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In this paper, we describe a quantum state tomography method based on global rotations of the spin
system which, together with a coherence selection scheme, enables the complete density matrix
reconstruction. The main advantage of this technique, in respect to previous proposals, is the use of
much shorter rf pulses, which decreases significantly the time necessary for algorithm quantum state
tomography. In this case, under adequate experimental conditions, the rf pulses correspond to simple
spatial rotations of the spin states, and its analytical description is conveniently given in the
irreducible tensor formalism. Simulated results show the feasibility of the method for a single spin
7/2 nucleus. As an experimental result, we exemplify the application of this method by
tomographing the steps during the implementation of the Deutsch algorithm. The algorithm was
implemented in a >>Na quadrupole nucleus using the strongly modulated pulses technique. We also
extended the tomography method for a 3-coupled homonuclear spin 1/2 system, where an
additional evolution under the internal Hamiltonian is necessary for zero order coherences

evaluation. © 2007 American Institute of Physics. [DOI: 10.1063/1.2717179]

I. INTRODUCTION

The characterization of the state of a quantum system is
one of the most important steps in quantum physics and, in
particular, in quantum computing (QC).'™ In general, the
readout operation after the execution of a quantum algorithm
is encoded in one of the system eigenstates of the computa-
tional basis, but the execution of the individual quantum
logical gate usually involves the creation of many quantum
coherences that may play a crucial rule in the execution of
the algorithm. Therefore, in many occasions it is necessary to
know all the elements of the density matrices that character-
ize a quantum system, which is usually named as quantum
state tomography (QST). Besides, mapping the density ma-
trix of a quantum system provides a way of extracting the
maximum information available and allows many interesting
applications, such as (i) testing the preparation of quantum
states, (ii) estimating the experimental errors and calculating
the fidelity of a quantum gate, (iii) monitoring the implemen-
tation of quantum gates in intermediate steps, (iv) character-
izing decoherence and dissipation effects in quantum sys-
tems, (v) calculating the quantum entropies of the individual
qubits, (vi) monitoring the Bloch vector trajectories during a
quantum logical operation, etc.

Nuclear magnetic resonance (NMR) has provided unique
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methods for demonstrating the realization of quantum logical
operations and characterizing the quantum state of spin sys-
tems. The great success achieved so far by NMR quantum
computing is related to its ability for controlling the dynam-
ics of the spins through rf pulses. This capacity made pos-
sible to prepare adequate initial states, perform unitary trans-
formations that implement logical gates, and fully
characterize the resulting states, i.e., to execute all crucial
steps for QC. The quick achievements reached by NMR are
also directly related to the fact that NMR has a long tradition
in characterizing and monitoring the evolution of spin sys-
tems, including methods for exciting and detecting multiple
quantum coherences in solution and solid state samples.6 Be-
sides, many of the ideas introduced by NMR QC experi-
ments can become useful, with little modifications, in other
areas of QC. One of the major achievements of NMR QC
was the possibility of characterizing the quantum state of the
system through the quantum state tomography. The first
NMR QST method was developed by Chuang et al.” and
optimized by Long et al® for systems of heteronuclear
coupled spins 1/2. It consists basically in applying a set of
specially designed rotations on the different spins and recon-
structing the density matrix from the resulting NMR spectra.
This method was later adapted for homonuclear coupled
spins 1/2 (Ref. 9) and also for quadrupolar spin 3/2
systems,lo_13 where nonselective pulses were replaced by
transition-selective rf pulses. The main disadvantages of us-
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ing selective pulses are that they can introduce significant
errors in the rotations, and its duration is usually much
longer than for nonselective pulses. Furthermore, the system
is also evolving during the QST process. This not only de-
creases the time available for executing the logical opera-
tions, but also makes more difficult the experimental control
of the pulses actions. A QST method that is particularly use-
ful for large systems was also developed. It is based on the
two-dimensional Fourier transform technique and has the ad-
vantage of not using selective pulses.14 However, in this two-
dimensional approach it is necessary to use extra evolution
periods, and the duration of the QST pulse sequence is as
long as for the methods that use selective pulses. This limi-
tation can be particularly prominent for quadrupolar or
strongly coupled spins systems.

