673	$\frac{\pi}{2} de 5$ $\frac{-0,0712}{-0,8627}$ $-0,0006$ $0,9673$ $0,1343$ $0,0135$ $0,0014$ $-0,0921$ $-0,8573$ $0,0021$	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 0,0061	-0,0007 -0,0113 -0,134 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008	-0,0000 -0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001
_	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0858 0,0155	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,3097	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0006 0,0185 0,0800 0,1712 0,0004	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 0,0035	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 0,0021 0,0000	(à esquer 0,0000 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0021 0,0021	da) para du: (i) 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 -0,0354 -0,0360 (ii) 0,0000 -0,0001 -0,0006 -0,0001	ração do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0001 0,0000) 0,00061 0,0447 0,0921 0,0021	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1673	$\frac{\pi}{2} de 5$ $\frac{-0,0712}{-0,8627}$ $-0,0006$ $0,9673$ $0,0135$ $0,0014$ $-0,0921$ $-0,0921$ $-0,0921$ $-0,0050$	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 0,0052	-0,0007 -0,0113 -0,134 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 0,0130	-0,0000 -0,0001 -0,0014 -0,0113 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0048 -0,0048	-0,0000 -0,0000 -0,0001 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 0,0012
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0858 0,0185 0,0035	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,0800 0,0171	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,0172 0,0316	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0006 0,0185 0,0800 0,1712 -0,0094 -0,0094	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0004	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,0171	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0001 -0,0001 -0,00171 -0,0021	da) para du: 0,0000 -0,0000 -0,0001 -0,0054 -0,0354 -0,0354 -0,0360 (ii 0,0000 -0,0001 -0,0006 -0,0001 -0,0006 -0,00035 -0,0185	ração do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0001 0,0000 0,0000) 0,0061 0,6447 0,0921 0,0061 0,0061	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0230	$\frac{\pi}{2} de 5$ $\frac{-0,0712}{-0,8627}$ $-0,0006$ $0,9673$ $0,1343$ $0,0135$ $0,0014$ $-0,0921$ $-0,0921$ $-0,0921$ $-0,0925$ $0,0026$ $0,9659$ $0,2120$	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000	-0,0007 -0,0113 -0,134 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2100 -1,0000	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0028 -0,0028 -0,0028	-0,0000 -0,0000 -0,0001 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0012 -0,0061
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0858 0,0185 0,0035 0,0005	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,0800 0,0171 0,0021	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0006 0,0185 0,0800 0,1712 -0,0094 -0,0004	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,1712 0,0174	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0001 -0,0001 -0,0021 -0,0021 -0,00800 0 0,0000	da) para du: 0,0000 -0,0000 -0,0001 -0,0054 -0,0354 -0,0354 -0,0350 (ii 0,0000 -0,0001 -0,0006 -0,0005 -0,0185 -0,0185 -0,0185	ração do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0001 0,0000 0,0000) 0,0061 0,0061 0,0061 0,0021 0,0061 0,0021 0,00012 0,00012	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0239	$\frac{\pi}{2} de 5$ $\frac{-0,0712}{-0,8627}$ $-0,0006$ $0,9673$ $0,0135$ $0,0014$ $-0,0921$ $-0,0921$ $-0,0921$ $-0,0921$ $-0,0925$ $0,0026$ $0,9659$ $0,2120$ $0,0329$	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120	-0,0007 -0,0113 -0,134 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9658	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,02120 -0,9659 -0,0026	-0,0000 -0,0001 -0,0014 -0,0113 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0012 -0,0061 -0,0921
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0858 0,0185 0,0035 0,0005	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,0800 0,0171 0,0021 -0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0006 0,1712 -0,0094 -0,00316 -0,0171	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,1712 0,0174 -0,0174	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0000 -0,0000 -0,0004 -0,0004 -0,0004 -0,0004 -0,0004 -0,0004 -0,0004 -0,0004 -0,0004 -0,0005 -0,2212 -0,0004 -0,0005 -0,2212 -0,0004 -0,0005 -0,2212 -0,0004 -0,0000 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0005 -0,0004 -0,0000 -0,0005 -0,0004 -0,0000 -0,0005 -0,0001 -0,0000 -0,0001 -0,0000 -0,0001 -0,0000 -0,0001 -0,0000 -0,	da) para du: (i) 0,0000 -0,0000 -0,0006 -0,0054 -0,0354 -0,0354 -0,0354 (ii) 0,0000 -0,0001 -0,0006 -0,0005 -0,00185 -0,0185 -0,0858 -0,0858 -0,03512	ação do) 0,0015 0,6555 0,0712 0,0058 0,0001 0,0000 0,0000) 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,00048	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0329 0,0014	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0239	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1675	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0004 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573 -0,0011	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0012 -0,0061 -0,0921 -0,06447
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0858 0,0185 0,0035 0,0005 0,0006 0,0001 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0830 0,0171 0,0800 0,0171 -0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000 -0,0021 -0,0006	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0004 -0,0094 -0,0094 -0,0094 -0,0035	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,1712 0,0174 -0,3097	(à esquer 0,0000 0,0003 -0,0043 -0,0035 -0,2212 0,0001 -0,0000 -0,0001 -0,0000 -0,0021 -0,0800 -0,3097 -0,0083 -0,3612	da) para du: (i) 0,0000 -0,0000 -0,0006 -0,0054 -0,0354 -0,0354 -0,0354 (ii) 0,0000 -0,0001 -0,0001 -0,0005 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946	ação do) 0,0015 0,6555 0,0712 0,0058 0,0001 0,0000 0,0000) 0,0061 0,6447 0,0921 0,0061 0,0012 0,0001 0,0001	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0008 0,0008	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0329 0,0048 0,0003	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0023	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0061	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0004 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573 -0,0013 -0,06447	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0012 -0,0061
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0946 0,3612 0,0858 0,0185 0,0035 0,0035 0,0006 0,0001 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,083 0,3097 0,0800 0,0171 0,0021 -0,0000 -0,0001	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000 -0,0001 -0,0006	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0004 -0,0094 -0,00094 -0,00094 -0,00316 -0,0171 -0,0035	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800 -0,0185	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,1712 0,0174 -0,3097 -0,0858	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0021 -0,0171 -0,0800 -0,3097 -0,0083 -0,3612	da) para du: (i 0,0000 -0,0000 -0,0001 -0,0054 -0,0354 -0,2212 -0,0360 (ii 0,0000 -0,0001 -0,0006 -0,0035 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946 (iii	ação do) 0,0015 0,6555 0,0712 0,0058 0,0001 0,0000 0,0000) 0,0061 0,0447 0,0921 0,0061 0,0061 0,0012 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000	-0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0032 0,0048 0,0003	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0239 0,0012	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0061	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0004 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573 -0,0013 0,6447	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0001 -0,0061 -0,0921 -0,0061
-	0,0360 0,2212 0,0354 0,0054 0,0000 0,0000 0,0000 0,0000 0,0000 0,0035 0,0035 0,0035 0,0005 0,0001 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0830 0,0171 0,0800 0,0171 0,0021 -0,0000	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000 -0,00021 -0,0006	eais (à dir 0,0054 0,0320 0,1067 -0,0006 -0,0000 -0,0124 -0,0004 -0,0004 -0,0004 -0,0004 -0,00316 -0,0171 -0,0035	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,172 -0,0800 -0,0117	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0174 -0,3097 -0,0858 0,00022	(à esquer 0,0000 0,0003 -0,0043 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0021 -0,0171 -0,0800 -0,3097 -0,0083 -0,3612 0,0008	da) para du: (i) 0,0000 -0,0000 -0,0001 -0,0054 -0,0354 -0,2212 -0,0360 (ii) 0,0000 -0,0001 -0,0006 -0,0005 -0,0035 -0,00858 -0,3612 -0,0946 (ii)	ração do) 0,0015 0,6555 0,0712 0,0058 0,0001 0,0000 0,0000) 0,0061 0,0447 0,0921 0,0061 0,0012 0,0003 0,0001 0,0001 0,00021 0,0003 0,0001	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001 0,0001	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0029 0,0048 0,0003	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0239 0,0012	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0061	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573 -0,0013 0,6447	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0001 -0,0061 -0,0921 -0,6447 0,0061
-	0,0360 0,2212 0,0354 0,0054 0,0006 0,0001 0,0000 0,0000 0,0946 0,3612 0,0858 0,0185 0,0035 0,0005 0,0001 0,0000 0,0000 0,0000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,0800 0,0171 0,0021 -0,0000 -0,0001 0,5628 0,0162	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000 -0,0021 -0,0006 0,1705 0,4730	eais (à dir 0,0054 0,0320 0,1067 -0,0006 -0,0000 -0,0124 -0,0004 -0,0004 -0,0004 -0,00094 -0,00094 -0,00094 -0,00171 -0,0035	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800 -0,0185 0,0117 0,0555	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0712 0,0174 -0,0858 0,0003 0,0003 0,0003	(à esquer 0,0000 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0021 -0,0080 -0,3097 -0,0083 -0,3612 0,0008	da) para du: (i) 0,0000 -0,0000 -0,0001 -0,0054 -0,0354 -0,2212 -0,0360 (ii) 0,0000 -0,0001 -0,0006 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946 (ii) -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,00054 -0,0354 -0,0354 -0,0360 (ii) -0,0000 -0,0000 -0,0000 -0,0000 -0,0054 -0,0354 -0,0360 (ii) -0,0006 -0,0001 -0,0000 -0,0000 -0,0054 -0,0354 -0,0360 (iii) -0,0006 -0,0000 -0,0005 -0,0035 -0,0358 -0,0358 -0,0358 -0,00946 (iii) -0,0000 -0,0000 -0,0000 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0005 -0,0000	ação do) 0,0015 0,6555 0,0712 0,0058 0,0007 0,0001 0,0000 0,0000) 0,0061 0,0447 0,0921 0,0061 0,0012 0,0003 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001 -0,6174 -0,0048	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0329 0,0048 0,0003 -0,0750 -0,8454	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0239 0,0012 -0,0177 -0,2145	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0061	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0239 -0,1672 -0,8573 -0,0013 0,6447 -0,0001 -0,0001	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0000 -0,0001 -0,0003 -0,0012 -0,0061 -0,0021 -0,0002 -0,0002 -0,0001
-	0,0360 0,2212 0,0354 0,0054 0,0006 0,0001 0,000000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,0800 0,0171 0,0021 -0,0000 -0,0001 0,5628 0,0162 0,4730	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000 -0,0021 -0,0006 0,1705 0,4739 -0,0412	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0044 -0,0004 -0,0094 -0,0009 -0,0316 -0,0171 -0,0035 0,0412 0,1722 0,1722 0,2527	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800 -0,0185 0,0117 0,0525 0,073	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,1712 0,0174 -0,3097 -0,0858 0,0003 0,0009	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0001 -0,0000 -0,0003 -0,0083 -0,0008 -0,0000	da) para du: (i) 0,0000 -0,0000 -0,0001 -0,0006 -0,0054 -0,0254 -0,2212 -0,0354 (ii) 0,0000 -0,0001 -0,0006 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946 (ii) -0,0008 -0,0000 -0,0000 -0,0000 -0,0006 -0,0000 -0,0000 -0,0000 -0,0006 -0,0054 -0,0000 -0,0000 -0,0000 -0,0006 -0,0054 -0,0354 -0,0354 -0,0006 -0,0006 -0,0006 -0,0006 -0,0006 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0006 -0,0008 -	ação do 0,0015 0,6555 0,0712 0,0058 0,0001 0,0000 0,0000 0,0000 0,0001 0,0001 0,0001 0,0012 0,0003 0,0001 0,0001 0,0001 0,0001 0,0012 0,0003 0,0001 0,0001 0,0001 0,0001 0,0000 0,000	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001 -0,6174 -0,0048 0,8454	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0329 0,0048 0,0003 -0,0750 -0,8454	2 -0,0058 -0,1123 -0,0055 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0239 0,0012 0,0177 -0,2145 -0,9632	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -1,0000 -0,0023 0,9659 0,1672 0,0061 -0,0051 -0,0341 -0,3100	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,0026 0,8573 0,0921 -0,0026 0,8573 0,0921	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0239 -0,1672 -0,8573 -0,0013 0,6447 -0,0001 -0,0033 -0,0120	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0001 -0,0001 -0,0001 -0,0002 -0,0001 -0,0001 -0,0001
-	0,0360 0,2212 0,0354 0,0006 0,0001 0,000000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0083 0,3097 0,0800 0,0171 0,0021 -0,0000 -0,0001 0,5628 0,0172 0,4739 0,1722	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,1712 0,0316 0,0000 -0,0021 -0,0006 0,1705 0,4739 -0,0412 0,2587	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0004 -0,0044 -0,0004 -0,0185 0,0800 0,1712 -0,0094 -0,0171 -0,0035 0,0412 0,1722 0,2587 -0,0216	eita) e im 0,0006 0,0044 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800 -0,0185 0,0117 0,0525 0,0703	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 0,0021 0,0000 -0,0316 -0,1712 0,0174 -0,3097 -0,0858 0,0003 0,0009 0,0000	(à esquer 0,0000 -0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0000 -0,0001 -0,0001 -0,0003 -0,0003 -0,3612 0,0008 -0,0009 -0,0099 -0,0025	da) para du: (i) 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 -0,2212 -0,0360 (ii) 0,0000 -0,0001 -0,0006 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946 (ii) -0,0000 -0,0008 -0,0003 -0,0003 -0,0017	ação do 0,0015 0,6555 0,0712 0,0058 0,0001 0,0000 0,0000 0,0000 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000 0,0000 0,0000 0,0001 0,0000 0,000	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001 -0,6174 -0,0174 -0,0174 0,8454 0,2145	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 -0,0021 -0,0921 -0,8573 -0,0026 0,9659 0,2120 0,0329 0,0048 0,0003 -0,0750 -0,8454 -0,0092	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0103 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0239 0,0012 0,0177 -0,2145 -0,9632 -0,0085 -0,0085	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0051 -0,0310 -0,3100 -1,1000	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921 -0,0020 -0,0679 -0,0110	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573 -0,0013 0,6447 -0,0001 -0,0033 -0,0120	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0001 -0,0001 -0,0001 -0,0061 -0,0002 -0,0001 0,00011 0,00011 0,0051
-	0,0360 0,2212 0,0354 0,0004 0,0001 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0001 0,0005 0,0015 0,0005 0,0001 0,0000 0,2244 0,5628 0,0715 0,0412 0,0117	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0830 0,0083 0,3097 0,0800 0,0171 0,0021 -0,0000 -0,0001 0,5628 0,0162 0,4739 0,1722 0,0525	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,0712 0,0316 0,0000 -0,0021 -0,0006 0,1705 0,4739 -0,0412 0,2587 0,0703	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0004 -0,0185 0,0800 0,1712 -0,0094 -0,0004 -0,0171 -0,00316 -0,0171 -0,0035 0,0412 0,1722 0,2587 -0,0216 0,0000	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800 -0,0117 0,0525 0,0703 0,00017 0,0525 0,0703	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 -0,021 0,0000 -0,0316 -0,1712 0,0174 -0,3097 -0,0858 0,0003 0,0099 0,0000 -0,0703	(à esquer 0,0000 0,0003 -0,003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0003 -0,0083 -0,0008 -0,0008 -0,0009 -0,0525 -0,0172	da) para du: (i) 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 -0,2212 -0,0360 (ii) 0,0000 -0,0001 -0,0006 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946 (ii) -0,0000 -0,0008 -0,0003 -0,0017 -0,00117 -0,00117 -0,0117	ração do 0,0015 0,6555 0,0712 0,0058 0,0007 0,0000 0,0000 0,0000 0,0000 0,0001 0,0447 0,0921 0,0061 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000 1) 0,0001 0,00000 0,00000 0,00000 0,0000 0,0000 0,00000 0,0000 0,00	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0014 0,0001 -0,6017 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001 -0,6174 -0,0048 0,854 0,2145 0,0341	$\frac{\pi}{2} de 5$ -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 -0,0921 -0,0921 -0,0921 -0,0026 0,9659 0,2120 0,0329 0,0048 0,0003 -0,0750 -0,8454 -0,0092 0,3100	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0177 -0,2145 -0,9632 -0,0081 1,0008	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,0122 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0051 -0,0341 -0,3100 -1,0000	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0048 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921 -0,0120 -0,0679 -0,3100 -0,9632	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0048 -0,0239 -0,1672 -0,8573 -0,0013 0,6447 -0,0001 -0,0033 -0,0120 -0,0341 -0,0121	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0001 -0,0001 -0,0001 -0,0001 -0,0061 -0,0002 -0,0001 -0,0002 -0,0001 0,00011 0,00051 0,00051 0,00177
-	0,0360 0,2212 0,0354 0,0004 0,0001 0,00000 0,000000	0,2212 0,0035 0,1917 0,0320 0,0044 0,0003 0,0000 -0,0000 0,3612 0,0800 0,0800 0,0171 0,0021 -0,0000 -0,0001 0,5628 0,0162 0,4739 0,1722 0,0525	0,0354 0,1917 -0,0066 0,1067 0,0124 0,0000 -0,0003 -0,0001 0,0858 0,3097 -0,0174 0,0316 0,0000 -0,0021 -0,0006 0,1705 0,4739 -0,0412 0,2587 0,0703 0,0000	eais (à dir 0,0054 0,0320 0,1067 -0,0036 -0,0000 -0,0124 -0,0044 -0,0006 0,0185 0,0800 0,01712 -0,0094 -0,0004 -0,0004 -0,0005 0,0412 0,1722 0,2587 -0,0216 0,00216 0,0001	eita) e im 0,0006 0,0044 0,0124 -0,0000 0,0036 -0,1067 -0,0320 -0,0054 0,0035 0,0171 0,0316 -0,0000 0,0094 -0,1712 -0,0800 -0,0117 0,0525 0,0703 0,0000 0,0216 -0,2587	aginárias 0,0001 0,0003 0,0000 -0,0124 -0,1067 0,0066 -0,1917 -0,0354 0,0006 -0,0316 -0,1712 0,0174 -0,3097 -0,0858 0,0003 0,0009 0,0000 -0,0703 -0,0703 -0,2587 0,0412	(à esquer 0,0000 0,0003 -0,0044 -0,0320 -0,1917 -0,0035 -0,2212 0,0001 -0,0001 -0,0001 -0,0001 -0,0001 -0,0003 -0,0003 -0,0008 -0,0008 -0,0009 -0,0525 -0,1722 -0,4739	da) para du: (i) 0,0000 -0,0001 -0,0006 -0,0054 -0,0354 -0,2212 -0,0360 (ii) 0,0000 -0,0001 -0,0006 -0,0035 -0,0185 -0,0858 -0,3612 -0,0946 (ii) -0,0000 -0,0008 -0,0033 -0,0117 -0,0412 -0,0175	ração do 0,0015 0,6555 0,0712 0,0058 0,0007 0,0001 0,0000 0,0000 0,0000 0,0000 0,0001 0,0021 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0001 0,0000 1) 0,0001 0,0000 0,0000 1) 0,0000 0,00	pulso de -0,6555 -0,0003 0,8627 0,1123 0,0113 0,0014 0,0001 -0,6447 -0,0013 0,8573 0,1672 0,0239 0,0048 0,0008 0,0001 -0,6174 -0,0048 0,854 0,0341 -0,0145	$\frac{\pi}{2}$ de 5 -0,0712 -0,8627 -0,0006 0,9673 0,1343 0,0135 0,0014 0,0001 -0,0921 -0,8573 -0,0026 0,2120 0,0329 0,2120 0,0329 0,2120 0,0032 -0,0750 -0,8454 -0,0092 0,3100 0,0679	2 -0,0058 -0,1123 -0,9673 -0,0005 1,0000 0,1343 0,0113 0,0007 -0,0061 -0,1672 -0,9659 -0,0023 1,0000 0,2120 0,0177 -0,2145 -0,9632 -0,0081 1,0000 0,3100	-0,0007 -0,0113 -0,1343 -1,0000 -0,0005 0,9673 0,1123 0,0058 -0,012 -0,0239 -0,2120 -1,0000 -0,0023 0,9659 0,1672 0,0051 -0,0341 -0,3100 -1,0000 -0,0081 0,9632	-0,0001 -0,0014 -0,0135 -0,1343 -0,9673 -0,0006 0,8627 0,0712 -0,0003 -0,0028 -0,0329 -0,2120 -0,9659 -0,0026 0,8573 0,0921 -0,0120 -0,0679 -0,3100 -0,9632 -0,0092	-0,0000 -0,0001 -0,0014 -0,0113 -0,1123 -0,8627 -0,0003 0,6555 -0,0001 -0,0008 -0,0239 -0,1672 -0,0013 0,6447 -0,0001 -0,0033 -0,0120 -0,0341 -0,2145	-0,0000 -0,0001 -0,0007 -0,0058 -0,0712 -0,6555 0,0015 -0,0001 -0,0001 -0,0001 -0,0001 -0,0002 -0,0001 -0,0002 -0,0001 -0,0001 0,0011 0,0011 0,0177 -0,0750

0,0001 0,0033 0,0120 0,0341 0,2145 0,8454 -0,0048 -0,6174 0,0002 0,0001 -0,0011 -0,0051 -0,0177 0,0750 0,6174 0,0221 -0,0000 -0,0008 -0,0033 -0,0117 -0,0412 -0,1705 -0,5628 -0,2244 **Figura 7.21.** Simulação da influência da interação quadrupolar nos pulsos de tomografia de \hat{I}_y para *spin* $\frac{7}{2}$ com

ângulos dados pela tabela 7,3. Partes reais (à direita) e imaginárias (à esquerda) para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8

 $0,0008 \ -0,0000 \ -0,0099 \ -0,0525 \ -0,1722 \ -0,4739 \ -0,0162 \ -0,5628$

(ii) e 12 µs (iii).

(i)

