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Abstract. In this paper, we present an analog of Bell’s inequalities violation
test for N qubits to be performed in a nuclear magnetic resonance (NMR)
quantum computer. This can be used to simulate or predict the results for
different Bell’s inequality tests, with distinct configurations and a larger number
of qubits. To demonstrate our scheme, we implemented a simulation of the
violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using
a two-qubit NMR system and compared the results to those of a photon
experiment. The experimental results are well described by the quantum
mechanics theory and a local realistic hidden variables model (LRHVM) that
was specifically developed for NMR. That is why we refer to this experiment as
a simulationof Bell’s inequality violation. Our result shows explicitly how the
two theories can be compatible with each other due to the detection loophole. In
the last part of this work, we discuss the possibility of testing some fundamental
features of quantum mechanics using NMR with highly polarized spins, where
a strong discrepancy between quantum mechanics and hidden variables models
can be expected.
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1. Introduction

Since the birth of quantum mechanics, interesting questions have been raised, some of them
remaining not completely understood. One of the most amazing ones concerns the EPR paradox,
raised by Einsteinet al [1]. In that work, the authors stated that the quantum mechanics theory
is not complete, since it does not contain what they called ‘elements of reality’. The EPR
correlations, which exist in the so-called entangled states, have no dependence on distance,
which initially led to the wrong conclusion that they would violate the theory of relativity. One
attempt to overcome the strange features of entangled states is to postulate the existence of some
supplementary variables outside the scope of quantum mechanics, called ‘hidden variables’ [2].
A hidden variables model is supposed to reproduce all the quantum mechanical predictions.

However, in 1964 John Bell [3] discovered a conflict between quantum mechanics and
the hidden variables theory. Mathematically, this conflict takes the form of a set of inequalities
(called Bell’s inequalities), which can be violated by entangled states, but are never violated by
non-correlated quantum states or classical ‘objects’. Recently, there has been increasing interest
in the subject of Bell’s inequalities, not only to test local realism in quantum mechanics in a
variety of contexts, but also because of their connection to quantum communication [4]–[6]
and quantum cryptography [7, 8]. Furthermore, Bell’s inequalities can be a useful tool to
detect entanglement, which is found to be a powerful computational resource in quantum
computation [9].

Violation of Bell’s inequalities has been verified in various experiments [10]–[18]. The
recent developments in the field of nuclear magnetic resonance quantum information processing
(NMR-QIP) have shown that NMR is a valuable testing tool for new ideas in quantum
information science (for recent reviews, see [19]–[22]). NMR experiments with as many as 12
qubits have been reported [23, 24]. More than 50 years of development has put NMR in a unique
position to perform complex experiments, sometimes quoted as ‘spin choreography’ [25].
Particularly fruitful has been the use of NMR-QIP to simulate quantum systems [22].

In this work, we use an NMR system to simulate a quantum optics experiment. We built a
scheme to simulate the violation of Bell’s inequalities forN qubits [26, 27], and tested it in the
violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality [28] using a two-qubit
NMR system. The experimental results were compared to the quantum mechanical theoretical
predictions and also to a local realistic hidden variables model (LRHVM), built to explain the
correlations observed in NMR experiments [29]. We found that both theories are consistent
with our experiment and that is why we refer to the experiment as asimulation. The consistency
between both theories can be understood by the fact that NMR can detect only a small fraction
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of spins due to small polarization at room temperature, a situation that resembles the so-called
detection loophole [30].

It is important to stress that the NMR qubits are nuclear spins of atoms bounded together in
a single molecule, separated by a few angstroms. Therefore, an NMR experiment is inherently
local and cannot be used to prove non-local effects. Furthermore, most NMR-QIP experiments
are performed at room temperature in a macroscopic liquid sample containing a large number of
molecules, each of them working as an independent ‘quantum information processing unit’. In
the NMR context, the ensemble of spins constitutes a highly mixed state and their density matrix
is not entangled, as demonstrated by Braunsteinet al [31]. Therefore, our work neither provides
an experimental procedure to prove or disprove non-local effects nor reveals entanglement
in NMR experiments at room temperature. However, it does provide a way to simulate tests
for different Bell’s inequalities. The comparison between our experiment and a true quantum
optics experiment shows the fidelity of the simulation. Besides, our scheme can be applied to
a highly polarized spin ensemble [32]. In this case, true entangled states can be achieved and a
contradiction between hidden variables models and quantum theory could be detected.