The article reports a QST NMR method that is specially
suitable for single quadrupolar nuclei. The method is based
on the selection of coherences provided by hard rf pulses
applied with appropriated choice of phases and amplitudes.
In principle, the method can be adapted for any spins system,
including coupled spins 1/2 and single or coupled quadru-
polar spins systems. Besides, it is based on general rotation
properties that can be easily adapted for application other
than NMR."”"7 However, the advantage of using only global
rotations in the tomography processes is only obtained for
single quadrupolar spin systems, as discussed in Sec. III B.
First, in Sec. II, the general theory is developed on the frame-
work of rotations of general spins systems using the irreduc-
ible spherical tensor representation. The application for
single quadrupolar nuclei is given in Sec. III A, together with
a simulation for the spin 7/2 case and the experimental
implementation of the Deutsch algorithm, via strongly
modulated pulses (SMP) technique'® in the spin 3/2 *Na
nucleus. In Sec. III B the method is discussed in the context
of homonuclear coupled spins systems, and the tomography
simulation for a three coupled spin 1/2 system is showed.
Some discussions involving heteronuclear spins systems are
made in Sec. III C. The experimental setup used in this work
is given in Sec. IV and the conclusions are made in Sec. V.

Il. METHOD DESCRIPTION
A. The effect of nonselective rf fields

Let us start by considering the nature of the Hamilto-
nians usually utilized in NMR QC. For molecules in liquids
comprising systems of N coupled nuclei, the Hamiltonian
normally simplifies to the following expression:

N N
H=—12 wyT+2mh > 2 J I+ My, (1)
i=1 i=1 j<i

where wf]:(l—a'i) v;By accounts for the Larmor frequency
and chemical shift of each nucleus, and Jij is the scalar cou-
pling between nuclei pairs. Here, H,s is an external time-
dependent perturbation that can be applied by means of a
controllable rf pulse. The liquid state is preferable for QC
mainly due to the simplicity of its Hamiltonian. However, in
solid systems it is also possible to obtain a Hamiltonian simi-
lar to Eq. (1) by considering the direct magnetic dipolar cou-
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pling between the nuclei in place of the scalar coupling.

Usually, N nuclei with spin 1/2 are used to form a
N-qubit system, though systems with only one nucleus with
spin greater than 1/2 under the presence of an electric field
gradient can also be used. In this case, the interaction be-
tween the nuclear electric quadrupole moment and the elec-
tric field gradient gives rise to the so-called electric quadru-
pole interaction, which is represented in first order by the
following Hamiltonian:

%
H=—tiwZ, + ?“"i(:szf )+ M, (2)

Therefore, a general form of the Hamiltonian can be
written considering three contributions,

H= H() + Hint + Hrf. (3)
where
N
Ho=—h> whT., (4a)
i=1
N
Hine= ﬁE 2 winij~ (4b)

i=1 j<i

The dimensionless H;; contributions are responsible for
any interaction between the spin pairs, and the constants w;;
give the coupling strengths. The summation includes terms
i=j that may correspond to the quadrupolar contribution.

We will use the following rf field:

Ng

B, (1) = >, Bi[cos(@jt + )% +sin(- @yt + ¢)5].  (5)

r=1

The frequencies @ are defined as the average frequen-
cies for each nuclear species r, i.e., E)(’,=(1/n,)2’-”lwé”}. To

i=

indicate the ith nucleus of the rth nuclear species we refer to
the index {ri}. The index r runs from 1 to Ng while i runs
from 1 to n,, characterizing Ny nuclear species with n, nuclei
of each species. Thus, the rf Hamiltonian becomes
Ny N
Holt) == 12 2 yiBI[ T, cos(@yt + ¢,)
r=1 i=1

+ T, sin(— @yt + ,)]. (6)

In the reference frame described by the unitary transfor-
mation

Ng n,
U= exp(— ity > (T)(r)l'iri}) . (7)
r=1 i=1

Equations (4) and (6) transform into the effective Hamilto-
nians

Ny N
Hit () ==h 2 2 yBUZ cos(@) - @)t + &)

r.s=1 i=1

+ I8 sin[ (- @ - @)t + ¢, )
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Ng n,
eff hE E (w{rt} —O)Z{rt} (9)
r=1 i=1
Hi = UHpl' (10)

In general, the frequency difference w— @ among dif-

ferent species is much larger than 7;B]. Moreover, the inter-
. {ri} —r

action couplings w;; and the differences w; ' —®, among

equal species can be much lower than the rf field strengths.

