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ABSTRACT

Galaxy clustering is one of the most powerful probes of the mature of the observed
cosmic acceleration. It contains baryon acoustic osilhat (BAO) that are cosmological
standard rulers calibrated by the cosmic microwave backgt@nisotropy data. The BAO
allows us to measure the cosmic expansion history direBdyond the BAO, the full shape
of galaxy clustering (either in the measured galaxy powecspm or the galaxy correlation
function) provides significantly more cosmological infation, and in particular, allows us to
test deviations from general relativity via the redshifisp distortions. Here we introduce the
basic ideas and analysis techniques for using galaxy clngtdata to constrain dark energy
and test gravity. We examine the critical issues, curreust as well as future prospects.

@)

Since the 1980s, galaxy redshift surveys have been used tos; « sH(z), S§1 X ;,
map the large scale structure in the universe, and congtoaimo- Da(2)

logical parameters. Galaxy redshift surveys are powersutiark wheres is the sound horizon scale at the drag epoch, and the angu-

energy probe, since they can allow us to measure the cosmic exX | diameter distanc®.4(z) = r(z)/(1 + z), with r(z) denoting
pansion historyH () through the measurement of baryon acous- the comoving distance given by

tic oscillations (BAO) in the galaxy distribution, and theogth

history of cosmic large scale structufg(z) through independent r(z) = cHy * |Qk] ™ 2sinn[|Q% | ? T(2)], %))
measurements of redshift-space distortions and the bitar fae- 24y
tween the distribution of galaxies and that of matter (Wa0@g}. I'(z) = / B’ E(z) = H(z)/Ho

0

wheresinn(z) = sin(z), x, sinh(z) for Qx < 0, Q, = 0, and
Q. > 0 respectively. Thus comparing the observed BAO scales
1 BARYON ACOUSTIC OSCILLATIONS AS STANDARD with the expected values give¥(z) in the radial direction, and

RULER Da(z) in the transverse direction.

The use of BAO as a cosmological standard ruler is a relgtivel

new method for probing dark energy (Blake & Glazebrook 2003; Calibration of the BAO Scale

Seo & Eisenstein 2003), but it has already yielded impressiv CMB data give us the comoving sound horizon at photon-
observational results (Eisenstein et al. 2005). decoupling epoch (Eisenstein & Hu 1998; Page 2003)

. boegdt o c
Measuring H(z) and D (z) from BAO rs(2s) = / == = Hgl/ dz —=

At the last scattering of CMB photons, the acoustic oscilla- 0 a Zx B(z)

tions in the photon-baryon fluid became frozen, and impditieir _ og! /“* da 3)
signatures on both the CMB (the acqusFlc peaks in the CMB.angu 0 o \/3(1 + Rp) a*E2(2) ’
lar power spectrum) and the matter distribution (the bagaustic
oscillations in the galaxy power spectrum). Because baryom- wherea is the cosmic scale factat, = 1/(1 + z.), and
prise only a small fraction of matter, and the matter powecspm - ) .
has evolved significantly since last scattering of phot&#s) are a”E7(2) = Qm(a + aeq) + Qa” + QUx X (2)a”, (4)

much smaller in amplitude than the CMB acoustic peaks, aed ar
washed out on small scales.

BAO in the observed galaxy power spectrum have the char-
acteristic scale determined by the comoving sound horitdhea
drag epoch (shortly after photon-decoupling), which iscizey Qrad 1
measured by the CMB anisotropy data (Page 2003; Spergel et al @Geq = Q. 1+2
2007; Komatsu et al. 2009). The observed BAO scales appear as i o
slightly preferred redshift separatiep and angular separation : We have assumed three massless neutrino species, so thadithe

where the dark energy density functidf(z) = px(z)/px(0),
and the cosmic scale factor at the epoch of matter and radiati
equality is given by

Tems\ *
N Zeq = 2.5X104Q7nh2 (W) (5)
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ation energy density today is (Kolb & Turner 1990)

0 w? 04
Prad = 35 g9:Icmp,

0_ o, T 4\*/3
g*_2+8X2X3X(11) (6)

The sound speed, and the baryon/photon rati&, are given by

2= p ’opy /3 c? . c? @)

ST 0p Spy+opp 3(1+pu/py)  3(1+Ry)
Ry=2 —Fya T = 315000k (M)%.(S)

4p, ’ 27K

We have use@, o a~* andp, o a2,
COBE four year data giv&cn s = 2.728 + 0.004 K (95%

C.L.) (Fixsen et al. 1996). The data from WMAP 5 year obser-
vations give the redshift and the sound horizon at the photon

decoupling epoch

ze = 1090.51 £ 0.95,  74(z.) = 146.8 + 1.8 Mpc, 9)

assuminglcy s = 2.725 (Komatsu et al. 2009). The BAO scale

measured in galaxy redshift surveys correspond to the sbarid
zon scale at thdrag epoch (Hu & Sugiyama 1996).

The drag epoch occurs when the photon pressure (or “Comp-

ton drag”) can no longer prevent gravitational instabilitythe
baryons. Thus there is no reason for the photon-decoupfinghe
z«, to be the same as the drag epogh,The scattering in the pho-

ton/baryon fluid leads to an exchange of momentum, with memen
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Figure 1. The large-scale redshift-space correlation function ef #DSS
LRG sample measured by Eisenstein et al. (2005). The errerava from
the diagonal elements of the mock-catalog covariance métre points
are correlated). Note that the vertical axis mixes logarithand linear
scalings. The inset shows an expanded view with a lineaicaéraxis.

tum densities for photons and baryons given by (Hu & Sugiyama The models ar€,,h2 = 0.12 (top), 0.13 (middle), and 0.14 (bottom),

1996):
4
(py +p09) Vy gpﬂf7 for photons
(o +p) Vo =~ pVh for baryons (10)

whereV,, andV, are the photon and baryon bulk velocities. As a
consequence of momentum conservation, the rate of chartge of

baryon velocity due to Compton drag is scaled by a factdﬁpf

compared with the photon case, which means that (Hu & Sugiyam

1996)
_T
==

Td

(11)

where7, andr are the Compton optical depths for baryons an

photons respectively. Since the epoch of photon decouiiig-
fined by7(z.) = 1, and the drag epoch is defined hy(zq4) = 1,
ze = zq only if Ry = 1. We live in a universe with a low
baryon densityR;(z.) < 1 (see Eq.[8]), thusy(z4) = 1 requires
za < zx, I.€., the drag epoch occuafter photon decoupling (Hu
& Sugiyama 1996).

