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ABSTRACT

Galaxy clustering is one of the most powerful probes of the true nature of the observed
cosmic acceleration. It contains baryon acoustic oscillations (BAO) that are cosmological
standard rulers calibrated by the cosmic microwave background anisotropy data. The BAO
allows us to measure the cosmic expansion history directly.Beyond the BAO, the full shape
of galaxy clustering (either in the measured galaxy power spectrum or the galaxy correlation
function) provides significantly more cosmological information, and in particular, allows us to
test deviations from general relativity via the redshift space distortions. Here we introduce the
basic ideas and analysis techniques for using galaxy clustering data to constrain dark energy
and test gravity. We examine the critical issues, current status, as well as future prospects.

Since the 1980s, galaxy redshift surveys have been used to
map the large scale structure in the universe, and constraincosmo-
logical parameters. Galaxy redshift surveys are powerful as dark
energy probe, since they can allow us to measure the cosmic ex-
pansion historyH(z) through the measurement of baryon acous-
tic oscillations (BAO) in the galaxy distribution, and the growth
history of cosmic large scale structurefg(z) through independent
measurements of redshift-space distortions and the bias factor be-
tween the distribution of galaxies and that of matter (Wang 2008).

1 BARYON ACOUSTIC OSCILLATIONS AS STANDARD
RULER

The use of BAO as a cosmological standard ruler is a relatively
new method for probing dark energy (Blake & Glazebrook 2003;
Seo & Eisenstein 2003), but it has already yielded impressive
observational results (Eisenstein et al. 2005).

Measuring H(z) and DA(z) from BAO
At the last scattering of CMB photons, the acoustic oscilla-

tions in the photon-baryon fluid became frozen, and imprinted their
signatures on both the CMB (the acoustic peaks in the CMB angu-
lar power spectrum) and the matter distribution (the baryonacoustic
oscillations in the galaxy power spectrum). Because baryons com-
prise only a small fraction of matter, and the matter power spectrum
has evolved significantly since last scattering of photons,BAO are
much smaller in amplitude than the CMB acoustic peaks, and are
washed out on small scales.

BAO in the observed galaxy power spectrum have the char-
acteristic scale determined by the comoving sound horizon at the
drag epoch (shortly after photon-decoupling), which is precisely
measured by the CMB anisotropy data (Page 2003; Spergel et al.
2007; Komatsu et al. 2009). The observed BAO scales appear as
slightly preferred redshift separations‖ and angular separations⊥:

s‖ ∝ sH(z), s⊥ ∝ s

DA(z)
, (1)

wheres is the sound horizon scale at the drag epoch, and the angu-
lar diameter distanceDA(z) = r(z)/(1 + z), with r(z) denoting
the comoving distance given by

r(z) = cH−1
0 |Ωk|−1/2sinn[|Ωk|1/2 Γ(z)], (2)

Γ(z) =

∫ z

0

dz′

E(z′)
, E(z) = H(z)/H0

wheresinn(x) = sin(x), x, sinh(x) for Ωk < 0, Ωk = 0, and
Ωk > 0 respectively. Thus comparing the observed BAO scales
with the expected values givesH(z) in the radial direction, and
DA(z) in the transverse direction.

Calibration of the BAO Scale
CMB data give us the comoving sound horizon at photon-

decoupling epoch (Eisenstein & Hu 1998; Page 2003)
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0

cs dt
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0
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0
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√

3(1 + Rb) a4E2(z)
, (3)

wherea is the cosmic scale factor,a∗ = 1/(1 + z∗), and

a4E2(z) = Ωm(a + aeq) + Ωka2 + ΩXX(z)a4, (4)

where the dark energy density functionX(z) ≡ ρX(z)/ρX(0),
and the cosmic scale factor at the epoch of matter and radiation
equality is given by

aeq =
Ωrad

Ωm
=

1

1 + zeq
, zeq = 2.5×104Ωmh2

(

TCMB

2.7 K

)−4

.(5)

We have assumed three massless neutrino species, so that theradi-
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ation energy density today is (Kolb & Turner 1990)

ρ0
rad =

π2

30
g0
∗T

4
CMB ,

g0
∗ = 2 +

7

8
× 2 × 3 ×

(

4

11

)4/3

(6)

The sound speedcs and the baryon/photon ratioRb are given by

c2
s ≡ δp

δρ
≃ c2δργ/3

δργ + δρb
=

c2

3 (1 + ρ̇b/ρ̇γ)
=

c2

3(1 + Rb)
(7)

Rb ≡ 3ρb

4ργ
≡ Rb a, Rb = 31500Ωbh

2
(

TCMB

2.7 K

)−4

.(8)

We have usedργ ∝ a−4 andρb ∝ a−3.
COBE four year data giveTCMB = 2.728 ± 0.004 K (95%

C.L.) (Fixsen et al. 1996). The data from WMAP 5 year obser-
vations give the redshift and the sound horizon at the photon-
decoupling epoch

z∗ = 1090.51 ± 0.95, rs(z∗) = 146.8 ± 1.8 Mpc, (9)

assumingTCMB = 2.725 (Komatsu et al. 2009). The BAO scale
measured in galaxy redshift surveys correspond to the soundhori-
zon scale at thedrag epoch (Hu & Sugiyama 1996).

The drag epoch occurs when the photon pressure (or “Comp-
ton drag”) can no longer prevent gravitational instabilityin the
baryons. Thus there is no reason for the photon-decoupling epoch,
z∗, to be the same as the drag epoch,zd. The scattering in the pho-
ton/baryon fluid leads to an exchange of momentum, with momen-
tum densities for photons and baryons given by (Hu & Sugiyama
1996):

(ργ + pγ) Vγ =
4

3
ργVγ for photons

(ρb + pb) Vb ≃ ρbVb for baryons, (10)

whereVγ andVb are the photon and baryon bulk velocities. As a
consequence of momentum conservation, the rate of change ofthe
baryon velocity due to Compton drag is scaled by a factor ofR−1

b

compared with the photon case, which means that (Hu & Sugiyama
1996)

τ̇d =
τ̇

Rb
(11)

whereτb and τ are the Compton optical depths for baryons and
photons respectively. Since the epoch of photon decouplingis de-
fined byτ (z∗) = 1, and the drag epoch is defined byτd(zd) = 1,
z∗ = zd only if Rb = 1. We live in a universe with a low
baryon density,Rb(z∗) < 1 (see Eq.[8]), thusτd(zd) = 1 requires
zd < z∗, i.e., the drag epoch occursafter photon decoupling (Hu
& Sugiyama 1996).

The redshift of the drag epochzd is well approximated by
(Eisenstein & Hu 1998)

zd =
1291(Ωmh2)0.251

1 + 0.659(Ωmh2)0.828

[

1 + b1(Ωbh
2)b2

]

, (12)

where

b1 = 0.313(Ωmh2)−0.419
[

1 + 0.607(Ωmh2)0.674
]

, (13)

b2 = 0.238(Ωmh2)0.223. (14)

Using this fitting formula forzd, Komatsu et al. (2009) found that
from the WMAP 5 year observations

s ≡ rs(zd) = 153.3 ± 2.0 Mpc, zd = 1020.5 ± 1.6 (15)

Figure 1. The large-scale redshift-space correlation function of the SDSS
LRG sample measured by Eisenstein et al. (2005). The error bars are from
the diagonal elements of the mock-catalog covariance matrix (the points
are correlated). Note that the vertical axis mixes logarithmic and linear
scalings. The inset shows an expanded view with a linear vertical axis.
The models areΩmh2 = 0.12 (top), 0.13 (middle), and 0.14 (bottom),
all with Ωbh

2 = 0.024 and n = 0.98 and with a mild non-linear
prescription folded in. The featureless smooth line shows apure CDM
model (Ωmh2 = 0.105), which lacks the acoustic peak. The bump at
100h−1 Mpc scale is statistically significant.

2 BAO OBSERVATIONAL RESULTS

The power of BAO as a standard ruler resides in the fact that the
BAO scale can in principle be measured in both radial and trans-
verse directions, with the radial measurement givingH(z) directly,
and the transverse measurement givingDA(z). However, there are
only a few published papers on measuring the BAO scale from the
existing galaxy redshift survey data, and most of them extract a
spherically averaged BAO scale (Eisenstein et al. 2005; Hutsi 2006;
Percival et al. 2007).

Eisenstein et al. (2005) and Hutsi (2006) found roughly con-
sistent spherically averaged correlation functions usingSDSS data,
with about the same BAO scale. Fig.1 shows the galaxy correlation
function ξ(s) measured from the SDSS data by Eisenstein et al.
(2005). This BAO scale measurement is usually quoted in the form
of

ABAO ≡
[

r2(zm)
czm

H(zm)

]1/3
(

ΩmH2
0

)1/2

czm

= 0.469
(

nS

0.98

)−0.35

± 0.017 (16)

wherezm = 0.35, andnS denotes the power-law index of the pri-
mordial matter power spectrum. Note thatABAO essentially mea-
sures the product of a volume-averaged distance

dV ∝
[

cH−1(z) DA(z)2
]1/3

, (17)
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Figure 2. BAO in power spectra derived by Percival et al. (2007) from (a)
the combined SDSS and 2dF main galaxies, (b) the SDSS DR5 LRG sam-
ple, and (c) the combination of these two samples. The data are correlated
and the errors are calculated from the diagonal terms in the covariance ma-
trix. A StandardΛCDM distance–redshift relation was assumed to calculate
the power spectra withΩm = 0.25, ΩΛ = 0.75. The power spectra were
then fitted with a cubic spline× BAO model, assuming the fiducial BAO
model calculated usingCAMB. The BAO component of the fit is shown by
the solid line in each panel.

multiplied by the square root of the matter density (ρm(z) ∝
Ωmh2). The one dimensional marginalized values areΩmh2 =
0.130 ± 0.010, anddV (zm) = 1370 ± 64 Mpc, assuming a fixed
value ofΩbh

2 = 0.024 (Eisenstein et al. 2005). The product of
dV (zm) and Ωmh2 is more tightly constrained thandV (zm) or
Ωmh2 by the data, because the measured values ofdV (zm) and
Ωmh2 are correlated. Note thatABAO ∝ dV · (Ωmh2)1/2 is inde-
pendent of the Hubble constanth, and its measured value is inde-
pendent of a dark energy model (Eisenstein et al. 2005).

Clearly, the BAO constraint in Eq.(16) from Eisenstein et al.
(2005) is not just a simple measurement of the BAO feature; italso
relies on the constraints onΩmh2 from measuring the power spec-
trum turnover scale (related to matter-radiation equality). The latter
makes the BAO constraint from Eisenstein et al. (2005) less robust
than it would be otherwise. A new analysis of the SDSS data to de-
rive truly robust and detailed BAO constraints would be veryuseful
for placing dark energy constraints (Dick, Knox, & Chu 2006).

Percival et al. (2007) found that the power spectra from com-
bined SDSS and 2dF data give spherically averaged BAO scalesat
z = 0.2 and z = 0.35 that are inconsistent with the prediction
of the fiducial flatΛCDM model at 2.4σ; this is in contradiction
to the SN Ia data (which are consistent with the fiducialΛCDM
model atz <∼ 0.5 at 1σ, see Riess et al. (2007)). Percival et al.
(2007) found a similar discrepancy between SDSS main and SDSS
LRG samples. Fig.2 shows BAO in power spectra calculated from
(a) the combined SDSS and 2dF main galaxies, (b) the SDSS DR5

Figure 3. Contour plots of the redshift-space two-point correlationfunc-
tion measured from the SDSS LRG sample by Okumura et al. (2008).
The right half of the figure shows their measurement, and the left half
shows the corresponding analytical formula derived by Matsubara (2004)
using a linear perturbation theory (Matsubara 2004). The thin dashed lines
show ξ < −0.01 increasing logarithmically with increment 0.25 and
−0.01 6 ξ < 0 linearly with increment 0.0025. The solid thin lines
show 0 6 ξ < 0.01 increasing linearly with increment 0.0025 and
the solid thick linesξ > 0.01 logarithmically with increment 0.25. The
baryonic feature appears marginally as ridge structures around the scale
s = (s2

⊥ + s2
‖
)1/2 ≃ 100 h−1 Mpc, and the dashed circle traces the peaks

of the baryon ridges.

LRG sample, and (c) the combination of these two samples. The
data are solid symbols with1σ errors calculated from the diagonal
terms in the covariance matrix.