In summary,

|~ @l > |B1] > |f ™ = @] > |y,

Vr#s, p#q. The statement |w -y >|w,,| is the weak
coupling condition that provides the simplified terms I’ZIJ in
Eq. (1). Therefore, under the above conditions the total ef-
fective Hamiltonian during the rf pulses becomes

Ny
Heff ~ _ ﬁz qu [Ii”l} cos(,) + Iiri} sin(¢,)]

r=1 i=1

=—ﬁ2 qu{ri}' ﬁ¢r, (11)

where w|=7y,B}, ii, =cos($,)%+sin(¢,)y, and Zhi= I{”}A
+Z{”}A+Z{”}z Thus, the propagator that describes the f
pulse action is

uR=exp<iE 91{”}'%)’ (12)

where 6,=w|At, is the rotation angle around the ii4_direction
for each subsystem r, and At, is the duration of the corre-
sponding pulse.

B. Analytical description of rotations

To describe the effect of rotations on the density operator

we will expand it in the basis of irreducible tensor operators,

Im, of the SO(3) rotation group. Such basis can be obtained

from the irreducible product of the spin polarization opera-
tors T,.m(si).19 For two nuclei the product is defined as

l,
Tl m= 2 Cllnz'nl,lz,szll,lnl(sl) ® T12,1712(52)~ (13)
my,my
Cf’l”’,’nl’lz’mz are the Clebsch-Gordan coefficients. The 7} ,, (s;)

are irreducible tensors of rank /;,=0,1,...,2s; and order m;
=—l;,—l;+1,...,1,. They constitute a complete set of (2s;
+1)? operators, which span the space of each nucleus of spin
s;. For N nuclei the Eq. (13) can be used recursively to gen-
erate the Tf set for the total system Consequently, the T,
tensors have rank [=0,1,..., 22 —1s; and order m=-[,-I
+1,...,[. The index L accounts for the quantum numbers
Liy....ly,Ly, ..., Ly_y, where |Li_j—l|<L;<L,;+I, with
L,=I, and [=Ly. These quantum numbers represent the cou-
pling scheme between the angular momentum of different
nuclei. For a more complete description see Ref. 20. The
sum over m; is restricted to E —_m;=m.

Therefore, in the frame descrlbed by the transformation
(7) we represent the density operator by
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p=S a1 (14)
L..m

The alm are the expansion’s coefficients. When the sys-
tem is formed by only one nucleus, the Tz reduce to the
polarization operators 77,,(s), and we drop the L superscript
from Eq. (14).

The orthonormalization relation and the phase conven-
tion are, respectively,

THTE, - Th b= 8100800 By (15)

T = (= )T, (16)

By dropping the superscript L and setting L=L’, Egs.
(15) and (16) applies to the T},,(s) operators too. Their rep-
resentation in the 7 eigenstate basis is

[21+1
[Tl,m(s)]pq = 26+ 1 Cjzlq),l,m’ (17)

where p,q=s,s—1,...,—s. With these conditions and the
fact that p is Hermitian we have

a,,=(=1)"aj_,. (18)

Under rotations, the irreducible tensors satisfy the fol-
lowing relation:

1
2 D (BT, (19)

m'=-1

D(a, B, Y17, D (e, 8,7) =

where D(a, B8, y)=e"*%eiFlye~11: is the rotation operator as
function of the Euler angles. Dﬁn, ., are the Wigner functions
defined by

D (20)

m' m*°

The
erator with quantum number [ and projection m. We can
factorize the three angular dependences in Diﬂ, -

D, (a.By)=e™d, (Be™. 1)

Explicit forms for the dm m(,B) functions can be found in
Ref. 19. According to equation (12), the action of the rf pulse
corresponds to a rotation of an angle € around a direction
restricted to the xy plane making a ¢ angle with the x axis.
Therefore, the Euler angles are interrelated by a=¢—7/2,
B=-0, and y=—a. These replaced in Eq. (21) give