The redshift of the drag epoch; is well approximated by
(Eisenstein & Hu 1998)

210.251
=g j?ég&’;ﬁ;)o,m [1+b2(24%)"] (12)
where
b = 0.313(Qmh®)" """ [140.607(2,h%) ], (13)
by = 0.238(, k%)% (14)

Using this fitting formula forz4, Komatsu et al. (2009) found that
from the WMAP 5 year observations

s =rs(zq) = 153.3 £ 2.0Mpc,  zq = 1020.5 £ 1.6 (15)

all with Q,h2 = 0.024 andn = 0.98 and with a mild non-linear
prescription folded in. The featureless smooth line showsue CDM
model Q.,h%? = 0.105), which lacks the acoustic peak. The bump at
100~ ! Mpc scale is statistically significant.

2 BAO OBSERVATIONAL RESULTS

The power of BAO as a standard ruler resides in the fact that th
BAO scale can in principle be measured in both radial andstran
verse directions, with the radial measurement giviih@:) directly,
and the transverse measurement giving(z). However, there are

d only a few published papers on measuring the BAO scale frem th

existing galaxy redshift survey data, and most of them ektsa
spherically averaged BAO scale (Eisenstein et al. 2005il2006;
Percival et al. 2007).

Eisenstein et al. (2005) and Hutsi (2006) found roughly con-
sistent spherically averaged correlation functions uSB$S data,
with about the same BAO scale. Fig.1 shows the galaxy cdivala
function £(s) measured from the SDSS data by Eisenstein et al.
(2005). This BAO scale measurement is usually quoted indtra f
of

Apao =
m

2
S T b 1.
= ™) H )
ns
0.98

—0.35
0.469 ( ) +0.017 (16)
wherez,, = 0.35, andns denotes the power-law index of the pri-
mordial matter power spectrum. Note thét 4o essentially mea-
sures the product of a volume-averaged distance

1/3

dv o [cH ' (2) Da(2)?] ", 17)
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Figure 2. BAO in power spectra derived by Percival et al. (2007) fromn (a
the combined SDSS and 2dF main galaxies, (b) the SDSS DR5 BRS s
ple, and (c) the combination of these two samples. The dataarelated
and the errors are calculated from the diagonal terms indarance ma-
trix. A StandardACDM distance—redshift relation was assumed to calculate
the power spectra witk,,, = 0.25, 25 = 0.75. The power spectra were
then fitted with a cubic splinex BAO model, assuming the fiducial BAO
model calculated usinGAMB. The BAO component of the fit is shown by
the solid line in each panel.

multiplied by the square root of the matter densip.(z) o
Q.,h?%). The one dimensional marginalized values &xgh?
0.130 £ 0.010, anddy (zm) = 1370 £ 64 Mpc, assuming a fixed
value of Qyh? = 0.024 (Eisenstein et al. 2005). The product of
dv (zm) and Q,,h? is more tightly constrained thadhy (z,,) or
Qmh? by the data, because the measured valueg/gt.,) and
Q.. h? are correlated. Note thatg a0 o dyv - (Q2.,h%)Y/? is inde-
pendent of the Hubble constalt and its measured value is inde-
pendent of a dark energy model (Eisenstein et al. 2005).

Clearly, the BAO constraint in Eq.(16) from Eisenstein et al
(2005) is not just a simple measurement of the BAO featusdsd
relies on the constraints @&, h? from measuring the power spec-
trum turnover scale (related to matter-radiation equilifie latter
makes the BAO constraint from Eisenstein et al. (2005) lekast
than it would be otherwise. A new analysis of the SDSS dat&to d
rive truly robust and detailed BAO constraints would be vesgful
for placing dark energy constraints (Dick, Knox, & Chu 2006)

Percival et al. (2007) found that the power spectra from com-
bined SDSS and 2dF data give spherically averaged BAO satles
z = 0.2 andz = 0.35 that are inconsistent with the prediction
of the fiducial flatACDM model at 2.4; this is in contradiction
to the SN la data (which are consistent with the fidu&i@DM
model atz < 0.5 at 1o, see Riess et al. (2007)). Percival et al.
(2007) found a similar discrepancy between SDSS main andSSDS
LRG samples. Fig.2 shows BAO in power spectra calculated fro
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Figure 3. Contour plots of the redshift-space two-point correlatfanc-
tion measured from the SDSS LRG sample by Okumura et al. 2008
The right half of the figure shows their measurement, and eftehlalf
shows the corresponding analytical formula derived by Meadsa (2004)
using a linear perturbation theory (Matsubara 2004). Thredashed lines
show { < —0.01 increasing logarithmically with increment 0.25 and
—0.01 < ¢ < 0 linearly with increment 0.0025. The solid thin lines
show0 < ¢ < 0.01 increasing linearly with increment 0.0025 and
the solid thick lines¢ > 0.01 logarithmically with increment 0.25. The
baryonic feature appears marginally as ridge structuresnar the scale
s=(s2 + sﬁ)l/2 ~ 100 h~! Mpc, and the dashed circle traces the peaks
of the baryon ridges.

LRG sample, and (c) the combination of these two samples. The
data are solid symbols withs errors calculated from the diagonal
terms in the covariance matrix.

The efforts to extract the BAO scale in both radial and trans-
verse directions have led to contradicting results. Fig@\s the
contour plots of the redshift-space two-point correlationction
measured from a SDSS LRG sample (similar to DR3) by Oku-
mura et al. (2008). The baryonic feature appears marginaltidge
structures around the scale= (s + sj)'/* ~ 100 ™" Mpc, and
the dashed circle traces the peaks of the baryon ridges. Qieueh
al. (2008) found that current galaxy redshift survey dataret ad-
equate for extracting the BAO scale in both radial and trarssy
directions to measuréf(z) and D4(z). However, an indepen-
dent analysis by Gaztanaga, Cabre, & Hui (2008) found khit)
can be measured quite accurately from the SDSS DR6 data, with
H(z = 0.24) = 79.7 £ 2.1(£1.0) km s~ Mpc™* for z = 0.15-
0.30, andH (z = 0.43) = 86.5 £ 2.5(£1.0) kms™'Mpc ™! for
z = 0.40-0.47. The difference between the results of Okumura et
al. (2008) and Gaztanaga, Cabre, & Hui (2008) cannot be imgala
by the statistics of the data used (DR3 versus DR6).

Resolving the dramatic discrepancy between Okumura et al.
(2008) and Gaztanaga, Cabre, & Hui (2008) in the analysibef t
radial and transverse BAO scales is of critical importarc¢he
understanding of BAO systematics, and the accurate faiagasf
the capabilities of planned future galaxy redshift surveé\scur-
rent forecasts of future surveys assume that both radiatrand-

(a) the combined SDSS and 2dF main galaxies, (b) the SDSS DR5verse BAO scales can be accurately extracted, and use Hitner
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Fisher matrix formalism (which gives the smallest posséi®rs)
or methods based on numerical simulations that are not gt fu
validated by application to real data.