The efforts to extract the BAO scale in both radial and trans-
verse directions have led to contradicting results. Fig.3 shows the
contour plots of the redshift-space two-point correlationfunction
measured from a SDSS LRG sample (similar to DR3) by Oku-
mura et al. (2008). The baryonic feature appears marginallyas ridge
structures around the scales = (s2

⊥ + s2
‖)

1/2 ≃ 100 h−1 Mpc, and
the dashed circle traces the peaks of the baryon ridges. Okumura et
al. (2008) found that current galaxy redshift survey data are not ad-
equate for extracting the BAO scale in both radial and transverse
directions to measureH(z) and DA(z). However, an indepen-
dent analysis by Gaztanaga, Cabre, & Hui (2008) found thatH(z)
can be measured quite accurately from the SDSS DR6 data, with
H(z = 0.24) = 79.7 ± 2.1(±1.0) km s−1Mpc−1 for z = 0.15-
0.30, andH(z = 0.43) = 86.5 ± 2.5(±1.0) km s−1Mpc−1 for
z = 0.40-0.47. The difference between the results of Okumura et
al. (2008) and Gaztanaga, Cabre, & Hui (2008) cannot be explained
by the statistics of the data used (DR3 versus DR6).

Resolving the dramatic discrepancy between Okumura et al.
(2008) and Gaztanaga, Cabre, & Hui (2008) in the analysis of the
radial and transverse BAO scales is of critical importance to the
understanding of BAO systematics, and the accurate forecasting of
the capabilities of planned future galaxy redshift surveys. All cur-
rent forecasts of future surveys assume that both radial andtrans-
verse BAO scales can be accurately extracted, and use eitherthe
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Fisher matrix formalism (which gives the smallest possibleerrors)
or methods based on numerical simulations that are not yet fully
validated by application to real data.

Recently, Chuang & Wang (2012a) made the first simul-
taneous measurements ofH(z) and DA(z) from galaxy red-
shift survey data. They validated their method using LasDamas
mock galaxy catalogs. Applying their method to the sam-
ple of SDSS DR7 LRGs, they obtainedH(z = 0.35) ≡
H(0.35) = 82.1+4.8

−4.9km s−1Mpc−1, DA(z = 0.35) ≡
DA(0.35) = 1048+60

−58 Mpc without assuming a dark energy
model or a flat Universe. They found that the derived measure-
ments ofH(0.35) rs(zd) and DA(0.35)/rs(zd) (where rs(zd)
is the sound horizon at the drag epoch) are nearly uncorre-
lated, have tighter constraints and are more robust with respect
to possible systematic effects. Their galaxy clustering measure-
ments of{H(0.35) rs(zd)/c, DA(0.35)/rs(zd)} = {0.0434 ±
0.0018, 6.60± 0.26} (with the correlation coefficientr = 0.0604)
can be used to combine with cosmic microwave background and
any other cosmological data sets to constrain dark energy. This
work has significant implications for future surveys in establish-
ing the feasibility of measuring bothH(z) andDA(z) from galaxy
clustering data.

Fig.4 shows the 2D 2PCF measured from the SDSS LRGs
and a single LasDamas SDSS LRG mock catalog for compari-
son (Chuang & Wang 2012a). The similarity between the data and
the mock in the range of scales used (indicated by the shaded
disk) is apparent. Due to the current limitations in the modeling
of systematic effects, only the quasi-linear scale range ofs =
40 − 120 h−1Mpc is used for a conservative estimate in this anal-
ysis.

Very recently, Reid et al. (2012) measuredH(z), DA(z), and
growth constraints atz = 0.57 from the monopole and quadrupole
of the 2D 2PCF of the SDSS III Baryon Oscillation Spectroscopic
Survey (BOSS) (SDSS DR9) sample of galaxies, assuming CMB
priors. Most recently, Xu et al. (2012) measuredH(z) andDA(z)
at z = 0.35 from the SDSS DR7 LRGs by applying density-
field reconstruction to an anisotropic analysis of the BAO peak (see
Sec.3.1 for a description of this technique).

Overall, we have made dramatic progress within the last two
years toward developing robust methods to fully analyze thedata
from current and planned future galaxy redshift surveys.

3 BAO SYSTEMATIC EFFECTS

The systematic effects of BAO as a standard ruler are: bias between
galaxy and matter distributions, nonlinear effects, and redshift-
space distortions (Blake & Glazebrook 2003; Seo & Eisenstein
2003). Cosmological N-body simulations are required to quan-
tify these effects (Angulo et al. 2005; Seo & Eisenstein 2005;
Springel et al. 2005; White 2005; Jeong & Komatsu 2006; Koehler,
Schuecker, & Gebhardt 2007; Angulo et al. 2008).

To be specific in our discussion on the systematic effects in the
BAO scale measurement, we will use the results from Angulo etal.
(2008) to illustrate. All the results from Angulo et al. (2008) shown
here are from a numerical simulation covering a comoving cube
volume of side 1340h−1 Mpc, in which dark matter is represented
by more than 3 billion particles (14483), with the particle mass of
5.49×1010 h−1 M⊙. This simulation corresponds to a comoving
volume of 2.41h−3 Gpc3, more than three times the volume of the
catalog of SDSS LRGs used in the BAO detection by Eisenstein et

Figure 4. The two-dimensional two-point correlation function (2D 2PCF)
measured from SDSS DR7 LRGs (top panel) and a LasDamas SDSS LRG
mock catalog (bottom panel) in a redshift range0.16 < z < 0.44 (solid
black contours), compared to a theoretical correlation function with param-
eters close to the best fit values in the likelihood analysis (dashed red con-
tours). In both figures, the shaded disk indicates the scale range considered
(s = 40 − 120 h−1Mpc ) in this study. The thick dashed blue circle de-
notes the baryon acoustic oscillation scale. The observed 2D 2PCF has been
smoothed by a Gaussian filter with rms variance of2h−1Mpc for illustra-
tion in these figures only; smoothing is not used in our likelihood analysis.
The contour levels areξ = 0.5, 0.1, 0.025, 0.01, 0.005, 0. The ξ = 0
contours are denoted with dotted lines for clarity. (Chuang& Wang 2012a)

al. (2005). It assumes aΛCDM model withΩm = 0.25, ΩΛ =
0.75, σ8 = 0.9, andh = H0/(100 km s−1Mpc−1)=0.73.

In the current picture of structure formation in the universe,
primordial matter density perturbations (which are responsible for
the observed CMB anisotropy) seeded the cosmic large scale struc-
ture. Matter density fluctuations grew with time. Dense regions be-
came denser, and galaxy clusters and galaxy haloes formed first in
such regions. Galaxy formation (in which baryons played a critical
part) occurred in galaxy haloes.

Since we have to use galaxies to trace the matter density field,
it is important for a numerical simulation to assign galaxies prop-
erly. Angulo et al. (2008) used a semi-analytic model to describe
the key physical processes which are thought to determine the for-
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Figure 5. The nonlinear growth of the matter power spectrum (Angulo et
al. 2008). The power spectrum in real-space (measured at theredshift indi-
cated by the key) is divided by the power spectrum atz = 15, after taking
into account the change in the growth factor. Any deviation of the result-
ing ratio from unity indicates a departure from linear perturbation theory.
The dashed lines show the same ratio as predicted using the ansatz of Smith
et al. (2003) which transforms the linear power spectrum into the nonlin-
ear power spectrum (Smith et al. 2003). The simulation corresponds to a
comoving volume of 2.41h−3 Gpc3.

mation and evolution of galaxies; this approach mirrors thehybrid
schemes introduced by Kauffmann, Nusser, & Steinmetz (1997)
and Benson e tal. (2000). This model makes anab initio prediction
of which dark matter haloes should contain galaxies by modeling
the physics of the baryonic component of the universe (Baughet
al. 2005; Baugh 2006). The specific model used by Angulo et al.
(2008) reproduces the abundance of Lyman-break galaxies atz = 3
andz = 4, and the number counts of sub-mm detected galaxies
(with a median redshiftz ∼ 2). It also gives a rough match to the
abundance of luminous red galaxies (Almeida et al. 2008), and a
reasonable match to the observed properties of local galaxies (e.g.
Nagashima et al. (2005b,a); Almeida, Baugh, & Lacey (2007)).

3.1 Nonlinear effects

On very large scale, the growth of density perturbations is lin-
ear, and the different comoving wavelength scales are not cou-
pled. When the amplitude of density perturbations on a givenscale
reaches order unity, nonlinear growth occurs, i.e., the evolution
of the different wavelength modes becomes increasingly coupled,
leading to a departure from linear evolution. Thus nonlinear effects
erase the BAO in the matter power spectrum on small scales, distort
the matter power spectrum on quasi-linear scales, and degrade the
BAO signal on linear scales. The characteristic comoving scale for
nonlinearity increases with cosmic time, as density perturbations
on larger and larger comoving scales grow to be of order unityin
amplitude. Fig.5 shows the nonlinear growth of the matter power
spectrum measured from a numerical simulation by Angulo et al.
(2008). Nonlinear effects have to be removed or corrected for in
the data analysis in order to obtain robust BAO scale measure-
ments (see for example, Refs.(Jeong & Komatsu 2006; Koehler,
Schuecker, & Gebhardt 2007; Smith, Scoccimarro, & Sheth 2007;
Crocce & Scoccimarro 2008)).

The most troublesome consequence of nonlinear effects is the
shift in the observed BAO scale in galaxy redshift survey data from
the CMB-calibrated prediction. It is most intuitive to consider this
effect in real space, where the nonlinear growth of density pertur-
bations damps and shifts the BAO peak at∼ 100h−1 Mpc, be-
cause the large-scale bulk flows cause the differential motions of
the galaxy pairs initially separated by the sound horizon scale at
the drag epoch (Eisenstein et al. 2007).

Eisenstein et al. (2007); Seo et al. (2008) introduced a method
to “reconstruct” the linear power spectrum from a nonlinearly
evolved galaxy distribution in order to minimize the impactof non-
linear effects on the constraining power of BAO as a dark energy
probe. They found that the shifts of the BAO peak can be predicted
numerically, and can be substantially reduced (to less than0.1%
at z = 0.3 − 1.5) using a simple “density-field reconstruction”
method (Eisenstein et al. 2007; Seo et al. 2008).

Padmanabhan, White, Cohn (2009) reformulated this recon-
struction method within the Lagrangian picture of structure forma-
tion, and found that this reconstruction doesnot reproduce the lin-
ear density field, at second order. They showed that it does reduce
the damping of the BAO due to non-linear structure formation.
In particular, they showed that reconstruction reduces themode-
coupling term in the power spectrum, thus reducing the bias in
the estimated BAO scale when the reconstructed power spectrum is
used. Note that the reconstruction technique has only been demon-
strated for dark matter, and not yet for haloes or galaxies.

3.2 Redshift-space distortions

Redshift-space distortions are the consequence of peculiar motions
on the measurement of the power spectrum from a galaxy redshift
survey. Peculiar motions produce different types of distortion to the
power spectrum. On large scales, coherent bulk flows out of voids
and into overdense regions lead to an enhancement in the density
inferred in redshift-space, and hence to a boost in the recovered
power. On small scales, the random motions of objects insideviri-
alized dark matter haloes cause structures to appear elongated when
viewed in redshift-space (“the finger of God” effect), leading to a
damping of the power.

The enhancement of the power spectrum due to redshift-space
distortions, under the assumption of linear perturbation theory for
an observer situated at infinity (the plane parallel approximation),
is given by (Kaiser 1987):

Ps(k, µ)

Pr(k, µ)
=

(

1 + βµ2
)2

, (18)

wherePs(k, µ) is the power spectrum in redshift-space,Pr(k, µ) is
the power spectrum in real-space, andµ = k · r̂/k, with r̂ denoting
the unit vector along the line of sight. The redshift-space distortion
parameterβ is defined as

β(z) ≡ fg(z)

b(z)
, (19)

wherefg(z) denotes the growth rate, andb(z) denotes the bias
factor. Eq.(18) can be derived using

dδ

dt
= −∇ · δv, (20)

whereδ is the matter density perturbation, andδv is the peculiar
velocity, and requiring that the number of galaxies is conserved
when we go from real to redshift space (Hamilton 1998).

The enhancement of the spherically averaged power spectrum
is
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Figure 6. The ratio of the power spectrum measured for the dark matter in
redshift-space, i.e. including the impact of peculiar motions in the distance
determination, to the power spectrum measured in real-space (Angulo et al.
2008). The deviation from unity shows the redshift-space distortion to the
nonlinear power spectrum. The results are shown for selected output red-
shifts, as indicated by the key. The horizontal dotted linesindicate the boost
in the redshift-space power expected due to coherent flows, as predicted by
Eq.(21). The dashed lines show a simple fit to the distortions(see Eq.[22]).
The simulation corresponds to a comoving volume of 2.41h−3 Gpc3.