				(1)				
0,0806 0,0148 0,0	0.0662	-0,1177 -0,	0010 0,7697	0,2115 -0,0000	0,1411 -0,0093	-0,0069 -(0,0269 0,4535	-0,1371 0,0000
0.0148 -0.0264 0)216 - 0.0684	0.0586 0	8861 0 3460	-0 7697 -0 1411	-0,0000 0,1107	-0 0149 0	3481 -0 1015	-0 0000 -0 1371
0.0037 0.0216 -0.	0.871 = 0.0273	0.9832 0	2209 -0.8861	-0.0010 0.0093	-0.1107 0.0000	0.1867 -0	0782 -0.0000	-0.1015 -0.4535
0.0662 0.0684 0	0.0273 + 0.0000	0.0201 0	0822 0.0586	0,1177 0,0060	0.0140 0.1867	0,0000 0	0000 0.0782	0.2481 0.0260
0,0002 -0,0084 -0,	0273 1,0000	-0,0301 -0,	,9852 0,0580	0,11/7 0,0009	0,0149 -0,1807	0,0000 0	0,0000 -0,0782	-0,3481 -0,0209
-0,11// 0,0586 0,	9832 -0,0301	-1,0000 -0,	,02/3 0,0684	0,0662 0,0269	-0,3481 0,0782	-0,0000 0	,0000 -0,186/	-0,0149 0,0069
-0,0010 0,8861 0,2	2209 -0,9832	-0,0273 0,	,0871 0,0216	-0,0037 -0,4535	0,1015 0,0000	0,0782 0	,1867 -0,0000	-0,1107 -0,0093
0,7697 0,3460 -0,	8861 0,0586	0,0684 0,0	0216 0,0264	0,0148 0,1371	0,0000 0,1015	5 0,3481 (0,0149 0,1107	-0,0000 -0,1411
0,2115 -0,7697 -0,	0010 0,1177	0,0662 -0,	,0037 0,0148	-0,0806 -0,0000	0,1371 0,453	5 0,0269 -	0,0069 0,0093	0,1411 0,0000
				(ii)			· ·	
				(11)				
0,2126 0,0372 0,0	0242 0,2201	-0,3075 -0,0	,0872 0,8649	0,5455 0,0000	0,2150 -0,0380	-0,0063 -0	,1198 0,8068 -	-0,0083 -0,0000
0,0372 -0,0963 0,0	0620 -0,1558	0,1566 0,	,8419 0,8308	-0,8649 -0,2150	0,0000 0,1464	-0,0389 0),5268 0,0645	0,0000 -0,0083
0,0242 0,0620 -0,2	2223 -0,0515	0,9990 0,	5186 -0,8419	-0,0872 0,0380	-0,1464 0,0000	0,2561 -0	0,0450 -0,0000	0,0645 -0,8068
0.2201 -0.1558 -0.	0515 0.9986	-0.0633 -0.	9990 0.1566	0.3075 0.0063	0.0389 -0.2561	-0.0000 -0	0000 -0.0450	-0.5268 -0.1198
-0.3075 0.1566 0	9990 -0.0633	-0.9986 -0	0515 01558	0.2201 0.1198	-0.5268 0.0450	0.0000 -0	0000 -0.2561	-0.0389 0.0063
0.0872 0.8419 0	5186 0,0000	0,0515 0	0,0010 0,1000	0.0242 0.8068	0.0645 0.0000	0.0450 0	0,0000 0,2001	0,0303 0,0003
	5180 -0,9990	0.1559 0.	0,2223 $0,0020$	-0,0242 -0,000		0,0430 0	0,2301 - 0,0000	-0,1404 -0,0380
0,8649 0,8308 -0,	5419 0,1566	0,1558 0,0	0620 0,0963	0,0372 0,0083	-0,0000 -0,0645	0,5268 0	0,0389 0,1464	-0,0000 -0,2150
0,5455 -0,8649 -0,	08/2 0,30/5	0,2201 -0,	,0242 0,0372	-0,2126 -0,0000	0,0083 0,8068	0,1198 -0	0,0063 0,0380	0,2150 -0,0000
				(iii)				
0 3113 0 0645 0 0	775 0 4377	-0.4485 -0.3	35/13 0 5337	0.7942 0.0000	0 1465 -0 0803	0.0710 -(0 3002 0 8003	0.4058 0.0000
0,0645 0,0045 0,0	1170 0, -517	0.2500 0.2	2572 1 0000	0,7742 0,0000	0,1403 - 0,0007	0,0710 - 0	0,3002 0,0003	0,4050 0,0000
0,0643 -0,2144 0,	-0,1905	0,2308 0,.	,5575 1,0000	-0,3537 -0,1403	0,0000 0,079.	2 0,0147 0	0,4230 0,3017	0,0000 0,4038
0,0775 0,1179 -0,	3129 -0,0236	0,7115 0,	,59/9 -0,35/3	-0,3543 0,0807	-0,0792 0 0,	18/0 0,146	3 0,0000 0,50	11/ -0,8003
0,4377 -0,1963 -0,	0236 0,6839	-0,0345 -0,	,7115 0,2508	0,4485 -0,0710	0 -0,0147 -0,1870	0,0000 -0	,0000 0,1463	-0,4230 -0,3002
-0,4485 0,2508 0,	7115 -0,0345	-0,6839 -0,	,0236 0,1963	0,4377 0,3002	-0,4230 -0,1463	0,0000 0	,0000 -0,1870	0,0147 -0,0710
-0,3543 0,3573 0,	5979 -0,7115	-0,0236 0,	3129 0,1179	-0,0775 -0,8003	-0,5017 -0,0000	-0,1463 0	1870 0,0000	-0,0792 -0,0807
0 5337 1 0000 -0	3573 0 2508	0 1963 0	1179 0 2144	0.0645 -0.4058	-0 ⁰⁰⁰⁰ -0 ⁵⁰¹⁷	0 4230 -0	0147 00792	-0,0000 -0,1465
0.7942 -0.5337 -0	35/13 0.4/85	0.4377 -0	0775 0.0645	-0.3113 -0.0000	-0.4058 0.800	3 0 3002	0.0710 0.0807	0.1465 0.0000
0,7942 0,5557 0,	· · · · ·	· a · ·	1 ~	1 1	· ~ 1	1	^ · 1	1
Figura 7.22. S	imulação da	a influencia	a da interação	o quadrupolar na	a criação do es	tado com c	coerencias de o	ordens pares
7						π		
para s <i>pin</i> – Pa	rtes reais (à	direita) e i	imaginárias (à esquerda) par	a duração do p	ulso de 🔴	de 5 (i) 8 (ii) e $12 \mu s$ (iii)
$\gamma^{\text{pure spin}}$	1005 10015 (0	unenu) e i	(u esqueruu) pur	a aarayao ao p	2) c 12 µll (111).
				<i>(</i> •)		<i>L</i>		
				(1)				
				(1)				
0,0810 0,0148 0,0	062 0,0268	-0,1119 -0,2	2392 0,7677	0,1934 0,0050	0,1411 0,0048	0,0133 -0,	0298 0,4040	0,1133 0,0000
0,0810 0,0148 0,0 0.0148 -0.0257 0,0	0062 0,0268 0216 -0.0659	-0,1119 -0,1 -0.0263 0.	2392 0,7677 8867 0.2393	0,1934 0,0050 -0,7677 -0,1411	0,1411 0,0048 -0,0080 0,1106	0,0133 -0,	,0298 0,4040 0.3551 0.0713	0,1133 0,0000 -0,0000 0,1133
0,0810 0,0148 0,0 0,0148 -0,0257 0,0 0,0062 0,0216 -0	0062 0,0268 0216 -0,0659 0866 -0.0273	-0,1119 -0,2 -0,0263 0, 0.9854 0	2392 0,7677 ,8867 0,2393 1834 -0.8867	0,1934 0,0050 -0,7677 -0,1411 -0 2392 -0 0048	0,1411 0,0048 -0,0080 0,1106 -0 1106 -0 0077	0,0133 - 0, -0,0038 (0.1867 -0	0298 0,4040 0,3551 0,0713	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040
0,0810 0,0148 0,0 0,0148 -0,0257 0, 0,0062 0,0216 -0, 0.0268 -0.0659 -0	0062 0,0268 0216 -0,0659 0866 -0,0273	-0,1119 -0,2 -0,0263 0, 0,9854 0, -0.0301 -0	2392 0,7677 ,8867 0,2393 ,1834 -0,8867 ,9854 -0,0263	0,1934 $0,0050-0,7677$ $-0,1411-0,2392$ $-0,00480,1119$ $-0,0133$	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 -0,0038 -0,1867	0,0133 -0, -0,0038 (0,1867 -0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0.3551 -0.0298
0,0810 0,0148 0,0 0,0148 -0,0257 0, 0,0062 0,0216 -0, 0,0268 -0,0659 -0, 0,0110 0,0262 0,0	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0,	2392 0,7677 ,8867 0,2393 ,1834 -0,8867 ,9854 -0,0263	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0208	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 -0,0038 -0,1867	0,0133 -0, -0,0038 0 0,1867 -0 0,0107 0 0,0000 0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 0 0028 0 0122
0,0810 0,0148 0,0 0,0148 -0,0257 0,0 0,0062 0,0216 -0,0 0,0268 -0,0659 -0,0 -0,1119 -0,0263 0,0 0,0202 0,0026 0,0	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301	-0,1119 -0,1 -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0	2392 0,7677 8867 0,2393 1834 -0,8867 9854 -0,0263 0,0273 0,0659	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0298	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322	0,0133 -0, -0,0038 0 0,1867 -0 0,0107 0 -0,0000 0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854	-0,1119 -0,1 -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0,	23920,7677,88670,2393,1834-0,8867,9854-0,0263,02730,0659,08660,0216	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0298 -0,0062 -0,4040	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0 -0,0713 0,0000	0,0133 -0, -0,0038 0 0,1867 -0 0,0107 0 -0,0000 0 0,0322 0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0266 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263	-0,1119 -0,2 -0,0263 0, 0,9854 0, -0,0301 -0, -0,09999 -0, -0,0273 0, 0,0659 0,	23920,7677,88670,2393,1834-0,8867,9854-0,0263,02730,0659,08660,0216,02160,0257	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0298 -0,0062 -0,4040 0,0148 -0,1133	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0,00713 0,0000 0,0000 -0,0713	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2980,40400,35510,0713,0322-0,0000,0000-0,03220,0107-0,18670,1867-0,00770,00380,1106	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0,	23920,7677,88670,2393,1834-0,8867,9854-0,0263,02730,0659,08660,0216,02160,0257,00620,0148	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0298 -0,0062 -0,4040 0,0148 -0,1133 -0,0810 -0,0000	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0000 -0,0713 0,01133 0,4040	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119	$\begin{array}{cccc} -0,1119 & -0,\\ -0,0263 & 0,\\ 0,9854 & 0,\\ -0,0301 & -0,\\ -0,9999 & -0,\\ -0,0273 & 0,\\ 0,0659 & 0,\\ 0,0268 & -0, \end{array}$	2392 0,7677 8867 0,2393 1834 -0,8867 9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,4040\\ 0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (11) \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 0,0000 -0,0713 0,0000 -0,0713	0,0133 -0, -0,0038 (0 0,1867 -0 0,0107 (0 -0,0000 (0 0,0322 (0 0,3551 (0 0,0298 (0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 2392 0,1119	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,0999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 0,659	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,4044\\ 0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (11)\\ 0,0423\\ 0,042\\ 0,042\\ 0,042\\ 0,042\\ 0,042\\ 0,042\\ 0,042\\ 0,042\\ $	0,1411 0,0048 -0,0080 0,1106 -0,1106 -0,0077 6 0,0038 -0,1867 -0,3551 0,0322 0 -0,0713 0,0000 6 0,0000 -0,0713 0 -0,1133 0,4040	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03251 0 0,0298 0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 2392 0,1119 92 0,0650 92 0,0650	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 0	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,4044\\ 0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (ii)\\ 0,4315\\ 0,0423\\ 0,0422\\ 0,0422\\ 0,0422\\ 0,0422\\ 0,0422\\ $	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 0 -0,0713 0,0000 -0,0000 -0,0713 0 -0,1133 0,4040	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0	0298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 (,8065 0,5839	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,0062\\ -0,0000\\ \hline (0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (ii)\\ 0,4315\\ -0,7571\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,2144\\ -0,214\\ -0,2144\\ -0,214\\ -$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0713 0,0000 -0,0713 0,4040 0,2144 -0,0103 -0,2154 -0,0103 -0,2155 0,1460	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03251 0 0,0298 0 0,0995 -0 -0,0366 (0,0133 -0, 0,0038 -0, 0,0095 -0 -0,0366 (0,0095 -0 -0,0036 (0,0095 -0 -0,0036 (0,0095 -0 -0,0036 (0,0095 -0 -0,0036 (0,0036 (0,000 -0,000 (0,000 (0,000 -0,000 (0,000 (0298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 - 0619 -0,1424 2218 -0,0514	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline \hline (ii)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,01106 -0,0077 -0,038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0000 -0,0713 -0,1133 0,4040 0,2144 -0,0103 -0,0205 0,1460 -0,1460 -0,0281	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03251 0 0,0298 0 0,0995 -0 0,02554 0	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0,514 0,9960	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,0632 -0,	2392 0,7677 8867 0,2393 1834 -0,8867 9854 -0,0263 0,0273 0,0659 0,866 0,0216 0,0216 0,0257 0,062 0,0148 850 0,7571 0,8065 0,5839 3,927 -0,8065 9,997 -0,0903	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline (11)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0995\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0000 -0,0713 -0,1133 0,4040 0,2144 -0,0103 -0,2144 -0,0103 -0,2144 -0,0128 -0,0205 0,1460 -0,1460 -0,0281 -0,0366 -0,2554	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 -0,0366 (0,2554 0 -0,0063 -0	0298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0252	0,1133 0,000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,0632	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,9632 -0, -0,9960 -0.	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9093 ,0514 0,1424	$\begin{array}{c} (1)\\ (-1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 -0,0713 0,0000 -0,0133 0,4040 -0,1133 0,4040 -0,1460 -0,0281 -0,0255 0,1460 -0,2554 -0,2552	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 0,02554 0 0,0063 -C 2,0,000 0	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 -0,2554	0,1133 0,000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0995
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,0514 0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,903 ,0514 0,1424 2218 0,0619	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,4040\\ 0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (ii)\\ 0,4315\\ 0,0423\\ -0,7571\\ -0,2144\\ -0,6850\\ 0,0103\\ 0,2040\\ -0,0995\\ 0,0650\\ 0,2361\\ -0,0392\\ -0,4988\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 0 -0,0713 0,0000 -0,0713 0,0000 -0,0713 0,0000 -0,0133 0,4040 -0,2144 -0,0103 -0,2144 -0,0103 -0,2144 -0,0103 -0,1460 -0,0281 -0,0366 -0,2554 -0,5603 -0,0252 -0,2811 0,0000	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 -0,0366 (0,2554 0 -0,0063 -0 0,0003 -0 0,0003 -0 0,0003 -0 0,0003 -0 0,0003 -0 0,0000 0 0,0005 -0 0,0005 -0 0,0	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0000 -0,0252 0,0003 -0,2554 -2554 -0,0281	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,6632 3927 -0,9973 98055 -0,0903	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,0514 0, 0,1224 0	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,2218 0,0619 0,0619 0.0619	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline (11)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0995\\ 0,0650 & 0,2361\\ -0,0392 & -0,4988\\ 0,0372 & -0,3012\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0713 0,0000 -0,0133 0,4040 -0,2144 -0,0103 -0,2144 -0,0103 -0,1460 -0,0281 -0,1460 -0,0281 -0,0366 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 -0 2811 0,0000	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 0,0063 -0 -0,0063 -0 -0,0252 0 0,563 0	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0252 0,0063 -0,2554 2,554 -0,0281 0,0366 0,1460	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0903 6850 0,2040	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,0514 0, 0,0654 0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,0619 0,0974 ,0392 0,0372	$\begin{array}{c} (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0000 -0,0713 -0,1133 0,4040 -0,2144 -0,0103 -0,0205 0,1460 -0,1460 -0,0281 5 0,0366 -0,2554 -0,5603 -0,0252 5 -0,2811 0,0000 5 0,0000 -0,2811 -0,013 0,498	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 ,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0003 -0,2554 0,0366 0,1460 0,0366 0,1460	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0903 6850 0,2040	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,0514 0, 0,1424 0, 0,0650 -0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,218 0,0619 ,0619 0,0974 ,0392 0,0372	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,4040\\ 0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (ii)\\ 0,4315\\ 0,0423\\ -0,7571\\ -0,2144\\ -0,6850\\ 0,0103\\ 0,2040\\ -0,0995\\ 0,0650\\ 0,2361\\ -0,0392\\ -0,4988\\ 0,0372\\ -0,3013\\ -0,2064\\ -0,0000\\ \hline \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,01106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,205 0,1460 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 0,0366 -0,2554 -0,5603 -0,0252 0,0000 -2,2811 0,0000 -2,2811 0,0013 0,498	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 0,02554 0 0,0063 -0 0,0063 -0 0,0052 0 0,0063 0 8 0,2361 0	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0252 0,0063 -0,2554 ,2554 -0,0281 0,0366 0,1460 0,0995 0,0103	$\begin{array}{ccccccc} 0,1133 & 0,0000 \\ -0,0000 & 0,1133 \\ 0,0713 & -0,4040 \\ -0,3551 & -0,0298 \\ -0,0038 & -0,0133 \\ -0,1106 & 0,0048 \\ -0,0080 & -0,1411 \\ 0,1411 & 0,0050 \\ \hline \\ 0,3013 & 0,0000 \\ -0,0000 & 0,3013 \\ 0,2811 & -0,4988 \\ -0,5603 & -0,2361 \\ -0,0366 & -0,0995 \\ -0,1460 & -0,0103 \\ -0,0205 & -0,2144 \\ 0,2144 & 0,0423 \\ \hline \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0203 6850 0,2040	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,9960 -0, -0,0514 0, 0,0650 -0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9033 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372	(1) (1) (1) (1) (1) (1) (1) (1)	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 0 -0,0713 0,0000 -0,0713 0,0000 -0,1133 0,4040 -0,1460 -0,0281 -0,0255 0,1460 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 -0,0498	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 -0,2554 0,0063 -0,2554 0,0366 0,1460 0,0995 0,0103	$\begin{array}{ccccccc} 0,1133 & 0,0000 \\ -0,0000 & 0,1133 \\ 0,0713 & -0,4040 \\ -0,3551 & -0,0298 \\ -0,0038 & -0,0133 \\ -0,1106 & 0,0048 \\ -0,0080 & -0,1411 \\ 0,1411 & 0,0050 \\ \hline \\ 0,3013 & 0,0000 \\ -0,0000 & 0,3013 \\ 0,2811 & -0,4988 \\ -0,5603 & -0,2361 \\ -0,0366 & -0,0995 \\ -0,1460 & -0,0103 \\ -0,0205 & -0,2144 \\ 0,2144 & 0,0423 \\ \hline \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 924 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9903 8865 -0,0903 6850 0,2040 1162 -0,0301	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,0960 -0, -0,0960 -0, -0,0514 0, 0,0650 -0, -0,0215 -0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline (ii)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0995\\ 0,0650 & 0,2361\\ -0,0392 & -0,4988\\ 0,0372 & -0,3013\\ -0,2064 & -0,0000\\\hline (iii)\\ 0,5087 & 0,1183\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,2155 0,1460 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 0,0000 -0,2811 0,0000 -0,000 -0,000 -0,000 -0,000 -0,000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000	0,0133 -0, -0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 -0,0366 (0,2554 0 -0,0263 -0 -0,0254 0 0,0003 -0 0,0063 -0 0,0063 -0 0,5603 0 8 0,2361 0 0,3779 -0	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0000 -0,0252 0,0000 -0,2554 ,2554 -0,0281 0,0366 0,1460 0,0995 0,0103	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,0366 -0,0295 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,6632 3927 -0,9933 6850 0,2040 1162 -0,0301 1293 -0,2049	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, 0,0650 -0, -0,0215 -0, -0,1960 0	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 ,9578 0,1771 ,2410 1,0000	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\ \hline (ii)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0995\\ 0,0650 & 0,2361\\ -0,0392 & -0,4988\\ 0,0372 & -0,3013\\ -0,2064 & -0,0000\\ \hline (iii)\\ 0,5087 & 0,1183\\ -0,1771 & -0,1607\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,038 -0,1867 -0,3551 0,0322 -0,0713 0,0000 -0,0713 0,0000 -0,0713 -0,1133 0,4040 -0,2144 -0,0103 -0,2144 -0,0103 -0,2144 -0,0103 -0,21460 -0,0281 -0,1460 -0,0281 -0,0366 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 -0,0000 -0,2811 -0,0000 -0,2811 -0,3013 0,498	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 0,0063 -0 -0,0366 (0,2554 0 -0,0063 -0 -0,0252 0 0,5603 0 8 0,2361 (0,3779 -0 0 -0,0048 (0,0048 (0,0000 (0,000 (0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0003 -0,2554 ,2554 -0,0281 0,0366 0,1460 0,0995 0,0103 0,5938 -0,0399 0,5575 0,6137	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,2144 0,0423 0,1539 0,0000 0,1539 0,0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0903 6850 0,2040 1162 -0,0301 1293 -0,2099 3467 -0,0259	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,0960 -0, -0,0514 0, 0,0650 -0, -0,0215 -0, -0,1960 0, 0,7675 0	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 ,9578 0,1771 ,2410 1,0000 3953 -0,2410	$\begin{array}{c} (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,0205 0,1460 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 0,0306 -0,2514 -0,5603 -0,0252 0,0306 -0,2514 -0,5603 -0,0252 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2815 -0,0477 0,0869 -0,0869 -0,0614 0,0000 -0,00125 -0,0469 -0,0614 -0,0000 -0,00125 -0,0469 -0,0014 -0,0000 -0,00125 -0,0469 -0,0014 -0,0000 -0,0014 -0,0000 -0,00125 -0,00000 -0,0000 -0,0000 -0,0000 -0,000	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 0,0063 -C 0,0063 -C 0,0000 0 0,0252 0 0,0063 -C 0,00063 -C 0,0000 -0,0000 -C 0,0000 -0,0000 -C 0,0000 -0,0000 -C 0,0000 -C 0,000 -C 0,000 -C 0,000 -C 0,000 -C 0,000 -C 0,000 -C 0,	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0252 0,0000 0,0252 0,0000 0,0252 0,0366 0,1460 0,0995 0,0103 0,5575 0,6137 0,2377 -0,0000	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0266 -0,0995 -0,1460 -0,0103 -0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,0000 0,1539
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0903 6850 0,2040 1162 -0,0301 1293 -0,2099 3467 -0,0259 259 0	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,0514 0, 0,0650 -0, -0,0515 -0, -0,0215 -0, -0,1960 0, 0,7675 0, 0,7675 0, -0,078 -0	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9003 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 ,9578 0,1771 ,2410 1,0000 ,3953 -0,2410	$\begin{array}{c} (1)\\ (1)\\ (-1)\\ ($	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,0205 0,1460 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 3 -0,2811 0,0000 0,0000 -0,2811 0,0000 -0,2810 0,0000 -0,0000 0,0000 -0,000 -0	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0325 0 0,0298 0 0,0298 0 0,0298 0 0,0298 0 0,0063 -0 0,0063 -0 0,0063 0 8 0,2361 0 0,3779 -0 0,0048 0 0,0048 0 0,0048 0 0,0025 0 0,0048 0 0,0025 0 0,0048 0 0,0025 0 0,0048 0 0,0025 0 0,0048 0 0,0025 0 0,0048 0 0,0008 0 0,0000	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0063 -0,2554 0,0366 0,1460 0,0995 0,0103 0,5938 -0,0399 0,5575 0,6137 0,2277 -0,0000	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 0,6575 -0,5938
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0266 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0903 6850 0,2040 1162 -0,0301 1293 -0,2099 3467 -0,0259 0,275 0,7490	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,0903 0, 0,9997 0, -0,0960 -0, -0,9960 -0, -0,9960 -0, -0,0514 0, 0,0650 -0, -0,1960 0, 0,7675 0, -0,078 -0, 0,078 -0, 0,078 -0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,372 9578 0,1771 ,2410 1,0000 3953 -0,2410 ,7675 -0,1960	$\begin{array}{c} (1)\\ (-),1934\\ (-),0050\\ (-),7677\\ (-),1411\\ (-),2392\\ (-),0048\\ (-),119\\ (-),0132\\ (-),0062\\ (-),0062\\ (-),0062\\ (-),0000\\ (-),000\\ ($	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 -0,0713 0,0000 -0,0133 0,4040 -0,1460 -0,0281 -0,0255 0,1460 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 -0,0000 -0,2811 0,0000 -0,00125 -0,0869 -0,0614 0,0048 -0,2051 0,5575 0,0277	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 0,0298 0 0,0995 -0 0,0254 0 0,02554 0 0,063 -0 -0,0063 -0 0,0252 0 0,5603 0 8 0,2361 0 0,3779 -0 0,0092 0 0,0092 0 0,0000 0 0,0	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0003 -0,2554 0,0566 0,1460 0,0995 0,0103 0,5575 0,6137 0,2277 -0,0000 0,0000 0,2277 0,0000 0,2277	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5003 -0,2361 -0,0266 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5275 -0,5938
$\begin{array}{c} 0,0810 & 0,0148 & 0,0\\ 0,0148 & -0,0257 & 0,0\\ 0,0062 & 0,0216 & -0,0\\ 0,0268 & -0,0659 & -0,0\\ -0,1119 & -0,0263 & 0,0\\ -0,2392 & 0,8867 & 0,0\\ 0,7677 & 0,2393 & -0\\ 0,1934 & -0,7677 & -0,0\\ 0,0392 & 0,0619 & -0,0\\ 0,0392 & 0,0619 & -0,0\\ 0,0650 & -0,1424 & -0,0\\ -0,2040 & -0,0903 & 0,0\\ -0,6850 & 0,8065 & 0,0\\ 0,7571 & 0,5839 & -0\\ 0,4315 & -0,7571 & -0,0\\ 0,0708 & -0,2456 & 0,0\\ 0,0162 & 0,1293 & -0,0\\ -0,0215 & -0,1960 & 0,0\\ -0,0215 & -0,1960 & 0,0\\ -0,0215 & -0,1960 & 0,0\\ \end{array}$	0062 0,0268 0216 -0,0659 0266 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9903 6850 0,2040 1162 -0,0301 1293 -0,2059 3467 -0,0259 0,259 0,7490 6755 -0,0378	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,0903 0, 0,9997 0, -0,0632 -0, -0,0514 0, 0,0650 -0, -0,0514 0, 0,0650 -0, -0,0156 0, 0,7675 0, -0,0378 -0, -0,7490 -0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9033 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,372 ,9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099	$\begin{array}{c} (1)\\ 0,1934\\ 0,0050\\ -0,7677\\ -0,1411\\ -0,2392\\ -0,0048\\ 0,1119\\ -0,0133\\ 0,0268\\ 0,0298\\ -0,0062\\ -0,4040\\ 0,0148\\ -0,1133\\ -0,0810\\ -0,0000\\ \hline (ii)\\ 0,4315\\ 0,0423\\ -0,7571\\ -0,2144\\ -0,6850\\ 0,0103\\ 0,2040\\ -0,0995\\ 0,0650\\ 0,2361\\ -0,0392\\ -0,4988\\ 0,0372\\ -0,3013\\ -0,2064\\ -0,0000\\ \hline (iii)\\ 0,5087\\ 0,1183\\ -0,1771\\ -0,1607\\ -0,9578\\ 0,0125\\ 0,0215\\ -0,3779\\ -0,0301\\ 0,5938\\ 0,1160\\ 0,5938\\ -0,1025\\ -0,3779\\ -0,0301\\ 0,5938\\ -0,102\\ -0,9538\\ -0,102\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,9538\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0001\\ -0,0000\\ -0,000\\ -0,0$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,1133 0,4040 0,2144 -0,0103 -0,1133 0,4040 0,2144 -0,0103 0,01667 -0,2811 0,0366 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 0,0000 -0,2811 0,0000 -0,2810 0,0000 -0,	0,0133 -0, 0,0038 (0,1867 -0 0,0000 0 0,0322 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 0,0063 -0 0,0063 -0 0,0063 -0 0,0063 -0 0,0063 -0 0,0000 0 0,0252 0 0,0000 0 0,03779 -0 0,0048 (0,0092 -0 0,0092 -0 0,0092 -0 0,0000 -0 0,0000 -0 0,0000 -0	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5653 0,2811 0,0000 0,0252 0,0000 0,0252 0,0000 0,0254 0,0563 -0,2811 0,0663 -0,2554 0,5575 0,6137 0,2277 -0,0000 0,0000 0,2277 0,0000 0,2277 0,0000 0,2277 0,0000 0,2277 0,0000 0,2277 0,0000 0,2277	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0080 -0,1411 0,12811 -0,4988 -0,0366 -0,0295 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0048 -0,3779
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,632 3927 -0,9933 6855 -0,02030 11293 -0,2040 1162 -0,0301 1293 -0,2059 3467 -0,0259 0259 0,7490 '675 -0,0378 3953 -0,7675	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,0903 0, 0,9997 0, -0,0632 -0, -0,0632 -0, 0,0514 0, 0,0650 -0, 0,0650 -0, -0,1960 0, 0,7675 0, -0,0378 -0, -0,0259 0,	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,9997 -0,9033 ,0514 0,1424 ,2218 0,0619 ,0392 0,0372 ,9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,3467 0,1293	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline (ii)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0995\\ 0,0650 & 0,2361\\ -0,0392 & -0,4988\\ 0,0372 & -0,3013\\ -0,2064 & -0,0000\\\hline (iii)\\ 0,5087 & 0,1183\\ -0,1771 & -0,1607\\ -0,9578 & 0,0125\\ 0,0215 & -0,3779\\ -0,0301 & 0,5938\\ -0,1162 & 0,0399\\ \end{array}$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0,00713 0,0000 0,0000 -0,0713 0,0000 -0,0713 0,01460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 0,0366 -0,2554 -0,5603 -0,0252 0,0000 -0,2811 0,0000 0,0000 -0,2811 0,0000 0,0281 0,0000 -0,281 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2817 -0,0125 -0,0477 0,0866 -0,0869 -0,0614 0,0048 -0,2051 -0,5575 -0,2277 -0,6137 0,0000	0,0133 -0, 0,0033 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 0,0063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,00063 -0 0,0000 -0 0,0002 -0 0,0000 -0 -0,02277 0	0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0252 0,0063 -0,2554 ,2554 -0,0281 0,0366 0,1460 0,0995 0,0103 0,5575 0,6137 ,2277 -0,0000 0,0000 0,2277 ,0092 -0,2051 0,2051 -0,0614	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0048 -0,3779 -0,0869 -0,0125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0866 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 218 -0,0514 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0903 6850 0,2040 1162 -0,0301 1293 -0,2059 3467 -0,0259 9259 0,7490 1675 -0,0378 3953 -0,7675 2410 -0,1960	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,0632 -0, -0,0650 -0, -0,0514 0, 0,0650 -0, -0,0515 -0, -0,01960 0, 0,7675 0, -0,0378 -0, -0,0259 0, 0,2099 0, -0,02099 0, -0,02090 0, -0,02090 0, -0,02090 0, -0,0000 0, -0,00000 0, -0,00000 0, -0,000000000000000000000000000000000	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8665 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,3467 0,1293 ,1293 0,2456	$\begin{array}{c} (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\ (1)\\$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,0205 0,1460 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 0,0306 -0,2514 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 -0,5575 -0,2277 -0,6137 0,0000 0,0000 -0,6137	0,0133 -0, 0,0033 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0322 0 0,0325 0 0,0298 0 0,0995 -0 0,0063 -0 0,2554 0 0,00063 -0 0,00052 0 0,00053 0 8 0,2361 0 0,3779 -0 0,0048 (0,0048 0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,05575 (0.298 0,4040 0,3551 0,0713 ,0322 -0,0000 0,000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0252 0,0063 -0,2554 0,0366 0,1460 0,0995 0,0103 0,5575 0,6137 0,2277 -0,0000 0,0000 0,2277 0,0092 -0,2051 0,2051 -0,0614 0,0048 0,0869	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5663 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0048 -0,3779 -0,0869 -0,0125
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0266 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 0514 0,9960 9997 -0,0632 3927 -0,9997 8065 -0,0209 8467 -0,0259 0,2040 (675 1162 -0,0301 1293 -0,2099 3467 -0,0259 0,7490 (675 953 -0,7675 2410 -0,1960 9578 0,0215	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,2040 -0,688 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,0514 0, 0,0650 -0, -0,1960 0, 0,7675 0, -0,7490 -0, -0,0259 0, -0,0301 -0,	2392 0,7677 8867 0,2393 ,1834 -0,8667 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9093 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,3467 0,1293 ,1293 0,2456 ,1162 0,0708	$\begin{array}{c} (1)\\ (-),1934\\ (-),0050\\ (-),7677\\ (-),1411\\ (-),2392\\ (-),0048\\ (-),119\\ (-),0132\\ (-),0062\\ (-),0062\\ (-),0062\\ (-),0000\\ (-),000\\ (-),$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 -0,2811 0,0000 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0008 -0,0014 0,0048 -0,2051 -0,5575 -0,2277 -0,6137 0,0000 0,0000 -0,6137 0,0000 -0,0199	0,0133 -0, 0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 0,0298 0 0,0995 -0 0,0254 0 0,0063 -0 0,0252 0 0,5603 0 8 0,2361 0 0,0092 -0 0,0092 -0 0,0095 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0000 -0 0,0092 -0 0,0092 -0 0,0000 -0 0,0092 -0 0,0000 -0 0,0092 -0 0,0000 -0 0,000	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0255 0,0063 -0,2554 0,0366 0,1460 0,0995 0,0103 0,5573 0,6137 0,2277 -0,0000 0,0000 0,2277 0,0092 -0,2051 0,2051 -0,614 0,0048 0,0869 0,3779 0,0125	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5030 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,2255 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0048 -0,3779 -0,0486 -0,3779 -0,0487 -0,1607 0,1607 0,1183
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0062 0,0268 0216 -0,0659 0266 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 0514 0,9960 9997 -0,6632 3927 -0,9997 8065 -0,02031 1293 -0,2099 3467 -0,0259 9259 0,7490 (675 -0,0378 3953 -0,7675 2410 -0,1960 9578 0,0215 1001257 10,326	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,0903 0, 0,9997 0, -0,0960 -0, -0,0960 -0, -0,0514 0, 0,0650 -0, -0,1960 0, 0,7675 0, -0,0378 -0, -0,07490 -0, -0,0259 0, 0,02099 0, 0,0301 -0, a influênc	2392 0,7677 8867 0,2393 ,1834 -0,8667 ,9854 -0,0263 ,0273 0,0659 ,0216 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,9003 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 95578 0,1771 ,2410 1,0000 3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,3467 0,1293 ,1293 0,2456 ,1162 0,0708	$\begin{array}{c} (1)\\ (-),1934\\ (-),0050\\ (-),7677\\ (-),1411\\ (-),2392\\ (-),0048\\ (-),119\\ (-),2392\\ (-),0048\\ (-),119\\ (-),0132\\ (-),0268\\ (-),028\\ (-),0132\\ (-),0062\\ (-),0000\\ (-),000\\ (-),00$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 -0,0038 -0,1867 -0,3551 0,0322 0 -0,0713 0,0000 -0,0000 -0,0713 0 -0,1133 0,4040 -0,1460 -0,0281 -0,0460 -0,0251 -0,0663 -0,02552 -0,2811 0,0000 -0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 0,0000 -0,2811 -0,3013 0,498 -0,0869 -0,0614 0,0048 -0,2051 -0,5575 -0,2277 -0,6137 0,0000 -0,0000 -0,6137 -0,0399 -0,0399 ar da criação	0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 0,0254 0 0,02554 0 0,0063 -0 -0,0252 0 0,5603 0 8 0,2361 0 -0,0048 0 -0,0092 -0 0,0092 -0 0,0000 -0 -0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0000 -0 -0,02575 0 0,05575 0 0,0538 0 0,0538 0 0,05575 0 0,0538 0 0,05575 0 0,0538 0 0,05575 0 0,0538 0 0,05575 0 0,0557	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0077 0,0038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0000 0,0255 0,0063 -0,2554 0,0566 0,1460 0,0995 0,0103 0,5575 0,6137 0,2277 -0,0000 0,0000 0,2277 0,0024 -0,0511 0,0051 -0,0614 0,0048 0,0869 0,3779 0,0125 0,042 0,0869	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 -0,0366 -0,3799 -0,0486 -0,3779 -0,0486 -0,3779 -0,0477 -0,1607 0,1183 as de ordens
$\begin{array}{c} 0,0810 & 0,0148 & 0,0\\ 0,0148 & -0,0257 & 0,0\\ 0,0062 & 0,0216 & -0,0\\ 0,0268 & -0,0659 & -0,0\\ -0,1119 & -0,0263 & 0,0\\ -0,2392 & 0,8867 & 0,0\\ 0,7677 & 0,2393 & -0\\ 0,1934 & -0,7677 & -0,0\\ \hline 0,0392 & 0,0619 & -0,0\\ 0,0650 & -0,1424 & -0,0\\ -0,2040 & -0,0903 & 0,0\\ -0,6850 & 0,8065 & 0,0\\ 0,7571 & 0,5839 & -0\\ 0,0708 & -0,2456 & 0,0\\ 0,0708 & -0,2456 & 0,0\\ 0,0162 & 0,1293 & -0,0\\ -0,0215 & -0,1960 & 0,7\\ -0,9578 & 0,2410 & 0,0\\ 0,1771 & 1,0000 & -0\\ 0,5087 & -0,1771 & -0, \\ \hline {\bf Figura 7.23. S} \\ \end{array}$	0062 0,0268 0216 -0,0659 0266 -0,0273 0273 0,9999 9854 -0,0301 1834 -0,9854 8867 -0,0263 2392 0,1119 92 0,0650 0619 -0,1424 2218 -0,0514 0514 0,9960 9997 -0,0632 9927 -0,9903 6655 -0,2099 36850 0,2040 1162 -0,0301 1293 -0,2059 0,7490 675 675 -0,0378 3953 -0,7675 2410 -0,1960 9578 0,0215 imulação c -0,1960	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,0903 0, 0,9997 0, -0,0632 -0, -0,0960 -0, -0,0514 0, 0,0650 -0, -0,0514 0, 0,0650 -0, -0,0156 0, 0,7675 0, -0,0378 -0, -0,0259 0, 0,2099 0, -0,0301 -0, k influênc	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9033 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,372 ,9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,3467 0,1293 ,1293 0,2456 ,1162 0,0708 cia da intera	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0298 -0,0062 -0,4040 0,0148 -0,1133 -0,0810 -0,0000 (ii) 0,4315 0,0423 -0,7571 -0,2144 -0,6850 0,0103 0,2040 -0,0995 0,0650 0,2361 -0,0392 -0,4988 0,0372 -0,3013 -0,2064 -0,0000 (iii) 0,5087 0,1183 -0,1771 -0,1607 -0,9578 0,0125 0,0215 -0,3775 -0,0301 0,5938 -0,1162 0,0399 0,0708 -0,1539 -0,3112 -0,0000 ição quadrupo	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0-0,0713 0,0000 0,0000 -0,0713 0-0,1133 0,4040 0,2144 -0,0103 -0,1133 0,4040 0,2144 -0,0103 -0,1133 0,4040 0,2144 -0,0103 -0,2155 0,1460 -0,0265 0,1460 -0,0265 0,1460 -0,02811 0,0006 -0,2554 -0,5603 -0,0252 -0,0869 -0,0614 0,0048 -0,2051 -0,5575 -0,2277 -0,6137 0,0000 0,0000 -0,6137 0-0,1539 -0,0395 lar da criação	0,0133 -0, 0,0033 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0351 0 0,0298 0 0,0995 -0 0,-0,0366 (0,2554 0 -0,0063 -0 0,2554 0 0,0000 0 -0,0252 0 0,5603 0 8 0,2361 0 -0,0048 (0,2051 0 -0,0048 (0,2051 0 -0,0048 (0,0092 -0 0,0000 -0 -0,2277 0 0,5575 (0,5938 (do estado	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5653 0,2811 0,0252 -0,0000 0,0000 0,0252 0,0000 0,0252 0,0063 -0,2554 ,0366 0,1460 0,0995 0,0103 0,5575 0,6137 0,2277 -0,0000 0,0000 0,2277 ,0092 -0,2051 ,0251 -0,0614 0,048 0,0869 0,3779 0,0125 0 de coerênci	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0477 -0,1607 0,1607 0,1183 as de ordens as de ordens
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,00659 0, 0,0268 -0, 0,0903 0, 0,9997 0, -0,0903 0, 0,9997 0, -0,0632 -0, -0,0960 -0, 0,0650 -0, -0,1960 0, 0,7675 0, -0,0378 -0, -0,0378 -0, -0,0378 -0, -0,0378 -0, -0,0378 -0, -0,0301 -0, a influênce	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,9997 -0,9033 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 ,9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,4467 0,1293 ,1293 0,2456 ,1162 0,0708 cia da intera 2	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4040\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline (ii)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0995\\ 0,0650 & 0,2361\\ -0,0392 & -0,4988\\ 0,0372 & -0,3013\\ -0,2064 & -0,0000\\\hline (iii)\\ 0,5087 & 0,1183\\ -0,1771 & -0,1607\\ -0,9578 & 0,0125\\ 0,0215 & -0,3775\\ -0,0301 & 0,5938\\ -0,1162 & 0,0399\\ 0,0708 & -0,1535\\ -0,3112 & -0,0000\\\hline \mathbf{c}iao quadrupo$	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0,0000 -0,0713 0,0000 -0,0713 0,0000 -0,0713 0,01460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 0,02811 0,0000 0,0000 -0,2811 0,0000 -0,281 0,0000 -0,013 0,0000 -0,013 0,000	0,0133 -0, 0,0033 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,0322 0 0,0325 1 0,0298 0 0,0995 -0 0,-0,0366 (0,2554 0 -0,0252 0 0,0000 0 -0,0252 0 0,5603 0 8 0,2361 0 0,3779 -0 0,5603 0 8 0,2361 0 0,0092 -0 0,0002 -0 0,0000 -0 -0,2277 0 0,0575 (0 0,5938 (do estado	0.298 0,4040 0,3551 0,0713 0,0322 -0,0000 0,0000 -0,0322 0,0107 -0,1867 0,1867 -0,0071 0,038 0,1106 0,0133 -0,0048 0,2361 0,4988 0,5603 0,2811 0,0252 -0,0000 0,0003 -0,2554 2,554 -0,0281 0,0366 0,1460 0,0995 0,0103 0,5938 -0,0399 0,5575 0,6137 0,2277 -0,0000 0,0000 0,2277 0,092 -0,2051 0,2051 -0,614 0,048 0,0869 0,3779 0,0125 0 de coerênci	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0047 -0,1607 0,1607 0,1183 as de ordens
0,0810 0,0148 0,0 0,0148 -0,0257 0, 0,0062 0,0216 -0, 0,0268 -0,0659 -0, -0,1119 -0,0263 0, -0,2392 0,8867 0, 0,7677 0,2393 -0 0,1934 -0,7677 -0, 0,0392 0,0619 -0, 0,0650 -0,1424 -0, -0,2040 -0,0903 0, -0,6850 0,8065 0, 0,7571 0,5839 -0 0,4315 -0,7571 -0, 0,3112 0,0708 0, 0,0708 -0,2456 0, 0,1162 0,1293 -0, -0,0301 -0,2099 -0, -0,0215 -0,1960 0, -0,9578 0,2410 0, 0,1771 1,0000 -0 0,5087 -0,1771 -0, Figura 7.23. S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,2040 -0,68 -0,0903 0, 0,9997 0, -0,0632 -0, -0,9960 -0, -0,0514 0, 0,0650 -0, -0,0255 0, -0,0307 0, -0	2392 0,7677 8867 0,2393 ,1834 -0,8867 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,0903 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,7675 -0,1960 ,0259 0,2099 ,3467 0,1293 ,1293 0,2456 ,1162 0,0708 cia da interaa comografia.	0,1934 0,0050 -0,7677 -0,1411 -0,2392 -0,0048 0,1119 -0,0133 0,0268 0,0298 -0,0062 -0,4040 0,0148 -0,1133 -0,0810 -0,0000 (ii) 0,4315 0,0423 -0,7571 -0,2144 -0,6850 0,0103 0,2040 -0,0995 0,0650 0,2361 -0,0392 -0,4988 0,0372 -0,3013 -0,2064 -0,0000 (iii) 0,5087 0,1183 -0,1771 -0,1607 -0,9578 0,0125 0,0215 -0,3779 -0,0301 0,5938 -0,1162 0,0399 0,0708 -0,1535 -0,3112 -0,0000 Ição quadrupo Tempos do pu	0,1411 0,0048 -0,0080 0,1106 -0,0106 -0,0077 0,0038 -0,1867 -0,3551 0,0322 0,0000 -0,0713 0,0000 -0,0713 -0,1133 0,4040 0,2144 -0,0103 -0,0205 0,1466 -0,1460 -0,0281 0,0366 -0,2554 -0,5603 -0,0252 0,0306 -0,2514 0,0000 -0,2811 0,0000 -0,281 0,0000 -0,281 0,0000 -0,281 0,0000 -0,281 0,0000 -0,013 0,0000 -0,013 0,000 -0,013 0,000 -0,013 0,0000 -0,013 0,0000 -	$\begin{array}{c} 0,0133 & -0, \\ 0,0133 & -0, \\ 0,0038 & (0,01867 & -0, \\ 0,0107 & (0,0107 & 0, \\ 0,0000 & (0,0322 & 0, \\ 0,0322 & (0,03551 & 0, \\ 0,00322 & (0,0000 & 0, \\ 0,0053 & (0,0000 & 0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0003 & -0, \\ 0,0000 & -0, \\ 0,000 & -0, \\ 0,0000 & -0, \\ 0,000 & -0, \\ 0,0000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0,000 & -0, \\ 0$	$\begin{array}{cccccccc} 0.298 & 0.4040 \\ 0.3551 & 0.0713 \\ 0.0322 & -0.0000 \\ 0.0000 & -0.0322 \\ 0.0107 & -0.1867 \\ 0.1867 & -0.0077 \\ 0.0038 & 0.1106 \\ 0.0133 & -0.0048 \\ \hline \end{array}$	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,5575 -0,5938 -0,0048 -0,3779 -0,0869 -0,0125 -0,0477 -0,1607 0,1607 0,1183 as de ordens Partes real
0,0810 0,0148 0,0 0,0148 -0,0257 0, 0,0062 0,0216 -0, 0,0268 -0,0659 -0, -0,1119 -0,0263 0, -0,2392 0,8867 0, 0,7677 0,2393 -0, 0,1934 -0,7677 -0, 0,0392 0,0619 -0, 0,0650 -0,1424 -0, -0,2040 -0,0903 0, -0,6850 0,8065 0, 0,7571 0,5839 -0, 0,4315 -0,7571 -0, 0,3112 0,0708 0, 0,0708 -0,2456 0, 0,1162 0,1293 -0, -0,0301 -0,2099 -0, -0,0315 -0,1960 0,7 -0,9578 0,2410 0, 0,1771 1,0000 -0 0,5087 -0,1771 -0, Figura 7.23. S pares para <i>sp</i>	$\begin{array}{ccccccc} 0,0268\\ 0,0268\\ 0,0216\\ -0,0659\\ 0,0666\\ -0,0273\\ 0,9999\\ 0,9854\\ -0,0301\\ 1834\\ -0,9854\\ 8867\\ -0,0263\\ 2392\\ 0,1119\\ 0,0650\\ -0,0263\\ 2392\\ 0,0650\\ -0,0424\\ 0,9960\\ 0,0514\\ 0,9960\\ 0,997\\ -0,0632\\ 3927\\ -0,997\\ 8065\\ -0,0903\\ 6850\\ 0,2040\\ 0,123\\ -0,0259\\ 0,7490\\ 1675\\ -0,0378\\ 3953\\ -0,7675\\ 2410\\ -0,1960\\ 9578\\ 0,0215\\ 100\\ 100\\ 9578\\ 0,0215\\ 100\\ 100\\ 9578\\ 0,0215\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 1$	-0,1119 -0, -0,0263 0, 0,9854 0, -0,0301 -0, -0,9999 -0, -0,0273 0, 0,0659 0, 0,0268 -0, 0,0268 -0, 0,0997 0, -0,0632 -0, -0,9960 -0, -0,0514 0, 0,0650 -0, -0,0514 0, 0,0650 -0, -0,1960 0, 0,7675 0, -0,0378 -0, -0,7490 -0, -0,0259 0, -0,0301 -0, la influênce	2392 0,7677 8867 0,2393 ,1834 -0,8667 ,9854 -0,0263 ,0273 0,0659 ,0866 0,0216 ,0216 0,0257 ,0062 0,0148 850 0,7571 ,8065 0,5839 ,3927 -0,8065 ,9997 -0,9093 ,0514 0,1424 ,2218 0,0619 ,0619 0,0974 ,0392 0,0372 ,9578 0,1771 ,2410 1,0000 ,3953 -0,2410 ,0259 0,2299 ,3467 0,1293 ,1293 0,2456 ,1162 0,0708 cia da interra comografia.	$\begin{array}{c} (1)\\ 0,1934 & 0,0050\\ -0,7677 & -0,1411\\ -0,2392 & -0,0048\\ 0,1119 & -0,0133\\ 0,0268 & 0,0298\\ -0,0062 & -0,4044\\ 0,0148 & -0,1133\\ -0,0810 & -0,0000\\\hline (ii)\\ 0,4315 & 0,0423\\ -0,7571 & -0,2144\\ -0,6850 & 0,0103\\ 0,2040 & -0,0992\\ 0,0650 & 0,2361\\ -0,0392 & -0,4988\\ 0,0372 & -0,3013\\ -0,2064 & -0,0000\\\hline (iii)\\ 0,5087 & 0,1183\\ -0,1771 & -0,1607\\ -0,9578 & 0,0125\\ 0,0215 & -0,3779\\ -0,0301 & 0,5938\\ -0,1162 & 0,0398\\ -0,3112 & -0,0000\\\hline ução quadrupol$	$\begin{array}{cccccccc} 0,1411 & 0,0048 \\ -0,0080 & 0,1106 \\ -0,0038 & -0,1867 \\ -0,3551 & 0,0322 \\ 0,-0,0713 & 0,0000 \\ 0,0000 & -0,0713 \\ 0,0133 & 0,4040 \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,0133 -0, 0,0133 -0, 0,0038 (0,1867 -0 0,0107 0 -0,0000 0 0,0322 0 0,03551 0 0,0298 0 0,0995 -0 0,0036 -0 0,0254 0 0,0063 -0 0,0063 -0 0,0063 -0 0,0000 -0 0,5603 0 8 0,2361 0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,0092 -0 0,5575 0 0,5575 (0,5538 0 do estado	$\begin{array}{cccccc} 0.298 & 0.4040 \\ 0.3551 & 0.0713 \\ 0.0322 & -0.0000 \\ 0.0000 & -0.0322 \\ 0.0107 & -0.1867 \\ 0.1867 & -0.0077 \\ 0.038 & 0.1106 \\ 0.0133 & -0.0048 \\ 0.2361 & 0.4988 \\ 0.5603 & 0.2811 \\ 0.0252 & -0.0000 \\ 0.0252 & -0.0000 \\ 0.00252 & -0.0000 \\ 0.0000 & 0.0252 \\ 0.0063 & -0.2554 \\ 0.2554 & -0.0281 \\ 0.0366 & 0.1460 \\ 0.0995 & 0.0103 \\ 0.5575 & 0.6137 \\ 0.2277 & -0.0000 \\ 0.0000 & 0.2277 \\ 0.092 & -0.2051 \\ 0.0048 & 0.0869 \\ 0.3779 & 0.0125 \\ 0 \mbox{ de coerênci} \\ e \mbox{ 12 } \mu s \mbox{ (iii). 1} \\ \end{array}$	0,1133 0,0000 -0,0000 0,1133 0,0713 -0,4040 -0,3551 -0,0298 -0,0038 -0,0133 -0,1106 0,0048 -0,0080 -0,1411 0,1411 0,0050 0,3013 0,0000 -0,0000 0,3013 0,2811 -0,4988 -0,5603 -0,2361 -0,0366 -0,0995 -0,1460 -0,0103 -0,0205 -0,2144 0,2144 0,0423 0,1539 0,0000 0,0000 0,1539 0,6137 0,0399 -0,05575 -0,5938 -0,0048 -0,3779 -0,0869 -0,0125 -0,0477 -0,1607 0,1607 0,1183 as de ordens Partes real