Recently, Chuang & Wang (2012a) made the first simul-
taneous measurements &f(z) and Da(z) from galaxy red-
shift survey data. They validated their method using Las&am
mock galaxy catalogs. Applying their method to the sam-
ple of SDSS DR7 LRGs, they obtaineH (» 0.35)
H(0.35) 82.1755kms *Mpc™!, Da(z 0.35)
DA(0.35) = 1048f§2 Mpc without assuming a dark energy
model or a flat Universe. They found that the derived measure-
ments of H(0.35) rs(zq4) and D4 (0.35)/rs(zq) (Wherers(zq)
is the sound horizon at the drag epoch) are nearly uncorre-
lated, have tighter constraints and are more robust withects
to possible systematic effects. Their galaxy clusteringasnee-
ments of { H(0.35) rs(zq)/c, Da(0.35)/rs(zq)} = {0.0434 +
0.0018, 6.60 +0.26} (with the correlation coefficient = 0.0604)
can be used to combine with cosmic microwave background and
any other cosmological data sets to constrain dark energig T
work has significant implications for future surveys in étith-
ing the feasibility of measuring botH (z) andD 4 (z) from galaxy
clustering data.

Fig.4 shows the 2D 2PCF measured from the SDSS LRGs
and a single LasDamas SDSS LRG mock catalog for compari-
son (Chuang & Wang 2012a). The similarity between the dada an
the mock in the range of scales used (indicated by the shaded
disk) is apparent. Due to the current limitations in the niiode
of systematic effects, only the quasi-linear scale range ot
40 — 120 h~*Mpc is used for a conservative estimate in this anal-
ysis.

Very recently, Reid et al. (2012) measurddz), D (z), and
growth constraints at = 0.57 from the monopole and quadrupole
of the 2D 2PCF of the SDSS Il Baryon Oscillation Spectroscop
Survey (BOSS) (SDSS DR9) sample of galaxies, assuming CMB
priors. Most recently, Xu et al. (2012) measut®Edz) and D 4 (z)
at z 0.35 from the SDSS DR7 LRGs by applying density-
field reconstruction to an anisotropic analysis of the BA@Qksee
Sec.3.1 for a description of this technique).

Overall, we have made dramatic progress within the last two
years toward developing robust methods to fully analyzedtte
from current and planned future galaxy redshift surveys.

3 BAO SYSTEMATIC EFFECTS

The systematic effects of BAO as a standard ruler are: bizslea
galaxy and matter distributions, nonlinear effects, andshét-
space distortions (Blake & Glazebrook 2003; Seo & Eisenstei
2003). Cosmological N-body simulations are required tonqua
tify these effects (Angulo et al. 2005; Seo & Eisenstein 2005
Springel et al. 2005; White 2005; Jeong & Komatsu 2006; Keehl
Schuecker, & Gebhardt 2007; Angulo et al. 2008).

To be specific in our discussion on the systematic effectsan t
BAO scale measurement, we will use the results from Anguéd. et
(2008) to illustrate. All the results from Angulo et al. (B)Ghown
here are from a numerical simulation covering a comovingecub
volume of side 134@ ' Mpc, in which dark matter is represented
by more than 3 billion particles (1448 with the particle mass of
5.49x10° h=! M. This simulation corresponds to a comoving
volume of 2.41h =3 Gpc&, more than three times the volume of the
catalog of SDSS LRGs used in the BAO detection by Eisenstein e
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Figure 4. The two-dimensional two-point correlation function (2DCP
measured from SDSS DR7 LRGs (top panel) and a LasDamas SDGS LR
mock catalog (bottom panel) in a redshift rariy@é6 < z < 0.44 (solid
black contours), compared to a theoretical correlatiorction with param-
eters close to the best fit values in the likelihood analydésied red con-
tours). In both figures, the shaded disk indicates the sealgerconsidered
(s = 40 — 120 h~Mpc ) in this study. The thick dashed blue circle de-
notes the baryon acoustic oscillation scale. The obse®M&PLF has been
smoothed by a Gaussian filter with rms varianc&bf ! Mpc for illustra-
tion in these figures only; smoothing is not used in our Ihetid analysis.
The contour levels aré = 0.5,0.1,0.025,0.01,0.005,0. The = 0
contours are denoted with dotted lines for clarity. (Chu&ngyang 2012a)

al. (2005). It assumes ACDM model withQ,,, = 0.25, Qa
0.75, 05 = 0.9, andh = Ho /(100 kms *Mpc~')=0.73.

In the current picture of structure formation in the unieers
primordial matter density perturbations (which are resjae for
the observed CMB anisotropy) seeded the cosmic large drate s
ture. Matter density fluctuations grew with time. Dense oagibe-
came denser, and galaxy clusters and galaxy haloes fornsehfir
such regions. Galaxy formation (in which baryons playedticat
part) occurred in galaxy haloes.

Since we have to use galaxies to trace the matter density field
it is important for a numerical simulation to assign galaxop-
erly. Angulo et al. (2008) used a semi-analytic model to dbec
the key physical processes which are thought to determanéth
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Figure 5. The nonlinear growth of the matter power spectrum (Angulo et
al. 2008). The power spectrum in real-space (measured atdsaift indi-
cated by the key) is divided by the power spectruna at 15, after taking
into account the change in the growth factor. Any deviatibithe result-

ing ratio from unity indicates a departure from linear pesaiion theory.
The dashed lines show the same ratio as predicted usingsh&zaf Smith

et al. (2003) which transforms the linear power spectrura the nonlin-
ear power spectrum (Smith et al. 2003). The simulation spoads to a
comoving volume of 2.4 3 Gpc®.

mation and evolution of galaxies; this approach mirrorshyierid
schemes introduced by Kauffmann, Nusser, & Steinmetz (1997
and Benson e tal. (2000). This model makesfamitio prediction

of which dark matter haloes should contain galaxies by model
the physics of the baryonic component of the universe (Baigh
al. 2005; Baugh 2006). The specific model used by Angulo et al.
(2008) reproduces the abundance of Lyman-break galaxies-c&
andz = 4, and the number counts of sub-mm detected galaxies
(with a median redshift ~ 2). It also gives a rough match to the
abundance of luminous red galaxies (Almeida et al. 2008},an
reasonable match to the observed properties of local gadgig.
Nagashima et al. (2005b,a); Almeida, Baugh, & Lacey (2Q07))

3.1 Nonlinear effects

On very large scale, the growth of density perturbationsgris |
ear, and the different comoving wavelength scales are net co
pled. When the amplitude of density perturbations on a gbcate
reaches order unity, nonlinear growth occurs, i.e., thdutiem

of the different wavelength modes becomes increasinglyleot,
leading to a departure from linear evolution. Thus nonlirefiects
erase the BAO in the matter power spectrum on small scaksyti
the matter power spectrum on quasi-linear scales, and diegna
BAO signal on linear scales. The characteristic comoviragesfor
nonlinearity increases with cosmic time, as density pbetions

on larger and larger comoving scales grow to be of order tnity
amplitude. Fig.5 shows the nonlinear growth of the matteveyo
spectrum measured from a numerical simulation by Anguld.et a
(2008). Nonlinear effects have to be removed or correctednfo
the data analysis in order to obtain robust BAO scale measure
ments (see for example, Refs.(Jeong & Komatsu 2006; Kaehler
Schuecker, & Gebhardt 2007; Smith, Scoccimarro, & Shetty 200
Crocce & Scoccimarro 2008)).