Ps(k)

Pr(k)
= 1 +

2

3
β +

1

5
β2, (21)

which follows from integration overµ.
Eq.(21) can be modified to include the damping effect due to

the “the finger of God” effect (Angulo et al. 2008):

Ps(k)

Pr(k)
=

1 + 2
3
β + 1

5
β2

1 + k2σ2
, (22)

whereσ is a free parameter associated with the pairwise velocity
dispersion, see Eq.(105).

Fig.6 shows the ratio of the matter power spectrum measured
in redshift-space, to the matter power spectrum measured inreal-
space (Angulo et al. 2008). Clearly, Eq.(22) provides a goodde-
scription for redshift-space distortion to the matter power spectrum.

Since we cannot directly measure the matter power spectrum,
we have to study the redshift-space distortion to the power spec-
trum of the type of object used as matter tracer in the galaxy red-
shift survey. The form of the redshift-space distortion to the power
spectrum depends on the type of object under consideration.

In current theories of galaxy formation, dark matter haloes
are hosts to galaxies. Angulo et al. (2008) found that Eq.(22) is a
poor description of the redshift-space distortions to the dark matter
halo power spectrum, but is a reasonable description of the redshift-
space distortions to the galaxy power spectrum.

The small-scale redshift-space distortions (“the finger ofGod”
effect) can be removed from data in the BAO measurement usinga
nonlinear “finger-of-God” compression stepbefore the power spec-
trum analysis, in which a “friends-of-friends” algorithm is used
to identify the clustering of matter (Tegmark et al. 2004). How-
ever, this may introduce a degree of arbitrariness in the results. We
can use the version of Eq.(22) before spherical averaging and its
counter part in the correlation function analysis to fully model both

Figure 7. The power spectrum of different galaxy samples measured in
real-space, divided by the square of an effective bias parameter and the
appropriately scaled linear perturbation theory power spectrum (Angulo et
al. 2008). The sample definition and the value of the effective bias used are
given by the key. The power spectrum of the dark matter spectrum in real-
space, also divided by the linear perturbation theory spectrum, is shown by
the dashed line. The left hand panel shows the ratios atz = 0 and the right
hand panel atz = 1. The simulation corresponds to a comoving volume of
2.41h−3 Gpc3.

the large-scale compression and the small-scale “finger of God” ef-
fect due to redshift-space distortions.

Note that the redshift-space distortions on large scales donot
modify the BAO, and can be used to measure the linear redshift-
space distortion parameterβ.

3.3 Scale-dependent bias

The bias factor between the tracer distribution measured bythe
galaxy redshift survey and the matter distribution dependson the
tracer used. Angulo et al. (2008) showed that the clusteringof
haloes isnot a shifted version of that of the dark matter, in con-
trast to current theoretical models. The bias between dark matter
haloes and dark matter is scale-dependent, and the variation in the
degree of scale-dependence with redshift is not monotonic.The
scale-dependence of the bias for galaxies is less than that of dark
matter haloes, but still significant (Angulo et al. 2008).

Fig.7 shows the real space power spectrum for four differ-
ent samples of galaxies, divided by the square of an effective bias
parameter and the appropriately scaled linear perturbation theory
power spectrum. Samples A and B denote galaxies from an R-
magnitude limited survey with a given space density. SampleC
contains the reddest 50% of galaxies from sample A (selectedusing
theR−I color). Sample D contains the 50% of galaxies from sam-
ple A with the strongest emission lines, selected using the equiv-
alent width of OII[3727]. The dashed line shows the real-space
power spectrum of matter divided by the appropriate linear per-
turbation theory power spectrum.

Note that since nonlinear effects are independent of the galaxy
sample, the differences in the power spectra of the four different
galaxy samples in Fig.7 indicate that bias depends stronglyon the
galaxy sample, and that bias is scale-dependent. Therefore, scale-
dependent bias must be properly modeled if quasi-linear scales are
included in the analysis of BAO scales.
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4 BAO DATA ANALYSIS TECHNIQUES

We will discuss two approaches to probing the BAO, using the
galaxy power spectrum (Sec.4.1) and using galaxy two-pointcorre-
lation function (Sec.4.2). In both methods, the actual galaxy distri-
bution is compared with a catalog of randomly distributed galaxies.
These randomly distributed galaxies have the same redshift, mag-
nitude, and mask constraints as the real data.

The BAO scales extracted from the two different analysis
methods provide an important cross-check. We will discuss the po-
tential of each method for mitigating systematic effects.

A way to test how well we can extract the BAO scale from
real data is to apply the two analysis techniques to simulated data.
To measure the power spectrum or correlation function of galaxies,
one must convert the angular positions and redshifts of the galax-
ies into comoving spatial separations. This requires assuming a set
of values of the cosmological parameters, including the dark en-
ergy parameters. The effect of a change in the value of dark energy
parameters is to change the separations between pairs of galaxies,
which leads to a change in the appearance of the galaxy power spec-
trum and correlation function. For small perturbations away from
the true dark energy parameters, one can assume that the change
in the measured galaxy power spectrum and correlation function
can be represented by a rescaling of the wavenumber fromktrue

to kapp for the power spectrum, and a rescaling of the length scale
from rtrue to rapp for the correlation function. For simplicity, we
will focus on spherically averaged data. Thescale parameter, α,
describes the change in the recovered BAO scale:

α =
kapp

ktrue
power spectrum;

α =
rtrue

rapp
correlation function. (23)

If dark energy parameter are estimated correctly, then there is no
shift in the BAO in the estimated power spectrum andα = 1. In
the case of a wide-angle, deep galaxy survey with spectroscopic
redshifts, the stretch parameter can be approximated by (Angulo et
al. 2008):

α ≈
(

DA(z, Xassumed)

DA(z, Xtrue)

)−2/3 (

H(z,Xassumed)

H(z,Xtrue)

)1/3

, (24)

whereX(z) = ρX(z)/ρX(0) denotes the dark energy density
function.

The accuracy and precision of the BAO scale measurement is
reflected by that of the scale parameterα. This in turn depends on
the modeling of the BAO in the data analysis. A common miscon-
ception is that the location of the BAO peaks in the galaxy power
spectrum or two-point correlation function correspondsexactly to
the sound horizon scale at the drag epoch. This misconception can
lead to biased estimate of the BAO scale and hence biased estimate
of cosmological and dark energy parameters. To accurately extract
the BAO scale, the galaxy power spectrum and two-point correla-
tion function must be modeled as completely as possible.

4.1 Using the galaxy power spectrum to probe BAO

The real space galaxy power spectrum is related to the matterpower
spectrum as follows:

Pg(k, z) = b(z)Pm(k, z), (25)

whereb(z) is the bias factor between galaxy and matter distribu-
tions.

The matter power spectrum
The matter power spectrum is defined as

Pm(k) ≡
∣

∣δk
∣

∣

2
(26)

whereδk is the Fourier transform of the matter density perturbation
δ(r), defined as

δk ≡
∫

δ(r) eik·r d3r . (27)

Therefore

δ(r) ≡ ρ(r) − ρ̄

ρ̄
=

1

(2π)3

∫

δk e−ik·r d3k, (28)

with ρ(r) andρ̄(r) denoting the matter density at positionr and the
mean matter density respectively. Note that
∫

eik·r d3r = (2π)3δD(k), (29)

whereδD denotes the Dirac delta function.
The theoretical matter power spectrum in the linear regime is

given by

P (k)lin = P0 k A2
s(k)T 2(k), (30)

whereP0 is a normalization constant,A2
s(k) is the power spectrum

of primordial matter density fluctuations, andT (k) is the matter
transfer function. The primordial power spectrum is determined
by unknown inflationary physics in the very early universe, and
can be measured directly from data in a model-independent man-
ner (Wang, Spergel, & Strauss 1999; Mukherjee & Wang 2003).
For simplicity, the primordial matter power spectrum is usually
parametrized as a power-law:

k A2
s(k) ∝ knS . (31)

The matter transfer functionT (k) describes how the evolution of
matter density perturbations depends on scale.

In the inflationary paradigm of the very early universe, den-
sity perturbations began as quantum fluctuations produced during
inflation within the horizon for microphysics, the Hubble radius
H(t)−1 (whereH(t) is the Hubble parameter). The Hubble radius
remained roughly constant during inflation, while the universe un-
derwent extremely rapid expansion, stretching the physical scales
of density perturbations (λphys ∝ a(t)λ for a comoving wave-
length λ). Thus density perturbations crossed outside the micro-
physics horizon during inflation. After inflation, the universe was
radiation dominated (witha(t) ∝ t1/2), then became matter dom-
inated (witha(t) ∝ t2/3) after the matter-radiation equality epoch
zeq (see Eq.[5]). The Hubble radius grew faster than the cosmic
scale factora(t) during both radiation and matter domination, since
H−1(t) = [ȧ/a]−1 ∝ t. Thus density perturbations re-entered
the microphysics horizon after inflation; those that exitedthe mi-
crophysics horizon last during inflation (the smallest scales) re-
entered first. Since matter density perturbations could notgrow
until the universe became matter dominated, the growth of mat-
ter density perturbations is scale-dependent. This is encoded in the
matter transfer function T(k), and depends on the physics atmatter-
radiation equality and photon-decoupling. If dark energy pertur-
bations are negligible,T (k) only depends on the matter density
ρm ∝ Ωmh2 and baryon densityρb ∝ Ωbh

2, and on the dimen-
sionless Hubble constanth through the choice ofh/Mpc as the
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unit for k. It is most convenient and reliable to calculateT (k),
normalized such thatT (k → 0) = 1, using a public high preci-
sion CMB code such asCMBFAST (Seljak & Zaldarriaga 1996) or
CAMB (Lewis, Challinor, & Lasenby 2000).

The galaxy power spectrum can be measured from data using
the FKP method (Feldman, Kaiser, & Peacock 1994). This method
uses galaxy catalogs obtained from galaxy surveys and a much
larger synthetic galaxy catalog with the same angular and radial
selection functions.

Basic idea behind the FKP method for estimatingPg(k)
It is the locations of galaxies, and not the smooth matter den-

sity field ρ(r) that is observed. The basic idea behind the FKP
method is to take the Fourier transform of the distribution of real
galaxies, minus the transform of a synthetic catalog with the same
angular and radial selection function as the real galaxies but oth-
erwise without structure. It also incorporates a weight function
w(r) which is adjusted to optimize the performance of the power-
spectrum estimator. It defines a weighted galaxy fluctuationfield,
with a convenient normalization, to be

F (r) ≡
w(r)

[

ng(r) − αsns(r)
]

[∫

d3r n2(r) w2(r)
]1/2

, (32)

wheren(r) is the expected mean space density of galaxies given
the angular and luminosity selection criteria, and

ng(r) =
∑

i

δD(r − r
g
i ), ns(r) =

∑

i

δD(r− r
s
i ) (33)

with ri denoting the location of theith galaxy from the real (with
superscript “g”) or synthetic (with superscript “s”) catalog. The
synthetic catalog has a number density that is1/αs times that of the
real catalog. The synthetic catalog is created assuming that galaxies
form a Poisson sample of the density field,ρ/ρ̄ (Peebles 1980).

Denoting the Fourier transform ofF (r) as F (k), it can be
shown that

〈|F (k)|2〉 =

∫

d3k′

(2π)3
Pg(k

′)|G(k − k
′)|2 +

(1 + αs)

∫

d3r n(r) w2(r)
∫

d3r n2(r) w2(r)
(34)

where the window function

G(k) ≡
∫

d3r n(r) w(r) eik·r

[∫

d3r n2(r) w2(r)
]1/2

. (35)

For a typical galaxy redshift survey,G(k) is a compact function
with width ∼ 1/D, whereD characterizes the depth of the sur-
vey. Assuming that we have a “fair sample” of the matter density
distribution, then

〈|F (k)|2〉 ≃ Pg(k) + Pshot, (36)

where the constant shot noise component

Pshot ≡
(1 + αs)

∫

d3r n(r) w2(r)
∫

d3r n2(r) w2(r)
. (37)

The FKP estimator ofPg(k) is thus

P̂g(k) = |F (k)|2 − Pshot, (38)

with the final estimator ofPg(k) given by averaginĝPg(k) over a
shell ink-space:

P̂g(k) ≡ 1

Vk

∫

Vk

d3k′P̂g(k
′), (39)

whereVk is the volume of the shell.