2. Bell’s inequalities and NMR

In this work, we refer to a generalization of the Bell’s inequalities forN qubits developed in
[26, 27, 33]. It involves the measurement of a set of correlation functions, for which each one of
N observers can choose one of theM observables and measurements can yield only two possible
values:s=±1. Hence,M N correlation functions, labeledE(n1, . . . ,nN), can be constructed,
where the indexni runs fromni =1, . . . ,M and denotes the settings of thei th observer. For
the NMR case, these observables are projections of the 1/2 nuclear spins along a particular
direction labeledni . Taking into account the measurement of these observables, it is possible
to build different Bell’s inequalities, each of them exhibiting contradictions with LRHVM’s
predictions for some entangled states.

A general expression for the Bell’s inequalities can be written as [33]:

−L 6
M∑

n1,...,nN=1

C(n1, . . . ,nN)E(n1, . . . ,nN)6 +L , (1)

whereC(n1, . . . ,nN) are real coefficients,L is some limit imposed by local realism and the
correlation functions are given by:

E(n1, . . . ,nN)=

∑
s1,...,sN=±1

 N∏
j

sj

 P(s1, . . . , sN), (2)

whereP(s1, . . . , sN) is the probability of the first observer finding the outcomes1, the second
s2 and so on. In a standard experiment, a set ofN correlated particles is prepared in a pure
entangled state, and their spin projection ontoM different directions is measured by different
observers. After a large number of runs, the observers compare their results in order to obtain
the probabilities shown in (2) and to verify whether the inequality (1) was violated or not.

At room temperature, NMR experiments are described by density matrices of the kind
ρeq ≈ (1̂−βH)/2N, whereβ is the Boltzmann factor,H is the internal Hamiltonian of the spin
system and1̂ is the 2N

⊗ 2N identity matrix. In NMR experiments, only the deviation of the
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Figure 1. The quantum circuit proposed to simulate the correlation function
of equation (2). After the creation of the desired PPS, individual rotations on
each spin are used to select the spin projection to be measured and a magnetic
field gradient, denoted by gradz, is applied to emulate a projective measurement.
Finally, reading pulses are used in order to assess the population values.

density matrix from unity is observed. To simulate the violation of (1) in an NMR quantum
computer, the initial state is prepared from the thermal equilibrium into a highly mixed state
called pseudo-pure state (PPS) [34]:

ρpps=
(1− ε)

2N
1̂+ ε|ψ〉〈ψ |, (3)

whereε ∼ 10−6 is the polarization at room temperature. It is important to remember that the last
part of equation (3) represents a pure state and under a unitary transformation it behaves as such.
In order to measure the spin projectionr · σ (whereσ is a vector whose components are the Pauli
matricesσx, σy and σz) onto an arbitrary directionr = (cos(φ)sin(θ), sin(φ)sin(θ), cos(θ)),
unitary transformations can be used to rotate the eigenvectors of the operatorr · σ onto the
computational basis. SinceU †(r)σzU (r)= r · σ for U (r)= Ry(−θ)Rz(−φ), by applying the
appropriateU (r) on each qubit, we have:

E(n1, . . . ,nN)= Tr(ρppsr1 · σ ⊗ · · · ⊗ r N · σ)

= Tr(ρ ′σz ⊗ · · · ⊗ σz), (4)

whereρ ′
= U (r1)⊗ · · · ⊗U (rN)ρppsU †(rN)⊗ · · · ⊗U †(r1). The above equation tells us that

the measurement ofE(n1, . . . ,nN) can be achieved by rotating each qubit by an appropriate
individual rotation and then measuring them all in the computational basis. The projective
measurement in the computational basis can be emulated by applying a magnetic field
gradient [35], which causes the non-diagonal elements of the density matrix of a heteronuclear
spin system to vanish. The density matrix then becomes:

ρ ′
=
(1− ε)

2N
1̂+ ε

 P0···0 · · · 0
...

. . .
...

0 · · · P1···1

 . (5)

The populations in the second term of (5) represent the probabilities of finding the
rotated system in one of the 2N energy levels. Furthermore, they are also the probabilities
P(s1, . . . , sN) shown in (2), which can be recovered from the NMR signal after applying
reading pulses to each spin. The signal detected is the average magnetization of the sample over
time, which is proportional to the population difference [22, 25]. The acquired signal is then
Fourier transformed and normalized by a reference input state. Such a normalization allows
the comparison between the experiment and the theoretical results. The scheme to measure
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(a) (b)
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Figure 2. The real part of deviation density matrices determined experimentally
for the investigated PPSs (a)|00〉, (b) (|00〉 + |01〉 + |10〉 + |11〉)/2, (c) (|00〉 +
|11〉)/

√
2 and (d)(|01〉 − |10〉)/

√
2.

correlation functions is shown in figure1. The circuit must be run for each correlation function
appearing in equation (1).