(© 0000 RAS, MNRASD0Q, 000—-000
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The most troublesome consequence of nonlinear effects is th
shift in the observed BAO scale in galaxy redshift surveyadaim
the CMB-calibrated prediction. It is most intuitive to cather this
effect in real space, where the nonlinear growth of denstyyp-
bations damps and shifts the BAO peak~at100h~! Mpc, be-
cause the large-scale bulk flows cause the differentialanstbf
the galaxy pairs initially separated by the sound horizadesat
the drag epoch (Eisenstein et al. 2007).

Eisenstein et al. (2007); Seo et al. (2008) introduced a odeth
to “reconstruct” the linear power spectrum from a nonlihear
evolved galaxy distribution in order to minimize the impathon-
linear effects on the constraining power of BAO as a darkgner
probe. They found that the shifts of the BAO peak can be ptedic
numerically, and can be substantially reduced (to less thato
atz = 0.3 — 1.5) using a simple “density-field reconstruction”
method (Eisenstein et al. 2007; Seo et al. 2008).

Padmanabhan, White, Cohn (2009) reformulated this recon-
struction method within the Lagrangian picture of struetfarma-
tion, and found that this reconstruction dees reproduce the lin-
ear density field, at second order. They showed that it dahscee
the damping of the BAO due to non-linear structure formation
In particular, they showed that reconstruction reducesntbee-
coupling term in the power spectrum, thus reducing the hias i
the estimated BAO scale when the reconstructed power sjpeesr
used. Note that the reconstruction technique has only beso-
strated for dark matter, and not yet for haloes or galaxies.

3.2 Redshift-space distortions

Redshift-space distortions are the consequence of pecutitions
on the measurement of the power spectrum from a galaxy fedshi
survey. Peculiar motions produce different types of digiorto the
power spectrum. On large scales, coherent bulk flows outidsvo
and into overdense regions lead to an enhancement in théydens
inferred in redshift-space, and hence to a boost in the sredv
power. On small scales, the random motions of objects insrde
alized dark matter haloes cause structures to appear ¢dohghen
viewed in redshift-space (“the finger of God” effect), lazglito a
damping of the power.

The enhancement of the power spectrum due to redshift-space
distortions, under the assumption of linear perturbatf@oty for
an observer situated at infinity (the plane parallel appnagion),
is given by (Kaiser 1987):

Py(k, 1)

Pr(k, 1)
wherePs(k, 1) is the power spectrum in redshift-spaé®(k, i) is
the power spectrum in real-space, ane- k - f /k, with f denoting
the unit vector along the line of sight. The redshift-spaistodtion
parameteg is defined as

_ fq(2)
B = 35
where f,(z) denotes the growth rate, abdz) denotes the bias
factor. Eg.(18) can be derived using
ds _
dt
whered is the matter density perturbation, atid is the peculiar
velocity, and requiring that the number of galaxies is cores

when we go from real to redshift space (Hamilton 1998).
The enhancement of the spherically averaged power spectrum

= (1481, (18)

(19)

= -V _.dv, (20)

is
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Figure 6. The ratio of the power spectrum measured for the dark maiter i
redshift-space, i.e. including the impact of peculiar i in the distance
determination, to the power spectrum measured in reales@@&tgulo et al.
2008). The deviation from unity shows the redshift-spactodiion to the
nonlinear power spectrum. The results are shown for selemigout red-
shifts, as indicated by the key. The horizontal dotted lindgate the boost
in the redshift-space power expected due to coherent flaymealicted by
Eq.(21). The dashed lines show a simple fit to the distort{eas Eq.[22]).
The simulation corresponds to a comoving volume of 2.4% Gpc®.

P (k)
P (k)
which follows from integration over.

Eq.(21) can be modified to include the damping effect due to
the “the finger of God” effect (Angulo et al. 2008):

—142541p
=1+ 36+ 6", (1)

P(k) 1428+ 1ip
P(k)  1+k202

(22)

whereo is a free parameter associated with the pairwise velocity
dispersion, see Eq.(105).
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Figure 7. The power spectrum of different galaxy samples measured in
real-space, divided by the square of an effective bias petemand the
appropriately scaled linear perturbation theory powecspen (Angulo et

al. 2008). The sample definition and the value of the effedbias used are
given by the key. The power spectrum of the dark matter specin real-
space, also divided by the linear perturbation theory spettis shown by
the dashed line. The left hand panel shows the raties-at0 and the right
hand panel at = 1. The simulation corresponds to a comoving volume of
2.41h=3 Gpc>.

the large-scale compression and the small-scale “fingeodf €f-
fect due to redshift-space distortions.

Note that the redshift-space distortions on large scalestlo
modify the BAO, and can be used to measure the linear redshift
space distortion parametgr

3.3 Scale-dependent bias

The bias factor between the tracer distribution measurethby
galaxy redshift survey and the matter distribution depesishe
tracer used. Angulo et al. (2008) showed that the clustening
haloes isnot a shifted version of that of the dark matter, in con-

Fig.6 shows the ratio of the matter power spectrum measured trast to current theoretical models. The bias between dattem

in redshift-space, to the matter power spectrum measuregbin
space (Angulo et al. 2008). Clearly, Eq.(22) provides a gded
scription for redshift-space distortion to the matter pogpectrum.

haloes and dark matter is scale-dependent, and the variatibe
degree of scale-dependence with redshift is not monotdriie.
scale-dependence of the bias for galaxies is less than fiutirio

Since we cannot directly measure the matter power spectrum, matter haloes, but still significant (Angulo et al. 2008).

we have to study the redshift-space distortion to the powec-s

trum of the type of object used as matter tracer in the galesy r
shift survey. The form of the redshift-space distortiontte power

spectrum depends on the type of object under consideration.

In current theories of galaxy formation, dark matter haloes
are hosts to galaxies. Angulo et al. (2008) found that E§.i@2
poor description of the redshift-space distortions to thekanatter
halo power spectrum, but is a reasonable description otttehift-
space distortions to the galaxy power spectrum.