(esquerda) e imaginária (direita). Ângulos de tomografia dados pela tabela 7.2.

							(i)							
0,0806	0,0148	0,0044	0,0598	-0,1057	-0,1814	0,7739	0,2078	0,0005	0,1411	-0,0089	0,0088	-0,0537	0,4138	0,1713	0,0000
0,0148	-0,0262	0,0216	-0,0676	-0,0090	0,8910	0,2628	-0,7739	-0,1411	-0,0053	0,1107	-0,0179	0,3511	0,0256	-0,0000	0,1713
0,0044	0,0216	-0,0869	-0,0273	0,9846	0,2086	-0,8910	-0,1814	0,0089	-0,1107	-0,0056	0,1867	-0,0474	0,0000	0,0256	-0,4138
0,0598	-0,0676	-0,0273	0,9999	-0,0301	-0,9846	-0,0090	0,1057	-0,0088	0,0179	-0,1867	0,0104	0,0000	-0,0474	-0,3511	-0,0537
-0,1057	-0,0090	0,9846	-0,0301	-0,9999	-0,0273	0,0676	0,0598	0,0537	-0,3511	0,0474	-0,0000	0,0104	-0,1867	-0,0179	-0,0088
-0,1814	0,8910	0,2086	-0,9846	-0,0273	0,0869	0,0216	-0,0044	-0,4138	-0,0256	-0,0000	0,0474	0,1867	-0,0056	-0,1107	-0,0089
0,7739	0,2628	-0,8910	-0,0090	0,0676	0,0216	0,0262	0,0148	-0,1713	0,0000	-0,0256	0,3511	0,0179	0,1107	-0,0053	-0,1411
0,2078	-0,7739	-0,1814	0,1057	0,0598	-0,0044	0,0148	-0,0806	-0,0000	-0,1713	0,4138	0,0537	0,0088	0,0089	0,1411	0,0005
							(ii)							
0,2116	0,0373	0,0312	0,1810 -	0,2018 -	0,5638	0,8124	0,5216	0,0144	0,2150	-0,0322	0,0806	-0,2473	0,6004	0,5144	0,0000
0,0373	-0,0959	0,0620	-0,1499	-0,0151	0,8339	0,6166	-0,8124	-0,2150	-0,0122	0,1464	-0,0553	0,5422	0,2330	-0,0000	0,5144
0,0312	0,0620	-0,2219	-0,0515	1,0000	0,4821	-0,8339	-0,5638	0,0322	-0,1464	-0,0159	0,2561	0,0038	0,0000	0,2330	-0,6004
0,1810	-0,1499	-0,0515	0,9986	-0,0633	-1,0000	-0,0151	0,2018	-0,0806	0,0553	-0,2561	0,0137	-0,0000	0,0038	-0,5422	-0,2473
-0,2018	-0,0151	1,0000	-0,0633	-0,9986	-0,0515	0,1499	0,1810	0,2473	-0,5422	-0,0038	0,0000	0,0137	-0,2561	-0,0553	-0,0806
-0,5638	0,8339	0,4821	-1,0000	-0,0515	0,2219	0,0620	-0,0312	-0,6004	-0,2330	-0,0000	-0,0038	0,2561	-0,0159	-0,1464	-0,0322
0,8124	0,6166	-0,8339	-0,0151	0,1499	0,0620	0,0959	0,0373	-0,5144	0,0000	-0,2330	0,5422	0,0553	0,1464	-0,0122	-0,2150
0,5216	-0,8124	-0,5638	0,2018	0,1810	-0,0312	0,0373	-0,2116	-0,0000	-0,5144	0,6004	0,2473	0,0806	0,0322	0,2150	0,0144
							(i	ii)							
0,3362	0,0708	0,1128	0,2643	-0,0725	-0,9665	0,3343	0,7869	0,0470	0,1606	-0,0564	0,3423	-0,5781	0,2566	0,7807	0,0000
0,0708	-0,2342	0,1293	-0,2100	0,0071	0,3163	0,8722	-0,3343	-0,1606	-0,0265	0,0869	-0,0218	0,5164	0,6126	-0,0000	0,7807
0,1128	0,1293	-0,3422	-0,0259	0,7702	0,5678	-0,3163	-0,9665	0,0564	-0,0869	-0,0307	0,2050	0,2161	0,0000	0,6126	-0,2566
0,2643	-0,2100	-0,0259	0,7499	-0,0378	-0,7702	0,0071	0,0725	-0,3423	0,0218	-0,2050	0,0102	-0,0000	0,2161	-0,5164	-0,5781
-0,0725	0,0071	0,7702	-0,0378	-0,7499	-0,0259	0,2100	0,2643	0,5781	-0,5164	-0,2161	0,0000	0,0102	-0,2050	-0,0218	-0,3423
-0,9665	0,3163	0,5678	-0,7702	-0,0259	0,3422	0,1293	-0,1128	-0,2566	-0,6126	-0,0000	-0,2161	0,2050	-0,0307	-0,0869	-0,0564
0,3343	0,8722	-0,3163	0,0071	0,2100	0,1293	0,2342	0,0708	-0,7807	0,0000	-0,6126	0,5164	0,0218	0,0869	-0,0265	-0,1606
0,7869	-0,3343	-0,9665	0,0725	0,2643	-0,1128	0,0708	-0,3362	-0,0000	-0,7807	0,2566	0,5781	0,3423	0,0564	0,1606	0,0470
Figu	ra 7.24	. Simu	lação d	a influé	ência d	a intera	ição qu	adrupola	ar da c	riação d	lo estad	do de c	oerênc	ias de c	ordens
		,	7			~			π					_	
		•				1 °					x			•••	

pares para *spin* $\frac{1}{2}$ aos pulsos de tomografía. Tempos do pulso $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 μ s (iii). Partes real

(esquerda) e imaginária (direita). Ângulos de tomografia dados pela tabela 7.3.