In order to demonstrate our scheme, we used a two-qubit NMR system, namely the
nuclear spins of1H and 13C in chloroform (CHCl3), to simulate the violation of the CHSH
inequality [28], which is a special case of (1). It involves the measurement of the quantity

CHSH= E(n1,n2)+ E(n3,n2)+ E(n3,n4)− E(n1,n4), (6)

where CHSH is bounded by−26 CHSH6 +2 for any LRHVM, whereas the limits imposed
by quantum mechanics are given by Tsirelson’s bounds±2

√
2 [36]. A particularly interesting

situation occurs when the parametersn1, n2, n3 andn4 label a measurement in the directions
(0,0,1), (sin(2θ),0, cos(2θ)), (sin(4θ),0, cos(4θ)) and(sin(6θ),0, cos(6θ)), respectively. In
this case, quantum mechanics predicts that CHSH=3cos(2θ)− cos(6θ) for the pure entangled
state|ψ〉 = (|00〉 + |11〉)/

√
2 (also called cat state), which results in a maximal violation of the

CHSH inequality forθ=22.5◦ andθ=67.5◦.
The NMR experiment was implemented in a Bruker Avance 500 MHz spectrometer in

the Bruker BioSpin facility in Germany. The sample contained 99%13C-labeled chloroform
dissolved in deuterated dichloromethane (CD2Cl2), and the concentration was close to 200 mg
of CHCl3 per 1 mL of CD2Cl2. PPSs were prepared by the spatial average technique, for
which pulse sequences can be found in [35]. The density matrices of the initial states were
reconstructed by using the quantum-state tomography technique [37, 38] and the correlation
functions were obtained using the measurement scheme summarized in figure1. The real part of
the experimental deviation density matricesρexp of the investigated states is shown in figure2.
The deviationδ = (‖ρexp− ρid‖2)/(‖ρid‖2) from the ideal pseudo-pure density matricesρid is
below 10% in all cases, and the imaginary parts were found to be negligible compared to the
real parts. The errors are mainly due to radiofrequency field inhomogeneity and small pulse
imperfections. Decoherence is not an important source of error since the time required for
the entire experiment (∼15 ms) is much smaller than the estimated decoherence time,T1 ∼ 5 s
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Figure 3. Experimental results for the cat state.H, NMR experiment;�,
photon experiment taken from [10]. The solid line is the quantum mechanical
prediction.

(T1 ∼ 15 s) andT2 ∼ 200 ms (T2 ∼ 300 ms) for hydrogen (carbon). From figure3 it is clear that
these sources of error do not cause the experimental points to deviate significantly from the
predicted curve.

The experimental results for the cat state can be seen in figure3, where the CHSH quantity
is shown as a function of the angleθ . The experimental results are also compared to the quantum
mechanical predictions for a pure cat state and to a photon experiment extracted from [10]. As
can be seen, our experiment is in good agreement with both the quantum mechanical theory and
the photon experiment.

3. Comparison with a hidden variable model

The density matrix (3) can be decomposed into an ensemble in which a fractionε of the system
is in a pure state|ψ〉 while (1− ε) is in a completely mixed state. However, this decomposition
is not unique. Braunsteinet al [31] demonstrated that any matrix of the form (3) can be
decomposed into a separable ensemble wheneverε 6 1/(1 + 22N−1). This remarkable result
shows that although the PPS (3) can be used to implement any quantum computation, it is
classically correlated and has a local realistic description.

In this section, we have compared our results to an explicit LRHVM [29]. This model
is constructed to predict the quantum mechanical expectation values of any bulk-ensemble
NMR experiment that accesses only separable states. The most general type of transformation
of quantum states (unitary or not) can be described via operator sum representationρ →∑

k EkρE†
k (

∑
k E†

k Ek = 1̂) [9]. With this formalism it is possible to simulate every step of
our experiment, taking the elements of operationEk as the model’s parameter. Starting from
the NMR equilibrium density matrixρeq, we simulated every spectrum and analyzed them
in the same way as we did for experimental data. Relaxation effects were taken into account
using the elements of operation described in [39].
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Figure 4. Experimental results of the CHSH quantity as a function of the
angleθ . (a) H, |00〉; �, (|00〉 + |01〉 + |10〉 + |11〉)/2. (b) H, (|(00〉 + |11〉)/

√
2;

�, (|01〉 − |10〉)/
√

2. The continuous lines are the predictions of the LRHVM
described in [29]. The NMR data shown here are the same as those in figure3.