Practical implementation of the FKP method for estimating
Pg(k)

The radially averaged power spectrum from the FKP estimator
is

P̂g(k) =
1

Nk

∑

k<|k|<k+δk

[

|F (k)|2 − S(0)
]

(40)

whereNk is the number of modes in the shell, andF (k) andS(k)
are given by

F (k) =

∫

d3r w(r)[ng(r) − αsns(r)]e
ik·r

→
∑

g

w(rg)eik·rg − αs

∑

s

w(rs)e
ik·rs ,

S(k) = (1 + αs)

∫

d3r n(r) w2(r) eik·r

→ αs(1 + αs)
∑

s

w2(rs)e
ik·rs . (41)

Note that for convenience, we have adjusted the normalization of
the weight function so that
∫

d3r n2(r) w2(r) → αs

∑

s

n(rs)w2(rs) = 1 (42)

The variance of the estimatedP (k), for any shell thickness, is

σ2
P (k) =

2

N2
k

∑

k′

∑

k′′

∣

∣PgQ(k′ − k
′′) + S(k′ − k

′′)
∣

∣

2
(43)

wherek andk
′ are constrained to lie in the shell, and

Q(k) =

∫

d3r n2(r) w2(r) eik·r → αs

∑

s

n(rs)w2(rs)e
ik·rs .(44)

The weight functionw(r) is chosen such that it minimizes the vari-
anceσ2

P (k). This leads to

w(r) =
1

1 + n(r)Pg(k)
. (45)

Note that the weight function depends on the assumed value for
Pg(k). The optimal estimator results from allowing a range of
Pg(k) and then selecting an optimal value forPg(k).

If the shell intercepts a sufficiently large number of coherent
volumes, then the fractional error in the estimatedPg(k) is reason-
ably small. Then the fluctuations in the power will become Gaus-
sian distributed, and the likelihood for any particular theory repre-
sented byPg,th(k) is

L[Pg,th(k)]

= p[Pi|Pg,th(k)] (46)

=
1

(2π)N/2|C| exp

{

−
C−1

ij

2
[P̂g,i − Pg,th(ki)][P̂g,j − Pg,th(kj)]

}

,

whereP̂g,i is the vector of estimates, and the correlation matrix for
the binned estimates of̂Pg is

Cij ≡ 〈δP̂g(ki)δP̂g(kj)〉 (47)

=
2

NkNk′

∑

k

∑

k′

|PgQ(k− k
′) + S(k − k

′)|2
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wherek andk
′ lie in the shells aroundki andkj respectively. Note

thatCij depends onPg(k).
The original FKP technique is a direct Fourier method; one

first chooses ak grid with sufficient grid size and spacing and then
obtain the Fourier transform by performing direct summation at
each grid point (see Eqs.[40] and [41]), instead of using fast Fourier
transform (FFT). However, it is possible to modify this method so
that one can use FFT (for example, see Cole et al. (2005)). Unlike in
the direct Fourier method, one has to assign galaxies to a linearly
spaced grid using an interpolation method such as cloud in cell,
nearest grid point, or triangular shaped cloud assignment scheme
(Hockney & Eastwood 1998). This induces gridding noise and one
needs to correct the resultant power spectrum for this. However, the
direct Fourier method is much slower than the FFT method. In both
methods, the final step involves obtaining power in thin spherical
shells ink space to get the power spectrum. This resultant power
spectrum is convolved with the window function of the surveyas
these surveys are volume limited. Therefore, one needs to decon-
volve the obtained power spectrum with the window function of
the survey. In practice, it is much more convenient to convolve the
theoretical power spectrum with the survey window function, and
compare it with the measured power spectrum (without deconvolu-
tion).

The power spectra for combined 2dF and SDSS data shown
in Fig.2 were estimated by Percival et al. (2007) using a modified
version of the FKP method, such that FFT is used instead of direct
summation at each grid point. Note that the BAO signature canbe
seen clearly. However, there is a clear difference between the BAO
scale present in the combined 2dF and SDSS main data and the
BAO scale apparent in the SDSS LRG data.

Mitigation of systematic effects in BAO scale extraction from
Pg(k)

Simulated data must be used to study how the BAO scale ex-
traction from the measured galaxy power spectrum is affected by
systematic effects. The BAO scale can be extracted by fittingthe
measured galaxy power spectrum to the linear perturbation theory
power spectrum with appropriate modifications to allow for our ig-
norance on dark energy parameters and to model nonlinear effects.
A simple method to model power spectrum data consists of the fol-
lowing steps (Percival et al. 2007; Angulo et al. 2008):

1. Construct a smooth reference spectrumPg,ref from the mea-
sured galaxy power spectrum.Pg,ref results from a coarse rebin-
ning of the measured power spectrum that erases any oscillatory
features such as BAO. For example, one can use a cubic spline fit
over the wavenumber range0.0046 < (k/h Mpc−1) < 1.2, us-
ing the measured spectrum smoothed over 25 bins in wavenumber
(Angulo et al. 2008). The spline is constrained to pass through the
data points.

2. Compute the ratio,R(k), of the measured galaxy power spec-
trum,Pg(k), to the reference power spectrum,Pg,ref(k):

R(k) =
Pg(k)

Pg,ref(k)
. (48)

3. Generate a linear perturbation theory matter power spectrum,
P L(k), using a high precision CMB code (such asCAMB (Lewis,
Challinor, & Lasenby 2000) orCMBFAST (Seljak & Zaldarriaga
1996)). The set of cosmological parameters assumed is the same as
that of the simulated data if one is testing the accuracy of BAO scale
extraction only. For real data, the set of cosmological parameters
should be varied in a maximum likelihood analysis. Next, define a

smooth reference spectrum forP L(k), PL
ref , in the same manner

as described in Step 1, using the same wavenumber bins. Finally,
compute the ratio,P L/P L

ref .
4. Modify the linear theory ratio,P L/P L

ref , as follows:

RL(k) =

[

P L(αk)

P L
ref(αk)

− 1

]

× W (k, knl) + 1, (49)

where the scale parameterα mimics a change in dark energy pa-
rameters (see Eq.[23]), and the Gaussian filterW (k) describes the
damping of the oscillations beyond some characteristic wavenum-
ber:

W (k) = exp

(

− k2

2k2
nl

)

, (50)

with knl as a free parameter. Thus there are two free parameters,α
andknl.

5. Compute the likelihood for a grid of models, each specified
by values of (knl, α). The likelihood is given by (assuming Gaus-
sian errors):

−2 lnL = χ2 =
∑

i

(

Ri − Ri
L

σi/P i
ref

)2

(51)

where the summation is over wavenumber andσi is the error on
the power spectrum estimated in theith bin.

6. Derive confidence limits onα andknl in a likelihood analysis.

Figs.8-10 show the results from Angulo et al. (2008), from
a high resolution simulation corresponding to a comoving volume
of 2.41h−3 Gpc3 (Angulo et al. 2008), and a ensemble of 50 low-
resolution simulations (each with the same comoving volumebut
less resolution) to estimate the cosmic variance of the highreso-
lution simulation. The dark matter haloes have mass in excess of
5.4 × 1012 h−1 M⊙. The galaxies form an R-magnitude limited
sample with a space density ofn̄ = 5 × 10−4 h3Mpc−3.

Fig. 8 shows the values obtained forα from the power spec-
trum at various redshifts of the dark matter (triangles), dark matter
haloes (circles) and galaxies (squares) (Angulo et al. 2008). There
is a trend for the best-fitting value to deviate away from unity with
decreasing redshift, although the result atz = 0 is still within 1σ
of α = 1 for dark matter and dark matter haloes. Fig.9 shows the
best-fitting value of the damping scaleknl as a function of redshift,
for the same tracers of the matter density distribution as inFig.8, in
real-space (top) and redshift-space (bottom).

Fig.10 shows the recovered value of the scale parameterα for
various galaxy samples (Angulo et al. 2008). Note that the accu-
racy and precision of the estimatedα depends on the galaxy sam-
ple. For example, using a catalog of R-magnitude-limited galax-
ies with space density of 5×10−4 h3 Mpc−3 (Sample A) or red
galaxies (Sample C), one could measure the BAO scale more accu-
rately (smaller bias inα) and more precisely (smaller dispersion in
α) than using a catalog of galaxies chosen by the strength of their
emission lines (Sample D).

Note that the size of the systematic shift of the estimatedα
away fromα = 1 for the galaxy samples is comparable to the ran-
dom measurement errors for the simulation (Angulo et al. 2008). It
will require a larger simulation volume to reduce the size ofrandom
errors, and to ascertain whether such shifts reflect genuinelimits of
the method discussed here.

A more accurate model for the power spectrum is given by the
“dewiggled” power spectrum (Tegmark et al. 2006; Eisenstein et
al. 2006):
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Figure 8. The best-fitting value of the scale factorα as a function of
redshift, for different tracers of the matter density distribution, in real-
space (top) and redshift-space (bottom) (Angulo et al. 2008)). The sym-
bols show results from the high resolution simulation corresponding to a
comoving volume of 2.41h−3 Gpc3 : dark matter (triangles), dark matter
haloes with mass in excess of5.4 × 1012 h−1 M⊙ (circles) and galax-
ies from an R-magnitude limited sample with a space density of n̄ =
5 × 10−4 h3 Mpc−3 (squares). The error bars show the 1σ range onα,
calculated from∆χ2. The hatched region shows the central68% range of
the results obtained using the dark matter in an ensemble of low resolution
simulations. Recall thatα = 1 corresponds to an unbiased measurement of
the BAO scale (hence of dark energy parameters).

Pdw(k) = Plin(k)G(k) + Pnw(k) [1 − G(k)] , (52)

wherePlin(k) is the linear theory power spectrum andPnw(k) is a
smooth, linear theory, cold dark matter only power spectrum, with
the same shape asPlin(k) but without any baryonic oscillations
(i.e.,P L

ref ). The weight functionG(k) is given by

G(k) ≡ exp
[

−(k/
√

2 k⋆)
2
]

, (53)

describing the transition from large scales (k ≪ k⋆), wherePdw(k)
follows linear theory, to small scales (k ≫ k⋆) where the acoustic
oscillations are completely damped by nonlinear effects.

Eq. (52) provides a phenomenological description of the mod-
ification of the BAO by nonlinear effects found in numerical simu-
lations. Importantly, it can be justified using the renormalized per-
turbation theory (RPT) developed by Crocce & Scoccimarro (2006,
2008). According to RPT, the first term on the right hand side of

Figure 9. The best-fitting value of the damping scaleknl as a function of
redshift, for different tracers of the matter density distribution, in real-space
(top) and redshift-space (bottom) (Angulo et al. 2008). Thesymbols show
results from the high resolution corresponding to a comoving volume of
2.41h−3 Gpc3: dark matter (triangles), dark matter haloes with mass in
excess of5.4 × 1012 h−1 M⊙ (circles) and galaxies (squares). The error
bars show the 1σ range onknl. The hatched region shows the central68%
range of the results obtained using the dark matter in an ensemble of low
resolution simulations.

Eq. (52) describes the growth of a single mode, quantified by the
propagator functionG(k). In the high-k limit the propagator is
given by the Gaussian form in Eq.(53) withk⋆ given by (Crocce
& Scoccimarro 2006; Matsubara 2008)

k⋆ =

[

1

3π2

∫

dk Plin(k)

]−1/2

. (54)

The second term on the right hand side of Eq. (52) can be inter-
preted as the power generated by the coupling of Fourier modes on
small scales,Pmc(k). The termPmc(k) is negligible on large scales
(smallk), but dominates the total power on small scales (highk).
For the scales relevant to the BAO analysis (k ∼ k⋆), Pmc has a
similar amplitude toPnw(k)[1 − G(k)].

The limitation of Eq. (52) can be explained by RPT as well
(Crocce & Scoccimarro 2008)). According to RPT, the propaga-
tor G(k) only behaves as a Gaussian in the high-k limit. In addi-
tion, the termPmc shows acoustic oscillations, although of a much
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Figure 10.The recovered value of the scale parameterα for various galaxy
samples (Angulo et al. 2008). Samples A is R-magnitude-limited to reach
a space density of5 × 10−4 h3 Mpc−3. Sample B is magnitude-limited
to reach half the space density of sample A. Sample C containsthe reddest
50% of galaxies from sample A, using theR − I color. Sample D contains
the 50% of galaxies from sample A with the strongest emissionlines, using
the equivalent width of OII[3727]. Sample E contains the bluest 50% of
galaxies from sample A, using theR − I color. Sample F contains the
50% of galaxies from sample A with the weakest emission lines, using the
equivalent width of OII[3727]. The simulation correspondsto a comoving
volume of 2.41h−3 Gpc3. Recall thatα = 1 corresponds to an unbiased
measurement of the BAO scale (hence of dark energy parameters).

smaller amplitude thanP (k), whilePnw(k)[1−G(k)] is a smooth
function.