(a)	(b)
1,0000 0 -0,0000 0,0000 0,0000 -0,0000 -0,0000 0,0000	1,0000 0 -0,0000 0,0000 -0,0000 0,0000 0,0000 0,0000
0 0,7143 0 -0,0000 0,0000 -0,0000 0,0000 0,0000	0 0,7143 0 -0,0000 0,0000 -0,0000 0,0000 0,0000
-0,0000 0 0,4286 0 0,0000 0,0000 0,0000 -0,0000	-0,0000 0 0,4286 0 -0,0000 0,0000 -0,0000 0,0000
0,0000 -0,0000 0 0,1429 0 0,0000 0,0000 0,0000	0,0000 -0,0000 0 0,1429 0 0,0000 0,0000 -0,0000
0,0000 0,0000 0,0000 0 -0,1429 0 0,0000 0,0000	-0,0000 0,0000 -0,0000 0 -0,1429 0 0,0000 0,0000
-0,0000 -0,0000 0,0000 0,0000 0 -0,4286 0 0,0000	0,0000 -0,0000 0,0000 0,0000 0 -0,4286 0 0,0000
-0,0000 0,0000 0,0000 0,0000 0,0000 0 -0,7143 0	0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,7143 0
0,0000 0,0000 -0,0000 0,0000 0,0000 0,0000 0 -1,0000	0,0000 0,0000 0,0000 -0,0000 0,0000 0,0000 0 -1,0000
Figura 7.26. Partes reais do estado \hat{I}_z para <i>spin</i>	- reconstruído considerando NHRF nos pulsos de

tomografia. Ângulos de nutação dados pela tabela 7.2 (a) e 7.3 (b).

(a)								(b)							
0,1149	0	0,0000	0	-0,0000	0	0,0000	0	0	-0,6614	0	-0,0000	0	0,0000	0	-0,0000
0,0000	0,0821	0	-0,0000	0	0,0000	0	-0,0000	0,6614	0	-0,8660	0	0,0000	0	0,0000	0
0,0000	0	0,0492	0	-0,0000	0	0,0000	0	0	0,8660	0	-0,9683	0	-0,0000	0	0,0000
0,0000	-0,0000	0	0,0164	0	-0,0000	0	0,0000	0,0000	0	0,9683	0	-1,0000	0	0,0000	0
-0,0000	0	-0,0000	0	-0,0164	0	-0,0000	0	0	-0,0000	0	1,0000	0	-0,9683	0	-0,0000
0,0000	0,0000	0	-0,0000	0	-0,0492	0	-0,0000	-0,0000	0	0,0000	0	0,9683	0	-0,8660	0
0,0000	0	0,0000	0	-0,0000	0	-0,0821	0	0	-0,0000	0	-0,0000	0	0,8660	0	-0,6614
0,0000	-0,0000	0	0,0000	0	-0,0000	0	-0,1149	0,0000	0	-0,0000	0	0,0000	0	0,6614	0
		Figu	ıra 7.2	7. Cria	ção de	\hat{I}_y para	a spin $\frac{7}{2}$	NHRF	. Parte	s real (a)e in	naginá	ria (b).		

-															
								(i)							
0,0991	0 0	,0000 -	0,0000	-0,0000	-0,0000	0,0000	0,0000	0,0000	-0,6615	0,0000	-0,0000	-0,0000	0,0000	-0,0000	-0,0000
0	0,0708	0 -	0,0000	-0,0000	0,0000	0,0000	-0,0000	0,6615	0,0000	-0,8660	0,0000	0,0000	-0,0000	0,0000	0,0000
0,0000	0	0,042	5 0	-0,0000	-0,0000	0,0000	-0,0000	-0,0000	0,8660	0,0000	-0,9682	0,0000	0,0000	0,0000	0,0000
-0.0000	-0.0000	0	0.014	2 0	-0 0000	-0.0000	0 0000	0 0000	-0.0000	0.9682	0.0000	-1 0000	-0.0000	0.0000	0.0000

0	0,0708	0 -0,	0000 -0	,0000	0,0000	0,0000	-0,0000	0,6615	0,0000	-0,8660	0,0000	0,0000	-0,0000	0,0000	0,0000
0,0000	0	0,0425	0 -	0,0000	-0,0000	0,0000	-0,0000	-0,0000	0,8660	0,0000	-0,9682	0,0000	0,0000	0,0000	0,0000
-0,0000	-0,0000	0	0,0142	0	-0,0000	-0,0000	0,0000	0,0000	-0,0000	0,9682	0,0000	-1,0000	-0,0000	0,0000	0,0000
-0,0000	-0,0000	-0,0000	0	-0,014	42 0	-0,0000	-0,0000	0,0000	-0,0000	-0,0000	1,0000	-0,0000	-0,9682	-0,0000	-0,0000
-0,0000	0,0000	-0,0000	-0,0000	0	-0,042	25 0	-0,0000	-0,0000	0,0000	-0,0000	0,0000	0,9682	-0,0000	-0,8660	-0,0000
0,0000	0,0000	0,0000	-0,0000	-0,000	0 0	-0,070	0 80	0,0000	-0,0000	-0,0000	-0,0000	0,0000	0,8660	-0,0000	-0,6615
0,0000	-0,0000	-0,0000	0,0000	-0,000	00 -0,00	0 00	-0,0991	0,0000	-0,0000	-0,0000	-0,0000	0,0000	0,0000	0,6615	-0,0000
								(ii)							
0,0979	0 0	,0000 -0,	0000 -0	,0000	-0,0000	0,0000	0,0000	0,0000	-0,6615	0,0000	-0,0000	-0,0000	-0,0000	-0,0000	0,0000
0	0,0700	0 -0,	0000 -0	,0000	-0,0000	-0,0000	-0,0000	0,6615	0,0000	-0,8660	0,0000	0,0000	0,0000	-0,0000	0,0000
0,0000	0 0	0,0420	0 -0	,0000,	-0,0000	-0,0000	0,0000	-0,0000	0,8660	0,0000	-0,9682	0,0000	0,0000	-0,0000	0,0000
-0,000	0 -0,000	0 0	0,0140	0	-0,0000	-0,0000	0,0000	0,0000	-0,0000	0,9682	0,0000	-1,0000	-0,0000	0,0000	0,0000
-0,000	0 -0,000	0 -0,000	0 0	-0,014	0 0	-0,0000	-0,0000	0,0000	-0,0000	-0,0000	1,0000	-0,0000	-0,9682	-0,0000	-0,0000
-0,000	0 -0,000	0 -0,000	0 -0,000	00	0 -0,042	20 0	-0,0000	0,0000	-0,0000	-0,0000	0,0000	0,9682	-0,0000	-0,8660	-0,0000
0,0000	0 -0,000	0 -0,000	0 -0,000	0,0-0,0	000	0 -0,070	0 0	0,0000	0,0000	0,0000	-0,0000	0,0000	0,8660	-0,0000	-0,6615
0,0000	0 -0,000	0 0,000	0,000 0	0 -0,0	000 -0,0	000	0 -0,0979	-0,0000	0 -0,0000	-0,0000	-0,0000	0,0000	0,0000	0,6615	-0,0000
						-	7								
					~		/								

Figura 7.28. Reconstrução de \hat{I}_y para *spin* $\frac{i}{2}$ considerando NHRF para ângulos de tomografia dados pelas

tabelas 7.2 (i) e 7.,3 (ii). À esquerda, partes reais e, à direita, partes imaginárias.

(a)								(b)							
0,0087	0,0500	0,0005	0,0045	0,0301	0,1634	0,7203	-0,1282	0,0000	0,0025	0,0221	-0,0063	-0,0297	0,0379	0,2020	0,0000
0,0500	0,0069	0,0720	0,0447	0,2324	0,8990	-0,3421	-0,7203	-0,0025	0,0000	-0,0008	0,0108	0,0276	0,1220	0,0000	0,2020
0,0005	0,0720	0,0535	0,3376	0,9765	-0,4771	-0,8990	0,1634	-0,0221	0,0008	0,0000	0,0108	0,0890	0,0000	0,1220	-0,0379
0,0045	0,0447	0,3376	1,0000	-0,4668	-0,9765	0,2324	-0,0301	0,0063	-0,0108	-0,0108	0,0000	0,0000	0,0890	-0,0276	-0,0297
0,0301	0,2324	0,9765	-0,4668	-1,0000	0,3376	-0,0447	0,0045	0,0297	-0,0276	-0,0890	-0,0000	-0,0000	-0,0108	0,0108	0,0063
0,1634	0,8990	-0,4771	-0,9765	0,3376	-0,0535	0,0720	-0,0005	-0,0379	-0,1220	-0,0000	-0,0890	0,0108	-0,0000	0,0008	0,0221
0,7203	-0,3421	-0,8990	0,2324	-0,0447	0,0720	-0,0069	0,0500	-0,2020	-0,0000	-0,1220	0,0276	-0,0108	-0,0008	-0,0000	-0,0025
-0,1282	-0,7203	0,1634	-0,0301	0,0045	-0,0005	0,0500	-0,0087	-0,0000	-0,2020	0,0379	0,0297	-0,0063	-0,0221	0,0025	-0,0000
											x 1	0-14			

Figura 7.29. Criação do estado com coerências pares para *spin* $\frac{7}{2}$ considerando a NHRF. Partes real (a) e

imaginária (b).

(a)								(b)							
0,0047	0,0418	0,0065	0,0080	0,0556	0,1882	0,8715	-0,1750	0,0066	0,0445	0,0005	-0,0033	0,0167	0	0,8691	-0,1560
0,0418	0,0074	0,0601	0,0314	0,2347	1,0000	-0,3910	-0,8715	0,0445	0,0053	0,0641	0,0330	0,2663	1,0000	0	-0,8691
0,0065	0,0601	0,0314	0,2817	0,9114	-0,4861	-1,0000	0,1882	0,0005	0,0641	0,0322	0,3004	0,9554	-0,5292	-1,0000	0
0,0080	0,0314	0,2817	0,7403	-0,3895	-0,9114	0,2347	-0,0556	-0,0033	0,0330	0,3004	0,7834	-0,4154	-0,9554	0,2663	-0,0167
0,0556	0,2347	0,9114	-0,3895	-0,7403	0,2817	-0,0314	0,0080	0,0167	0,2663	0,9554	-0,4154	-0,7834	0,3004	-0,0330	-0,0033
0,1882	1,0000	-0,4861	-0,9114	0,2817	-0,0314	0,0601	-0,0065	0	1,0000	-0,5292	-0,9554	0,3004	-0,0322	0,0641	-0,0005
0,8715	-0,3910	-1,0000	0,2347	-0,0314	0,0601	-0,0074	0,0418	0,8691	0	-1,0000	0,2663	-0,0330	0,0641	-0,0053	0,0445
-0,1750	-0,8715	0,1882	-0,0556	0,0080	-0,0065	0,0418	-0,0047	-0,1560	-0,8691	0	-0,0167	-0,0033	-0,0005	0,0445	-0,0066

Figura 7.30. Efeito da NHRF da criação de estado de coerências pares para spin $\frac{7}{2}$ ao processo de

tomografia com ângulos de nutação dados pelas tabelas 7.,2 (a) e 7.3 (b). Apenas as partes reais são

mostradas.

(a)								(b)							
0,2772	0	0,0000	0	-0,0000	0	0,0000	0	0	-0,6614	0	-0,0000	0	0,0000	0	-0,0000
0	0,1980	0	0,0000	0	-0,0000	0	0,0000	0,6614	0	-0,8660	0	-0,0000	0	-0,0000	0
0,0000	0	0,1188	0	0,0000	0	-0,0000	0	0	0,8660	0	-0,9683	0	-0,0000	0	0,0000
0	0,0000	0	0,0396	0	-0,0000	0	-0,0000	0,0000	0	0,9683	0 -	1,0000	0	0,0000	0
-0,0000	0	0,0000	0	-0,0396	0	-0,0000	0	0	0,0000	0	1,0000	0	-0,9683	0	0
0	-0,0000	0	-0,0000	0	-0,1188	0	-0,0000	-0,0000	0	0,0000	0	0,9683	0	-0,8660	0
0,0000	0	-0,0000	0	-0,0000	0	-0,1980	0	0	0,0000	0	-0,0000	0	0,8660	0	-0,6614
0	0,0000	0	-0,0000	0	-0,0000	0	-0,2772	0,0000	0	-0,0000	0	-0,0000	0	0,6614	0
		_					7			_					

Figura 7.31. Criação de \hat{I}_y para *spin* $\frac{i}{2}$ considerando ICP. Partes real (a) e imaginária (b).

	1)												
0,2573 0 0,0000 0,0000 -0,0000 -0,0000 0,0000 0,0000	0,0000 -0,6614 -0,0000 -0,0000 0,0000 0,0000 0,0000 -0,0000												
0 0,1838 0 0,0000 -0,0000 -0,0000 0,0000 0,0000	0,6614 0,0000 -0,8660 0,0000 -0,0000 0,0000 0,0000 0,0000												
0,0000 0 0,1103 0 0,0000 -0,0000 -0,0000 -0,0000	0,0000 0,8660 -0,0000 -0,9682 -0,0000 -0,0000 0,0000 -0,0000												
	0,0000 -0,0000 0,9682 0,0000 -1,0000 0,0000 0,0000 0,0000												
	-0,0000 $0,0000$ $0,0000$ $1,0000$ $0,0000$ $-0,9082$ $0,0000$ $0,0000$												
-0,0000 -0,00000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,00000-00000000													
0,0000 0,0000 -0,0000 0,0000 -0,0000 -0,0000 0 -0,2573	0.0000 -0.0000 0.0000 -0.0000 -0.0000 -0.0000 0.6614 -0.0000												
	ii)												
0,2499 0 0,0000 -0,0000 -0,0000 0,0000 0,0000	0,0000 -0,6614 -0,0000 -0,0000 -0,0000 0,0000 0,0000 -0,0000												
0 0,1785 0 0,0000 -0,0000 -0,0000 -0,0000 0,0000	0,6614 0,0000 -0,8660 -0,0000 -0,0000 0,0000 0,0000 0,0000												
0,0000 0 0,1071 0 0,0000 -0,0000 -0,0000 -0,0000	0,0000 0,8660 0,0000 -0,9682 -0,0000 -0,0000 0,0000 0,0000												
-0,0000 0,0000 0 0,0357 0 -0,0000 -0,0000 -0,0000	0,0000 0,0000 0,9682 0,0000 -1,0000 -0,0000 -0,0000 0,0000												
-0,0000 -0,0000 0,0000 0 -0,0357 0 -0,0000 -0,0000	0,0000 0,0000 0,0000 1,0000 -0,0000 -0,9682 0,0000 -0,0000												
-0,0000 -0,0000 -0,0000 -0,0000 0 -0,10/1 0 -0,0000 0 0,0000 0 0,0000 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,0000 0 0 0,00000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,0000 0 0,00000 0 0,00000 0 0,00000 0 0,000000	-0,0000 -0,0000 0,0000 0,0000 0,9682 -0,0000 -0,8660 -0,0000 0,00000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,00000 0,00000 0,00000 0,00000 0,000000												
0,0000 -0,00000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,00000000	-0,0000 $-0,0000$ $-0,0000$ $-0,0000$ $-0,0000$ $-0,0000$ $-0,0000$ $-0,0000$ $-0,0000$												
0,0000 0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,0000 -0,2477	0,0000 -0,0000 -0,0000 -0,0000 0,0000 0,0000 0,0014 -0,0000												
Figura 7.32. Reconstrução de \hat{I}_y para <i>spin</i> $\frac{7}{2}$ considerando ICP, para ângulos de tomografia dados pela tabelas 7.2 (i) e													
$\frac{1}{2}$ 7.3 (ii). À esquerda, partes reais e, à direita, partes imaginárias.													
(a) 0.0482 0.1155 0.0026 0.0225 0.1007 0.2460 0.5721 0.2027	(b)												
0,0485 $0,1155$ $0,0050$ $0,0255$ $0,1097$ $0,5409$ $0,5751$ $-0,2827$	-0,0000 $0,0057$ $0,0190$ $-0,0124$ $-0,0122$ $0,0849$ $0,1857$ $0,0000$ 0.0057 0.0000 0.0008 0.0215 0.0602 0.1036 0.0000 0.1857												
0,0135 $0,0592$ $0,1846$ $0,1000$ $0,4725$ $0,3897$ $-0,7509$ $-0,5751$ $0,0036$ $0,1846$ $0,1982$ $0,6939$ $0,5577$ $-1,0000$ $-0,5897$ $0,3469$	-0.0007 0,0000 -0.0008 0,0213 0,0002 0,1030 -0.0000 0,1837												
0.0235 0.1606 0.6939 0.5490 -0.9462 -0.5577 0.4723 -0.1097	0.0124 -0.0215 -0.0234 0.0000 -0.0000 0.0764 -0.0602 -0.0122												
0,1097 0,4723 0,5577 -0,9462 -0,5490 0,6939 -0,1606 0,0235	0,0122 -0,0602 -0,0764 0,0000 -0,0000 -0,0234 0,0215 0,0124												
0,3469 0,5897 -1,0000 -0,5577 0,6939 -0,1982 0,1846 -0,0036	-0,0849 -0,1036 0,0000 -0,0764 0,0234 0 0,0008 0,0190												
0,5731 -0,7369 -0,5897 0,4723 -0,1606 0,1846 -0,0392 0,1155	-0,1857 0,0000 -0,1036 0,0602 -0,0215 -0,0008 0,0000 -0,0057												
-0,2827 -0,5731 0,3469 -0,1097 0,0235 -0,0036 0,1155 -0,0483	-0,0000 -0,1857 0,0849 0,0122 -0,0124 -0,0190 0,0057 -0,0000												
	1/0-17												
7													
Firme 7.22 Guiaño de estado de econômico de ender	7												
Figura 7.33. Criação do estado de coerências de orden	s pares para spin $\frac{7}{2}$ considerando ICP. Partes real (a) e												
Figura 7.33. Criação do estado de coerências de orden imagin	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b).												
Figura 7.33. Criação do estado de coerências de orden imagin	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b).												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b).												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b).												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0200 0,1464 0,7027 0,5673 -1,0000 -0,5907 0,3087	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4652 0,5673 0,9582 -0,5673 0,4622 -0,1453	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 -0,0170 0,0793 0,0768 -0,0000 0,0809 -0,0420 -0,0061												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1464 0,0399 0,3087 0,5907 -10000 -0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -10000 -0,5673 0,0137 -0,1800 0,1869 -0,0137	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0889 0,0337 0,0008 -0,0002												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5673 -0,05673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,05673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1860 0,1137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0401 0,1170	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,00768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,00047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1454 0,4783 0,6421 -0,5907 -0,1000 -0,5673 0,7027 -0,1860 0,137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0401 0,1170 -0,2660 -0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b).												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1860 0,1379 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0401 0,1170 -0,2660 -0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b).												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 0,7027 -0,1464 0,3999 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1370 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0411 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,04114 -0,2660 -0,4783 0,3087 -0,1453 0,0399 -0,0137	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0139 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,4783 -0,5070 1,0000 -0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0414 -0,2660 -0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0139 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,11453 0,1453 0,4622 0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,1869 -0,0137 0,4783 -0,6411 -0,5907 0,4622 -0,1464 0,1869 -0,0414 -0,2660 -0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414	x 10 ⁻¹ x 10 ⁻¹ s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0550 0,0042 -0,0008 0,0132 0,0743 0,0655 0,0138 0,0182												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0139 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,1369 -0,0137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0414 -0,2660	x 10 ⁻¹ x 10 ⁻¹ s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0663 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0683 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0671												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1145 0,1453 0,4622 0,5673 0,7027 -0,1464 0,0399 0,0137 0,4783 -0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0137 0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414	x 10 ⁻¹ x 10 ⁻¹ s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0633 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0055 0,0042 -0,0008 0,0132 0,0743 0,0655 0,0038 0,0182 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0683 0,0108 -0,0132 -0,0227 -0,0030 -0,0000 0,0652 -0,0149 0,0071 0,0411 -0,0743 -0,0631 0,0000 0,0652 -0,0149 0,0071												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5673 -0,05673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,641 -0,5907 0,4622 -0,1464 0,1869 -0,0137 0,4783 -0,641 -0,5907 0,4622	x 10 ⁻¹ x 10												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0139 0,1464 0,7027 0,5673 -0,05673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,6411 -0,5907 0,4622 -0,1464 0,1869 -0,0414 0,0122 0,1119 0,0012	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,0768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0055 0,0042 -0,0008 0,0132 0,0743 0,0655 0,0038 0,0182 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0683 0,0108 -0,0132 -0,0227 -0,0030 -0,0000 0,0652 -0,0149 0,0071 0,0411 -0,0743 -0,0631 0,0000 0,0044 -0,0227 0,0250 0,0205 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0008 0,0195 -0,2013 -0,0038 -0,0842 0,0149 -0,0250 -0,0008 -0,0063 -0,0055												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5673 -0,05673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0141 0,0122 0,1119 0,0012 -0,0124 0,0665 0,2681 0,3891 -0,1641 0,1119 0,0317 0,1788	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 x10 ⁻¹⁴ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0055 0,0042 -0,0008 0,0132 0,0743 0,0655 0,0038 0,0182 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0683 0,0108 -0,0132 -0,0227 -0,0030 -0,0000 0,0652 -0,0149 0,0071 0,0411 -0,0743 -0,0631 0,0000 0,0044 -0,0227 0,0250 0,0205 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0008 -0,0008 0,0195 -0,2013 -0,0038 -0,0842 0,0149 -0,0250 -0,0008 -0,0063 -0,0055 -0,0056 -0,0655 0,0147 -0,0652 0,0227 -0,0068 -0,0005 -0,0055 -0,0056 -0,0655 0,0147 -0,0652 0,0227 -0,0008 -0,0008 0,0195 -0,2013 -0,0038 -0,0842 0,0149 -0,0250 -0,0008 -0,0063 -0,0055 -0,0050 -0,0655 0,0182 -0,0271 -0,0250 -0,0008 -0,0055 -0,0055 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0068 -0,0055 -0,0055 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0068 -0,0055 -0,0055 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0068 -0,0063 -0,0055 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0068 -0,0063 -0,0055 -0,0150 -0,0182 -0,0283 -0,0071 -0,0205 -0,0195 0,0055 -0,0062												
Figura 7.33. Criação do estado de coerências de orden imagin $(0,0414 \ 0,1170 \ 0,0137 \ 0,0399 \ 0,1453 \ 0,3087 \ 0,4783 \ -0,2660 \ 0,1170 \ 0,0401 \ 0,1869 \ 0,1464 \ 0,4622 \ 0,5907 \ -0,6441 \ -0,4783 \ 0,0137 \ 0,1869 \ 0,1800 \ 0,7027 \ 0,5673 \ -1,0000 \ -0,5907 \ 0,3087 \ 0,399 \ 0,1464 \ 0,7027 \ 0,5467 \ -0,9582 \ -0,5673 \ 0,4622 \ -0,1453 \ 0,1453 \ 0,4622 \ 0,5673 \ -0,9582 \ -0,5467 \ 0,7027 \ -0,1464 \ 0,0399 \ 0,3087 \ 0,5907 \ -1,0000 \ -0,5673 \ 0,7027 \ -0,1800 \ 0,1869 \ -0,0137 \ 0,4783 \ -0,6441 \ -0,5907 \ 0,4622 \ -0,1453 \ 0,0727 \ -0,1800 \ 0,1869 \ -0,0137 \ 0,4783 \ -0,6441 \ -0,5907 \ 0,4622 \ -0,1453 \ 0,0399 \ -0,0137 \ 0,1170 \ -0,0414 \ 0,1170 \ -0,2660 \ -0,4783 \ 0,3087 \ -0,1453 \ 0,0399 \ -0,0137 \ 0,1170 \ -0,0414 \ 0,1119 \ 0,0317 \ 0,1788 \ 0,1333 \ 0,5098 \ 0,4805 \ -0,5499 \ -0,3891 \ 0,0124 \ 0,1333 \ 0,6723 \ 0,5134 \ -0,9167 \ -0,5218 \ 0,5098 \ -0,0655 \ 0,0665 \ 0,5098 \ 0,5218 \ -0,0124 \ 0,1333 \ -0,0124 \ 0,2681 \ 0,4805 \ -1,0000 \ -0,5218 \ 0,6723 \ -0,1641 \ 0,1788 \ -0,012 \ 0,2681 \ 0,4805 \ -1,0000 \ -0,5218 \ 0,0655 \ -0,0124 \ -0,0012 \ 0,1119 \ -0,0422 \ $	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,768 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 $\times 10^{-14}$ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0055 0,0042 -0,0008 0,0132 0,0743 0,0655 0,0038 0,0182 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0683 0,0108 -0,0132 -0,0227 -0,0030 -0,0000 0,0652 -0,0149 0,0071 0,0411 -0,0743 -0,0631 0,0000 0,0044 -0,0227 0,0250 0,0205 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0061 0,0008 0,0195 -0,2013 -0,0038 -0,0842 0,0149 -0,0250 -0,0008 -0,0063 -0,0055 -0,0055 -0,0028 -0,0071 -0,0205 -0,0195 0,0055 -0,0062 $\times 10^{-14}$												
Figura 7.33. Criação do estado de coerências de orden imagin $0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,399 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5467 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,6441 -0,5907 0,4622 -0,1464 0,1869 -0,0401 0,1170 -0,2660 -0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414 0,0119 0,0317 0,1788 0,1333 0,5098 0,4805 -0,5499 -0,3891 0,012 0,1788 0,1661 0,6723 0,5218 -1,0000 -0,4805 0,2681 -0,0124 0,1333 0,6723 0,5134 -0,9167 -0,5218 0,5098 -0,0665 0,0665 0,5098 0,5218 -0,9167 -0,5118 0,6723 -0,1333 -0,0124 0,2681 0,4805 -1,0000 -0,5218 0,6723 -0,1631 0,1788 -0,0012 0,3891 -0,5499 -0,4805 0,5098 -0,5499 -0,4805 -0,5499 -0,3891 -0,1641 -0,3891 -0,2681 -0,0665 -0,0124 -0,0012 0,1119 -0,0422$	$\frac{1}{10000000000000000000000000000000000$												
Figura 7.33. Criação do estado de coerências de orden imagin 0,0414 0,1170 0,0137 0,0399 0,1453 0,3087 0,4783 -0,2660 0,1170 0,0401 0,1869 0,1464 0,4622 0,5907 -0,6441 -0,4783 0,0137 0,1869 0,1800 0,7027 0,5673 -1,0000 -0,5907 0,3087 0,0399 0,1464 0,7027 0,5467 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 -0,9582 -0,5673 0,4622 -0,1453 0,1453 0,4622 0,5673 0,7027 -0,1464 0,399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1464 0,0399 0,3087 0,5907 -1,0000 -0,5673 0,7027 -0,1800 0,1869 -0,0137 0,4783 -0,6411 -0,5907 0,4622 -0,1464 0,1869 -0,0137 0,4783 0,3087 -0,1453 0,0399 -0,0137 0,1170 -0,0414 0,1119 <	s pares para <i>spin</i> $\frac{7}{2}$ considerando ICP. Partes real (a) e ária (b). i) -0,0046 0,0058 0,0167 0,0067 -0,0170 0,0590 0,2397 0,0843 -0,0058 -0,0049 -0,0008 0,0280 0,0793 0,1075 0,0657 0,0737 -0,0167 0,0008 -0,0057 0,0237 0,7068 -0,0430 0,0746 -0,0869 -0,0067 -0,0280 -0,0237 0,0047 -0,0000 0,0809 -0,0420 -0,0061 0,0170 -0,0793 -0,0768 0,0000 0,0063 -0,0237 0,0203 0,0229 -0,0590 -0,1075 0,0430 -0,0809 0,0237 0,0005 0,0008 -0,0002 -0,2397 -0,0657 -0,0746 0,0420 -0,0203 -0,0008 0,0045 -0,0058 -0,0843 -0,0737 0,0869 0,0061 -0,0229 0,0002 0,0058 -0,0007 $\times 10^{-14}$ ii) 0,0056 0,0055 0,0105 -0,0108 -0,0411 0,0560 0,2013 0,7020 -0,0550 0,0042 -0,0008 0,0132 0,0743 0,0655 0,0038 0,0182 -0,0105 0,0008 0,0074 0,0227 0,0631 -0,0147 0,0842 -0,0683 0,0108 -0,0132 -0,0227 -0,0030 -0,0000 0,0652 -0,0149 0,0071 0,0411 -0,0743 -0,0631 0,0000 0,0044 -0,0227 0,0250 0,0205 -0,0560 -0,0655 0,0147 -0,0652 0,0227 -0,0061 0,0008 0,0195 -0,2013 -0,038 -0,0842 0,0149 -0,0250 -0,0008 -0,0063 -0,0055 -0,7020 -0,0182 0,0683 -0,0071 -0,0205 -0,0195 0,0055 -0,0062 $\times 10^{-14}$ de ordens pares para <i>spin</i> $\frac{7}{2}$ considerando ICP, para												

ângulos de tomografía dados pela tabelas 7.2 (i) e 7.3 (ii). À esquerda, partes reais e, à direita, partes imaginárias.