In figure4(a), the experimental results for the states|00〉 and(|00〉 + |01〉 + |10〉 + |11〉)/2
compared to the predictions of the model described in [29] are shown. Since these states are
separable, there is no violation of the CHSH inequality, as predicted by the quantum mechanics
theory and the LRHVM.

The experimental results for the states(|00〉 + |11〉)/
√

2 and(|01〉 − |10〉)/
√

2 are shown in
figure4(b). Here we found a violation of the CHSH inequality in good agreement with quantum
mechanical theory. Additionally, our results are also in good agreement with the LRHVM. The
fact that our experimental data are compatible with both theories may appear puzzling. However,
it can be understood, noticing that NMR is only sensible for the deviation part of (3), which
behaves like a ‘pure entangled state’.

This situation resembles the detection loophole, usually discussed in the context of
optics. Generally in experiments testing Bell’s inequalities4, imperfections of the experimental
apparatus lead to only a small sub-ensemble of the total number of produced entangled
particles actually being detected. The question to be asked is whether the measured events are
a faithful representation of the whole system. In principle, the detected sub-ensemble could
contain a distribution of hidden variables different from the total ensemble. Thus, it is possible
for the detected sub-ensemble to violate some Bell’s inequality, even if the total ensemble
does not, a situation for which one can state that the sub-ensemble ‘simulates’ the violation
of Bell’s inequalities. This problem, first noticed in [30], is called the detection loophole.
Generally, to overcome the problem, the fair sampling hypothesis, which states that the detected
sub-ensemble indeed represents the whole system, is invoked.

In the case of NMR experiments, we cannot invoke such a hypothesis, since the non-
detected spins are known to be in highly mixed state and not in the desired entangled
state. Furthermore, NMR-QIP has a known LRHVM which is in good agreement with the
experimental observations, as shown in figure4(b). Thus our experiment is indeed a simulation.

4 Up to now, there is only one experiment [12] reporting a violation of Bell’s inequality without the detection
loophole.
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Figure 5. Computer simulation of the violation of the inequality proposed in [11]
for various values of the spin polarizationε. The solid line represents the limit
imposed by hidden variables; the points above the solid line may not have a
realistic description.

4. Conclusions

In summary, we have successfully simulated a violation of a Bell’s inequality using classical
means. The fidelity of our simulation was tested by comparing our results with those of a photon
experiment. We also show that we can produce the exact same set of data by using an LRHVM
and quantum mechanics. This result can be viewed as an experimental demonstration of how
the two theories can be compatible with each other due to the detection loophole. We must
emphasize that such an LRHVM is valid only for NMR experiments and not for the photon
experiment, although both curves are coincident. Besides, our protocol can be used to simulate
or predict results for different Bell’s inequality tests, with distinct configurations and a larger
number of qubits. Checking Bell’s inequalities goes beyond to the hidden variable problem.
One example is given in [40], which demonstrates that some Bell’s inequalities can act as
dimensional witnesses, quantities that can be used to infer the dimensionality of the Hilbert
space.

It is important to mention that the same experiment carried out in a highly polarized spin
ensemble would not present the same features. It is known [31] that entangled states of the
form (3) exist forε > 1/(1 + 2N/2). Recently, a nearly pure NMR quantum entangled state was
achieved with polarizationε=0.916± 0.019 [32]. The reported entanglement of formation of
such a state was 0.822± 0.039.

From the experimental point of view, the difference between the same PPS with low and
high polarizations is the intensity of the NMR signal. A remarkable fact is that the former has a
known LRHVM and the other does not. Thus, in a highly polarized spin sample, the LRHVM
model [29] does not reproduce the quantum mechanical expectation values and a true violation
of Bell’s inequalities is expected. We must emphasize that even when the NMR state is truly
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entangled, it could not be used to prove non-local effects since NMR is always a local system.
However, tests of the realism hypothesis could be performed.

Particularly interesting for NMR are those inequalities that do not require a space-like
separation between the entangled particles, such as those recently studied in [11]. In figure 5,
we show a computer simulation of the violation of the inequality found in [11]. We simulated
the scheme described in this paper using NMR density matrix (3) for various values of spin
polarization. The solid line represents the limit imposed by the realism; the region above the
limit does not have a realistic description.

Other interesting inequalities are those which do not require entanglement [41]5,
such as the temporal Bell’s inequalities [42], for which recent proposals based on weak
measurements [43, 44] could be adapted to NMR systems.

Besides the ability to simulate quantum systems, we believe that NMR quantum
computation could also be used to perform real tests of some fundamentals of quantum
mechanics. This subject has been less exploited experimentally outside the scope of optics.
However, the ability to generate a highly spin-polarized ensemble allied to the high degree of
control could place NMR in a unique position in quantum information science.
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