Dl ) =ei(m—m’)(z,b—77/2)din,’m(_ 0) (22)

m' m

In order to make use of property (19), we will apply a
pulse that performs the same rotation for all nuclei such that
the propagator (12) reduces to the global rotation operator
U=exp(ifL,). Therefore, the effect of this reading pulse on
the density operator (14) is

~ i+ L 6T, L  —i6l
P=UR'P‘UR=Eaz,mel A P
L,lm

=S a3 g (Tt

Lm'*

(23)

L,ilm m'
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The transverse magnetization can be represented by the
trace of the product of the density operator with the Z, op-
erator. During the reading time, the magnetization in the
laboratory frame is then given by

M(1) = Te{Up(t) - 5 - UL(2) - T, }e™™. (24)

The operator Ux(t)=e "Mo*Hind'" s the propagator for

the unperturbed Hamiltonian and « is the receiver phase.
Now, assuming that the unperturbed Hamiltonian is diagonal
in the basis formed by the Z, eigenstates |v;), which is true
for the weak coupling condition and for the first order qua-
drupolar Hamiltonian, we find

Tr{TfmU;IJrZ/lF} => )\;'k)\j[I+]ij[T£m]

i

=m127\

ji
I+]11[TZ l]jl’ (25)

where \,= ¢ "0ilHotH indvdt  Bquations (23)—(25) result in the
magnetization

M(1) = E fi(0Sy, (26)
2 (a ) i(1-m) (¢—ﬂ-/2)+zadl m( 0)[AlL]ij' (27)
L,lm

The coefficients f;;= )\ A; are the oscillations in the cor-
responding transition frequen(nes S;; are the respective am-
plitudes, and [AIL]U:(vi Tﬁ]|vi) are the weights of
each coefficient. The magnetization (26) gives a spectrum
with up to n=d=} 2s;/(2s;+1) lines, where d=IIY (2s,
+1) is the system state space dimension. From the hermitic-
ity of p and the fact that the identity coefficient ao o 1s inac-
cessible for the NMR experiments, we have d(d+1)/2-1
independent coefficients to find. To facilitate the tomography
process we will apply a coherence selection scheme.

C. Coherence selection scheme

The coherence selection method?' ™ consists of a spec-
trum average procedure, which selects a desired order m co-
herence of the spin system density matrix. In our study the
following average will accomplish the selection scheme:

N,~1

1
N, Z Si( b ), (28)

ij(m,) =

where S;i(¢,,q,) is the spectrum amplitude obtained with
reading pulse of phase ¢, and receiver phase «,. With

Eij(m’) we will obtain a linear system for the different ele-
ments of the selected coherence. Choosing the following val-
ues for the arguments in Eq. (28)

b, =2mnIN, + /2,

a, =2mn(m" - 1)/N,,, (29)
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FIG. 1. Angular dependencies of the functions d’w for 1 </=<3. The arrows
indicate the optimum flip angles used to measure the zero order coherences.

N

N[,>1+m’+22si,
i=1

and setting the same flip angle 6 for all pulses, the summa-
tion over n in Eq. (28), after substitution of Eq. (27), trans-

. 1 r_
forms into SNp5!ei2mm’=m)iN, =N,8,,,» Which results in
n=0 m,m

Sim") = 2 (ay,,,)'d) (= O[ALT;;. (30)
L1l

This corresponds to the linear system

A-x=b,

[A]p(i,j),q(L,l) = [AzL]ij,
(31)

[x],n= (aim,)*dll’m,(— 0),

[b]p(i,j) = §ij(m,)-

For simplicity we will refer to m’ just as m. Therefore,
for each average we find the set of coefficients afjm for the
chosen m, since all the other parameters are known. Only the
coefficients with m=0 must be found, since the negative
ones are obtained from the relation (18). In Sec. III A, we
show that the linear system (31) is always solvable for the
single spin case. For coupled spins systems we limit our-
selves to the solution of the specific case of three homo-
nuclear spin 1/2 system in Sec. III B.