The small-scale redshift-space distortions (“the finge®od”
effect) can be removed from data in the BAO measurement asing
nonlinear “finger-of-God” compression stbgfore the power spec-
trum analysis, in which a “friends-of-friends” algorithrs used
to identify the clustering of matter (Tegmark et al. 2004pvH
ever, this may introduce a degree of arbitrariness in thdtsedVe
can use the version of Eq.(22) before spherical averagidgitan
counter part in the correlation function analysis to fullpael both

Fig.7 shows the real space power spectrum for four differ-
ent samples of galaxies, divided by the square of an effettias
parameter and the appropriately scaled linear pertumbatieory
power spectrum. Samples A and B denote galaxies from an R-
magnitude limited survey with a given space density. Saniple
contains the reddest 50% of galaxies from sample A (selertied
the R— I color). Sample D contains the 50% of galaxies from sam-
ple A with the strongest emission lines, selected using theve
alent width of OII[3727]. The dashed line shows the realspa
power spectrum of matter divided by the appropriate linesr p
turbation theory power spectrum.

Note that since nonlinear effects are independent of thexgal
sample, the differences in the power spectra of the foueidifft
galaxy samples in Fig.7 indicate that bias depends stramglthe
galaxy sample, and that bias is scale-dependent. Theresfcake-
dependent bias must be properly modeled if quasi-linedeseae
included in the analysis of BAO scales.
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4 BAO DATA ANALYSIS TECHNIQUES

We will discuss two approaches to probing the BAO, using the

galaxy power spectrum (Sec.4.1) and using galaxy two-painre-
lation function (Sec.4.2). In both methods, the actualxgatiistri-
bution is compared with a catalog of randomly distributeldgias.
These randomly distributed galaxies have the same redstafg-
nitude, and mask constraints as the real data.

The BAO scales extracted from the two different analysis

methods provide an important cross-check. We will dischisgpb-
tential of each method for mitigating systematic effects.

A way to test how well we can extract the BAO scale from

real data is to apply the two analysis techniques to simdildea.
To measure the power spectrum or correlation function abges,
one must convert the angular positions and redshifts of ahexg
ies into comoving spatial separations. This requires asgpmset
of values of the cosmological parameters, including thd ear
ergy parameters. The effect of a change in the value of damiggn
parameters is to change the separations between pairsaxiesl
which leads to a change in the appearance of the galaxy ppeer s
trum and correlation function. For small perturbations yfram

the true dark energy parameters, one can assume that thgechan

in the measured galaxy power spectrum and correlation ifumct
can be represented by a rescaling of the wavenumber o

to kapp for the power spectrum, and a rescaling of the length scale

from r¢ue 10 Tapp fOr the correlation function. For simplicity, we
will focus on spherically averaged data. Témle parameter, «,
describes the change in the recovered BAO scale:

k.
a = —P2  power spectrum;
ktruc
T . .
a = -2 correlation function (23)
Tapp

If dark energy parameter are estimated correctly, theretleeno
shift in the BAO in the estimated power spectrum and= 1. In
the case of a wide-angle, deep galaxy survey with spectpiasco
redshifts, the stretch parameter can be approximated byularet
al. 2008):

—2/3 1/3
o DA(27 Xassumed) / H(257 Xassumed) / (24)
DA(Z7Xtrue) H(Z7Xtrue) ’

where X (z) =
function.

px(z)/px(0) denotes the dark energy density

The accuracy and precision of the BAO scale measurement is

reflected by that of the scale parametefThis in turn depends on

the modeling of the BAO in the data analysis. A common miscon-

ception is that the location of the BAO peaks in the galaxy @ow
spectrum or two-point correlation function correspoedactly to
the sound horizon scale at the drag epoch. This misconcegdio
lead to biased estimate of the BAO scale and hence biasatbtsti
of cosmological and dark energy parameters. To accuraxéigic
the BAO scale, the galaxy power spectrum and two-point &orre
tion function must be modeled as completely as possible.

4.1 Using the galaxy power spectrum to probe BAO

The real space galaxy power spectrum is related to the npatesr
spectrum as follows:

(© 0000 RAS, MNRASD00, 000—-000

whereb(z) is the bias factor between galaxy and matter distribu-
tions.

The matter power spectrum

The matter power spectrum is defined as
2
P (k) = || (26)

whered is the Fourier transform of the matter density perturbation
o(r), defined as

S = /5(r)ei'” &r. @7)
Therefore

ry—p 1 —ikr -
5(ry = 2 )ﬁ P _ S /5ke KT g3, (28)

with p(r) andp(r) denoting the matter density at positioand the
mean matter density respectively. Note that

/ei‘” &*r = (27)°67 (K),

wheres” denotes the Dirac delta function.
The theoretical matter power spectrum in the linear regsne i
given by

P(k)iin = Po k A2(k)T?(k),

(29)

(30)

whereP, is a normalization constarmﬁ(k) is the power spectrum

of primordial matter density fluctuations, afi{k) is the matter
transfer function. The primordial power spectrum is deiasd

by unknown inflationary physics in the very early universed a
can be measured directly from data in a model-independent ma
ner (Wang, Spergel, & Strauss 1999; Mukherjee & Wang 2003).
For simplicity, the primordial matter power spectrum is albu
parametrized as a power-law:

kAZ(K) o k™S (31)

The matter transfer functio (k) describes how the evolution of
matter density perturbations depends on scale.

In the inflationary paradigm of the very early universe, den-
sity perturbations began as quantum fluctuations produoedgl
inflation within the horizon for microphysics, the Hubbledias
H(t)™! (whereH (t) is the Hubble parameter). The Hubble radius
remained roughly constant during inflation, while the uréesun-
derwent extremely rapid expansion, stretching the physicales
of density perturbations)\(n,s o a(t)A for a comoving wave-
length X\). Thus density perturbations crossed outside the micro-
physics horizon during inflation. After inflation, the unige was
radiation dominated (with(t) o ¢*/2), then became matter dom-
inated (witha(t) o t*/%) after the matter-radiation equality epoch
Zeq (S€e Eq.[5]). The Hubble radius grew faster than the cosmic
scale factor(¢) during both radiation and matter domination, since
H™'(t) = [a/a]™" o t. Thus density perturbations re-entered
the microphysics horizon after inflation; those that exitieel mi-
crophysics horizon last during inflation (the smallest asplre-
entered first. Since matter density perturbations couldgnotv
until the universe became matter dominated, the growth df ma
ter density perturbations is scale-dependent. This isdettin the
matter transfer function T(k), and depends on the physiosatter-
radiation equality and photon-decoupling. If dark energytuyr-
bations are negligible]’ (k) only depends on the matter density
pm o Qymh? and baryon density, « Q,h?, and on the dimen-
sionless Hubble constart through the choice of/Mpc as the



8 YunWang

unit for k. It is most convenient and reliable to calcul&ték),
normalized such thaf'(k — 0) = 1, using a public high preci-
sion CMB code such aSMBFAST (Seljak & Zaldarriaga 1996) or
CAMB (Lewis, Challinor, & Lasenby 2000).