								(i)
0,9932	0	-0,0000	0,0000	-0,0000	-0,0000	-0,0000	0,0000	0,1166 0 0,0000 -0,0000 -0,0000 0,0000 -0,0000 0,0000
0	0,7106	0	-0,0000	0,0000	-0,0000	0,0000	0,0000	0 0,0167 0 0,0000 -0,0000 -0,0000 0,0000 0,0000
-0,0000	0	0,4268	0	0,0000	0,0000	-0,0000	-0,0000	-0,0000 0 -0,0500 0 0,0000 -0,0000 -0,0000 0,0000
0,0000	-0,0000	0	0,1424	0	0,0000	0,0000	-0,0000	0,0000 -0,0000 0 -0,0833 0 0,0000 -0,0000 0,0000
-0,0000	0,0000	0,0000	0	-0,1424	0	0,0000	0,0000	0,0000 0,0000 -0,0000 0 -0,0833 0 0,0000 -0,0000
-0,0000	-0,0000	0,0000	0,0000	0	-0,4268	0	0,0000	-0,0000 0,0000 0,0000 -0,0000 0 -0,0500 0 0,0000
-0,0000	0,0000	-0,0000	0,0000	0,0000	0	-0,7106	0	0,0000 -0,0000 0,0000 0,0000 -0,0000 0 0,0167 0
0,0000	0,0000	-0,0000	-0,0000	0,0000	0,0000	0	-0,9932	-0,0000 -0,0000 -0,0000 -0,0000 0,0000 -0,0000 0 0,1166
								ii)
0,9827	0 -	-0,0000	0,0000	-0,0000	0,0000	-0,0000	0,0000	0,1852 0 0,0000 -0,0000 -0,0000 0,0000 -0,0000 0,0000
0	0,7050	0	-0,0000	0,0000	-0,0000	0,0000	0,0000	0 0,0266 0 0,0000 -0,0000 0,0000 0,0000 0,0000
-0,0000	0	0,4242	0	0,0000	0,0000	-0,0000	0,0000	-0,0000 0 -0,0794 0 0,0000 -0,0000 -0,0000 0,0000
0,0000	-0,0000	0	0,1416	0	0,0000	0,0000	-0,0000	0,0000 -0,0000 0 -0,1324 0 0,0000 -0,0000 -0,0000
-0,0000	0,0000	0,0000	0	-0,1416	5 0	0,0000	0,0000	0,0000 0,0000 -0,0000 0 -0,1324 0 0,0000 -0,0000
0,0000	-0,0000	0,0000	0,0000	0	-0,4242	0	0,0000	-0,0000 -0,0000 0,0000 -0,0000 0 -0,0794 0 0,0000
-0,0000	0,0000	-0,0000	0,0000	0,0000	0	-0,7050	0	0,0000 -0,0000 0,0000 0,0000 -0,0000 0 0,0266 0
0,0000	0,0000	0,0000	-0,0000	0,0000	0,0000	0	-0,9827	-0,0000 -0,0000 -0,0000 0,0000 0,0000 -0,0000 0 0,1852
							(iii)
0,9619	0	-0,0000	0,0000	-0,0000	0,0000	-0,0000	0,0000	0,2735 0 0,0000 -0,0000 -0,0000 0,0000 -0,0000 0,0000
0	0,6939	0	-0,0000	0,0000	-0,0000	0,0000	0,0000	0 0,0395 0 0,0000 0,0000 -0,0000 0,0000 0,0000
-0,0000	0	0,4191	0	0,0000	-0,0000	-0,0000	0,0000	-0,0000 0 -0,1172 0 0,0000 -0,0000 -0,0000 -0,0000
0,0000	-0,0000	0	0,1402	0	0,0000	0,0000	0,0000	0,0000 -0,0000 0 -0,1958 0 0,0000 -0,0000 -0,0000
-0,0000	0,0000	0,0000	0	-0,1402	0	-0,0000	0,0000	0,0000 -0,0000 -0,0000 0 -0,1958 0 -0,0000 -0,0000
0,0000	-0,0000	-0,0000	0,0000	0	-0,4191	0	-0,0000	-0,0000 0,0000 0,0000 -0,0000 0 -0,1172 0 0,0000
-0,0000	0,0000	-0,0000	0,0000	-0,0000	0	-0,6939	0	0,0000 -0,0000 0,0000 0,0000 0,0000 0 0,0395 0
0,0000	0,0000	0,0000	0,0000	0,0000	-0,0000	0	-0,9619	-0,0000 -0,0000 0,0000 0,0000 0,0000 -0,0000 0 0,2735
								7
Figure	7 25 1	nfluância	, do intor		ما سام ما م	- NILIDI	L a ICD m	as nulsos do tomografia do \hat{l} nore quiu — Durações dos nulsos do

Figura 7.35. Influência da interação quadrupolar, NHRF e ICP nos pulsos de tomografia de \hat{I}_z para spin $\frac{1}{2}$. Durações dos pulsos de

 $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos dados pela tabela 7.2.

(i)
0,9998 0 0,0000 0,0000 -0,0000 0,0000 -0,0000 0,0000 0,0181 0 0,0000 -0,0000 -0,0000 0,0000 0,0000 0,0000
0 0,7145 0 0,0000 0,0000 -0,0000 0,0000 0,0000 0 0,0026 0 0,0000 -0,0000 -0,0000 0,0000
0,0000 0 0,4288 0 0,0000 0,0000 0,0000 -0,0000 0 -0,00077 0 0,0000 0,0000 -0,0000
0,0000 0,0000 0 0,1430 0 0,0000 0,0000 0,0000 0,0000 0 -0,0000 0 -0,0129 0 0,0000 -0,0000 -0,0000
-0,0000 0,0000 0,0000 0 -0,1430 0 0,0000 0,0000 0,0000 -0,0000 0 -0,0129 0 0,0000 -0,0000
0,0000 -0,0000 0,0000 0,0000 0 -0,4288 0 0,0000 0,0000 -0,0000 -0,0000 0 -0,00077 0 0,0000
-0,0000 0,0000 0,0000 0,0000 0,0000 0 -0,7145 0 -0,0000 0,0000 0,0000 -0,0000 0 0,0026 0
0,0000 0,0000 0,0000 0,0000 0,0000 0 -0,9998 -0,0000 -0,0000 0,0000 0,0000 -0,0000 0 0,0181
(ii)
0,9996 0 0,0000 0,0000 -0,0000 0,0000 0,0000 0,0000 0,0289 0 0,0000 -0,0000 0,0000 -0,0000 0,0000 -0,0000 0,0000
0 0,7148 0 0,0000 0,0000 -0,0000 0,0000 0,0000 0 0,0001 0 0,0000 -0,0000 -0,0000 -0,0000 -0,0000
0,0000 0 0,4292 0 0,0000 0,0000 -0,0000 0,0000 -0,0000 0 -0,0124 0 0,0000 -0,0000 0,0000 -0,0000
0,0000 0,0000 0 0,1431 0 0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,0000 0 -0,0207 0 0,0000 -0,0000 -0,0000
-0,0000 0,0000 0,0000 0 -0,1431 0 0,0000 0,0000 -0,0000 0,0000 0 -0,0000 0 -0,0207 0 0,0000 -0,0000
0,0000 -0,0000 0,0000 0,0000 0 -0,4292 0 0,0000 -0,0000 -0,0000 -0,0000 0 -0,0124 0 0,0000
0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,7148 0 0,0000 -0,0000 -0,0000 -0,0000 0 0,0001 0
0,0000 0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,9996 -0,0000 0,0000 0,0000 0,0000 0,0000 -0,0000 0 0,0289
(iii)
0,9991 0 -0,0000 0,0000 -0,0000 0,0000 0,0000 -0,0000 0,0433 0 0,0000 -0,0000 -0,0000 0,0000 -0,0000 0,0000
0 0,7154 0 -0,0000 0,0000 -0,0000 0,0000 0,0000 0 0,0062 0 0,0000 -0,0000 -0,0000 -0,0000 -0,0000
-0,0000 0 0,4299 0 -0,0000 0,0000 -0,0000 0,0000 -0,0000 0 -0,0186 0 0,0000 -0,0000 -0,0000 -0,0000
0,0000 -0,0000 0 0,1434 0 0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,0000 0 -0,0310 0 0,0000 -0,0000 -0,0000
-0,0000 0,0000 -0,0000 0 -0,1434 0 0,0000 0,0000 0,0000 -0,0000 0 -0,0310 0 0,0000 -0,0000
0,0000 -0,0000 0,0000 0,0000 0 -0,4299 0 0,0000 -0,0000 0,0000 -0,0000 0 -0,0186 0 0,0000
0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,7154 0 0,0000 0,0000 0,0000 0,0000 -0,0000 0 0,0062 0
-0,0000 0,0000 0,0000 -0,0000 0,0000 0,0000 0 -0,9991 -0,0000 0,0000 0,0000 0,0000 -0,0000 0 0,0433
7
Figura 7.36. Influência da interação quadrupolar. NHRE e ICP nos pulsos de tomografia de \hat{L} para s <i>pin</i> $\stackrel{\prime}{-}$ Durações
$\frac{1}{2}$

dos pulsos de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12µs (iii). À esquerda, partes reais e, à direita, imaginárias. Ângulos dados pela tabela

							(1)							
0,4203	0,2190	0,0246	0,0030	0,0003	0,0000	0,0000	0,0000	-0,0000	-0,6472	-0,0606	-0,0055	-0,0006	-0,0001	-0,0000	-0,0000
0,2190	0,2762	0,1907	0,0219	0,0023	0,0002	0,0000	-0,0000	0,6472	-0,0000	-0,8579	-0,0933	-0,0091	-0,0010	-0,0001	-0,0000
0,0246	0,1907	0,1563	0,1064	0,0085	0,0000	-0,0002	-0,0000	0,0606	0,8579	0,0000	-0,9660	-0,1105	-0,0105	-0,0010	-0,0001
0,0030	0,0219	0,1064	0,0505	-0,0000	-0,0085	-0,0023	-0,0003	0,0055	0,0933	0,9660	-0,0000	-1,0000	-0,1105	-0,0091	-0,0006
0,0003	0,0023	0,0085	-0,0000	-0,0505	-0,1064	-0,0219	-0,0030	0,0006	0,0091	0,1105	1,0000	-0,0000	-0,9660	-0,0933	-0,0055
0,0000	0,0002	0,0000	-0,0085	-0,1064	-0,1563	-0,1907	-0,0246	0,0001	0,0010	0,0105	0,1105	0,9660	0,0000	-0,8579	-0,0606
0,0000	0,0000	-0,0002	-0,0023	-0,0219	-0,1907	-0,2762	-0,2190	0,0000	0,0001	0,0010	0,0091	0,0933	0,8579	-0,0000	-0,6472
0,0000	-0,0000	-0,0000	-0,0003	-0,0030	-0,0246	-0,2190	-0,4203	0,0000	0,0000	0,0001	0,0006	0,0055	0,0606	0,6472	-0,0000
							(ii)							
0,4849	0,3520	0,0606	0,0114	0,0020	0,0003	0,0000	-0,0000	-0,0000	-0,6241	-0,0848	-0,0112	-0,0020	-0,0004	-0,0001	-0,0000
0,3520	0,2835	0,3057	0,0550	0,0092	0,0010	0,0000	-0,0000	0,6241	0,0000	-0,8453	-0,1431	-0,0221	-0,0040	-0,0006	-0,0001
0,0606	0,3057	0,1459	0,1703	0,0215	0,0000	-0,0010	-0,0003	0,0848	0,8453	-0,0000	-0,9626	-0,1760	-0,0266	-0,0040	-0,0004
0,0114	0,0550	0,1703	0,0447	-0,0000	-0,0215	-0,0092	-0,0020	0,0112	0,1431	0,9626	0,0000	-1,0000	-0,1760	-0,0221	-0,0020
0,0020	0,0092	0,0215	-0,0000	-0,0447	-0,1703	-0,0550	-0,0114	0,0020	0,0221	0,1760	1,0000	-0,0000	-0,9626	-0,1431	-0,0112
0,0003	0,0010	0,0000	-0,0215	-0,1703	-0,1459	-0,3057	-0,0606	0,0004	0,0040	0,0266	0,1760	0,9626	-0,0000	-0,8453	-0,0848
0,0000	0,0000	-0,0010	-0,0092	-0,0550	-0,3057	-0,2835	-0,3520	0,0001	0,0006	0,0040	0,0221	0,1431	0,8453	0,0000	-0,6241
-0,0000	-0,0000	-0,0003	-0,0020	-0,0114	-0,0606	-0,3520	-0,4849	0,0000	0,0001	0,0004	0,0020	0,0112	0,0848	0,6241	-0,0000
							(1	iii)							
0,6243	0,5314	0,1250	0,0336	0,0086	0,0019	0,0003	0,0000	0,0000	-0,5729	-0,0915	-0,0132	-0,0037	-0,0014	-0,0004	-0,0001
0,5314	0,2974	0,4606	0,1193	0,0297	0,0051	0,0000	-0,0003	0,5729	0,0000	-0,8196	-0,1963	-0,0442	-0,0125	-0,0031	-0,0004
0,1250	0,4606	0,1236	0,2554	0,0475	0,0000	-0,0051	-0,0019	0,0915	0,8196	-0,0000	-0,9561	-0,2622	-0,0591	-0,0125	-0,0014
0,0336	0,1193	0,2554	0,0325	-0,0000	-0,0475	-0,0297	-0,0086	0,0132	0,1963	0,9561	0,0000	-1,0000	-0,2622	-0,0442	-0,0037
0,0086	0,0297	0,0475	-0,0000	-0,0325	-0,2554	-0,1193	-0,0336	0,0037	0,0442	0,2622	1,0000	0,0000	-0,9561	-0,1963	-0,0132
0,0019	0,0051	0,0000	-0,0475	-0,2554	-0,1236	-0,4606	-0,1250	0,0014	0,0125	0,0591	0,2622	0,9561	0,0000	-0,8196	-0,0915
0,0003	0,0000	-0,0051	-0,0297	-0,1193	-0,4606	-0,2974	-0,5314	0,0004	0,0031	0,0125	0,0442	0,1963	0,8196	-0,0000	-0,5729
0,0000	-0,0003	-0,0019	-0,0086	-0,0336	-0,1250	-0,5314	-0,6243	0,0001	0,0004	0,0014	0,0037	0,0132	0,0915	0,5729	0,0000
F:	auro 7	37 Ea	tado Î	nara a	, 7	onstru	údo cor	sidaran	do inte	mação /	modru	olar N	JHRE 6	ICDn	ara
r I	guia /	.J/. ES	statio I_y	para sp	$\frac{7}{2}$	constru		isiuci all	uo mie	Taya0 (quadrup	Joiai, r	VI II/I' Ç	, icr p	aia
					_										

duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii)., À esquerda, partes reais e, à direita, imaginárias.

(i)

							(<u>1</u>)							
0,3333	0,2190	0,0459	0,0051	0,0009	0,0001	0,0000	0,0000	0,0404	-0,6472	-0,0435	-0,0030	-0,0004	-0,0000	-0,0000	-0,0000
0,2190	0,2185	0,1907	0,0415	0,0041	0,0005	0,0000	-0,0000	0,6472	0,0048	-0,8579	-0,0852	-0,0080	-0,0008	-0,0001	-0,0000
0,0459	0,1907	0,1234	0,1064	0,0162	0,0000	-0,0005	-0,0001	0,0435	0,8579	-0,0173	-0,9660	-0,1109	-0,0103	-0,0008	-0,0000
0,0051	0,0415	0,1064	0,0399	-0,0000	-0,0162	-0,0041	-0,0009	0,0030	0,0852	0,9660	-0,0279	-1,0000	-0,1109	-0,0080	-0,0004
0,0009	0,0041	0,0162	-0,0000	-0,0399	-0,1064	-0,0415	-0,0051	0,0004	0,0080	0,1109	1,0000	-0,0279	-0,9660	-0,0852	-0,0030
0,0001	0,0005	0,0000	-0,0162	-0,1064	-0,1234	-0,1907	-0,0459	0,0000	0,0008	0,0103	0,1109	0,9660	-0,0173	-0,8579	-0,0435
0,0000	0,0000	-0,0005	-0,0041	-0,0415	-0,1907	-0,2185	-0,2190	0,0000	0,0001	0,0008	0,0080	0,0852	0,8579	0,0048	-0,6472
0,0000	-0,0000	-0,0001	-0,0009	-0,0051	-0,0459	-0,2190	-0,3333	0,0000	0,0000	0,0000	0,0004	0,0030	0,0435	0,6472	0,0404
							(1	ii)							
0,3785	0,3520	0,1041	0,0166	0,0041	0,0007	0,0001	0,0000	0,0769	-0,6241	-0,0206	0,0056	0,0004	0,0000	-0,0000	-0,0000
0,3520	0,2194	0,3057	0,0980	0,0148	0,0025	-0,0000	-0,0001	0,6241	0,0070	-0,8453	-0,1121	-0,0117	-0,0022	-0,0004	-0,0000
0,1041	0,3057	0,1120	0,1703	0,0389	0,0000	-0,0025	-0,0007	0,0206	0,8453	-0,0329	-0,9626	-0,1775	-0,0211	-0,0022	0,0000
0,0166	0,0980	0,1703	0,0341	-0,0000	-0,0389	-0,0148	-0,0041	-0,0056	0,1121	0,9626	-0,0509	-1,0000	-0,1775	-0,0117	0,0004
0,0041	0,0148	0,0389	-0,0000	-0,0341	-0,1703	-0,0980	-0,0166	-0,0004	0,0117	0,1775	1,0000	-0,0509	-0,9626	-0,1121	0,0056
0,0007	0,0025	0,0000	-0,0389	-0,1703	-0,1120	-0,3057	-0,1041	-0,0000	0,0022	0,0211	0,1775	0,9626	-0,0329	-0,8453	-0,0206
0,0001	-0,0000	-0,0025	-0,0148	-0,0980	-0,3057	-0,2194	-0,3520	0,0000	0,0004	0,0022	0,0117	0,1121	0,8453	0,0070	-0,6241
0,0000	-0,0001	-0,0007	-0,0041	-0,0166	-0,1041	-0,3520	-0,3785	0,0000	0,0000	-0,0000	-0,0004	-0,0056	0,0206	0,6241	0,0769
							(i	ii)							
0,4689	0,5314	0,1780	0,0318	0,0072	0,0022	0,0005	-0,0000	0,1532	-0,5729	0,0900	0,0482	0,0087	0,0020	0,0003	-0,0001
0,5314	0,2167	0,4606	0,1868	0,0395	0,0085	-0,0000	-0,0005	0,5729	0,0077	-0,8196	-0,1047	-0,0040	-0,0036	-0,0014	0,0003
0,1780	0,4606	0,0860	0,2554	0,0777	-0,0000	-0,0085	-0,0022	-0,0900	0,8196	-0,0655	-0,9561	-0,2639	-0,0385	-0,0036	0,0020
0,0318	0,1868	0,2554	0,0217	-0,0000	-0,0777	-0,0395	-0,0072	-0,0482	0,1047	0,9561	-0,0954	-1,0000	-0,2639	-0,0040	0,0087
0,0072	0,0395	0,0777	-0,0000	-0,0217	-0,2554	-0,1868	-0,0318	-0,0087	0,0040	0,2639	1,0000	-0,0954	-0,9561	-0,1047	0,0482
0,0022	0,0085	-0,0000	-0,0777	-0,2554	-0,0860	-0,4606	-0,1780	-0,0020	0,0036	0,0385	0,2639	0,9561	-0,0655	-0,8196	0,0900
0,0005	-0,0000	-0,0085	-0,0395	-0,1868	-0,4606	-0,2167	-0,5314	-0,0003	0,0014	0,0036	0,0040	0,1047	0,8196	0,0077	-0,5729
-0,0000	0-0,0005	-0,0022	-0,0072	-0,0318	-0,1780	-0,5314	-0,4689	0,0001	-0,0003	-0,0020	-0,0087	-0,0482	-0,0900	0,5729	0,1532
				7											
			4	1											

Figura 7.38. Estado \hat{l}_y para *spin* $\frac{i}{2}$ reconstruído considerando interação quadrupolar, NHRF e ICP da criação do estado

aos pulsos de tomografia para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii)., À esquerda, partes reais e, à direita,

imaginárias. Ângulo de nutação dados pela tabela 7.2.

.)

(i)															
0,3235	0,2190	0,0304	0,0041	0,0004	0,0000	0,0000	0,0000	0,0065	-0,6472	-0,0544	-0,0038	-0,0004	-0,0000	-0,0000	-0,0000
0,2190	0,2124	0,1907	0,0276	0,0034	0,0002	0,0000	-0,0000	0,6472	0,0005	-0,8579	-0,0876	-0,0079	-0,0008	-0,0001	-0,0000
0,0304	0,1907	0,1201	0,1064	0,0108	0,0000	-0,0002	-0,0000	0,0544	0,8579	-0,0028	-0,9660	-0,1058	-0,0097	-0,0008	-0,0000
0,0041	0,0276	0,1064	0,0388	-0,0000	-0,0108	-0,0034	-0,0004	0,0038	0,0876	0,9660	-0,0042	-1,0000	-0,1058	-0,0079	-0,0004
0,0004	0,0034	0,0108	-0,0000	-0,0388	-0,1064	-0,0276	-0,0041	0,0004	0,0079	0,1058	1,0000	-0,0042	-0,9660	-0,0876	-0,0038
0,0000	0,0002	0,0000	-0,0108	-0,1064	-0,1201	-0,1907	-0,0304	0,0000	0,0008	0,0097	0,1058	0,9660	-0,0028	-0,8579	-0,0544
0,0000	0,0000	-0,0002	-0,0034	-0,0276	-0,1907	-0,2124	-0,2190	0,0000	0,0001	0,0008	0,0079	0,0876	0,8579	0,0005	-0,6472
0,0000	-0,0000	-0,0000	-0,0004	-0,0041	-0,0304	-0,2190	-0,3235	0,0000	0,0000	0,0000	0,0004	0,0038	0,0544	0,6472	0,0065
							(i	i)							
0,3731	0,3520	0,0719	0,0136	0,0022	0,0003	0,0000	0,0000	0,0136	-0,6241	-0,0660	-0,0027	-0,0005	-0,0001	-0,0000	-0,0000
0,3520	0,2175	0,3057	0,0686	0,0134	0,0014	0,0000	-0,0000	0,6241	0,0002	-0,8453	-0,1280	-0,0164	-0,0029	-0,0004	-0,0000
0,0719	0,3057	0,1116	0,1703	0,0274	0,0000	-0,0014	-0,0003	0,0660	0,8453	-0,0058	-0,9626	-0,1666	-0,0238	-0,0029	-0,0001
0,0136	0,0686	0,1703	0,0341	-0,0000	-0,0274	-0,0134	-0,0022	0,0027	0,1280	0,9626	-0,0080	-1,0000	-0,1666	-0,0164	-0,0005
0,0022	0,0134	0,0274	-0,0000	-0,0341	-0,1703	-0,0686	-0,0136	0,0005	0,0164	0,1666	1,0000	-0,0080	-0,9626	-0,1280	-0,0027
0,0003	0,0014	0,0000	-0,0274	-0,1703	-0,1116	-0,3057	-0,0719	0,0001	0,0029	0,0238	0,1666	0,9626	-0,0058	-0,8453	-0,0660
0,0000	0,0000	-0,0014	-0,0134	-0,0686	-0,3057	-0,2175	-0,3520	0,0000	0,0004	0,0029	0,0164	0,1280	0,8453	0,0002	-0,6241
0,0000	-0,0000	-0,0003	-0,0022	-0,0136	-0,0719	-0,3520	-0,3731	0,0000	0,0000	0,0001	0,0005	0,0027	0,0660	0,6241	0,0136
							(i	ii)							
0,4790	0,5314	0,1360	0,0275	0,0069	0,0018	0,0004	0,0000	0,0307	-0,5729	-0,0408	0,0177	0,0042	0,0009	-0,0000	-0,0001
0,5314	0,2271	0,4606	0,1453	0,0412	0,0067	-0,0000	-0,0004	0,5729	-0,0019	-0,8196	-0,1571	-0,0217	-0,0073	-0,0019	-0,0000
0,1360	0,4606	0,0936	0,2554	0,0608	0,0000	-0,0067	-0,0018	0,0408	0,8196	-0,0130	-0,9561	-0,2424	-0,0508	-0,0073	0,0009
0,0275	0,1453	0,2554	0,0244	-0,0000	-0,0608	-0,0412	-0,0069	-0,0177	0,1571	0,9561	-0,0157	-1,0000	-0,2424	-0,0217	0,0042
0,0069	0,0412	0,0608	-0,0000	-0,0244	-0,2554	-0,1453	-0,0275	-0,0042	0,0217	0,2424	1,0000	-0,0157	-0,9561	-0,1571	0,0177
0,0018	0,0067	0,0000	-0,0608	-0,2554	-0,0936	-0,4606	-0,1360	-0,0009	0,0073	0,0508	0,2424	0,9561	-0,0130	-0,8196	-0,0408
0,0004	-0,0000	-0,0067	-0,0412	-0,1453	-0,4606	-0,2271	-0,5314	0,0000	0,0019	0,0073	0,0217	0,1571	0,8196	-0,0019	-0,5729
0,0000	-0,0004	-0,0018	-0,0069	-0,0275	-0,1360	-0,5314	-0,4790	0,0001	0,0000	-0,0009	-0,0042	-0,0177	0,0408	0,5729	0,0307
				7											
Figura	a 7.39.	Estado I	Ĵ, para s	vin –	reconsti	uído co	nsideran	do inter	acão du	iadrupo	lar. NH	RF e IC	P da cri	acão do	estado
9			у г	2					,		,===			,	

aos pulsos de tomografía para duração do pulso de $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita,

imaginárias. Ângulo de nutação dados pela tabela 7.3.