One of the advantages of the analytical description given
above is the knowledge about the flip angle dependence to
each [ and m component of the density matrix. Therefore, to
improve the sensibility of a given T,Lm and reduce errors in
the rotations of these components, a separated experiment for
each rank [/ can be performed choosing the flip angle 6 that
maximizes the absolute value of the function dll,m. As an
example, Fig. 1 shows the angular dependencies of the func-
tions a?lL0 for 1<[<3.

lll. APPLICATIONS

Now, we will apply the general results found in Sec. II to
perform the tomography process of some systems of interest.
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(a)

Tomography for quadrupolar nuclei

(b)

FIG. 2. (Color) (a) Density matrix simulated reconstruction of the superpo-
sition \\P>=$®3 1(|0Y;+]1);) implemented by 7=7/2 nucleus. (b) Absolute

i=

deviation of the reconstructed matrix with respect to the expected one.

A. Single spin systems

For a single spin system the spectrum amplitudes are
given by the S,,,; terms in Eq. (26), which depends on the
density matrix superdiagonal, p; ;.. In fact, for this case,
each order m polarization tensor contributes only to the mth
density matrix super/subdiagonal, p;;,,. Hence, the linear
system (31) simplifies to

(Al =[Adi i

[x],= (a,,,)"d" (- 0), (32)

[b]i= gi,iﬂ(m)’

with 1 <i<2s and max(1,m)<[<2s.

For the single spin system, the irreducible tensors in the
A, coefficients correspond to the polarization tensors 7).
Since these tensors are all linearly independent, each column
of the matrix A is linearly independent too. Therefore, with
ny=2s spectral lines we can exactly solve the linear system
(30) for m=0 and m=1, which gives the density matrix di-
agonal and superdiagonal elements, respectively. Note that
there are 2s+1 diagonal elements. However, since the iden-
tity tensor contribution is inaccessible, what can really be
measured is the traceless deviation density matrix, Ap
=p—ayoTo(s), which is characterized by only 2s indepen-
dent elements. For all the other coherences, m>1, the sys-
tem has more equations than unknowns, resulting in a redun-
dancy that can be solved by a least square method, for
example.

It is worthwhile to note that for the spin 3/2 case and for
the zero order coherences evaluation, the phase given by
relations (29) correspond to the Cyclops average, coinciding
for this specific case to the method used in the work of Bonk
et al."’

To illustrate the tomography process for a single spin
system we simulate an experiment with a spin 7/2 system
under the effect of Zeeman and quadrupolar interactions. The
tomography process was used to reconstruct the state |‘lf)
=2]T§®i3=](|0),-+|1),») that has coherences of all orders. The
pulse and receiver phases were used in accordance to Eq.
(29). Each coherence selection scheme was repeated with the
optimal flip angles to maximize the sensibility to each rank
component. In the simulated tomography pulses we applied a
deviation of 5% in the flip angles in order to consider cali-
bration errors. Figures 2(a) and 2(b) show, respectively, the
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reconstructed density matrix and its absolute deviation to the
theoretical state. The maximum deviation goes up 7%.

An experimental example of a system that can be treated
as a single spin system is the case of a quadrupolar nucleus.
A quadrupolar nucleus (/= 1/2), such as "Li, ®Na, or '3Cs,
in a crystalline solid or diluted in a liquid crystalline matrix,
produces a macroscopic ensemble that can be well described
by a single particle spin Hamiltonian defined solely by the
Zeeman and quadrupolar interactions. To illustrate the feasi-
bility of the presented QST method in this system, we follow
the main steps of the execution of the Deutsch quantum al-
gorithm in the spin 3/2 **Na nucleus. This algorithm was
executed using the appropriated logical gates implemented
by SMP.'®% After preparing the initial state [01), step A,
the system is put in a complete superposition of states
(|0y+]1))(|0)—|1)) by a Hadamard operation on both qubits
(step B). Then, the operations representing constant, | (iden-
tity) and NOTy, or balanced, CNOT, and NOTz-CNOT,
functions are applied (step C). Finally, another Hadamard
operation is applied to bring the system to an eigenstate (step
D). Whether operations representing constant or balanced
functions are applied the final eigenstate is |01) or |11). Fig-
ure 3 shows the tomographed density matrices and the cor-
responding simulations for the intermediate steps obtained
during the execution of the Deutsch algorithm. Despite the
presence of some unexpected coherences in the final state,
the [01) and |11) states are easily recognized. Actually, since
the initial states are in very good agreement with the simu-
lations, the presence of the undesirable coherences in the
final density matrices are mostly attributed to accumulated
errors due to the SMP pulses.