Eq. (52) can be improved by modifyingPnw(k) to model the
change in the overall shape of the power spectrum due to non-linear
evolution:

P nl
dw(k) =

(

1 + Qk2

1 + Ak + Bk2

)

Pdw(k) = f(k)Pdw(k). (55)

The factorf(k) could also be used to model a scale dependent bias
factor. This model for non-linear evolution is based on theQ-model
of Cole et al. (2005), modified by the addition of a new parameter,
B, in order to improve its accuracy at highk. Fixing B = Q/10
gives the approximate behavior of the non-linear power spectrum
at largek (Sanchez, Baugh, & Angulo 2008).

Fig.11 shows a comparison of the real-space dark matter
power spectrum averaged over the simulation ensemble (open
points) with the linear theory power spectrum (dot-dashed line),
the “dewiggled” power spectrum from Eq. (52) (solid line), and
its non-linear version from Eq. (55) (dashed line) computedwith
Q = 13 andA = 1.5 (Sanchez, Baugh, & Angulo 2008). How-
ever, the improved modeling of the power spectrum still leads to
biased estimate ofα similar to that shown in Fig.8, but withα > 1
(Sanchez, Baugh, & Angulo 2008).

The biased estimates ofα from the measured power spectra
(see Figs.8 and 10) are a consequence of the mode-coupling shifts
due to nonlinear effects (Crocce & Scoccimarro 2008). This may
indicate a limit to the accuracy with which the BAO scale can be
extracted from power spectrum data. In Fourier space, systematic
effects such as redshift-space distortions and scale-dependent bias
are important, and have to be minimized by dividing the measured

Figure 11. Results from the numerical simulations by Sanchez, Baugh, &
Angulo (2008). Upper panel: A comparison of the real-space dark matter
power spectrum averaged over the simulation ensemble (openpoints) with
the linear theory power spectrum (dot-dashed line), the ‘dewiggled’ power
spectrum from Eq. (52) (solid line), and its non-linear version from Eq. (55)
(dashed line) computed withQ = 13 andA = 1.5. The dotted lines indi-
cate the variance onP (k) estimated from the ensemble. Lower panel: The
ratio of these power spectra toPnw(k).

power spectrum by a smooth reference power spectrum. This divi-
sion by the smooth reference power spectrum leads to information
loss that degrades the BAO scale accuracy and precision (Sanchez,
Baugh, & Angulo 2008). However, larger volume simulations will
be needed to quantify the limit of accuracy of theP (k) method of
BAO analysis.

4.2 Using two-point correlation functions to probe BAO

To extract the BAO scales, we can also compute the two-point
correlation function of galaxies in comoving coordinates.For
spherically-averaged data, the BAO scale corresponds to a peak
around the scale of the sound horizon at the drag epoch. Eisenstein
et al. (2005) first demonstratedthis with real data. Hutsi (2006)
found similar results.

Definition of the two-point correlation function ξ(r)
The two-point correlation functionξ is defined as

ξ(r) ≡ 〈δ(x + r)δ(x)〉. (56)

Thus the power spectrum andξ(r) are related by

P (k) ≡
∣

∣δk
∣

∣

2
=

∫

ξ(r) eik·r d3r , (57)

whereδk is the Fourier transform of the matter density perturbation
δ(r) (see Eq.[27]).

Measurement of the two-point correlation functionξ(r)
The two-point galaxy correlation function,ξ, can be measured
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by comparing the actual galaxy distribution to a catalog of ran-
domly distributed galaxies. These randomly distributed galaxies
have the same redshift, magnitude, and mask constraints as the real
data. The pairs of galaxies are counted in bins of separationalong
the line of sight,πs, and transverse to the line of sight,rp, to es-
timateξ(rp, πs). In converting from redshift to distance, a fiducial
model must be assumed, usually a flat universe model dominated
by a cosmological constant, withΩm = 0.3, ΩΛ = 0.7. Hence it is
important to iterate the final results by changing the fiducial model
to the bestfit model derived from the data.

Each galaxy and random galaxy can be given a weighting fac-
tor to account for both selection effects and to optimize thestatis-
tics. For example, to minimize the variance on the estimatedξ(s)
when the survey selection functionn(zi) varies significantly, one
can introduce the so-called “minimum-variance weighting”(Davis
& Huchra 1982; Davis & Peebles 1983):

wi =
1

1 + 4πn(zi)J3(s)
, (58)

where the separations ≡
√

π2
s + r2

p, n(z) is the galaxy density
distribution, and

J3(s) =

∫ s

0

ξ(s′) s′2ds′. (59)

Hawkins et al. (2003) usedn(z) from the random catalog to ensure
that the weights vary smoothly with redshift, and they foundthat
results are insensitive to the precise form ofJ3. Each galaxy pair
(i, j) is given a weightwfwiwj (with wf correcting for galaxies
not observed due to effects such as fibre collisions), while each
galaxy-random and random-random pair is given a weightwiwj .

An often-used minimum-variance estimator ofξ is that of
Landy & Szalay (1993):

ξ(rp, πs) =
DD − 2DR + RR

RR
, (60)

whererp and πs denote the transverse and line-of-sight separa-
tions in redshift space respectively.DD is the normalized sum of
weights of galaxy-galaxy pairs with separation (rp, πs), RR is the
normalized sum of weights of random-random pairs with the same
separation in the random catalog andDR is the normalized sum of
weights of galaxy-random pairs with the same separation.DR is
calculated by overlaying the real galaxy catalog and the simulated
random galaxy catalog.DD, RR, andDR are normalized through
dividing by the total number of pairs in each. Spherically averag-
ing ξ(rp, πs) at constants =

√

πs
2 + rp

2 gives the redshift-space
correlation functionξ(s). Both Eisenstein et al. (2005) and Oku-
mura et al. (2008) used the Landy & Szalay estimator in Eq.(60) to
analyze SDSS LRG data.

If the rms scatter onP (k), σ2
P (k), is computed (see Sec.4.1),

the covariance of the two-point correlation function can becalcu-
lated using (Cohn 2006; Smith, Scoccimarro, & Sheth 2008):

Cξ(r, r
′) ≡

〈[

ξ(r) − ξ̄(r)
] [

ξ(r′) − ξ̄(r′)
]〉

=

∫

dk k2

2π2
j0(kr)j0(kr′)σ2

P (k), (61)

whereξ(r) and ξ̄(r) are the correlation function and its mean re-
spectively.

The BAO scale shown in Fig.1 is measured from the
spherically-averaged redshift-space correlation function from
SDSS LRG sample by Eisenstein et al. (2005). There is no
verifiable detection of the radial and transverse BAO scalesfrom
current data (Okumura et al. 2008; Gaztanaga, Cabre, & Hui

2008). This may be an indication of systematic uncertainties.

Mitigation of systematic effects in BAO scale extraction from
ξ(r)

Simulated data must be used to study how the BAO scale
extraction from the measured galaxy two-point correlationfunc-
tion is affected by systematic effects. Using 50 low resolution N-
body simulations (each with a comoving volume of2.41 h−3 Gpc3

and with the dark matter followed using4483 particles), Sanchez,
Baugh, & Angulo (2008) found that the BAO signature in the two-
point correlation function is less affected by scale dependent effects
than that in the power spectrum.

The two-point correlation function can be obtained by taking
the Fourier transform of Eq. (52):

ξdw(r) = ξlin(r) ⊗ G̃(r) + ξnw(r) ⊗ (1 − G̃(r)), (62)

where the symbol⊗ denotes a convolution, and̃G(r) is the Fourier
transform ofG(k). The first term contains the information about
the acoustic oscillations; it represents the convolution of the linear
theory correlation function with a Gaussian kernel. This convolu-
tion implies that in the correlation function, the damping of the
higher harmonic oscillations causes the acoustic peak to broaden
and shift to smaller scales (Smith, Scoccimarro, & Sheth 2008;
Crocce & Scoccimarro 2008).

Fig. 12 compares the meanz = 0 real-space correlation
function of the dark matter measured from an ensemble of sim-
ulations (open points) with the following models for the corre-
lation function: (i) the linear theory correlation function ξlin(r)
(solid line), (ii) a nonlinear correlation functionξnl(r) computed
usinghalofit, without any damping of the acoustic oscillations
(short-dashed line), (iii) the dewiggled linear theory correlation
functionξdw(r), computed as described by Eq. (62) (long-dashed
line) and (iv) a dewiggled correlation function nonlinearized using
halofit ξnl

dw(r) (dot-dashed line) (Sanchez, Baugh, & Angulo
2008). The error bars indicate the variance between the correlation
functions measured from the different realizations in the simulation
ensemble.

Fig. 12 shows that the acoustic peak in the two-point correla-
tion function at redshiftz = 0 shows strong deviations from the
predictions of linear theory. Clearly, the linear theory dewiggled
correlation function from Eq. (62) gives a very good description of
the results of numerical simulations; this indicates that the damp-
ing of the oscillations is the most important effect to include in the
modeling of the real space correlation function on large scales. The
incorporation of the full change in the shape ofP (k) due to non-
linear evolution produces very little difference in the shape of the
acoustic peak in the correlation function, but this effect might be
important on intermediate scales (r ≃ 70h−1 Mpc).

The scale parameter from Eq.(23) corresponds to an equiva-
lent shift from scalertrue to rapp = rtrue/α in the two-point cor-
relation function. Deviation fromα = 1 indicates biased estimate
of the BAO scale, and the uncertainty onα indicates the precision
of the BAO scale measurement. Sanchez, Baugh, & Angulo (2008)
used Eq. (62) to analyze an ensemble of 50 low resolution N-body
simulations (each with a comoving volume of2.41 h−3 Gpc3)
(Sanchez, Baugh, & Angulo 2008). The estimated scale parameter
is slightly biased:α = 0.996±0.006 atz = 0, α = 0.998±0.004
at z = 0.5 andα = 0.997 ± 0.003 at z = 1. The constraints onα
become tighter with increasing redshift. This is because the higher
harmonic oscillations are less damped as redshift increases (which
accompanies an increase in the range of wavenumbers over which
density perturbations are linear), thus the position of theBAO peak
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Figure 12.Comparison by Sanchez, Baugh, & Angulo (2008) of thez = 0
real-space dark matter two-point correlation function averaged over the en-
semble of simulations (open points) with: (i) the linear theory correlation
function ξlin(r) (solid line), (ii) an estimate of the nonlinear correlation
functionξnl(r) computed usinghalofit without damping of the acous-
tic oscillations (dashed line), (iii) the dewiggled lineartheory correlation
function ξdw(r) defined by Eq. (62) (dot-dashed line) and (iv) a dewig-
gled correlation function after being nonlinearized usinghalofit ξnl

dw(r)
(long-dashed line). The error bars indicate the rms scatterbetween the dif-
ferent realizations in the ensemble of simulations.

can be more precisely determined. The deviation fromα = 1 in-
dicates the limitation of Eq. (62) in describing the full shape of the
correlation function.

The model of Eq. (62) can be improved by utilizing the BAO
information contained inξmc(r), the correlation function generated
by the coupling of Fourier modes on small scales. According to
renormalized perturbation theory (RPT), the main contribution to
ξmc(r) on the scale of BAO is of the form (Crocce & Scoccimarro
2008)

ξmc(r) ∝ ξ′lin ξ
(1)
lin (r), (63)

whereξ′lin is the derivative of the linear theory correlation function
and

ξ
(1)
lin (r) ≡ r̂ · ∇−1ξlin(r) = 4π

∫

Plin(k) j1(kr)k dk. (64)

Thus an improved model of the correlation function is given
by (Crocce & Scoccimarro 2008)

ξnl(r) = ξlin(r) ⊗ G̃(r) + Amc ξ′linξ
(1)
lin (r), (65)

whereAmc is a free parameter. The second term in Eq.(65) can
describe the shape of the residuals of the measured correlation
function with respect toξlin ⊗ G̃ close to the BAO peak. At
smaller scales, where the approximation is not so accurate,the
model underestimates the correlation function (Sanchez, Baugh,
& Angulo 2008). Applying Eq.(65) to an ensemble of 50 low
resolution N-body simulations (each with a comoving volumeof
2.41 h−3 Gpc3), Sanchez, Baugh, & Angulo (2008) found that the

scale parameter is measured more accurately:α = 1.003 ± 0.008
atz = 0, α = 1.002±0.005 atz = 0.5 andα = 1.000±0.003 at
z = 1. This indicates that the implementation of a full calculation
of ξmc using RPT over the full range of scales included in the anal-
ysis can lead to unbiased estimate of the BAO scale. Note alsothat
reducing the bias in the estimate of the BAO scale generally leads
to an increase in its statistical scatter.