The galaxy power spectrum can be measured from data using

the FKP method (Feldman, Kaiser, & Peacock 1994). This naetho

uses galaxy catalogs obtained from galaxy surveys and a much” ¢

larger synthetic galaxy catalog with the same angular addlra
selection functions.

Basic idea behind the FKP method for estimatingP, (k)

It is the locations of galaxies, and not the smooth matter den
sity field p(r) that is observed. The basic idea behind the FKP
method is to take the Fourier transform of the distributiémeal
galaxies, minus the transform of a synthetic catalog withsame
angular and radial selection function as the real galaxigoth-
erwise without structure. It also incorporates a weightcfiom
w(r) which is adjusted to optimize the performance of the power-
spectrum estimator. It defines a weighted galaxy fluctudiwid,
with a convenient normalization, to be

_ w(r)[ng(r) — asns(r)]
(I‘) = ) 172 (32)
U d3r 2 (r) w2 (r)]

whereT(r) is the expected mean space density of galaxies given

the angular and luminosity selection criteria, and

ng(r) =y 67 (r—rf), no(r) =Y 6%(r—ri) (33

with r; denoting the location of th&" galaxy from the real (with
superscript “g”) or synthetic (with superscript “s”) caigl The
synthetic catalog has a number density thayis, times that of the
real catalog. The synthetic catalog is created assumingétaxies
form a Poisson sample of the density fieldp (Peebles 1980).

Denoting the Fourier transform df(r) as F'(k), it can be
shown that

aroor) = [

3K

ng(k')lG(k ~ k) +

[ &®rn(r) w?(r)
Gre) TE e 39
where the window function
B f d>r n(r) w(r) kT
G(k) = . 35
(k) e ] (35)

For a typical galaxy redshift surveg (k) is a compact function
with width ~ 1/D, whereD characterizes the depth of the sur-
vey. Assuming that we have a “fair sample” of the matter dgnsi
distribution, then

(IF(K)[*) ~ Py(k) + Prnot, (36)
where the constant shot noise component
3,75 2
SRLESIELNTD
The FKP estimator of, (k) is thus
Py(k) = |F(K)[* = Panor, (38)

with the final estimator of, (k) given by averaging®, (k) over a
shell ink-space:

Py = = | @K P, ), (39)

Vi Vi

whereV} is the volume of the shell.

Practical implementation of the FKP method for estimating

Py (k)

The radially averaged power spectrum from the FKP estimator

>

k<|k|<k+dk

whereN, is the number of modes in the shell, aRdk) and .S (k)
are given by

[[F()[* — 5(0)] (40)

Fk) = /dgr w(r)[ng(r) — asns (r)]eik‘r
— Z w(ry)e™ ™ — as Z w(rs)e™ ™,
Sk) = (14 a) /dgr a(r) w?(r) e

as(1+ as) Z w?(rs)e™ T (41)

Note that for convenience, we have adjusted the normadizaf
the weight function so that

/dgrﬁ2(r) w2(r) — Qs Zﬁ(rs)w2(rs) =1

E]

(42)

The variance of the estimatde( k), for any shell thickness, is

(k) = Nl 33 PQA — K + Sk — k")

k' k!

* @3)

wherek andk’ are constrained to lie in the shell, and

Qk) = / Era’(r) w’(r) e™" — o Z 7i(rs) w (rs)e™ e .(44)
The weight functionu(r) is chosen such that it minimizes the vari-
ances? (k). This leads to

1
T 1+n(r)Py(k)
Note that the weight function depends on the assumed value fo
P,(k). The optimal estimator results from allowing a range of
Py(k) and then selecting an optimal value f&y(k).

If the shell intercepts a sufficiently large number of cohére
volumes, then the fractional error in the estimaiggk) is reason-
ably small. Then the fluctuations in the power will become $&au
sian distributed, and the likelihood for any particularaherepre-
sented byPg n (k) is

L[Pgn(K)]
PLEi| Py on ()]

w(r) (45)

(46)

—1
1 iJrh
WGXP{_T[‘PQ”’ -

wherePg,i is the vector of estimates, and the correlation matrix for
the binned estimates @1, is

Cij = (6P,(k:)6P,(kj))
k k/

Pyan(ki)][Py; — Pg,th(k‘j)]} ;
(47)
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wherek andk’ lie in the shells around; andk; respectively. Note
thatC;; depends orP, (k).

The original FKP technique is a direct Fourier method; one
first chooses & grid with sufficient grid size and spacing and then
obtain the Fourier transform by performing direct sumnratét
each grid point (see Eqgs.[40] and [41]), instead of usingFasrier
transform (FFT). However, it is possible to modify this nmdhso
that one can use FFT (for example, see Cole et al. (2005)keJin|
the direct Fourier method, one has to assign galaxies tcearlin
spaced grid using an interpolation method such as cloudlin ce
nearest grid point, or triangular shaped cloud assignnmeherse
(Hockney & Eastwood 1998). This induces gridding noise amel o
needs to correct the resultant power spectrum for this. Mewthe
direct Fourier method is much slower than the FFT methodoth b
methods, the final step involves obtaining power in thin sighé
shells ink space to get the power spectrum. This resultant power
spectrum is convolved with the window function of the surasy
these surveys are volume limited. Therefore, one needscande
volve the obtained power spectrum with the window functidn o
the survey. In practice, it is much more convenient to core/¢he
theoretical power spectrum with the survey window functiand
compare it with the measured power spectrum (without desianv
tion).

The power spectra for combined 2dF and SDSS data shown

in Fig.2 were estimated by Percival et al. (2007) using a fiexdli
version of the FKP method, such that FFT is used instead efdir
summation at each grid point. Note that the BAO signaturebean
seen clearly. However, there is a clear difference betweeBAO

9

smooth reference spectrum f&t- (k), PL;, in the same manner
as described in Step 1, using the same wavenumber binslyfinal
compute the ratioP” / PE;.

4. Modify the linear theory ratiaP* / PL

refs
PE(ak)
PL.(ak)

ref

as follows:

Ru(k) — 1} X W(k, knl) + 1, (49)
where the scale parametermimics a change in dark energy pa-
rameters (see Eq.[23]), and the Gaussian flitdk) describes the

damping of the oscillations beyond some characteristicewam-

ber:

with k.1 as a free parameter. Thus there are two free parameters,
andky,.

5. Compute the likelihood for a grid of models, each specified
by values of k.1, «). The likelihood is given by (assuming Gaus-
sian errors):

>2

—21nL—X2—Z<

where the summation is over wavenumber ards the error on
the power spectrum estimated in & bin.
6. Derive confidence limits on andk,, in a likelihood analysis.

k2

—515 (50)
2k2,

W (k) = exp (

R'— R}

—_— 51
Ul/Pr/Lef ( )

Figs.8-10 show the results from Angulo et al. (2008), from

scale present in the combined 2dF and SDSS main data and thea high resolution simulation corresponding to a comovinkgive

BAO scale apparent in the SDSS LRG data.