							(1	1)							
0,1953	0,1694	0,0198	0,0529	0,1039	0,6041	0,6641	-0,1772	-0,0000	0,1722	-0,0045	0,0616	0,2446	0,2959	-0,3638	0,0000
0,1694	0,0577	0,2792	0,2161	0,6996	0,4335	-0,5915	-0,6641	-0,1722	0,0000	0,1768	0,1458	0,1325	-0,3912	0,0000	-0,3638
0,0198	0,2792	0,2280	0,8328	0,2068	-0,9441	-0,4335	0,6041	0,0045	-0,1768	0,0000	0,1077	-0,2565	0,0000	-0,3912	-0,2959
0,0529	0,2161	0,8328	0,1032	-1,0000	-0,2068	0,6996	-0,1039	-0,0616	-0,1458	-0,1077	0,0000	0,0000	-0,2565	-0,1325	0,2446
0,1039	0,6996	0,2068	-1,0000	-0,1032	0,8328	-0,2161	0,0529	-0,2446	-0,1325	0,2565	-0,0000	0,0000	-0,1077	0,1458	-0,0616
0,6041	0,4335	-0,9441	-0,2068	0,8328	-0,2280	0,2792	-0,0198	-0,2959	0,3912	-0,0000	0,2565	0,1077	0,0000	-0,1768	-0,0045
0,6641	-0,5915	-0,4335	0,6996	-0,2161	0,2792	-0,0577	0,1694	0,3638	-0,0000	0,3912	0,1325	-0,1458	0,1768	-0,0000	-0,1722
-0,1772	-0,6641	0,6041	-0,1039	0,0529	-0,0198	0,1694	-0,1953	-0,0000	0,3638	0,2959	-0,2446	0,0616	0,0045	0,1722	-0,0000
							(i	i)							
0,3347	0,1693	0,0599	0,0717	-0,1077	0,7286	0,8908	0,1083	-0,0000	0,2328	-0,0449	0,0568	0,4101	0,6849	-0,3370	0,0000
0,1693	0,0025	0,2658	0,1439	0,9002	0,5146	-0,1521	-0,8908	-0,2328	-0,0000	0,2375	0,2383	0,2699	-0,3414	0,0000	-0,3370
0,0599	0,2658	0,0884	0,8904	0,2114	-0,6291	-0,5146	0,7286	0,0449	-0,2375	-0,0000	0,1550	-0,2633	0,0000	-0,3414	-0,6849
0,0717	0,1439	0,8904	0,0289	-0,9081	-0,2114	0,9002	0,1077	-0,0568	-0,2383	-0,1550	0,0000	0,0000	-0,2633	-0,2699	0,4101
-0,1077	0,9002	0,2114	-0,9081	-0,0289	0,8904	-0,1439	0,0717	-0,4101	-0,2699	0,2633	-0,0000	0,0000	-0,1550	0,2383	-0,0568
0,7286	0,5146	-0,6291	-0,2114	0,8904	-0,0884	0,2658	-0,0599	-0,6849	0,3414	-0,0000	0,2633	0,1550	0,0000	-0,2375	-0,0449
0,8908	-0,1521	-0,5146	0,9002	-0,1439	0,2658	-0,0025	0,1693	0,3370	-0,0000	0,3414	0,2699	-0,2383	0,2375	0,0000	-0,2328
0,1083	-0,8908	0,7286	0,1077	0,0717	-0,0599	0,1693	-0,3347	-0,0000	0,3370	0,6849	-0,4101	0,0568	0,0449	0,2328	-0,0000
							(ii	ii)							
0,3717	0,1194	0,1366	0,1210	-0,4631	0,3725	0,7501	0,4071	-0,0000	0,1338	-0,0724	0,0122	0,3332	0,9280	0,0879	0,0000
0,1194	-0,0764	0,2074	0,0243	0,7730	0,2937	0,2550	-0,7501	-0,1338	0,0000	0,1927	0,3099	0,3194	0,1274	-0,0000	0,0879
0,1366	0,2074	-0,0509	0,7159	0,1441	-0,2123	-0,2937	0,3725	0,0724	-0,1927	0,0000	0,1442	0,0063	-0,0000	0,1274	-0,9280
0,1210	0,0243	0,7159	-0,0357	-0,4938	-0,1441	0,7730	0,4631	-0,0122	-0,3099	-0,1442	0,0000	0,0000	0,0063	-0,3194	0,3332
-0,4631	0,7730	0,1441	-0,4938	0,0357	0,7159	-0,0243	0,1210	-0,3332	-0,3194	-0,0063	-0,0000	0,0000	-0,1442	0,3099	-0,0122
0,3725	0,2937	-0,2123	-0,1441	0,7159	0,0509	0,2074	-0,1366	-0,9280	-0,1274	0,0000	-0,0063	0,1442	0,0000	-0,1927	-0,0724
0,7501	0,2550	-0,2937	0,7730	-0,0243	0,2074	0,0764	0,1194	-0,0879	0,0000	-0,1274	0,3194	-0,3099	0,1927	0,0000	-0,1338
0,4071	-0,7501	0,3725	0,4631	0,1210	-0,1366	0,1194	-0,3717	-0,0000	-0,0879	0,9280	-0,3332	0,0122	0,0724	0,1338	-0,0000
										_					

Figura 7.40. Estado com coerências de ordens pares para spin $\frac{7}{2}$ obtido considerando interação

quadrupolar, NHRF e ICP nos pulsos de criação. Tempos dos pulsos $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À

esquerda, partes reais e, à direita, imaginárias.
							(1)							
0,1321	0,1447	0,0176	0,0085	-0,0083	0,3476	0,7163	-0,2018	0,0126	0,1471	0,0365	0,0925	0,2714	0,7310	0,0308	-0,0000
0,1447	0,0373	0,2385	0,1731	0,6193	0,4850	-0,7479	-0,7163	-0,1471	-0,0028	0,1510	0,1722	0,2271	-0,2542	-0,0000	0,0308
0,0176	0,2385	0,1597	0,7112	0,1968	-1,0000	-0,4850	0,3476	-0,0365	-0,1510	-0,0029	0,0919	-0,2304	-0,0000	-0,2542	-0,7310
0,0085	0,1731	0,7112	0,0711	-0,8540	-0,1968	0,6193	0,0083	-0,0925	-0,1722	-0,0919	-0,0069	0,0000	-0,2304	-0,2271	0,2714
-0,0083	0,6193	0,1968	-0,8540	-0,0711	0,7112	-0,1731	0,0085	-0,2714	-0,2271	0,2304	-0,0000	-0,0069	-0,0919	0,1722	-0,0925
0,3476	0,4850	-1,0000	-0,1968	0,7112	-0,1597	0,2385	-0,0176	-0,7310	0,2542	0,0000	0,2304	0,0919	-0,0029	-0,1510	0,0365
0,7163	-0,7479	-0,4850	0,6193	-0,1731	0,2385	-0,0373	0,1447	-0,0308	0,0000	0,2542	0,2271	-0,1722	0,1510	-0,0028	-0,1471
-0,2018	-0,7163	0,3476	0,0083	0,0085	-0,0176	0,1447	-0,1321	0,0000	-0,0308	0,7310	-0,2714	0,0925	-0,0365	0,1471	0,0126
							(ii	i)							
0,1814	0,1169	0,0433	-0,0637	-0,3334	-0,0726	0,7328	0,0873	0,0419	0,1608	0,0163	0,0888	0,1932	0,9974	0,3794	0,0000
0,1169	-0,0048	0,1836	0,0631	0,5336	0,4425	-0,5146	-0,7328	-0,1608	-0,0063	0,1641	0,2109	0,3590	-0,1863	-0,0000	0,3794
0,0433	0,1836	0,0474	0,6150	0,1674	-0,6452	-0,4425	-0,0726	-0,0163	-0,1641	-0,0153	0,1070	-0,1894	-0,0000	-0,1863	-0,9974
-0,0637	0,0631	0,6150	0,0142	-0,6273	-0,1674	0,5336	0,3334	-0,0888	-0,2109	-0,1070	-0,0202	0,0000	-0,1894	-0,3590	0,1932
-0,3334	0,5336	0,1674	-0,6273	-0,0142	0,6150	-0,0631	-0,0637	-0,1932	-0,3590	0,1894	-0,0000	-0,0202	-0,1070	0,2109	-0,0888
-0,0726	0,4425	-0,6452	-0,1674	0,6150	-0,0474	0,1836	-0,0433	-0,9974	0,1863	0,0000	0,1894	0,1070	-0,0153	-0,1641	0,0163
0,7328	-0,5146	-0,4425	0,5336	-0,0631	0,1836	0,0048	0,1169	-0,3794	0,0000	0,1863	0,3590	-0,2109	0,1641	-0,0063	-0,1608
0,0873	-0,7328	-0,0726	0,3334	-0,0637	-0,0433	0,1169	-0,1814	-0,0000	-0,3794	0,9974	-0,1932	0,0888	-0,0163	0,1608	0,0419
							(ii	i)							
0,2451	0,1057	0,1150	-0,1354	-0,4893	-0,7714	0,5368	0,3165	0,1016	0,1185	0,0250	0,1132	-0,2592	0,6363	0,5464	0,0000
0,1057	-0,0710	0,1836	-0,0768	0,3684	0,3241	-0,2421	-0,5368	-0,1185	-0,0169	0,1707	0,3038	0,5456	-0,0083	-0,0000	0,5464
0,1150	0,1836	-0,0449	0,6339	0,1349	-0,5289	-0,3241	-0,7714	-0,0250	-0,1707	-0,0398	0,1277	-0,0040	-0,0000	-0,0083	-0,6363
-0,1354	-0,0768	0,6339	-0,0302	-0,4373	-0,1349	0,3684	0,4893	-0,1132	-0,3038	-0,1277	-0,0449	0,0000	-0,0040	-0,5456	-0,2592
-0,4893	0,3684	0,1349	-0,4373	0,0302	0,6339	0,0768	-0,1354	0,2592	-0,5456	0,0040	-0,0000	-0,0449	-0,1277	0,3038	-0,1132
-0,7714	0,3241	-0,5289	-0,1349	0,6339	0,0449	0,1836	-0,1150	-0,6363	0,0083	0,0000	0,0040	0,1277	-0,0398	-0,1707	0,0250
0,5368	-0,2421	-0,3241	0,3684	0,0768	0,1836	0,0710	0,1057	-0,5464	0,0000	0,0083	0,5456	-0,3038	0,1707	-0,0169	-0,1185
0,3165	-0,5368	-0,7714	0,4893	-0,1354	-0,1150	0,1057	-0,2451	-0,0000	-0,5464	0,6363	0,2592	0,1132	-0,0250	0,1185	0,1016
							7								
Figur	a 7.41.	Estado c	om coeré	ências de	ordens	pares par	ra <i>spin —</i>	conside	erando in	nteração	quadrup	olar, NH	RF e IC	P da cria	cão de
0							¹ 2			,		,			,
						-									
estado	ane mule	os de to	mografia	Tempo	e doe nu	$\frac{\pi}{1000}$	de 5 (i) 8	(ii) e 12)	À ecau	erda nar	tec reaic	e à dire	ita iman	inárias
cstado	abs puis		mograna	i. Tempe	is uos pu	2	uc 5 (1), e	(II) C 12	- μs (III)	. A csqu	ciua, pai	ics reals	c, a unc	na, mag	marias.
					Âm		mutação	ladaa mal	a tabala	7 2					
1					An	guios de		ados pel	a tabela	1.2.					
0.1200	0 1354	0.0117	0.0321	0.0130	0 3555	0 5332	0.1141	0.0010	0 1377	0.0044	0.0502	0.2100	0.3609	0.0402	0.0000
0,1209	0,1354	0,0117	0 1578	0.6870	0,3333	-0 5522	-0,1141	-0 1377	-0.0027	0 1/13	0,0505	0,2199	-0 2442	-0,0492	-0.0492
0,1554	0,0313	0,2252	0,1578	0,0079	1 0000	0.3782	03555	-0,15//	-0,0027	0,1413	0,1401	0,2049	-0,2442	0.2442	0.2609
0.0221	0,2232	0,1451	0,0058	0,1752	0 1752	-0,5762	0,000	0,0044	-0,1413	0,0013	0,0801	-0,1997	0,0000	-0,2442	-0,3098
-0,0321	0,1378	0,0038	0,0050	-0,7993	-0,1732	0,0879	0,0150	-0,0303	-0,1401	-0,0801	-0,0003	0,0000	-0,1997	-0,2049	0,2199

								/							
0,1209	0,1354	0,0117	-0,0321	-0,0130	0,3555	0,5332	-0,1141	0,0019	0,1377	-0,0044	0,0503	0,2199	0,3698	-0,0492	0,0000
0,1354	0,0313	0,2232	0,1578	0,6879	0,3782	-0,5522	-0,5332	-0,1377	-0,0027	0,1413	0,1401	0,2049	-0,2442	-0,0000	-0,0492
0,0117	0,2232	0,1451	0,6658	0,1752	-1,0000	-0,3782	0,3555	0,0044	-0,1413	0,0013	0,0861	-0,1997	0,0000	-0,2442	-0,3698
-0,0321	0,1578	0,6658	0,0650	-0,7995	-0,1752	0,6879	0,0130	-0,0503 -	-0,1401	-0,0861	-0,0005	0,0000	-0,1997	-0,2049	0,2199
-0,0130	0,6879	0,1752	-0,7995	-0,0650	0,6658	-0,1578	-0,0321	-0,2199 -	-0,2049	0,1997	-0,0000	-0,0005	-0,0861	0,1401	-0,0503
0,3555	0,3782	-1,0000	-0,1752	0,6658	-0,1451	0,2232	-0,0117	-0,3698	0,2442	-0,0000	0,1997	0,0861	0,0013	-0,1413	-0,0044
0,5332	-0,5522	-0,3782	0,6879	-0,1578	0,2232	-0,0313	0,1354	0,0492	0,0000	0,2442	0,2049	-0,1401	0,1413	-0,0027	-0,1377
-0,1141	-0,5332	0,3555	0,0130	-0,0321	-0,0117	0,1354	-0,1209	-0,0000	0,0492	0,3698	-0,2199	0,0503	0,0044	0,1377	0,0019
							(i	i)							
0,2386	0,1558	0,0594	-0,0456	-0,3012	0,1626	0,8002	0,0781	0,0136	0,2142	-0,0334	0,0374	0,2768	0,8183	0,2207	0,0000
0,1558	-0,0033	0,2446	0,0940	0,8826	0,5296	-0,4121	-0,8002	-0,2142 -	-0,0068	0,2185	0,2490	0,4701	-0,2231	-0,0000	0,2207
0,0594	0,2446	0,0656	0,8192	0,2126	-0,8737	-0,5296	0,1626	0,0334	-0,2185	-0,0027	0,1426	-0,2339	0,0000	-0,2231	-0,8183
-0,0456	0,0940	0,8192	0,0203	-0,8356	-0,2126	0,8826	0,3012	-0,0374 -	-0,2490	-0,1426	-0,0042	0,0000	-0,2339	-0,4701	0,2768
-0,3012	0,8826	0,2126	-0,8356	-0,0203	0,8192	-0,0940	-0,0456	-0,2768 -	-0,4701	0,2339	-0,0000	-0,0042	-0,1426	0,2490	-0,0374
0,1626	0,5296	-0,8737	-0,2126	0,8192	-0,0656	0,2446	-0,0594	-0,8183	0,2231	-0,0000	0,2339	0,1426	-0,0027	-0,2185	-0,0334
0,8002	-0,4121	-0,5296	0,8826	-0,0940	0,2446	0,0033	0,1558	-0,2207	0,0000	0,2231	0,4701	-0,2490	0,2185	-0,0068	-0,2142
0,0781	-0,8002	0,1626	0,3012	-0,0456	-0,0594	0,1558	-0,2386	-0,0000	-0,2207	0,8183	-0,2768	0,0374	0,0334	0,2142	0,0136
							(ii	ii)							
0,2921	0,1217	0,1607	0,0134	-0,5475	-0,5374	0,5943	0,3076	0,0326	0,1363	-0,0310	0,0252	-0,1154	0,8433	0,6319	0,0000
0,1217	-0,0653	0,2113	-0,0431	0,6682	0,3162	-0,1563	-0,5943	-0,1363	-0,0130	0,1964	0,3238	0,6164	0,0919	-0,0000	0,6319
0,1607	0,2113	-0,0393	0,7297	0,1570	-0,4647	-0,3162	-0,5374	0,0310	-0,1964	-0,0101	0,1470	0,0109	0,0000	0,0919	-0,8433
0,0134	-0,0431	0,7297	-0,0297	-0,5033	-0,1570	0,6682	0,5475	-0,0252 -	-0,3238	-0,1470	-0,0095	0,0000	0,0109	-0,6164	-0,1154
-0,5475	0,6682	0,1570	-0,5033	0,0297	0,7297	0,0431	0,0134	0,1154 -	0,6164	-0,0109	-0,0000	-0,0095	-0,1470	0,3238	-0,0252
-0,5374	0,3162	-0,4647	-0,1570	0,7297	0,0393	0,2113	-0,1607	-0,8433 -	-0,0919	-0,0000	-0,0109	0,1470	-0,0101	-0,1964	-0,0310
0,5943	-0,1563	-0,3162	0,6682	0,0431	0,2113	0,0653	0,1217	-0,6319	0,0000	-0,0919	0,6164	-0,3238	0,1964	-0,0130	-0,1363
0,3076	-0,5943	-0,5374	0,5475	0,0134	-0,1607	0,1217	-0,2921	-0,0000	-0,6319	0,8433	0,1154	0,0252	0,0310	0,1363	0,0326
							7								

Figura 7.42. Estado com coerências de ordens pares para spin $\frac{7}{2}$ considerando interação quadrupolar, NHRF e ICP da criação de

estado aos pulsos de tomografia. Tempos dos pulsos $\frac{\pi}{2}$ de 5 (i), 8 (ii) e 12 µs (iii). À esquerda, partes reais e, à direita, imaginárias.

Ângulos de nutação dados pela tabela 7.3.

Capítulo 8

							(i)							
0,9957	0,0061	-0,0026	-0,0306	-0,0002	0,0053	0,0020	-0,0045	-0,0924	-0,0148	0,0319	-0,0290	-0,0070	0,0088	-0,0008	-0,0034
0,0061	0,7412	0,0108	-0,0110	-0,0221	0,0009	0,0100	0,0010	0,0148	-0,0551	-0,0057	0,0274	-0,0335	-0,0078	0,0054	0,0021
-0,0026	0,0108	0,4489	0,0120	-0,0152	-0,0238	0,0061	0,0038	-0,0319	0,0057	-0,0296	0,0017	0,0244	-0,0448	-0,0051	-0,0056
-0,0306	-0,0110	0,0120	0,1590	0,0067	-0,0242	-0,0095	0,0072	0,0290	-0,0274	-0,0017	-0,0156	0,0073	0,0139	-0,0404	-0,0039
-0,0002	-0,0221	-0,0152	0,0067	-0,1562	0,0030	-0,0318	0,0056	0,0070	0,0335	-0,0244	-0,0073	0,0028	0,0104	0,0071	-0,0426
0,0053	0,0009	-0,0238	-0,0242	0,0030	-0,4557	-0,0082	-0,0364	-0,0088	0,0078	0,0448	-0,0139	-0,0104	0,0274	0,0119	-0,0010
0,0020	0,0100	0,0061	-0,0095	-0,0318	-0,0082	-0,7414	-0,0158	0,0008	-0,0054	0,0051	0,0404	-0,0071	-0,0119	0,0560	0,0087
-0,0045	0,0010	0,0038	0,0072	0,0056	-0,0364	-0,0158	-0,9915	0,0034	-0,0021	0,0056	0,0039	0,0426	0,0010	-0,0087	0,1066
							(ii)							
0,2025	0,6771	0,1100	-0,0106	-0,0012	0,0061	0,0049	-0,0074	0,0561	-0,3080	0,0950	0,0562	0,0009	0,0009	0,0015	-0,0044
0,6771	0,0388	0,6573	0,1249	0,0377	-0,0013	0,0020	-0,0042	0,3080	0,0404	-0,6369	-0,0520	0,0227	-0,0010	0,0007	0,0000
0,1100	0,6573	-0,0367	0,4270	0,0294	-0,0044	0,0039	0,0138	-0,0950	0,6369	0,0286	-0,9042	-0,1303	-0,0202	0,0006	0,0016
-0,0106	0,1249	0,4270	-0,0627	0,0582	-0,0936	-0,0794	0,0015	-0,0562	0,0520	0,9042	0,0172	-0,9673	-0,1364	0,0186	0,0018
-0,0012	0,0377	0,0294	0,0582	-0,0589	-0,3204	-0,2155	-0,0892	-0,0009	-0,0227	0,1303	0,9673	0,0005	-0,9150	-0,0299	0,1045
0,0061	-0,0013	-0,0044	-0,0936	-0,3204	-0,0415	-0,6042	-0,1318	-0,0009	0,0010	0,0202	0,1364	0,9150	-0,0209	-0,6304	0,0684
0,0049	0,0020	0,0039	-0,0794	-0,2155	-0,6042	-0,0345	-0,6561	-0,0015	-0,0007	-0,0006	-0,0186	0,0299	0,6304	-0,0291	-0,2697
-0,0074	-0,0042	0,0138	0,0015	-0,0892	-0,1318	-0,6561	-0,0071	0,0044	0,0000	-0,0016	-0,0018	-0,1045	-0,0684	0,2697	-0,0928
							(ii	i)							
0,1347	-0,0559	0,0137	-0,0931	-0,0586	0,5437	0,3605	-0,2135	-0,0903	-0,2262	0,0516	0,0052	0,0125	-0,0371	0,8472	0,1074
-0,0559	0,0732	-0,0886	-0,0056	-0,0132	0,8322	-0,1286	-0,7449	0,2262	0,0144	-0,2389	0,2088	-0,1050	0,3277	0,0876	0,3054
0,0137	-0,0886	0,0246	-0,0486	0,9244	0,0595	-0,8404	0,4048	-0,0516	0,2389	0,1105	-0,2799	0,1742	-0,5616	0,0798	0,2479
-0,0931	-0,0056	-0,0486	0,8499	0,1553	-0,9930	0,0471	0,1541	-0,0052	-0,2088	0,2799	-0,0342	0,0355	0,1183	0,6753	-0,0942
-0,0586	-0,0132	0,9244	0,1553	-0,9891	-0,0867	0,0675	-0,0687	-0,0125	0,1050	-0,1742	-0,0355	0,1240	0,2479	-0,0208	-0,0748
0,5437	0,8322	0,0595	-0,9930	-0,0867	0,0868	-0,1324	-0,0789	0,0371	-0,3277	0,5616	-0,1183	-0,2479	0,0332	0,1796	-0,0606
0,3605	-0,1286	-0,8404	0,0471	0,0675	-0,1324	-0,0864	-0,1284	-0,8472	-0,0876	-0,0798	-0,6753	0,0208	-0,1796	-0,0003	0,2118
-0,2135	-0,7449	0,4048	0,1541	-0,0687	-0,0789	-0,1284	-0,0936	-0,1074	-0,3054	-0,2479	0,0942	0,0748	0,0606	-0,2118	-0,1572
	-						. ^								

Figura 8.7. Tomografia do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares

(iii) para a sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.2.

								(1)							
	0,9923	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,1240	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	0,0000	0,7101	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0178	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
	0,0000	0,0000	0,4266	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0531	0,0000	0,0000	0,0000	0,0000	0,0000
	0,0000	0,0000	0,0000	0,1423	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0886	0,0000	0,0000	0,0000	0,0000
	0,0000	0,0000	0,0000	0,0000	-0,1423	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0886	0,0000	0,0000	0,0000
	0,0000	0,0000	0,0000	0,0000	0,0000	-0,4266	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0531	0,0000	0,0000
	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,7101	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0178	0,0000
	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,9923	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,1240
								(ii	i)							
	0,1913	0,2762	0,0775	0,0117	0,0025	0,0004	0,0000	0,0000	0,0301	-0,6461	-0,0533	-0,0024	-0,0006	-0,0001	0,0000	0,0000
	0,2762	0,1053	0,2392	0,0707	0,0096	0,0014	0,0000	0,0000	0,6461	0,0024	-0,8575	-0,1203	-0,0131	-0,0020	-0,0003	0,0000
	0,0775	0,2392	0,0510	0,1331	0,0277	0,0000	-0,0014	-0,0004	0,0533	0,8575	-0,0129	-0,9659	-0,1635	-0,0184	-0,0020	-0,0001
	0,0117	0,0707	0,1331	0,0150	0,0000	-0,0277	-0,0096	-0,0025	0,0024	0,1203	0,9659	-0,0196	-1,0000	-0,1635	-0,0131	-0,0006
	0,0025	0,0096	0,0277	0,0000	-0,0150	-0,1331	-0,0707	-0,0117	0,0006	0,0131	0,1635	1,0000	-0,0196	-0,9659	-0,1203	-0,0024
	0,0004	0,0014	0,0000	-0,0277	-0,1331	-0,0510	-0,2392	-0,0775	0,0001	0,0020	0,0184	0,1635	0,9659	-0,0129	-0,8575	-0,0533
	0,0000	0,0000	-0,0014	-0,0096	-0,0707	-0,2392	-0,1053	-0,2762	0,0000	0,0003	0,0020	0,0131	0,1203	0,8575	0,0024	-0,6461
_	0,0000	0,0000	-0,0004	-0,0025	-0,0117	-0,0775	-0,2762	-0,1913	0,0000	0,0000	0,0001	0,0006	0,0024	0,0533	0,6461	0,0301
								(ii	i)							
	0,0881	0,0675	0,0197	0,0018	-0,1672	-0,0405	0,9813	0,0949	0,0086	0,1396	0,0042	0,0285	0,0980	0,7091	0,1925	0,0000
	0,0675	-0,0103	0,0887	-0,0479	0,3324	0,9490	-0,2432	-0,9813	-0,1396	-0,0068	0,1160	0,0888	0,3981	-0,0580	0,0000	0,1925
	0,0197	0,0887	-0,0437	0,3871	0,7868	-0,4326	-0,9490	-0,0405	-0,0042	-0,1160	-0,0069	0,1554	-0,1213	0,0000	-0,0580	-0,7091
	0,0018	-0,0479	0,3871	0,5906	-0,5315	-0,7868	0,3324	0,1672	-0,0285	-0,0888	-0,1554	0,0051	0,0000	-0,1213	-0,3981	0,0980
	-0,1672	0,3324	0,7868	-0,5315	-0,5906	0,3871	0,0479	0,0018	-0,0980	-0,3981	0,1213	0,0000	0,0051	-0,1554	0,0888	-0,0285
	-0,0405	0,9490	-0,4326	-0,7868	0,3871	0,0437	0,0887	-0,0197	-0,7091	0,0580	0,0000	0,1213	0,1554	-0,0069	-0,1160	0,0042
	0,9813	-0,2432	-0,9490	0,3324	0,0479	0,0887	0,0103	0,0675	-0,1925	0,0000	0,0580	0,3981	-0,0888	0,1160	-0,0068	-0,1396
	0,0949	-0,9813	-0,0405	0,1672	0,0018	-0,0197	0,0675	-0,0881	0,0000	-0,1925	0,7091	-0,0980	0,0285	-0,0042	0,1396	0,0086
	E		Cimeral.	له مدهم	a		a	i î	$(i) \hat{i}$	(::)	anta da	d				

Figura 8.8. Simulação do estado de equilíbrio \hat{I}_z (i), \hat{I}_y (ii) e estado de coerências de ordens pares

(iii) para a sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.2.