In current analysis techniques explored, the correlation func-
tion analysis leads to more accurate and precise estimate ofthe
BAO scale than the power spectrum method (Sanchez, Baugh, &
Angulo 2008). The main reason for this is that the correlation func-
tion is less affected by scale-dependent effects than the power spec-
trum. Thus in a correlation function analysis, the entire correlation
function can be modeled (including the large scale shape), while
in the power spectrum analysis, the information on amplitude and
large scale shape is discarded in order to remove sensitivity to sys-
tematic effects such as nonlinear effects and redshift-space distor-
tions (Sanchez, Baugh, & Angulo 2008).

5 FUTURE PROSPECTS FOR BAO MEASUREMENTS

Given real or simulated galaxy redshift survey data, one would need
to extract the radial and transverse BAO scales from the datain or-
der to estimateH(z) andDA(z), before measuring the dark energy
parameters, as illustrated by Secs.4.1 and 4.2. Robust forecast can
only come from a Monte Carlo based approach that begins with
extracting the radial and transverse BAO scales from realistically
simulated galaxy catalogs.

Most of the BAO forecasts have been done using the Fisher
matrix formalism, which gives the smallest possible statistical un-
certainties. The Fisher information matrix of a given set ofparam-
eters,s, approximately quantifies the amount of information ons

that we “expect” to get from our future data. The Fisher matrix can
be written as

Fij = −∂2 ln L

∂si∂sj
, (66)

whereL is the likelihood function, the expected probability distri-
bution of the observables given parameterss.

The Cramér-Rao inequality (Kendall & Stuart 1969) states
that no unbiased method can measure thei-th parameter with stan-
dard deviation less than1/

√
Fii if other parameters are known, and

less than
√

(F−1)ii if other parameters are estimated from the data
as well. Note that the derivatives in Equation (66) are calculated
assuming that the cosmological parameters are given by an a priori
model, and thus the errors on the parameters are somewhat depen-
dent on the assumed model. It is straightforward to apply Eq.(66).
For Gaussian distributed measurements,L ∝ exp(−χ2/2).

The Fisher matrix method allows an estimate of expected mea-
surement uncertainties onH(z) andDA(z) from a future galaxy
redshift survey based on the assumed survey parameters,without
analyzing simulated galaxy catalogs to extract the BAO scales.
While the Fisher matrix forecasts are likely too optimistic, they are
easy and straightforward to make, thus provide the most convenient
way to estimate the expected constraints on dark energy fromfuture
galaxy redshift surveys. Here we discuss the Fisher matrix forecast
methodology in detail.

In the limit where the length scale corresponding to the sur-
vey volume is much larger than the scale of any features in
Pg(k), we can assume that the likelihood function for the band
powers of a galaxy redshift survey is Gaussian, and given by
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Eq.(46) with a measurement error inln P (k) that is proportional
to [Veff (k)]−1/2, with the effective volume of the survey defined
as (see Eq.[47]):

Veff (k, µ) ≡
∫

dr3

[

n(r)Pg(k, µ)

n(r)Pg(k, µ) + 1

]2

=

[

nPg(k, µ)

nPg(k, µ) + 1

]2

Vsurvey, (67)

where the comoving number densityn is assumed to only depend
on the redshift (and constant in each redshift slice) for simplicity in
the last part of the equation.

In order to propagate the measurement error inln Pg(k) into
measurement errors for the parameterspi, we can use Eq.(66), and
that

L [P (k)] = L(pi), (68)

with L [P (k)] given by Eq.(46). Ignoring the subdominant normal-
ization factors, this gives an approximated Fisher matrix (Tegmark
1997)

Fij =

∫ kmax

kmin

∂ ln Pg(k)

∂pi

∂ lnPg(k)

∂pj
Veff (k)

dk3

2 (2π)3
(69)

wherepi are the parameters to be estimated from data, and the
derivatives are evaluated at parameter values of the fiducial model.
Note that the Fisher matrixFij is the inverse of the covariance
matrix of the parameterspi if the pi are Gaussian distributed.

“Wiggles Only” Method
In order to arrive at robust BAO forecasts, we may use the in-

formation contained in the BAO peaks only, and discard the infor-
mation contained in the broad shape ofPg(k) (Blake & Glazebrook
2003; Seo & Eisenstein 2007). The measurement of the BAO peaks
gives measurements ofs/DA(z) ands H(z) (see Eq.[1]).

Note that Eq.(69) can be rewritten as

Fij = Vsurvey

∫ 1

−1

dµ

∫ kmax

kmin

∂Pg(k, µ)

∂pi

∂Pg(k, µ)

∂pj
·

·
[

1

Pg(k, µ) + n−1

]2
2πk2dk

2 (2π)3
, (70)

whereµ = k̂ · r̂ , with r̂ denoting the unit vector along the line of
sight.

Seo & Eisenstein (2007) obtained simple fitting formulae for
estimated errors ins/DA(z) andsH(z) by approximating Eq.(70)
with

Fij ≃ Vsurvey

∫ 1

−1

dµ

∫ kmax

kmin

∂Pb(k, µ|z)

∂pi

∂Pb(k, µ|z)

∂pj
·

·
[

1

P lin
g (k, µ|z) + n−1

]2
2πk2dk

2 (2π)3
, (71)

wherePb(k, µ|z) is the power spectrum that contains baryonic fea-
tures. The linear galaxy power spectrum

P lin
g (k, µ|z) = P lin

g,r (k|z) R(µ) (72)

P lin
g,r (k|z) = [b(z)]2

[

G(z)

G(0)

]2

P lin
m (k|z = 0) (73)

whereP lin
g,r (k|z) is the linear galaxy power spectrum in real space,

b(z) is the bias factor,G(z) is the growth factor, andP lin
m (k|z =

0) is the present day linear matter power spectrum.R(µ) is the
linear redshift distortion factor given by (see Eq.[18]) (Kaiser 1987)

R(µ) =
(

1 + βµ2
)2

. (74)

The power spectrum that contains baryonic features,Pb(k, µ),
is given by (Seo & Eisenstein 2007)

Pb(k, µ|z) =
√

8π2A0 P lin
g (k0.2, µ|z)

sin(x)

x
·

· exp

[

−(kΣs)
1.4 − k2Σ2

nl

2

]

, (75)

where we have define

k0.2 ≡ 0.2 h Mpc−1 (76)

x ≡
(

k2
⊥s2

⊥ + k2
‖s

2
‖

)1/2
(77)

k‖ = k · r̂ = kµ (78)

k⊥ =
√

k2 − k2
‖ = k

√

1 − µ2. (79)

The nonlinear damping scale

Σ2
nl = (1 − µ2)Σ2

⊥ + µ2Σ2
‖

Σ‖ = Σ⊥(1 + fg)

Σ⊥ = 12.4 h−1Mpc
(

σ8

0.9

)

· 0.758
G(z)

G(0)
pNL

= 8.355 h−1Mpc
(

σ8

0.8

)

· G(z)

G(0)
pNL, (80)

where the growth ratefg = d ln G(z)/d ln a. The parameter
pNL indicates the remaining level of nonlinearity in the data; with
pNL = 0.5 (50% nonlinearity) as the best case, andpNL = 1
(100% nonlinearity) as the worst case (Seo & Eisenstein 2007).
For a fiducial model based on WMAP3 results (Spergel et al. 2007)
(Ωm = 0.24, h = 0.73, ΩΛ = 0.76, Ωk = 0, Ωbh

2 = 0.0223,
τ = 0.09, ns = 0.95, T/S = 0), A0 = 0.5817, P0.2 =
2710 σ2

8,g , and the Silk damping scaleΣs = 8.38 h−1Mpc (Seo
& Eisenstein 2007).

Defining

p1 = ln s−1
⊥ = ln(DA/s), (81)

p2 = ln s‖ = ln(sH), (82)

substituting Eq.(75) into Eq.(71), and making the approximation of
cos2 x ∼ 1/2, we find

Fij ≃ VsurveyA2
0

∫ 1

0

dµ fi(µ) fj(µ)

∫ kmax

0

dk k2 ·

·
[

P lin
m (k|z = 0)

P lin
m (k0.2|z = 0)

+
1

nP lin
g (k0.2, µ|z) e−k2µ2σ2

r

]−2

· exp
[

−2(kΣs)
1.4 − k2Σ2

nl

]

, (83)

whereP lin
g (k0.2, µ|z) is given by Eq.(72) withk = k0.2, and

kmax = 0.5 hMpc−1 (Seo & Eisenstein 2007). Note that we have
added the damping factor,e−k2µ2σ2

r , due to redshift uncertainties,
with

σr =
∂r

∂z
σz (84)

wherer is the comoving distance from Eq.(2). The functionsfi(µ)
are given by

f1(µ) = ∂ ln x/∂p1 = µ2 − 1 (85)

f2(µ) = ∂ ln x/∂p2 = µ2. (86)
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The square roots of diagonal elements of the inverse of the
Fisher matrix of Eq.(83) give the estimated smallest possible
measurement errors ons−1

⊥ and s‖. The estimated errors are
independent of cosmological priors, thus scale with (area)−1/2, for
a fixed survey depth.

Full P (k) Method
Since the fullPg(k) is measured from a galaxy redshift sur-

vey, it is also useful to make forecasts of dark energy constraints
using the fullPg(k). The observed galaxy power spectrum can
be reconstructed using a particular reference cosmology, including
the effects of bias and redshift-space distortions (Seo & Eisenstein
2003):

P obs
g (kref

⊥ , kref
‖

)

=

[

DA(z)ref
]2

H(z)

[DA(z)]2 H(z)ref
b2

(

1 + β µ2
)2

[

G(z)

G(0)

]2

Pm(k)z=0

+Pshot, (87)

whereµ = k · r̂/k, with r̂ denoting the unit vector along the line
of sight;k is the wavevector with|k| = k. Henceµ2 = k2

‖/k2 =

k2
‖/(k

2
⊥ + k2

‖). The values in the reference cosmology are denoted
by the subscript “ref”, while those in the true cosmology have no
subscript. Note that

kref
⊥ = k⊥DA(z)/DA(z)ref , kref

‖
= k‖H(z)ref/H(z).(88)

Eq.(87) characterizes the dependence of the observed galaxy power
spectrum onH(z) andDA(z) due to BAO, as well as the sensitiv-
ity of a galaxy redshift survey to the linear redshift-spacedistortion
parameterβ (see Eq.[19]).

The observed galaxy power spectrum in a given redshift shell
centered at redshiftzi can be described by a set of parameters,
{H(zi), DA(zi), G(zi), β(zi), P i

shot, nS , ωm, ωb}, wherenS

is the power-law index of the primordial matter power spectrum,
ωm = Ωmh2, andωb = Ωbh

2 (h is the dimensionless Hubble
constant). Note thatP (k) doesnot depend onh if k is in units of
Mpc−1, since the matter transfer functionT (k) only depends on
ωm and ωb (Eisenstein & Hu 1998),1 if the dark energy depen-
dence ofT (k) can be neglected. Note also thatT (k) is normalized
such thatT (k → 0) = 1. SinceG(z), b, and the power spectrum
normalizationP0 are completely degenerate in Eq.(87), they can be
combined into a single parameter,G(zi) ≡ b(z)G(z) P

1/2
0 /G(0).

The square roots of diagonal elements of the inverse of the
full Fisher matrix of Eq.(69) gives the estimated smallest possible
measurement errors on the assumed parameters. The parameters
of interest are{H(zi), DA(zi), β(zi)}, all other parameters are
marginalized over. Note that the estimated errors we obtainarein-
dependent of cosmological priors since no priors are explicitly im-
posed, thus scale with (area)−1/2 for a fixed survey depth. Priors
onωm, ωb, Ωk, andnS will be required to obtain the errors on dark
energy parameters if only BAO data are considered.

In order to compare the “wiggles only” method and the full
P (k) method for BAO forecast, we must include the nonlinear ef-
fects in the same way in both methods. We can include nonlin-
ear effects in the full power spectrum calculation by modifying the
derivatives ofPg(k) with respect to the parameterspi as follows
(Seo & Eisenstein 2007)

1 Massive neutrinos can suppress the galaxy power spectrum amplitudes
by >

∼ 4% on BAO scales (Hu, Eisenstein, & Tegmark 1998; Eisenstein &
Hu 1999).