Mitigation of systematic effects in BAO scale extraction fom
Py (k)

Simulated data must be used to study how the BAO scale ex-
traction from the measured galaxy power spectrum is aifiebye
systematic effects. The BAO scale can be extracted by fittieg
measured galaxy power spectrum to the linear perturbatieory
power spectrum with appropriate modifications to allow for ig-
norance on dark energy parameters and to model nonlinemt&ff
A simple method to model power spectrum data consists ofathe f
lowing steps (Percival et al. 2007; Angulo et al. 2008):

1. Construct a smooth reference spectBm.s from the mea-
sured galaxy power spectrurf, ..t results from a coarse rebin-
ning of the measured power spectrum that erases any osgjllat
features such as BAO. For example, one can use a cubic syline fi
over the wavenumber range0046 < (k/hMpc™') < 1.2, us-
ing the measured spectrum smoothed over 25 bins in wavennumbe
(Angulo et al. 2008). The spline is constrained to pass tjindhe
data points.

2. Compute the ratiai(k), of the measured galaxy power spec-
trum, Py (k), to the reference power spectruff, et (k):

Py (k)
Pyret (k)

3. Generate a linear perturbation theory matter power gpact
P (k), using a high precision CMB code (such@&MB (Lewis,
Challinor, & Lasenby 2000) oEMBFAST (Seljak & Zaldarriaga
1996)). The set of cosmological parameters assumed is e 38
that of the simulated data if one is testing the accuracy ddBaale
extraction only. For real data, the set of cosmological paters
should be varied in a maximum likelihood analysis. Next, ref

R(k) = (48)
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of 2.41h2 Gpc (Angulo et al. 2008), and a ensemble of 50 low-
resolution simulations (each with the same comoving volinie
less resolution) to estimate the cosmic variance of the tegb-
lution simulation. The dark matter haloes have mass in exoés
5.4 x 102 h=! M. The galaxies form an R-magnitude limited
sample with a space density@f= 5 x 10~* h*Mpc>.

Fig. 8 shows the values obtained ferfrom the power spec-
trum at various redshifts of the dark matter (trianglesjkaaatter
haloes (circles) and galaxies (squares) (Angulo et al. ROU&re
is a trend for the best-fitting value to deviate away fromymiith
decreasing redshift, although the resultat 0 is still within 1o
of a = 1 for dark matter and dark matter haloes. Fig.9 shows the
best-fitting value of the damping scdlg as a function of redshift,
for the same tracers of the matter density distribution &gr8, in
real-space (top) and redshift-space (bottom).

Fig.10 shows the recovered value of the scale paramefiar
various galaxy samples (Angulo et al. 2008). Note that theei-ac
racy and precision of the estimataddepends on the galaxy sam-
ple. For example, using a catalog of R-magnitude-limiteibga
ies with space density of 510~ h®> Mpc™® (Sample A) or red
galaxies (Sample C), one could measure the BAO scale move acc
rately (smaller bias i) and more precisely (smaller dispersion in
«) than using a catalog of galaxies chosen by the strengtheaf th
emission lines (Sample D).

Note that the size of the systematic shift of the estimated
away froma = 1 for the galaxy samples is comparable to the ran-
dom measurement errors for the simulation (Angulo et al8200
will require a larger simulation volume to reduce the sizeapidom
errors, and to ascertain whether such shifts reflect getinnits of
the method discussed here.

A more accurate model for the power spectrum is given by the
“dewiggled” power spectrum (Tegmark et al. 2006; Eisemsti
al. 2006):
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Figure 8. The best-fitting value of the scale factar as a function of
redshift, for different tracers of the matter density disition, in real-
space (top) and redshift-space (bottom) (Angulo et al. P0O&he sym-
bols show results from the high resolution simulation cgpmending to a
comoving volume of 2.4b~3 Gpc®: dark matter (triangles), dark matter
haloes with mass in excess B x 102 h—1 M, (circles) and galax-
ies from an R-magnitude limited sample with a space dendity, o=

5 x 104 h3 Mpc—2 (squares). The error bars show the rhnge onc,
calculated fromAx2. The hatched region shows the centia¥ range of
the results obtained using the dark matter in an ensemb@ofdsolution
simulations. Recall that = 1 corresponds to an unbiased measurement of
the BAO scale (hence of dark energy parameters).

Paw(k) = Pun(F)G (k) + Pow (k) [1 = G(R)], (52)

wherePiin (k) is the linear theory power spectrum aRgl, (k) is a
smooth, linear theory, cold dark matter only power spectnuith
the same shape &3;,(k) but without any baryonic oscillations
(i.e., PL;). The weight functiorG (k) is given by

G(k) = exp [—(k/V2k.)?],

describing the transition from large scalésk k.), wherePay (k)
follows linear theory, to small scalek ¢ k.) where the acoustic
oscillations are completely damped by nonlinear effects.

Eq. (52) provides a phenomenological description of the-mod
ification of the BAO by nonlinear effects found in numericethe-
lations. Importantly, it can be justified using the renorized per-
turbation theory (RPT) developed by Crocce & Scoccimar@®@?
2008). According to RPT, the first term on the right hand sifle o

(53)
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Figure 9. The best-fitting value of the damping scélg as a function of
redshift, for different tracers of the matter density digition, in real-space
(top) and redshift-space (bottom) (Angulo et al. 2008). $jbols show
results from the high resolution corresponding to a congpwialume of
2.41h—3 Gpc3: dark matter (triangles), dark matter haloes with mass in
excess 0b.4 x 1012 h—1 M, (circles) and galaxies (squares). The error
bars show the & range ork,,;. The hatched region shows the cents&f
range of the results obtained using the dark matter in amdniseof low
resolution simulations.

Eq. (52) describes the growth of a single mode, quantifiechby t
propagator functiorG(k). In the high% limit the propagator is
given by the Gaussian form in Eq.(53) with given by (Crocce
& Scoccimarro 2006; Matsubara 2008)

1 —1/2
w = |=— [ dk Pin(k .
7 f e

The second term on the right hand side of Eq. (52) can be inter-
preted as the power generated by the coupling of Fourier snode
small scalesPmc (k). The termPn. (k) is negligible on large scales
(small k), but dominates the total power on small scales (hiph
For the scales relevant to the BAO analysis~ k.), Pmc has a
similar amplitude taP.w (k)[1 — G(k)].