For this experiment, each coherence was selected by the
averaged spectrum obtained from nonselective pulses with
the phases and receiver angles of Table I, in accordance to
Eq. (29). With the purpose to maximize the sensibility to
each rank component, each coherence selection experiment
was repeated with the flip angles of Table II. The m=1 sec-
ond subcolumn was not used and it is discussed in Sec. III B.
It is important to note that the employed pulse widths are of
the order of 3 us, which are much shorter than the 350 us
selective pulses used in the previous work. '

To verify the quality of the coherence selection process,
we performed an experiment following the time evolution of
a superposition state implemented on the same *Na sample
used to produce the results of Fig. 3. Figure 4 shows the
behavior of each coherence for multiples free evolution
times after the preparation of a superposition state. This su-
perposition was prepared with a SMP pulse that had the pur-
pose of creating coherences with almost the same amplitude
for all density matrix elements. According to the Hamil-
tonian (2) the coherences p;, and p, 3 oscillate with fre-
quency w,, while the coherences p; 4 and p, 4 oscillate with
frequency —w,, where the indices 1, 2, 3, and 4 correspond,
respectively, to the magnetic quantum numbers 3/2, 1/2,
—1/2, and —-3/2. This behavior is easily seen in the four
graphics from the top of Fig. 4. The absolute values were
also plotted, showing approximately a constant value and,
therefore, indicating a negligible mixture with other density
matrix elements. The remaining coherences, which from
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Ui=19010[Y"|0o001|Y=|o0010]|Y=]00o01
0 0 0 1 0 01 0 0 0 0 1 0 01 0

FIG. 3. (Color) Experimentally tomographed density matrices and corresponding simulations for the intermediate steps during the execution of the Deutsch
algorithm in the **Na quadrupolar system. Besides the undesired coherences in the final states, the expected |01) and |11) states are easily recognized.

Experimental deviations are mainly attributed to the SMP imperfections.

Eq. (2) should not oscillate, are shown in the bottom of Fig.
4. For the diagonal elements, a time range much greater than
one quadrupolar oscillation was taken, evidencing the relax-
ation effects that bring the density matrix to the equilibrium
state proportional to the 7 operator.

B. Homonuclear coupled spins systems

Contrary to the single spin case, in a coupled spins sys-
tem the number of spectral lines can be lower than the num-
ber of density matrix elements of a selected coherence, mak-
ing the linear system (31) undetermined. In such cases, it is
necessary to select the desired coherence with additional flip
angles in order to raise the rank of the linear system (31).

Another problem with coupled spins systems is that
there are other combinations of quantum numbers L with the
rank /=0, besides the identity term. Those components are
unobservable for global rotations performed on the system.
This can be seen from Egs. (19) and (25). To solve this
problem, we can let the system evolve under the free Hamil-
tonian before applying the reading pulses. Therefore, those
terms with rank /=0 evolve to other ranks and make possible
their determination. As we are assuming the weak coupling
condition, the maximum rank transfer occurs for free evolu-
tion delays of 7/ (wf)—w{)), for w, in radians.

In order to illustrate the coupled spins system tomogra-
phy process, we simulate an experiment with three homo-
nuclear coupled spins 1/2. The initial state on which we

TABLE I. Pulse phase ¢ and receiver phase « for the coherence selection experiments for the spin 3/2 case, in
radians. Each m column corresponds to an experiment for the mth coherence selection. The flip angles were

used in accordance to Table II.