∂Pg(k, µ|z)

∂pi
=

∂P lin
g (k, µ|z)

∂pi
· exp

(

−1

2
k2Σ2

nl

)

. (89)

The damping is applied to derivatives ofPg(k), rather thanPg(k),
to ensure that no information is extracted from the damping itself
(Seo & Eisenstein 2007). Eq.(70) becomes

Fij = Vsurvey

∫ 1

−1

dµ

∫ kmax

kmin

∂ ln P lin
g (k, µ)

∂pi

∂ ln P lin
g (k, µ)

∂pj
·

·
[

nP lin
g (k, µ)

nP lin
g (k, µ) + 1

]2

e−k2Σ2

nl
2πk2dk

2 (2π)3
. (90)

Under the same assumptions, the fullPg(k) method can boost the
Figure-of-Merit (FoM) for constraining dark energy by a factor
of ∼3-4, compared to the “wiggles only” method (see e.g., Wang
(2009)), if no other data or priors are added, and redshift-space
distortions are marginalized over in theP (k) method (Seo &
Eisenstein 2003; Wang 2006). The two methods give very similar
constraints on the BAO scaless/DA(z) and sH(z) (Seo &
Eisenstein 2007; Wang 2009); the difference comes in the useof
additional information from the broad shape ofPg(k) in the full
P (k) method.

Galaxy Number Density
For a given galaxy redshift survey, the galaxy number den-

sity n(z) and bias functionb(z) should be modeled using available
data and supplemented by cosmological N-body simulations that
include galaxies (Angulo et al. 2008). Sincen(z) andb(z) depend
on survey parameters such as the flux limit and the target selection
method and efficiency, a more generic galaxy number density given
by assumingnP r

g (k0.2|z) = 3 is often used in Fisher matrix fore-
casts (Seo & Eisenstein 2007), whereP r

g (k0.2|z) is the real space
power spectrum of galaxies atk = 0.2 h Mpc−1 and redshiftz.
Note that this assumption means

nP r
g (k0.2|z) = Pm(k0.2|0) n(z) b2(z)

[

G(z)

G(0)

]2

= 3, (91)

whereG(z) is the growth factor, andb(z) is the bias factor. Assum-
ing a fiducial cosmological model that fits all current observational
data,G(z) decreases by about a factor of 2 fromz = 0 to z = 2,
while b(z) may increase withz somewhat and is dependent on the
type of galaxies sampled by the survey.

For an ambitious yet feasible galaxy redshift survey of Hα
emission line galaxies, using a fully empiricaln(z) derived from
current observational data (Geach et al. 2009), and a bias fac-
tor b(z) derived from cosmological N-body simulations calibrated
with current observational data (Orsi et al. 2010),nP r

g (k0.2|z) > 3
near the median redshift (zm ∼ 1), while nP r

g (k0.2|z) < 3 at
z ∼ 2, assuming a realistic efficiency for galaxy spectroscopy
(Cimatti et al. 2009). This is as expected. The observed galaxy
number densityn(z) from a flux-limited survey peaks at the me-
dian redshift, and decreases sharply in the highz tail, as the number
of galaxies fainter than the flux limit increases. The increase in the
bias factorb(z) is not fast enough to compensate for the decrease
in bothG(z) andn(z) to satisfynP r

g (k0.2|z) > 3 atz ∼ 2. There-
fore, assumingnP r

g (k0.2|z) = 3 is likely too optimistic, while
assumingn(z) [b(z)/b(0)]2 P r

g (k0.2|z = 0) = 3 could be a con-
servative alternative in Fisher matrix forecasts for a generic galaxy
redshift survey (Wang 2009).
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6 PROBING THE COSMIC GROWTH RATE USING
REDSHIFT SPACE DISTORTIONS

A galaxy redshift survey can allow us to measure bothH(z) and
fg(z) (Guzzo et al. 2007; Wang 2008). The measurement offg(z)
can be obtained through independent measurements of redshift-
space distortion parameterβ = fg(z)/b (Kaiser 1987) and the bias
parameterb(z) (which describes how light traces mass) (Guzzo et
al. 2007).

6.1 Measuring redshift-space distortion parameterβ

The parameterβ can be measured directly from galaxy redshift sur-
vey data by studying the observed two-point redshift-spacecorre-
lation function (Hawkins et al. 2003; Tegmark et al. 2006; Ross et
al. 2007; daAngela et al. 2006). Hamilton (1998) reviewed various
techniques for measuringβ.

Peculiar velocities of galaxies lead to systematic differences
between redshift-space and real-space measurements, and the ef-
fects are a combination of large-scale coherent flows induced by
the gravity of large-scale structure, and a small-scale random ve-
locity of each galaxy (see Sec.3.2). The large-scale flows compress
the contours ofξ(rp, πs) along theπs direction (along the line of
sight), with the degree of compression determined byβ. Kaiser
(1987) showed that the coherent infall velocities lead to the follow-
ing relation between the redshift-space power spectrumPs(k) and
the real-space power spectrumPr(k) (Kaiser 1987), see Eq.[18]):

Ps(k, µ) =
(

1 + βµ2
)2

Pr(k, µ), (92)

whereµ = k · r̂/k, with r̂ denoting the unit vector along the line
of sight;k is the wavevector with|k| = k. The small-scale random
motion of galaxies leads to a smearing in the radial direction (the
“Finger of God” effect).

Linear Regime
In the linear regime, the ratio of the spherically-averagedtwo

point correlation function in redshift-space and real space is given
by

ξ(s)

ξ(r)
= 1 +

2β

3
+

β2

5
. (93)

Recall that the redshift-space correlation functionξ(s) can be ob-
tained by spherically averaging the measured redshift-space corre-
lation functionξ(rp, πs) (see Eq.[60]) at constants =

√

π2
s + r2

p

(see Sec.4.2).
Since the two-point correlation function is defined by the joint

probability of finding galaxies centered within the volume elements
dV1 anddV2 at a given separation, the projected correlation func-
tion (integrated along the line-of-sight) should be the same in real
and redshift space – both give the two-point angular correlation
function. Thus the real-space correlation functionξ(r) can be es-
timated by inverting the projected redshift-space correlation func-
tion Ξ(rp) (i.e., the angular correlation function) (Davis & Peebles
1983):

ξ(r) = − 1

π

∫ ∞

r

drp
Ξ′(rp)

(r2
p − r2)1/2

(94)

where

Ξ(rp) = 2

∫ ∞

0

dπs ξ(rp, πs). (95)

Fig.13 shows the ratio ofξ(s) to ξ(r) for the 2dFGRS data

Figure 13. The ratio ofξ(s) to ξ(r) for the 2dF combined data (solid
points), and the Hubble Volume simulation (solid line) (Hawkins et al.
2003). The mean of the mock catalog results is also shown (white line),
with the rms errors shaded. The error bars on the 2dF data are from the rms
spread in mock catalog results.

(Peacock et al. 2001), obtained by Hawkins et al. (2003).

Nonlinear Regime
In the nonlinear regime, the parameterβ can be measured by

fitting the measuredξ(rp, πs) (see Sec.4.2) to a phenomenological
model (Peebles 1980)

ξ(rp, πs) =

∫ ∞

−∞

dv f(v) ξ̃

(

rp, πs − v

a(z)H(z)

)

, (96)

where ξ̃(rp, πs) is the linear redshift-space correlation function.
Hamilton (1992) derived the model for̃ξ(rp, πs) by translating
Eq.(92) from Fourier space into real space:

ξ̃(rp, πs) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (97)

wherePl(µ) are Legendre polynomials,µ = cos θ, with θ denoting
the angle between the position vectorr andπs, and

ξ0(s) =

(

1 +
2β

3
+

β2

5

)

ξ(r), (98)

ξ2(s) =

(

4β

3
+

4β2

7

)

[

ξ(r) − ξ(r)
]

, (99)

ξ4(s) =
8β2

35

[

ξ(r) +
5

2
ξ(r) − 7

2
ξ(r)

]

, (100)

where

ξ(r) =
3

r3

∫ r

0

dr′ ξ(r′)r′2, (101)

ξ(r) =
5

r5

∫ r

0

dr′ ξ(r′)r′4. (102)

The small-scale random motions can be modeled by

f(v) =
1

σp

√
2

exp

(

−
√

2|v|
σp

)

(103)

whereσp is the pairwise peculiar velocity dispersion. Convolution
in real space becomes multiplication in Fourier space, so Eq.(96)
becomes
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Figure 14. Contours of two-point correlation functionξ(rp, πs) for the
2dFGRS data (solid lines) and the best-fitting model using the Hubble Vol-
umeξ(r) fitted to scales8 < s < 30 h−1Mpc (dashed lines) (Hawkins et
al. 2003). Contours levels are atξ = 4.0, 2.0, 1.0, 0.5, 0.2, 0.1, 0.05, and
0.0 (thick line). Note that the labelsσ = rp, andπ = πs.

Ps(k) = f̂(k‖)P
lin
s (k) = f̂(k‖)

(

1 + βµ2
)2

Pr(k), (104)

wheref̂(k‖) is the Fourier transform off(v) (Hamilton 1998):

f̂(k‖) =

∫ ∞

−∞

dv f(v)eik‖v =
1

1 + 1
2
(σpk‖)2

, (105)

wherek‖ = kµ.
Fig.14 shows the 2dF two-point galaxy correlation function

ξ(rp, πs), with the redshift-space distortions very clearly indicated.
This yielded a measurement ofβ = 0.49 ± 0.09 in a multi-
parameter fit toξ(rp, πs) (Hawkins et al. 2003). The error bars
are determined using the rms spread of results in Mock catalogs.
These catalogs are generated from Hubble Volume simulations in
the fiducial cosmology.

Guzzo et al. (2007) showed how the estimators ofβ can be
tested for both statistical and systematic errors.

6.2 Measuring the bias factor

In order to measure the growth ratefg(z) = b(z)β(z), we need to
measure the bias factorb(z), in addition to the linear redshift-space
distortion factorβ(z). If we know that bias is linear, i.e.,δg(x) =
bδm(x), thenb(z) ≃ σ8,g/σ8,m (the ratio ofσ8 for galaxies and
matter). Thusfg(z)σ8,m ≃ β(z)σ8,g . The measurement ofβ(z)
andσ8,g thus provides a measurement offg(z)σ8,m, which can be
used directly to test gravity (Percival & White 2009; White,Song,
& Percival 2009).

However, it is important to directly measure the bias factor, in-
cluding its scale-dependence (which is one of the main systematic
uncertainties in the BAO scale measurement, see Sec.3.3). This can
be done through the comparison of the measured probability distri-
bution function of galaxy fluctuations with theoretical expectations
(Sigad, Branchini, & Dekel 2000; Marinoni et al. 2005). Herewe
focus on another method that utilizes the galaxy bispectrum.

We can assume that the galaxy density perturbationδg is re-

lated to the matter density perturbationδ(x) as follows (Fry & Gaz-
tanaga 1993):

δg = f [δ(x)] ≃ b1δ(x) + b2δ
2(x)/2

≃ b1δ
(1)(x) + b1δ

(2)(x) +
1

2
b2

[

δ(1)(x)
]2

. (106)

Thus to second order (Matarrese, Verde, & Heavens 1997)

〈δg1δg2δg3〉 = b3
1

〈

δ
(1)
1 δ

(1)
2 δ

(2)
3

〉

+cyc.+
b2
1b2

2

〈

δ
(1)
1 δ

(1)
2

[

δ
(1)
3

]2
〉

+cyc.(107)

where “cyc.” refers to the permutations{231} and{312}.
The galaxy bispectrum is defined by

〈δ
gk1

δ
gk2

δ
gk3

〉 ≡ (2π)3 B(k1, k2, k3) δD(k1 + k2 + k3). (108)

Using the expression forδ(2)

k from Catelan et al. (1995) and
Eq.(107), we find

B(k1, k2, k3) =

{

Pg(k1)Pg(k2)

[

2J(k1, k2)

b1
+

b2

b2
1

]

+ cyc.

}

·

·δD(k1 + k2 + k3), (109)

where we have used

〈δgk1
δgk2

〉 = (2π)3Pg(k1)δ
D(k1 + k2), (110)

with δD denoting the Dirac delta function. Eq.(110) follows from
Eqs.(56), (57), (27) and (29).J is a function that depends on the
shape of the triangle formed by (k1, k2, k3) in k space, but only
depends very weakly on cosmology (Matarrese, Verde, & Heavens
1997):

J(k1, k2, Ωm) = 1−B(Ωm)+
k1 · k2

2k1k2

(

k1

k2
+

k2

k1

)

+B(Ωm)
(k1 · k2

k1k2

)2

,(111)

whereB(Ωm) ≃ 2/7 (assuming no coupling of dark enegry to
matter), and is insensitive toΩm (Bouchet et al. 1992; Catelan et
al. 1995).