							(i)								
0,9970	0,0131	-0,0185	-0,0273	-0,0019	0,0023	0,0058	-0,0095	0,0773	-0,0084	0,0417	-0,0404	-0,0088	0,0019	0,0002	-0,0321
0,0131	0,7181	0,0154	-0,0288	-0,0281	0,0040	0,0145	-0,0100	0,0084	0,0859	-0,0023	0,0419	-0,0500	-0,0169	0,0117	-0,0010
-0,0185	0,0154	0,4211	0,0102	-0,0369	-0,0368	0,0147	0,0117	-0,0417	0,0023	0,0365	0,0055	0,0398	-0,0628	-0,0058	0,0023
-0,0273	-0,0288	0,0102	0,1419	0,0093	-0,0511	-0,0252	0,0123	0,0404	-0,0419	-0,0055	0,0010	0,0087	0,0310	-0,0489	-0,0055
-0,0019	-0,0281	-0,0369	0,0093	-0,1606	0,0021	-0,0467	-0,0197	0,0088	0,0500	-0,0398	-0,0087	-0,0352	0,0104	0,0221	-0,0493
0,0023	0,0040	-0,0368	-0,0511	0,0021	-0,4441	-0,0055	-0,0527	-0,0019	0,0169	0,0628	-0,0310	-0,0104	-0,0433	0,0108	0,0113
0,0058	0,0145	0,0147	-0,0252	-0,0467	-0,0055	-0,7229	-0,0147	-0,0002	-0,0117	0,0058	0,0489	-0,0221	-0,0108	-0,0500	0,0105
-0,0095	-0,0100	0,0117	0,0123	-0,0197	-0,0527	-0,0147	-0,9505	0,0321	0,0010	-0,0023	0,0055	0,0493	-0,0113	-0,0105	-0,0721
							(ii)							
0,3475	0,6929	0,0447	-0,2566	0,0009	0,0050	0,0273	0,0156	0,1759	-0,1721	0,0263	0,2456	-0,0198	0,0006	0,0004	-0,0757
0,6929	0,1082	0,7289	0,0652	-0,2819	0,0081	0,0138	-0,0060	0,1721	0,1051	-0,5670	-0,0451	0,3018	-0,0146	0,0099	-0,0038
0,0447	0,7289	0,0009	0,4442	-0,0243	-0,3190	0,0303	-0,0037	-0,0263	0,5670	0,0783	-0,8959	-0,1055	0,3308	-0,0048	0,0044
-0,2566	0,0652	0,4442	-0,0475	-0,0168	-0,1183	-0,3001	0,0258	-0,2456	0,0451	0,8959	0,0456	-0,9854	-0,1006	0,4145	-0,0198
0,0009	-0,2819	-0,0243	-0,0168	-0,0779	-0,4484	-0,2220	-0,1775	0,0198	-0,3018	0,1055	0,9854	0,0087	-0,8542	0,0026	0,4458
0,0050	0,0081	-0,3190	-0,1183	-0,4484	-0,0839	-0,7320	-0,1183	-0,0006	0,0146	-0,3308	0,1006	0,8542	-0,0535	-0,4936	0,0516
0,0273	0,0138	0,0303	-0,3001	-0,2220	-0,7320	-0,1049	-0,6678	-0,0004	-0,0099	0,0048	-0,4145	-0,0026	0,4936	-0,1214	-0,0651
0,0156	-0,0060	-0,0037	0,0258	-0,1775	-0,1183	-0,6678	-0,1424	0,0757	0,0038	-0,0044	0,0198	-0,4458	-0,0516	0,0651	-0,2385
							(iii)							
-0,0034	-0,1095	0,0371	-0,1951	0,0741	0,5644	0,7006	-0,3457	-0,0285	-0,2091	0,1213	-0,0736	-0,3190	-0,0148	0,7136	-0,1272
-0,1095	0,0149	-0,0537	-0,0760	-0,3630	0,8857	-0,3939	-0,6402	0,2091	0,0601	-0,1807	0,1599	-0,3996	-0,1136	0,2140	0,0618
0,0371	-0,0537	-0,1228	0,0423	0,7682	-0,3009	-0,6278	0,3186	-0,1213	0,1807	0,1479	-0,2091	0,1827	-0,8150	-0,2657	0,6897
-0,1951	-0,0760	0,0423	0,6850	0,0337	-0,9946	-0,2816	0,2929	0,0736	-0,1599	0,2091	0,0453	0,0234	0,0317	0,2859	-0,2622
0,0741	-0,3630	0,7682	0,0337	-0,9239	-0,0597	-0,0187	-0,1938	0,3190	0,3996	-0,1827	-0,0234	0,0394	0,1703	-0,1120	-0,1225
0,5644	0,8857	-0,3009	-0,9946	-0,0597	0,1449	-0,1514	-0,1064	0,0148	0,1136	0,8150	-0,0317	-0,1703	-0,0733	0,0900	-0,0464
0,7006	-0,3939	-0,6278	-0,2816	-0,0187	-0,1514	0,0576	-0,1538	-0,7136	-0,2140	0,2657	-0,2859	0,1120	-0,0900	-0,1821	0,1549
-0,3457	-0,6402	0,3186	0,2929	-0,1938	-0,1064	-0,1538	0,1477	0,1272	-0,0618	-0,6897	0,2622	0,1225	0,0464	-0,1549	-0,0087
Figura	a 8.9. 🛛	Fomogi	rafia do	estado	de equ	uilíbrio	(i), I_y	(ii) e e	stado d	e coerê	ncias d	e order	ns pares	s (ii) pa	ara a

sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.3.

							(i)							
0,9998	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0195	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,7145	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0028	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,4288	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0083	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,1430	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0139	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	-0,1430	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0139	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	-0,4288	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0083	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,7145	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0028	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,9998	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0195
							(ii	i)							
0,2225	0,2827	0,0546	0,0099	0,0015	0,0002	0,0000	0,0000	0,0066	-0,6440	-0,0752	-0,0060	-0,0009	-0,0001	0,0000	0,0000
0,2827	0,1267	0,2450	0,0503	0,0087	0,0008	0,0000	0,0000	0,6440	0,0000	-0,8563	-0,1276	-0,0155	-0,0024	-0,0003	0,0000
0,0546	0,2450	0,0635	0,1363	0,0198	0,0000	-0,0008	-0,0002	0,0752	0,8563	-0,0028	-0,9656	-0,1576	-0,0199	-0,0024	-0,0001
0,0099	0,0503	0,1363	0,0191	0,0000	-0,0198	-0,0087	-0,0015	0,0060	0,1276	0,9656	-0,0038	-1,0000	-0,1576	-0,0155	-0,0009
0,0015	0,0087	0,0198	0,0000	-0,0191	-0,1363	-0,0503	-0,0099	0,0009	0,0155	0,1576	1,0000	-0,0038	-0,9656	-0,1276	-0,0060
0,0002	0,0008	0,0000	-0,0198	-0,1363	-0,0635	-0,2450	-0,0546	0,0001	0,0024	0,0199	0,1576	0,9656	-0,0028	-0,8563	-0,0752
0,0000	0,0000	-0,0008	-0,0087	-0,0503	-0,2450	-0,1267	-0,2827	0,0000	0,0003	0,0024	0,0155	0,1276	0,8563	0,0000	-0,6440
0,0000	0,0000	-0,0002	-0,0015	-0,0099	-0,0546	-0,2827	-0,2225	0,0000	0,0000	0,0001	0,0009	0,0060	0,0752	0,6440	0,0066
							(ii	i)							
0,1153	0,0939	0,0193	0,0144	-0,2016	0,1341	0,9901	0,0561	0,0029	0,1697	-0,0167	0,0021	0,1282	0,6642	0,1405	0,0000
0,0939	-0,0104	0,1257	-0,0279	0,5432	0,9487	-0,2923	-0,9901	-0,1697	-0,0048	0,1450	0,1117	0,4582	-0,1561	0,0000	0,1405
0,0193	0,1257	-0,0285	0,5475	0,8042	-0,6393	-0,9487	0,1341	0,0167	-0,1450	-0,0042	0,1767	-0,1761	0,0000	-0,1561	-0,6642
0,0144	-0,0279	0,5475	0,5940	-0,7271	-0,8042	0,5432	0,2016	-0,0021	-0,1117	-0,1767	0,0060	0,0000	-0,1761	-0,4582	0,1282
-0,2016	0,5432	0,8042	-0,7271	-0,5940	0,5475	0,0279	0,0144	-0,1282	-0,4582	0,1761	0,0000	0,0060	-0,1767	0,1117	-0,0021
0,1341	0,9487	-0,6393	-0,8042	0,5475	0,0285	0,1257	-0,0193	-0,6642	0,1561	0,0000	0,1761	0,1767	-0,0042	-0,1450	-0,0167
0,9901	-0,2923	-0,9487	0,5432	0,0279	0,1257	0,0104	0,0939	-0,1405	0,0000	0,1561	0,4582	-0,1117	0,1450	-0,0048	-0,1697
0,0561	-0,9901	0,1341	0,2016	0,0144	-0,0193	0,0939	-0,1153	0,0000	-0,1405	0,6642	-0,1282	0,0021	0,0167	0,1697	0,0029
							~								

Figura 8.10. Simulação do estado de equilíbrio (i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para a

sonda VT CP/MAS 7 mm utilizando os ângulos da tabela 7.3.

							(i)	1							
0,9345	-0,0086	0,0201	0,0040	-0,0015	-0,0007	0,0047	-0,0023	-0,1226	-0,0128	-0,0110	-0,0212	0,0004	0,0019	-0,0038	0,0023
-0,0086	0,7034	-0,0017	0,0224	-0,0232	-0,0037	-0,0059	-0,0024	0,0128	-0,0608	-0,0132	-0,0039	-0,0158	0,0028	-0,0060	0,0031
0,0201	-0,0017	0,4332	-0,0019	0,0232	-0,0175	-0,0013	-0,0016	0,0110	0,0132	-0,0337	-0,0120	-0,0030	-0,0094	0,0063	0,0027
0,0040	0,0224	-0,0019	0,1609	0,0024	0,0229	-0,0362	-0,0065	0,0212	0,0039	0,0120	-0,0146	-0,0138	0,0043	-0,0258	0,0027
-0,0015	-0,0232	0,0232	0,0024	-0,1240	0,0075	0,0192	-0,0157	-0,0004	0,0158	0,0030	0,0138	0,0241	-0,0094	0,0072	-0,0221
-0,0007	-0,0037	-0,0175	0,0229	0,0075	-0,4104	0,0101	0,0186	-0,0019	-0,0028	0,0094	-0,0043	0,0094	0,0440	-0,0099	0,0113
0,0047	-0,0059	-0,0013	-0,0362	0,0192	0,0101	-0,7017	0,0149	0,0038	0,0060	-0,0063	0,0258	-0,0072	0,0099	0,0723	-0,0130
-0,0023	-0,0024	-0,0016	-0,0065	-0,0157	0,0186	0,0149	-0,9958	-0,0023	-0,0031	-0,0027	-0,0027	0,0221	-0,0113	0,0130	0,0914
							(ii)							
-0,0691	0,5182	0,1520	-0,0283	0,0114	-0,0003	-0,0033	0,0047	-0,1003	-0,3858	0,0186	0,1149	-0,0091	-0,0022	-0,0121	-0,0017
0,5182	0,0182	0,5358	0,2281	-0,0321	0,0049	0,0059	-0,0055	0,3858	-0,0478	-0,6987	-0,0538	0,0814	-0,0009	-0,0074	0,0054
0,1520	0,5358	0,0093	0,3287	0,0915	-0,0616	0,0014	-0,0025	-0,0186	0,6987	-0,0118	-0,8946	-0,1126	0,0831	0,0063	-0,0011
-0,0283	0,2281	0,3287	0,0298	0,0075	0,0441	-0,0704	-0,0185	-0,1149	0,0538	0,8946	-0,0123	-1,0000	-0,1080	0,0757	0,0059
0,0114	-0,0321	0,0915	0,0075	0,0685	-0,3479	0,0451	-0,0590	0,0091	-0,0814	0,1126	1,0000	-0,0117	-0,9036	-0,0629	0,1230
-0,0003	0,0049	-0,0616	0,0441	-0,3479	0,0796	-0,5673	0,0484	0,0022	0,0009	-0,0831	0,1080	0,9036	0,0301	-0,6597	0,0410
-0,0033	0,0059	0,0014	-0,0704	0,0451	-0,5673	0,0117	-0,5436	0,0121	0,0074	-0,0063	-0,0757	0,0629	0,6597	0,0651	-0,2290
0,0047	-0,0055	-0,0025	-0,0185	-0,0590	0,0484	-0,5436	-0,1481	0,0017	-0,0054	0,0011	-0,0059	-0,1230	-0,0410	0,2290	0,0888
							(iii)							
0,1108	0,0456	0,0478	-0,0936	-0,1540	0,4283	0,5555	-0,1922	-0,1076	-0,2042	0,0099	0,0085	0,0632	-0,0353	0,6301	0,0289
0,0456	0,0970	-0,0014	0,1597	0,1562	0,7448	-0,3706	-0,6745	0,2042	-0,0848	-0,2568	0,0924	0,0861	0,5423	-0,0093	0,4898
0,0478	-0,0014	0,1683	0,0845	0,9794	-0,2229	-0,7713	0,4889	-0,0099	0,2568	-0,1008	-0,1711	0,2021	-0,5938	0,3856	0,1498
-0,0936	0,1597	0,0845	0,9393	-0,0631	-0,8948	0,4323	0,0840	-0,0085	-0,0924	0,1711	-0,0496	-0,1290	0,2630	0,6396	-0,0003
-0,1540	0,1562	0,9794	-0,0631	-0,9323	0,2166	0,0443	0,0515	-0,0632	-0,0861	-0,2021	0,1290	0,1151	0,2164	0,0453	0,0517
0,4283	0,7448	-0,2229	-0,8948	0,2166	-0,0227	0,0979	0,1135	0,0353	-0,5423	0,5938	-0,2630	-0,2164	0,0032	0,2285	0,0701
0,5555	-0,3706	-0,7713	0,4323	0,0443	0,0979	-0,0751	0,2294	-0,6301	0,0093	-0,3856	-0,6396	-0,0453	-0,2285	0,0670	0,1616
-0,1922	-0,6745	0,4889	0,0840	0,0515	0,1135	0,2294	-0,2853	-0,0289	-0,4898	-0,1498	0,0003	-0,0517	-0,0701	-0,1616	0,1576
Figura	8.12.	Tomog	rafia do	o estado	de equ	uilíbrio	\hat{I}_z (i),	\hat{I}_{v} (ii)	e estad	o de co	erência	as de or	dens p	ares (ii)	para
5		U			~~ · ·										•
			a sor	nda VT	CP/M	AS 5 m	m utili	zando (os angu	ilos da	tabela	1.2.			

							(i)	1							
0,9929	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,1188	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,7105	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0170	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,4268	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0509	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,1423	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0849	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	-0,1423	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0849	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	-0,4268	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0509	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,7105	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0170	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,9929	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,1188
							(ii)							
0,1852	0,1875	0,0379	0,0041	0,0006	0,0001	0,0000	0,0000	0,0192	-0,6541	-0,0508	-0,0037	-0,0004	0,0000	0,0000	0,0000
0,1875	0,1178	0,1631	0,0340	0,0032	0,0003	0,0000	0,0000	0,6541	0,0021	-0,8618	-0,0883	-0,0078	-0,0008	-0,0001	0,0000
0,0379	0,1631	0,0650	0,0910	0,0132	0,0000	-0,0003	-0,0001	0,0508	0,8618	-0,0082	-0,9671	-0,1101	-0,0095	-0,0008	0,0000
0,0041	0,0340	0,0910	0,0207	0,0000	-0,0132	-0,0032	-0,0006	0,0037	0,0883	0,9671	-0,0131	-1,0000	-0,1101	-0,0078	-0,0004
0,0006	0,0032	0,0132	0,0000	-0,0207	-0,0910	-0,0340	-0,0041	0,0004	0,0078	0,1101	1,0000	-0,0131	-0,9671	-0,0883	-0,0037
0,0001	0,0003	0,0000	-0,0132	-0,0910	-0,0650	-0,1631	-0,0379	0,0000	0,0008	0,0095	0,1101	0,9671	-0,0082	-0,8618	-0,0508
0,0000	0,0000	-0,0003	-0,0032	-0,0340	-0,1631	-0,1178	-0,1875	0,0000	0,0001	0,0008	0,0078	0,0883	0,8618	0,0021	-0,6541
0,0000	0,0000	-0,0001	-0,0006	-0,0041	-0,0379	-0,1875	-0,1852	0,0000	0,0000	0,0000	0,0004	0,0037	0,0508	0,6541	0,0192
							(iii)							
0,0764	0,0796	0,0157	0,0005	-0,1001	0,1156	0,9941	-0,0280	0,0041	0,1320	0,0103	0,0313	0,1424	0,6661	0,1081	0,0000
0,0796	0,0012	0,1072	-0,0081	0,4126	0,9823	-0,4182	-0,9941	-0,1320	-0,0056	0,1151	0,1006	0,3515	-0,1067	0,0000	0,1081
0,0157	0,1072	-0,0028	0,4756	0,8046	-0,6273	-0,9823	0,1156	-0,0103	-0,1151	-0,0041	0,1431	-0,1395	0,0000	-0,1067	-0,6661
0,0005	-0,0081	0,4756	0,6062	-0,6470	-0,8046	0,4126	0,1001	-0,0313	-0,1006	-0,1431	0,0055	0,0000	-0,1395	-0,3515	0,1424
-0,1001	0,4126	0,8046	-0,6470	-0,6062	0,4756	0,0081	0,0005	-0,1424	-0,3515	0,1395	0,0000	0,0055	-0,1431	0,1006	-0,0313
0,1156	0,9823	-0,6273	-0,8046	0,4756	0,0028	0,1072	-0,0157	-0,6661	0,1067	0,0000	0,1395	0,1431	-0,0041	-0,1151	0,0103
0,9941	-0,4182	-0,9823	0,4126	0,0081	0,1072	-0,0012	0,0796	-0,1081	0,0000	0,1067	0,3515	-0,1006	0,1151	-0,0056	-0,1320
-0,0280	-0,9941	0,1156	0,1001	0,0005	-0,0157	0,0796	-0,0764	0,0000	-0,1081	0,6661	-0,1424	0,0313	-0,0103	0,1320	0,0041

Figura 8.13. Simulação do estado de equilíbrio \hat{I}_z	(i), \hat{I}_y (ii) e estado de coerências de ordens pares (iii) para
a sonda VT CP/MAS 5 mm	1 utilizando os ângulos da tabela 7.2.

							(i)								
0,9744	0,0000	-0,0134	0,0011	0,0037	0,0029	0,0084	0,0012	0,1586	0,0122	0,0001	-0,0249	0,0045	0,0008	0,0076	-0,0430
0,0000	0,7157	-0,0006	-0,0090	0,0029	0,0024	0,0073	0,0079	-0,0122	0,1086	0,0114	0,0012	-0,0384	0,0028	0,0173	-0,0095
-0,0134	-0,0006	0,4408	0,0005	-0,0103	-0,0011	0,0072	0,0025	-0,0001	-0,0114	0,0475	0,0090	0,0018	-0,0454	0,0028	0,0118
0,0011	-0,0090	0,0005	0,1539	-0,0032	-0,0117	0,0032	0,0085	0,0249	-0,0012	-0,0090	0,0181	0,0100	-0,0060	-0,0368	-0,0004
0,0037	0,0029	-0,0103	-0,0032	-0,1431	-0,0037	-0,0121	0,0102	-0,0045	0,0384	-0,0018	-0,0100	-0,0289	0,0091	-0,0057	-0,0317
0,0029	0,0024	-0,0011	-0,0117	-0,0037	-0,4374	-0,0065	-0,0039	-0,0008	-0,0028	0,0454	0,0060	-0,0091	-0,0564	0,0098	-0,0005
0,0084	0,0073	0,0072	0,0032	-0,0121	-0,0065	-0,7168	-0,0084	-0,0076	-0,0173	-0,0028	0,0368	0,0057	-0,0098	-0,0906	0,0099
0,0012	0,0079	0,0025	0,0085	0,0102	-0,0039	-0,0084	-0,9876	0,0430	0,0095	-0,0118	0,0004	0,0317	0,0005	-0,0099	-0,1569
							(ii))							
0,1561	0,2573	0,0314	-0,1447	-0,0161	0,0341	0,0104	-0,0463	0,1303	-0,3700	-0,0176	0,1804	0,0024	0,0087	0,0165	-0,0332
0,2573	0,1102	0,3187	0,0312	-0,3890	-0,0156	0,0499	-0,0110	0,3700	0,0632	-0,6350	-0,0293	0,4980	0,0030	0,0106	-0,0084
0,0314	0,3187	0,0779	0,2586	0,0383	-0,3813	-0,0104	0,0081	0,0176	0,6350	0,0229	-0,8846	-0,0178	0,5191	0,0201	0,0006
-0,1447	0,0312	0,2586	0,0449	0,0552	0,0051	-0,2787	-0,0116	-0,1804	0,0293	0,8846	0,0080	-0,9985	-0,0376	0,4809	0,0094
-0,0161	-0,3890	0,0383	0,0552	-0,0272	-0,1297	-0,0133	-0,1852	-0,0024	-0,4980	0,0178	0,9985	-0,0280	-0,7797	-0,0317	0,4004
0,0341	-0,0156	-0,3813	0,0051	-0,1297	-0,0608	-0,1851	-0,0065	-0,0087	-0,0030	-0,5191	0,0376	0,7797	-0,0499	-0,5352	-0,0334
0,0104	0,0499	-0,0104	-0,2787	-0,0133	-0,1851	-0,1040	-0,0121	-0,0165	-0,0106	-0,0201	-0,4809	0,0317	0,5352	-0,0739	-0,3381
-0,0463	-0,0110	0,0081	-0,0116	-0,1852	-0,0065	-0,0121	-0,1973	0,0332	0,0084	-0,0006	-0,0094	-0,4004	0,0334	0,3381	-0,0725
							(iii)							
0,2270	-0,0728	-0,0355	-0,0817	0,0707	0,3088	0,4791	-0,2337	0,0573	-0,0919	0,0828	-0,1496	-0,1724	-0,1800	0,1228	-0,0565
-0,0728	0,1713	-0,0312	-0,0808	-0,1058	0,4916	-0,7112	-0,1918	0,0919	0,1840	-0,1117	-0,0277	-0,3512	-0,0841	0,1214	-0,0905
-0,0355	-0,0312	0,0643	0,2269	0,4614	-0,7595	-0,3438	0,3074	-0,0828	0,1117	0,1077	-0,2507	-0,1117	-0,6506	-0,0656	0,3962
-0,0817	-0,0808	0,2269	0,4506	-0,3531	-0,6997	0,2026	0,0958	0,1496	0,0277	0,2507	-0,1991	0,0853	-0,1553	0,0765	-0,0858
0,0707	-0,1058	0,4614	-0,3531	-0,7239	0,2595	-0,0627	-0,1830	0,1724	0,3512	0,1117	-0,0853	-0,1361	0,2695	-0,1692	0,0166
0,3088	0,4916	-0,7595	-0,6997	0,2595	-0,1203	-0,0848	-0,0543	0,1800	0,0841	0,6506	0,1553	-0,2695	-0,0181	0,0905	-0,0851
0,4791	-0,7112	-0,3438	0,2026	-0,0627	-0,0848	-0,0997	-0,1318	-0,1228	-0,1214	0,0656	-0,0765	0,1692	-0,0905	0,0196	0,0401
-0,2337	-0,1918	0,3074	0,0958	-0,1830	-0,0543	-0,1318	0,0307	0,0565	0,0905	-0,3962	0,0858	-0,0166	0,0851	-0,0401	-0,0153
Figura	8 14	Γοιποσι	rafia do	estado	de en	uilíbrio	\hat{I} (i)	\hat{I} (ii)	e estad	o de co	erência	is de or	dens ne	ares (ii)	nara
i igui a	0.14.	romogi	and uu	, corauc	, ac cyi	mono	$I_{Z}(1),$	I_{v} (II)	c colau	0 u c c 0	ci ci ci ci ci	is up of	uens pe	1100 (II)	para

a sonda VT CP/MAS 5 mm utilizando os ângulos da tabela 7.3.