m=0 m=1 m=2 m=3
n [ @ [ @ [ @ [ @
0 /2 0 /2 0 /2 0 /2 0
1 T 37/2 97/ 10 0 5m/6 /3 117/4 2/7
2 37/2 T 137/10 0 T/ 10 2/3 15m/4 4/7
3 0 /2 177/10 0 37/2 T 197/4 6/
4 217/10 0 117/6 4a/3 237/4 8r/7
5 137/6 S57/3 27w/ 4 107/7
6 31m/4 127/7
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TABLE II. Flip angles 6, in radians, that maximize the spectrum sensibility
to a given component of the density matrix in the irreducible tensor expan-

sion.
l m=0 m=1 m=2 m=3
1 /2 0
/4 0 /3
3 0.54 0 1.16 0.60 1.23

applied the tomography process is again the superposition
|\P)=$®?=1(|O>i+|l>[). We choose typical chemical shift
and J couplings values of Aw;=-170 Hz, Aw,=50 Hz,
Aw;=120 Hz, J,=5 Hz, J;3=8 Hz, and J,3=3 Hz, where
Aw,:wf)—cﬁo. The pulse and receiver phases were used in
accordance to Eq. (29). Each coherence selection simulation
was repeated with the same flip angles shown on Table I with
the purpose to maximize the sensibility to each rank compo-
nent. The second subcolumn of the m=1 column contains the
secondary maximization angle necessary to raise the linear
system’s rank. For zero order selection the simulation was

J. Chem. Phys. 126, 154506 (2007)

(a)

FIG. 5. (Color) Simulation of the tomography process for a three spin 1/2
system. (a) The reconstructed deviation density matrix. (b) The absolute
difference to the theoretical matrix.

repeated for the free evolution times of 7.14, 2.27, and
1.72 ms. These delays maximize the /=0 to /=2 rank transfer
and thus allow the complete determination of all zero order
coherences, excluding the identity component. Figure 5(a)
shows the reconstructed density matrix. In this simulation we
applied again a deviation of 5% in the flip angles in order to
consider calibration pulses errors. Figure 5(b) presents the
absolute deviation to the expected density matrix. The maxi-
mum deviations go up to 3%.
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C. Heteronuclear coupled spins systems

For a heteronuclear system the same method can be ap-
plied. The system global rotations are accomplished by ap-
plying the same flip angle, pulse phase, and receptor phase in
the different channels corresponding to the different species.
However, it can be necessary to set a receiver frequency
offset, @y+Aw,, for each r channel in order to simulate the
chemical shift evolution in the multiple reference frame (7).
This procedure is needed just for zero order coherence deter-
mination as discussed in Sec. III B.

A method that utilizes simultaneously different rotations
for different species can also be devised. Since in such sys-
tems short pulses can easily perform local rotations, the to-
mography process can be optimized. In fact, a method re-
stricted to coupled single spin 1/2 nucleus already exists”®
and it is well established.

IV. EXPERIMENT

The experimental demonstrations of the developed QST
method were carried out on **Na nuclei dissolved in a lyo-
tropic liquid crystal prepared with 20.9 wt % of sodium
dodecyl sulfate (95% of purity), 3.7 wt % of decanol, and
75.4 wt % deuterium oxide, following the procedure de-
scribed elsewhere.”” The Na NMR experiments were per-
formed using a 9.4 T-Varian Inova spectrometer using a
7 mm solid-state NMR probe head. A small sample volume
occupying 1/3 of the uniform B, field region of the rf coil
was used. Pseudopure states and the logical operations used
in the Deutsch algorithm were carried out using strongly
modulated rf pulses. ' The lengths of the hard pulses used for
QST were smaller than 3 us. Experiments were performed
with a recycle delay of 200 ms.

V. CONCLUDING REMARKS

In this article, we describe a method for NMR quantum
state tomography using a coherence selection scheme based
on global rotations of the spin system. For a N qubit system
implemented by a single quadrupolar nucleus (/=1/2), the
method has the advantage of using only nonselective short
pulses, which minimize the relaxation effects and pulse im-
perfections. Moreover, the effect of short nonselective pulses
can be well approximated by ideal rotations, providing a
general theoretical description that can be used for any spin
quantum number. The method is also advantageous for N
coupled homonuclear spins, where previous reported QST
methods requires the use of selective pulses. In this case, a
drawback is the need of a free evolution period for discrimi-

J. Chem. Phys. 126, 154506 (2007)

nating the density matrix rank zero components. A direct
consequence of the analytical description of the tomography
process is the possibility of optimizing the rotations for a
particular rank degree. Simulated results show the feasibility
of the method for quadrupolar and coupled homonuclear
spins. As an experimental demonstration, the flow of imple-
mentation of the Deutsch algorithm on a 2-qubit quadrupolar
spin 3/2 system was monitored.
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