Verde et al. (2002) applied the galaxy bispectrum method for
measuringbi to the 2dF data. Independent measurements ofβ(z)
and bi(z) have only been published for the 2dF and VVDS data
(Hawkins et al. 2003; Verde et al. 2002; Marinoni et al. 2005;
Guzzo et al. 2007).

The large-scale infall (parametrized by the redshift-space
distortion parameterβ, see Eq.[92]) and small-scale smearing
(parametrized by the pairwise velocityσp) lead to the power spec-
trum in redshift space (see Eq.[104]):

Ps(k) = P (k)

(

1 + βµ2
)2

1 + k2µ2σ2
p/2

. (112)

Note thatσp is implicitly divided byH0. The bispectrum is modi-
fied similarly (Verde et al. 2002):

Bs(k1, k2, k3) = (B12 + B23 + B31)

[(

1 +
α2

V k2
1µ2

1σ
2
p

2

)

×
(

1 +
α2

V k2
2µ2

2σ
2
p

2

) (

1 +
α2

V k2
3µ

2
3σ

2
p

2

)]−1/2

, (113)

wherek3 = −k1 − k2, andµi = r · ki/(rki). The adjustable
parameterαV depends on the shape of the triangle, and must be
calibrated from simulations (Verde et al. 2002). Also

B12 =
(

1 + βµ2
1

) (

1 + βµ2
2

)

[

Ker(k1, k2)

b1
+

b2

b2
1

]

·

·Pg(k1)Pg(k2). (114)
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Figure 15.Ratio of the average measured bispectrum from 2dF galaxy red-
shift survey and the average perturbation theory predictions, relative to the
bispectrum for a fiducial unbiased modelBfid (Verde et al. 2002). The
dashed line corresponds tob1 = 1.3, b2 = 0, and the dot-dashed line
corresponds tob1 = 1.0, b2 = 0.5. The error bars are obtained via Monte
Carlo from 16 mock catalogs, and are placed centrally on the mean of the
estimates from the mock catalogs. This illustrates the level of bias in the es-
timator. The figure shows that there is no evidence of scale dependent bias
from the 2dF data.

The kernel function Ker isJ modified for redshift space (Verde et
al. 1998; Heavens, Matarrese, & Verde 1998):

Ker(k1, k2) = J(k1, k2)b1 + µ2βb1K
(2)(k1, k2) + µ2

1µ
2
2β

2b2
1

+
b2
1β

2

(

µ2
1 + µ2

2

)

+
b2
1β

2
µ1µ2

(

k1

k2
+

k2

k1

)

+
b2
1β

2

2
µ1µ2

(

µ2
2
k2

k1
+ µ2

1
k1

k2

)

, (115)

with µ = −µ3, and (Catelan & Moscardini 1994)

K(2)(k1, k2) =
3

7
+

k1 · k2

2k1k2

(

k1

k2
+

k2

k1

)

+
4

7

(k1 · k2

k1k2

)2

.(116)

Eqs.(113)-(115) show how the bispectrum can allow us to measure
the bias parameters.

The bispectrum depends onβ, σp, andPg, in addition to the
bias parametersb1 and b2. The bispectrum and power spectrum
data come from Fourier transforming the galaxy number density
distributionn(r ) through (see the discussion of the FKP method in
Sec.4.1)

F (r) ≡ λw(r) [n(r) − αsns(r)] , (117)

whereλ is a constant to be determined, andns(r) is the number
density of a random catalog with the same selection functionas the
real catalog, but with1/αs times (αs 6 0.2) as many particles. The
weightw(r) = 1/[1 + P0n̄(r)] has been chosen to minimize the
variance of higher-order correlation functions (Scoccimarro 2000),
wheren̄(r) is the average number density of galaxies at positionr ,
andP0 is the power spectrum to be estimated. Since the results are
not sensitive toP0, it can be chosen to be a constant, for example,
P0 = 5000 h−3Mpc3, to enable the use of a fast Fourier transform.
If we setλ = I

−1/2
22 , where (Matarrese, Verde, & Heavens 1997)

Iij ≡
∫

d3wi(r)n̄j(r) (118)

then the power spectrum may be estimated from

〈

|Fk|2
〉

= Pg(k) +
I21

I22
(1 + α), (119)

and Eq.(112) can be used to remove the redshift-space distortions.
The bispectrum may be estimated from

〈

Fk1
Fk2

Fk3

〉

=
I33

I
3/2
22

{

Bg(k1, k2, k3) +
I32

I33
[Pg(k1) + Pg(k2) + Pg(k3)]

+
(

1 − α2
) I31

I33

}

. (120)

It is assumed implicitly that the power spectrum is roughly constant
over the width of the survey window function ink-space.

The real parts ofFk1
Fk2

Fk3
are taken as data, for triangles

in k space (k1 + k2 + k3 = 0). Each triangle yields an estimate of
a linear combination ofc1 ≡ 1/b1 andc2 ≡ b2/b2

1 (see Eqs.[113]
and [115]). Triangles of different shapes (i.e., differentKer[k1, k2])
must be used to lift the degeneracy between nonlinear gravity and
nonlinear bias (Verde et al. 2002).

Verde et al. (2002) found thatb1 = 1.04 ± 0.11 and b2 =
−0.054 ± 0.08 for the 2dF galaxy redshift survey. Their results
were marginalized overβ andσp. Fig.15 shows their bispectrum
measurement from 2dF (Verde et al. 2002).

6.3 Usingfg(z) and H(z) to test gravity

The cause for the observed cosmic acceleration could be an un-
known energy component in the universe (i.e., dark energy),or
a modification of general relativity (i.e., modified gravity). These
two possibilities can be differentiated, since given thesame cos-
mic expansion historyH(z), the modified gravity model is likely
to predict a growth rate of cosmic large scale structurefMG

g (z) that
differs from the prediction of general relativityfH

g (z). The growth
rate associated with dark energy,fH

g (z), depends only onH(z) if
dark energy is not coupled to dark matter, and dark energy pertur-
bations are negligible (which is true except on very large scales)
(Ma et al. 1999). The growth rate associated with modified gravity,
fMG

g (z), depends on the details of how general relativity is modi-
fied.

A suitably designed galaxy redshift survey would allow the
measurement of the cosmic expansion historyH(z) from BAO (see
Sec.1), and the growth rate of cosmic large scale structure

fg(z) = β(z)b(z) (121)

from the independent measurements of the linear redshift-space
distortion parameterβ (see Sec.6.1), and the bias factor between
the galaxy and matter distributionsb(z) (see Sec.6.2). The mea-
surement of bothH(z) andfg(z) allows us to differentiate between
dark energy and modified gravity.

Fig.16 shows the errors onH(z) andfg(z) = β(z)b(z) for
a dark energy model that gives the sameH(z) as a DGP gravity
model with the sameΩ0

m, for a NIR galaxy redshift survey covering
11,931 (deg)2, and the redshift range0.5 < z < 2 (assuming a
conservative nonlinear cut equivalent topNL = 0.6), compared
with current data (Wang 2008). We have neglected the very weak
dependence of the transfer function on dark energy at very large
scales in this model (Ma et al. 1999), and added an uncertainty in
ln b (extrapolated from the 2dF measurement) in quadrature to the
estimated error onβ.

Fig.16(b) shows thefg(z) for a modified gravity model (the
DGP gravity model) withΩ0

m = 0.25 (solid line), as well as a
dark energy model that gives the sameH(z) for the sameΩ0

m

(dashed line). The cosmological constant model from Fig.16(a) is
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(a)

(b)

Figure 16.Current and expected future measurements of the cosmic expan-
sion historyH(z) and the growth rate of cosmic large scale structurefg(z)
(Wang 2008). The future data correspond to a NIR galaxy redshift survey
covering>10,000 square degrees and0.5 < z < 2. If the H(z) data are
fit by both a DGP gravity model and an equivalent dark energy model that
predicts the same expansion history, a survey area of∼ 14, 000 (deg)2 is
required to rule out the DGP gravity model at> 99% confidence level.

also shown (dotted line). Clearly, current data can not differentiate
between dark energy and modified gravity. A very wide and deep
galaxy redshift survey provides measurement offg(z) accurate to a
few percent [see Fig.16(b)]; this will allow an unambiguousdistinc-
tion between dark energy models and modified gravity models that
give identicalH(z) [see the solid and dashed lines in Fig.16(b)].
A survey covering∼ 14, 000 (deg)2 would rule out the DGP grav-
ity model that gives the sameH(z) andΩ0

m at > 99% confidence
level (Wang 2008).

Under quite conservative assumptions about systematic uncer-
tainties, a Stage IV galaxy redshift survey, with0.7 < z < 2 over
15,000 (deg)2 (e.g., the Euclid galaxy redshift survey), can measure
{xh(z), xd(z), fg(z)G(z)P̃

1/2
0 /s4} with high precision (where

fg(z) andG(z) are the linear growth rate and factor of large scale
structure respectively, and̃P0 is the dimensionless normalization of
P obs

g (k)), when redshift-space distortion information is included

Figure 17.Precision ofxh(z) ≡ H(z)s andxd(z) ≡ DA(z)/s expected
from StageIV+BOSS. The top panel shows the percentage errors onxh(z)
andxd(z) per∆z = 0.1 redshift bin, the bottom panel shows the normal-
ized correlation coefficient betweenxh(z) andxd(z).

(Wang 2012). The measurement offg(z)G(z)P̃
1/2
0 /s4 provides

a powerful test of gravity, and significantly boosts the darkenergy
FoM when general relativity is assumed. Fig.17 shows the measure-
ment precision ofxh(z) andxd(z) for StageIV+BOSS. The top
panel shows the percentage errors onxh(z) andxd(z), the bottom
panel shows the normalized correlation coefficient betweenthem.
The thick solid and dashed lines represent the measurement preci-
sion ofxh(z) andxd(z) from theP (k) method, marginalized over
all other parameters. The thin dotted and dot-dashed lines represent
the measurement ofxh(z) andxd(z) from the BAO only method.
The top panel of Fig.18 shows the measurement uncertaintieson
fg(z)G(z)P̃

1/2
0 /s4 andβ(z) for StageIV+BOSS per∆z = 0.1

redshift bin. The bottom panel of Fig.18 shows the uncertainties
on the growth rate powerlaw indexγ for StageIV+BOSS, with and
without Planck priors. Note thatγ is defined by parametrizing the
growth rate as a powerlaw (Wang & Steinhardt 1998; Lue, Scocci-
marro, & Starkman 2004),

fg(z) = [Ωm(a)]γ , (122)

where Ωm(a) = 8πGρm(a)/(3H2). The solid lines in the
bottom panel of Fig.18 show the precision onγ using only
the {xh(z), xd(z), fg(z)σm(z)/s4} measured fromP (k) and
marginalized over all other parameters. The dashed lines show the
precision onγ when the fullP (k) is used, including the growth
information (i.e., the ”P (k) + fg” method).
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Figure 18. Top: uncertainties onfg(z)G(z)P̃
1/2
0 /s4 and β(z) for

StageIV+BOSS per∆z = 0.1 redshift bin. Bottom: uncertainties on the
growth rate powerlaw indexγ for StageIV+BOSS, with and without Planck
priors.

7 THE ALCOCK-PACZYNSKI TEST

Alcock & Paczynski (1979) noted that if an astrophysical structure
is spherically symmetric, then its measured radial and transverse
dimensions can be used to constrain the cosmological model.A
galaxy redshift survey enables the Alcock-Paczynski test to be car-
ried out.

Features in the galaxy power spectrum, such as the BAO,
should have the same length scale in the radial and transverse di-
rections. The radial length scale is measured using

H(z)∆r‖ = c∆z, (123)

where∆z is the redshift interval spanned by∆r‖. The transverse
length scale is measured using

∆r⊥ = DA(z)∆θ, (124)

where∆θ is the angle subtended by∆r⊥.
Thus the Alcock-Paczynski test of requiring that∆r⊥ = ∆r‖

leads to

H(z)DA(z)

c
=

∆z

∆θ
. (125)

This provides a cross check of the measuredH(z) andDA(z) de-
rived from the BAO scale measurements.

Redshift-space distortions (a source of cosmological informa-
tion themselves) introduce a systematic uncertainty in theAlcock-
Paczynski test. Unless properly modeled and removed, redshift-
space distortions can alter the measured length scale in thera-

dial direction from galaxy redshift surveys, and bias the Alcock-
Paczynski test.
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