							(1)								
0,9998	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0200	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,7145	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0029	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,4289	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0086	0,0000	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,1430	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0143	0,0000	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	-0,1430	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0143	0,0000	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	-0,4289	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,0086	0,0000	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,7145	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0029	0,0000
0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	-0,9998	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0200
							(ii)							
0,2247	0,1920	0,0258	0,0033	0,0003	0,0000	0,0000	0,0000	0,0040	-0,6528	-0,0562	-0,0041	-0,0004	0,0000	0,0000	0,0000
0,1920	0,1458	0,1670	0,0232	0,0027	0,0002	0,0000	0,0000	0,6528	0,0003	-0,8611	-0,0879	-0,0076	-0,0008	-0,0001	0,0000
0,0258	0,1670	0,0817	0,0932	0,0091	0,0000	-0,0002	0,0000	0,0562	0,8611	-0,0017	-0,9669	-0,1048	-0,0091	-0,0008	0,0000
0,0033	0,0232	0,0932	0,0263	0,0000	-0,0091	-0,0027	-0,0003	0,0041	0,0879	0,9669	-0,0026	-1,0000	-0,1048	-0,0076	-0,0004
0,0003	0,0027	0,0091	0,0000	-0,0263	-0,0932	-0,0232	-0,0033	0,0004	0,0076	0,1048	1,0000	-0,0026	-0,9669	-0,0879	-0,0041
0,0000	0,0002	0,0000	-0,0091	-0,0932	-0,0817	-0,1670	-0,0258	0,0000	0,0008	0,0091	0,1048	0,9669	-0,0017	-0,8611	-0,0562
0,0000	0,0000	-0,0002	-0,0027	-0,0232	-0,1670	-0,1458	-0,1920	0,0000	0,0001	0,0008	0,0076	0,0879	0,8611	0,0003	-0,6528
0,0000	0,0000	0,0000	-0,0003	-0,0033	-0,0258	-0,1920	-0,2247	0,0000	0,0000	0,0000	0,0004	0,0041	0,0562	0,6528	0,0040
							(iii)							
0,1327	0,1186	0,0204	-0,0060	-0,1902	0,2370	0,9950	0,0012	0,0032	0,1849	-0,0175	0,0101	0,1867	0,6855	0,0998	0,0000
0,1186	-0,0025	0,1640	0,0142	0,6941	0,9235	-0,4397	-0,9950	-0,1849	-0,0049	0,1648	0,1459	0,4613	-0,2143	0,0000	0,0998
0,0204	0,1640	0,0115	0,6896	0,7431	-0,8753	-0,9235	0,2370	0,0175	-0,1648	-0,0032	0,1769	-0,2146	0,0000	-0,2143	-0,6855
-0,0060	0,0142	0,6896	0,5269	-0,8917	-0,7431	0,6941	0,1902	-0,0101	-0,1459	-0,1769	0,0049	0,0000	-0,2146	-0,4613	0,1867
-0,1902	0,6941	0,7431	-0,8917	-0,5269	0,6896	-0,0142	-0,0060	-0,1867	-0,4613	0,2146	0,0000	0,0049	-0,1769	0,1459	-0,0101
0,2370	0,9235	-0,8753	-0,7431	0,6896	-0,0115	0,1640	-0,0204	-0,6855	0,2143	0,0000	0,2146	0,1769	-0,0032	-0,1648	-0,0175
0,9950	-0,4397	-0,9235	0,6941	-0,0142	0,1640	0,0025	0,1186	-0,0998	0,0000	0,2143	0,4613	-0,1459	0,1648	-0,0049	-0,1849
0,0012	-0,9950	0,2370	0,1902	-0,0060	-0,0204	0,1186	-0,1327	0,0000	-0,0998	0,6855	-0,1867	0,0101	0,0175	0,1849	0,0032
		~					A	4							

Figura 8.15. Simulação do estado de equilíbrio \hat{I}_{j}	$_{z}$ (i), \hat{I}_{z}	y (ii) e estado de coerências de ordens pares (iii) p	para
a sonda VT CP/MAS 5 mr	n utiliz	zando os ângulos da tabela 7.3.	

							G)							
0 9994	-0.0453	0.0716	0.0777	-0.0642	-0.0445	0.0204	0 0060	-0 0344	-0.0586	0 0064	0.0677	0.0434	-0 0294	-0.0129	0 1221
-0.0453	-0 1717	0.0049	0 1077	-0.0087	-0.0969	-0.0389	-0.0039	0.0586	-0 1706	0.0528	-0.0442	0 1356	0.0693	-0.0436	0.0101
0.0716	0.0049	-0.0923	-0.0191	0.1399	0.0132	-0.0876	-0.0397	-0.0064	-0.0528	-0.0949	-0.0117	0.0003	0.1729	-0.0333	-0.0156
0.0777	0 1077	-0.0191	-0.0695	0.0074	0 1549	-0.0940	-0.0547	-0.0677	0.0442	0.0117	-0.0527	-0.0196	0.0395	0.0340	-0.0112
-0.0642	-0.0087	0 1 3 9 9	0.0074	-0.0674	0.0785	0.0894	-0.0527	-0.0434	-0 1356	-0.0003	0.0196	-0.0219	-0.0117	0.0492	0 1115
-0.0445	-0.0969	0.0132	0 1549	0.0785	-0 1120	-0.0438	0.0629	0.0294	-0.0693	-0 1729	-0.0395	0.0117	0 1159	-0.0210	0.0809
0.0204	-0.0389	-0.0876	-0.0940	0.0894	-0.0438	-0.1661	0.0395	0.0129	0.0436	0.0333	-0.0340	-0.0492	0.0210	0 1270	0.0028
0.0060	-0.0039	-0.0397	-0.0547	-0.0527	0.0629	0.0395	-0 3204	-0 1221	-0.0101	0.0156	0.0112	-0.1115	-0.0809	-0.0028	0 1315
	(ii)														.,
0,0607	0,0182	0,0093	0,0360	-0,0034	0,0225	0,0194	0,0050	-0,1717	-0,0454	0,0056	-0,0397	-0,0138	-0,0024	-0,0288	0,0236
0,0182	0,9851	0,0237	0,0097	-0,0459	-0,0069	0,0250	0,0083	0,0454	-0,1719	-0,0212	0,0098	0,0231	0,0001	-0,0267	0,0000
0,0093	0,0237	-0,1352	-0,0030	-0,0016	-0,0339	-0,0118	0,0142	-0,0056	0,0212	0,0009	-0,0243	0,0160	0,0480	-0,0168	-0,0035
0,0360	0,0097	-0,0030	-0,1889	-0,0518	-0,0034	-0,0325	-0,0329	0,0397	-0,0098	0,0243	0,0458	-0,0584	0,0177	0,0418	0,0014
-0,0034	-0,0459	-0,0016	-0,0518	-0,1989	0,0329	-0,0505	-0,0208	0,0138	-0,0231	-0,0160	0,0584	0,0858	0,0142	0,0890	0,0461
0,0225	-0,0069	-0,0339	-0,0034	0,0329	-0,1704	0,0081	-0,0131	0,0024	-0,0001	-0,0480	-0,0177	-0,0142	0,1017	-0,0021	0,0574
0,0194	0,0250	-0,0118	-0,0325	-0,0505	0,0081	-0,1824	0,0062	0,0288	0,0267	0,0168	-0,0418	-0,0890	0,0021	0,0818	0,0172
0,0050	0,0083	0,0142	-0,0329	-0,0208	-0,0131	0,0062	-0,1701	-0,0236	0,0000	0,0035	-0,0014	-0,0461	-0,0574	-0,0172	0,0277
							(ii	i)							
-0,1717	-0,1618	-0,0948	0,0216	0,0656	0,0326	0,0192	-0,0014	0,3145	0,0994	-0,0592	-0,0080	-0,0258	0,0747	0,0237	-0,0523
-0,1618	0,0011	-0,0642	0,1711	0,0308	0,0223	-0,0528	-0,0274	-0,0994	0,1589	0,0412	0,0105	-0,1289	0,0008	0,0308	-0,0173
-0,0948	-0,0642	0,9906	-0,1820	0,0372	0,0329	0,0789	-0,0031	0,0592	-0,0412	-0,1366	0,1119	0,0012	-0,1356	0,0179	0,0314
0,0216	0,1711	-0,1820	-0,1313	-0,0812	-0,0240	-0,0982	0,0356	0,0080	-0,0105	-0,1119	0,0659	0,0104	-0,1782	-0,0452	0,0320
0,0656	0,0308	0,0372	-0,0812	-0,1506	-0,1875	-0,1656	-0,0173	0,0258	0,1289	-0,0012	-0,0104	-0,0252	-0,1183	-0,0847	-0,0451
0,0326	0,0223	0,0329	-0,0240	-0,1875	-0,0742	0,0539	-0,0519	-0,0747	-0,0008	0,1356	0,1782	0,1183	-0,0501	-0,0556	0,0235
0,0192	-0,0528	0,0789	-0,0982	-0,1656	0,0539	-0,2616	-0,1016	-0,0237	-0,0308	-0,0179	0,0452	0,0847	0,0556	-0,1300	0,0258
-0,0014	-0,0274	-0,0031	0,0356	-0,0173	-0,0519	-0,1016	-0,2024	0,0523	0,0173	-0,0314	-0,0320	0,0451	-0,0235	-0,0258	-0,1973
(iv)															
-0,3359	0,0239	0,0535	0,0917	0,1108	0,0051	0,0723	-0,0035	0,3873	-0,0455	0,0274	-0,0868	-0,0685	-0,0247	-0,0732	-0,0590
0,0239	-0,0375	-0,0969	0,0847	0,0338	0,1519	-0,0202	0,0070	0,0455	0,2025	0,0633	-0,1279	-0,1177	-0,1002	-0,0131	-0,0107
0,0535	-0,0969	-0,1654	0,0073	-0,0197	0,0334	-0,0611	0,0394	-0,0274	-0,0633	0,1616	-0,0576	-0,0262	-0,3272	-0,0971	-0,0385
0,0917	0,0847	0,0073	0,9963	0,1254	-0,0669	-0,1810	-0,0361	0,0868	0,1279	0,0576	-0,0858	-0,0030	-0,0587	-0,3122	0,0004
0,1108	0,0338	-0,0197	0,1254	-0,2157	-0,0167	-0,2135	0,0612	0,0685	0,1177	0,0262	0,0030	-0,0245	0,1166	0,1395	0,1814
0,0051	0,1519	0,0334	-0,0669	-0,0167	0,1335	-0,1018	-0,0519	0,0247	0,1002	0,3272	0,0587	-0,1166	-0,0950	-0,1336	-0,0539
0,0723	-0,0202	-0,0611	-0,1810	-0,2135	-0,1018	-0,0824	-0,1207	0,0732	0,0131	0,0971	0,3122	-0,1395	0,1336	-0,1777	-0,0662
-0,0035	0,0070	0,0394	-0,0361	0,0612	-0,0519	-0,1207	-0,2929	0,0590	0,0107	0,0385	-0,0004	-0,1814	0,0539	0,0662	-0,3685
Figura	Figura 8.16. Estados pseudo-puros obtidos experimentalmente, equivalentes aos mostrados na figura 6.4: 000 (i), 001 (ii), 010 (iii),												1 (ii), 01	0 (iii),	

011 (iv). À esquerda, partes reais e, à direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

								(i)								
-(0,1845	-0,0367	0,0142	0,0415	0,0569	-0,0047	0,0116	0,0094	0,2105	0,0988	0,0345	0,1147	-0,0081	0,0122	-0,0016	-0,0878
-(0,0367	-0,1927	0,1117	-0,1171	-0,0299	0,1223	-0,0240	-0,0183	-0,0988	0,1720	0,0001	-0,0634	0,0029	0,0889	-0,0002	-0,0048
(0,0142	0,1117	-0,1450	0,0565	0,0163	-0,0790	-0,0161	0,0024	-0,0345	-0,0001	0,1083	-0,0894	-0,0432	0,0563	0,0935	-0,0042
(0,0415	-0,1171	0,0565	-0,1709	0,0215	-0,1723	-0,2363	0,0078	-0,1147	0,0634	0,0894	0,0685	0,0481	-0,2056	0,0564	0,0742
(0,0569	-0,0299	0,0163	0,0215	0,9968	0,0634	0,0894	-0,0303	0,0081	-0,0029	0,0432	-0,0481	-0,0798	0,0142	0,0645	-0,0002
-(0,0047	0,1223	-0,0790	-0,1723	0,0634	-0,1623	0,0796	0,0815	-0,0122	-0,0889	-0,0563	0,2056	-0,0142	-0,0947	-0,1683	-0,0530
(0,0116	-0,0240	-0,0161	-0,2363	0,0894	0,0796	-0,0796	-0,0273	0,0016	0,0002	-0,0935	-0,0564	-0,0645	0,1683	-0,1675	0,0936
(0,0094	-0,0183	0,0024	0,0078	-0,0303	0,0815	-0,0273	-0,0620	0,0878	0,0048	0,0042	-0,0742	0,0002	0,0530	-0,0936	-0,2171
(ii)																
-(0,1536	-0,1229	0,0615	-0,0630	-0,0137	-0,0186	-0,0111	-0,0155	0,1947	-0,0248	-0,1015	-0,0553	-0,0373	0,0228	-0,0026	-0,0303
-(0,1229	-0,0859	-0,0304	-0,0659	-0,1572	-0,0068	-0,0774	0,0006	0,0248	0,1103	-0,0048	-0,0526	-0,0190	-0,0311	0,0143	-0,0116
(0,0615	-0,0304	-0,2307	-0,0061	-0,0336	0,0019	0,0405	0,0456	0,1015	0,0048	0,1089	0,0372	-0,0384	-0,0435	-0,0439	0,0437
-(0,0630	-0,0659	-0,0061	-0,1831	-0,0382	0,0199	-0,1031	0,0509	0,0553	0,0526	-0,0372	0,0481	0,0224	0,0590	0,1059	-0,0048
-(0,0137	-0,1572	-0,0336	-0,0382	-0,1971	0,0058	-0,0490	-0,1135	0,0373	0,0190	0,0384	-0,0224	-0,0182	-0,0396	-0,0152	0,0104
-(0,0186	-0,0068	0,0019	0,0199	0,0058	0,9996	-0,0421	0,0145	-0,0228	0,0311	0,0435	-0,0590	0,0396	-0,0277	-0,1220	-0,0170
-(0,0111	-0,0774	0,0405	-0,1031	-0,0490	-0,0421	-0,0792	0,0266	0,0026	-0,0143	0,0439	-0,1059	0,0152	0,1220	-0,1532	0,0906
-(0,0155	0,0006	0,0456	0,0509	-0,1135	0,0145	0,0266	-0,0700	0,0303	0,0116	-0,0437	0,0048	-0,0104	0,0170	-0,0906	-0,2629
(iii)																
-(0,2046	-0,0086	0,0773	0,0258	-0,0143	-0,0199	-0,0123	-0,0495	-0,1644	-0,0297	-0,0161	0,0405	0,0402	-0,0086	-0,0133	0,0419
-(0,0086	-0,1328	-0,0101	0,0489	-0,0414	-0,0341	-0,0041	-0,0043	0,0297	-0,0943	-0,0164	0,0002	0,0942	0,0548	-0,0453	-0,0121
(0,0773	-0,0101	-0,1163	0,0271	0,1406	0,0054	-0,0486	0,0174	0,0161	0,0164	-0,0451	-0,0572	0,0368	0,0550	-0,0192	-0,0400
(0,0258	0,0489	0,0271	-0,1130	0,0234	0,1396	-0,0310	-0,0196	-0,0405	-0,0002	0,0572	-0,0094	-0,0618	0,0424	0,0373	0,0040
-(0,0143	-0,0414	0,1406	0,0234	-0,1374	0,0288	0,1086	0,0015	-0,0402	-0,0942	-0,0368	0,0618	0,0202	-0,0090	0,0037	0,0750
-(0,0199	-0,0341	0,0054	0,1396	0,0288	-0,1752	0,0707	0,0534	0,0086	-0,0548	-0,0550	-0,0424	0,0090	0,0923	-0,0129	0,0759
-(0,0123	-0,0041	-0,0486	-0,0310	0,1086	0,0707	1,0000	0,0321	0,0133	0,0453	0,0192	-0,0373	-0,0037	0,0129	0,0064	-0,0318
),0495	-0,0043	0,0174	-0,0196	0,0015	0,0534	0,0321	-0,1207	-0,0419	0,0121	0,0400	-0,0040	-0,0750	-0,0759	0,0318	0,1942
		0.02.12	0.01.50	0.0000	0.0400	0.01/0	0.00(1	(1))	0.0420	0.0000	0.0001	0.00(5		0.0015	0.0404
-(0,1142	-0,0243	0,0159	0,0338	0,0498	-0,0163	-0,0264	0,0222	0,1852	0,0438	0,0022	-0,0091	0,0265	0,0228	-0,0015	-0,0684
-(0,0243	-0,1247	0,0157	0,0296	-0,0356	0,0319	0,0200	-0,0165	-0,0438	0,1132	0,0392	-0,0035	-0,0759	0,0076	0,0583	-0,0059
(0,0159	0,0157	-0,2744	-0,0310	-0,0330	-0,0147	0,0388	0,0402	-0,0022	-0,0392	0,0807	0,0680	0,0616	-0,0600	0,0350	0,0032
	0,0338	0,0296	-0,0310	-0,1480	0,0126	-0,0091	-0,0084	-0,0044	0,0091	0,0035	-0,0680	0,0064	0,0627	0,0587	-0,0706	-0,0078
(J,0498	-0,0356	-0,0330	0,0126	-0,0888	-0,0567	0,0157	-0,0894	-0,0265	0,0759	-0,0616	-0,0627	-0,0589	0,0084	0,0040	-0,0841
-(0,0163	0,0319	-0,0147	-0,0091	-0,0567	-0,1314	-0,0730	-0,0463	-0,0228	-0,0076	0,0600	-0,0587	-0,0084	-0,1046	-0,0681	0,0742
-(0,0264	0,0200	0,0388	-0,0084	0,0157	-0,0730	-0,1178	-0,0304	0,0015	-0,0583	-0,0350	0,0706	-0,0040	0,0681	-0,1814	0,0245
(0,0222	-0,0165	0,0402	-0,0044	-0,0894	-0,0463	-0,0304	0,9992	0,0684	0,0059	-0,0032	0,0078	0,0841	-0,0742	-0,0245	-0,0407

Figura 8.17. Estados pseudo-puros obtidos experimentalmente, equivalentes aos mostrados na figura 6.5: 100 (i), 101 (ii), 110 (iii), 111 (iv). À esquerda, partes reais e, à direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

							(i)								
0,0131	-0,2742	0,1840	-0,0465	-0,0173	-0,1179	0,0313	0,0978	0,3320	0,0958	0,0179	0,0225	-0,0685	-0,0052	0,0435	-0,0431
-0,2742	-0,1729	-0,1689	-0,1798	-0,1800	-0,1365	-0,1803	0,0712	-0,0958	0,2810	-0,3239	-0,1415	-0,2287	-0,0635	-0,0103	0,0488
0,1840	-0,1689	0,9923	0,0498	0,0228	0,1010	0,3037	0,1220	-0,0179	0,3239	-0,1236	-0,2444	0,1993	0,0243	-0,2574	0,1841
-0,0465	-0,1798	0,0498	-0,2028	0,0143	-0,0720	-0,0801	-0,1818	-0,0225	0,1415	0,2444	0,0918	-0,0376	0,0914	-0,1815	-0,0274
-0,0173	-0,1800	0,0228	0,0143	-0,1868	-0,2577	-0,1600	0,0262	0,0685	0,2287	-0,1993	0,0376	-0,0431	-0,1678	-0,0268	0,2227
-0,1179	-0,1365	0,1010	-0,0720	-0,2577	-0,1366	-0,0501	0,0432	0,0052	0,0635	-0,0243	-0,0914	0,1678	-0,0697	-0,1197	0,0428
0,0313	-0,1803	0,3037	-0,0801	-0,1600	-0,0501	-0,2676	0,0040	-0,0435	0,0103	0,2574	0,1815	0,0268	0,1197	-0,1947	-0,0897
0,0978	0,0712	0,1220	-0,1818	0,0262	0,0432	0,0040	-0,0388	0,0431	-0,0488	-0,1841	0,0274	-0,2227	-0,0428	0,0897	-0,2737
(ii)															
-0,3555	-0,0375	-0,0109	-0,1953	0,0138	0,0264	0,0757	0,0244	0,4498	0,0096	0,0411	0,0234	0,0184	0,0123	0,0934	-0,0740
-0,0375	0,0551	-0,0590	-0,0445	-0,3213	0,1068	0,0593	0,0774	-0,0096	0,1661	0,0961	0,0636	0,2522	0,0916	0,0483	-0,0264
-0,0109	-0,0590	-0,1346	0,1860	0,2505	-0,1201	-0,0887	-0,2633	-0,0411	-0,0961	0,1004	-0,0430	0,0164	-0,1122	-0,0203	-0,2443
-0,1953	-0,0445	0,1860	-0,1570	-0,0960	0,0674	-0,0281	-0,1322	-0,0234	-0,0636	0,0430	0,0268	-0,3545	0,1437	-0,0385	-0,0172
0,0138	-0,3213	0,2505	-0,0960	-0,3869	0,0227	-0,1563	0,0064	-0,0184	-0,2522	-0,0164	0,3545	-0,0738	0,0784	0,2200	-0,3376
0,0264	0,1068	-0,1201	0,0674	0,0227	0,1089	-0,1754	-0,1013	-0,0123	-0,0916	0,1122	-0,1437	-0,0784	-0,1544	0,0435	0,1076
0,0757	0,0593	-0,0887	-0,0281	-0,1563	-0,1754	-0,0970	-0,1247	-0,0934	-0,0483	0,0203	0,0385	-0,2200	-0,0435	-0,2602	0,0559
0,0244	0,0774	-0,2633	-0,1322	0,0064	-0,1013	-0,1247	0,9671	0,0740	0,0264	0,2443	0,0172	0,3376	-0,1076	-0,0559	-0,2546
							(iii)							
-0,1512	-0,0565	-0,0319	-0,1537	0,1517	-0,0103	0,0320	-0,0194	0,2848	0,0193	-0,0186	0,0517	0,1475	-0,0249	0,0568	-0,0364
-0,0565	-0,2101	0,0562	0,0725	-0,1236	-0,0602	0,0105	-0,1113	-0,0193	0,2078	0,0112	0,0076	0,0499	0,1405	-0,0284	0,0080
-0,0319	0,0562	-0,0758	0,0974	-0,1143	-0,3446	0,0268	0,0472	0,0186	-0,0112	0,0961	0,1030	-0,0313	0,2108	0,1212	-0,0444
-0,1537	0,0725	0,0974	-0,1943	0,0476	0,0919	-0,1712	-0,0134	-0,0517	-0,0076	-0,1030	0,0620	0,0206	-0,0128	-0,0608	0,0388
0,1517	-0,1236	-0,1143	0,0476	0,9953	-0,0177	0,0971	0,0241	-0,1475	-0,0499	0,0313	-0,0206	-0,0968	0,1387	0,2190	0,1078
-0,0103	-0,0602	-0,3446	0,0919	-0,0177	-0,2006	0,1403	0,0154	0,0249	-0,1405	-0,2108	0,0128	-0,1387	-0,1176	-0,1736	0,1116
0,0320	0,0105	0,0268	-0,1712	0,0971	0,1403	-0,0327	0,0077	-0,0568	0,0284	-0,1212	0,0608	-0,2190	0,1736	-0,1549	0,0857
-0,0194	-0,1113	0,0472	-0,0134	0,0241	0,0154	0,0077	-0,1306	0,0364	-0,0080	0,0444	-0,0388	-0,1078	-0,1116	-0,0857	-0,2814
Figura 8	8.18. Im	plementa	ição exp	erimenta	l da port	a Toffoli	i 1 sobre	os estad	os 010 (i	i), 011(ii) e 100 (iii). A es	querda,	partes rea	ais e, à

direita, imaginárias. Tomografados utilizando os ângulos da tabela 7.3.

							(i))							
-0,0959	-0,1682	0,0750	-0,0003	0,1089	-0,0527	0,0306	0,0103	0,3307	-0,0438	0,0696	0,0709	0,0088	-0,0209	0,0393	-0,0392
-0,1682	-0,1056	0,0880	0,2077	-0,1808	-0,0197	0,0547	0,1036	0,0438	0,1912	0,1700	-0,0152	-0,1004	0,4752	0,0057	-0,0004
0,0750	0,0880	-0,3943	-0,0004	0,0627	0,1474	0,0851	-0,0033	-0,0696	-0,1700	0,1735	0,1319	-0,0531	-0,1927	-0,1024	0,0437
-0,0003	0,2077	-0,0004	-0,0737	-0,3149	-0,0058	0,1082	0,2106	-0,0709	0,0152	-0,1319	0,0454	0,1125	0,4428	-0,0084	-0,0142
0,1089	-0,1808	0,0627	-0,3149	-0,2382	0,1720	-0,0300	0,1318	-0,0088	0,1004	0,0531	-0,1125	-0,0016	-0,3660	-0,0225	0,0438
-0,0527	-0,0197	0,1474	-0,0058	0,1720	0,9974	-0,1792	0,2330	0,0209	-0,4752	0,1927	-0,4428	0,3660	-0,0715	0,2430	-0,1573
0,0306	0,0547	0,0851	0,1082	-0,0300	-0,1792	-0,0653	-0,1982	-0,0393	-0,0057	0,1024	0,0084	0,0225	-0,2430	-0,2692	0,0579
0,0103	0,1036	-0,0033	0,2106	0,1318	0,2330	-0,1982	-0,0245	0,0392	0,0004	-0,0437	0,0142	-0,0438	0,1573	-0,0579	-0,3985
	(ii)														
-0,1289	0,0108	0,0166	0,0510	-0,0265	-0,0153	0,0238	0,0147	0,2570	0,0337	0,0012	-0,1945	-0,0350	-0,0369	0,0208	-0,0522
0,0108	-0,1872	-0,0024	0,0204	0,0077	-0,1113	0,0234	0,0141	-0,0337	0,2073	0,0413	-0,0602	-0,0840	-0,0480	0,0117	0,0357
0,0166	-0,0024	-0,3484	-0,0019	-0,1011	0,0645	-0,0653	0,0233	-0,0012	-0,0413	0,1900	0,0520	0,0005	-0,1232	0,0457	0,0196
0,0510	0,0204	-0,0019	0,9972	0,1925	-0,0554	-0,1732	0,0602	0,1945	0,0602	-0,0520	-0,0753	0,1533	-0,3842	-0,2487	-0,0033
-0,0265	0,0077	-0,1011	0,1925	-0,1617	-0,0854	-0,0580	-0,1887	0,0350	0,0840	-0,0005	-0,1533	-0,0335	0,0505	0,0484	-0,0729
-0,0153	-0,1113	0,0645	-0,0554	-0,0854	0,0436	0,0029	-0,0193	0,0369	0,0480	0,1232	0,3842	-0,0505	-0,0787	-0,0973	0,0137
0,0238	0,0234	-0,0653	-0,1732	-0,0580	0,0029	-0,1193	-0,0665	-0,0208	-0,0117	-0,0457	0,2487	-0,0484	0,0973	-0,1978	0,0223
0,0147	0,0141	0,0233	0,0602	-0,1887	-0,0193	-0,0665	-0,0952	0,0522	-0,0357	-0,0196	0,0033	0,0729	-0,0137	-0,0223	0,0000

Figura 8.19. Implementação experimental da porta Toffoli 1 sobre os estados 101 (i) e 111(ii). À esquerda, partes reais e, à direita,

imaginárias. Tomografados utilizando os ângulos da tabela 7.3.