The limitation of Eq. (52) can be explained by RPT as well
(Crocce & Scoccimarro 2008)). According to RPT, the propaga
tor G(k) only behaves as a Gaussian in the highmit. In addi-
tion, the termP,,. shows acoustic oscillations, although of a much

(54)
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Figure 10.The recovered value of the scale parametéor various galaxy "0.01 0.1
samples (Angulo et al. 2008). Samples A is R-magnitudetdichto reach k/(h Mpc)

a space density df x 10~% h3 Mpc—3. Sample B is magnitude-limited
to reach half the space density of sample A. Sample C contianseddest
50% of galaxies from sample A, using tlie— I color. Sample D contains
the 50% of galaxies from sample A with the strongest emista@s, using
the equivalent width of OII[3727]. Sample E contains theeslu50% of
galaxies from sample A, using thR — I color. Sample F contains the
50% of galaxies from sample A with the weakest emission Jineig the
equivalent width of OIl[3727]. The simulation corresportdsa comoving
volume of 2.41h—3 Gpc. Recall thatoy = 1 corresponds to an unbiased
measurement of the BAO scale (hence of dark energy parasheter

smaller amplitude tha#?(k), while P, (k)[1 — G(k)] is a smooth
function.

Eq. (52) can be improved by modifying.. (k) to model the
change in the overall shape of the power spectrum due toinearl
evolution:

2
PR () = (%) Pau(k) = f(B)Pau(R). (55)

Figure 11. Results from the numerical simulations by Sanchez, Baugh, &
Angulo (2008). Upper panel: A comparison of the real-spaaek dnatter
power spectrum averaged over the simulation ensemble (@pats) with

the linear theory power spectrum (dot-dashed line), thevigigled’ power
spectrum from Eq. (52) (solid line), and its non-linear i@nsrom Eq. (55)
(dashed line) computed wit) = 13 and A = 1.5. The dotted lines indi-
cate the variance oR (k) estimated from the ensemble. Lower panel: The
ratio of these power spectra . (k).

power spectrum by a smooth reference power spectrum. Ttiis di
sion by the smooth reference power spectrum leads to infavma
loss that degrades the BAO scale accuracy and precisiocti§an
Baugh, & Angulo 2008). However, larger volume simulatiori w
be needed to quantify the limit of accuracy of tR¢k) method of
BAO analysis.

The factorf (k) could also be used to model a scale dependent bias 4 » Using two-point correlation functions to probe BAO

factor. This model for non-linear evolution is based on@henodel
of Cole et al. (2005), modified by the addition of a new paramet
B, in order to improve its accuracy at high Fixing B = Q/10
gives the approximate behavior of the non-linear power tspec
at largek (Sanchez, Baugh, & Angulo 2008).

To extract the BAO scales, we can also compute the two-point
correlation function of galaxies in comoving coordinaté€sr
spherically-averaged data, the BAO scale corresponds teal p
around the scale of the sound horizon at the drag epoch.df&en

Fig.11 shows a comparison of the real-space dark matter et al. (2005) first demonstratedthis with real data. Hut§i06)
power spectrum averaged over the simulation ensemble (openfound similar results.

points) with the linear theory power spectrum (dot-dashied))
the “dewiggled” power spectrum from Eq. (52) (solid linepda
its non-linear version from Eq. (55) (dashed line) compuksith
@Q = 13 and A = 1.5 (Sanchez, Baugh, & Angulo 2008). How-
ever, the improved modeling of the power spectrum still $etad
biased estimate af similar to that shown in Fig.8, but with > 1
(Sanchez, Baugh, & Angulo 2008).

The biased estimates of from the measured power spectra
(see Figs.8 and 10) are a consequence of the mode-coupiftey sh
due to nonlinear effects (Crocce & Scoccimarro 2008). Thigy m
indicate a limit to the accuracy with which the BAO scale can b
extracted from power spectrum data. In Fourier space, rmyie
effects such as redshift-space distortions and scalendepé bias
are important, and have to be minimized by dividing the messu

(© 0000 RAS, MNRASD0Q, 000—-000

Definition of the two-point correlation function £(r)
The two-point correlation functioé is defined as

£(r) = (6(x+1)d(x)). (56)
Thus the power spectrum ag¢r) are related by
PK) = |5 |* = /{(r)eik'r &r, (57)

wheredy is the Fourier transform of the matter density perturbation
o(r) (see Eq.[27]).

Measurement of the two-point correlation function(r)
The two-point galaxy correlation functiof, can be measured
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by comparing the actual galaxy distribution to a catalog af-r
domly distributed galaxies. These randomly distributethxgas
have the same redshift, magnitude, and mask constrairte asdl
data. The pairs of galaxies are counted in hins of separatany

the line of sight,r,, and transverse to the line of sight,, to es-
timate&(rp, 7s). In converting from redshift to distance, a fiducial
model must be assumed, usually a flat universe model dondinate
by a cosmological constant, wifh,, = 0.3, 24 = 0.7. Henceitis
important to iterate the final results by changing the fiduziadel

to the bestfit model derived from the data.

Each galaxy and random galaxy can be given a weighting fac-
tor to account for both selection effects and to optimizedtadis-
tics. For example, to minimize the variance on the estim&fef
when the survey selection functiot(z;) varies significantly, one
can introduce the so-called “minimum-variance weighti(igavis
& Huchra 1982; Davis & Peebles 1983):

1

1+ drn(z;)J3(s)’ (58)

w;
where the separation = /72 + 72, n(z) is the galaxy density
distribution, and

J3(s) = /Osg(s’)s@ds’.

Hawkins et al. (2003) used(z) from the random catalog to ensure
that the weights vary smoothly with redshift, and they fouhalt
results are insensitive to the precise formJgf Each galaxy pair
(¢, j) is given a weightw sw;w; (with wy correcting for galaxies
not observed due to effects such as fibre collisions), wridlehe
galaxy-random and random-random pair is given a weight; .

An often-used minimum-variance estimator ofis that of
Landy & Szalay (1993):

DD —2DR+ RR

&(rp,ms) ~— RR
wherer, andrw, denote the transverse and line-of-sight separa-
tions in redshift space respective®.D is the normalized sum of
weights of galaxy-galaxy pairs with separation,(r,), RR is the
normalized sum of weights of random-random pairs with theesa
separation in the random catalog ab@ is the normalized sum of
weights of galaxy-random pairs with the same separatioR. is
calculated by overlaying the real galaxy catalog and theikitad
random galaxy catalod) D, RR, andDR are normalized through
dividing by the total number of pairs in each. Sphericallgrag-
ing &(rp, ms) at constans = /752 + r,? gives the redshift-space
correlation functioré(s). Both Eisenstein et al. (2005) and Oku-
mura et al. (2008) used the Landy & Szalay estimator in Eg#50
analyze SDSS LRG data.

If the rms scatter ot (k), o5 (k), is computed (see Sec.4.1),
the covariance of the two-point correlation function carchiu-
lated using (Cohn 2006; Smith, Scoccimarro, & Sheth 2008):

(59)

(60)

Ce(r,r) = ([&(r) —&(r)] [€07) = E(N)])
dkk® . N
/ 50 Jo(kr)jo(kr)op(k), (61)
whereé(r) and£(r) are the correlation function and its mean re-
spectively.

The BAO scale shown in Fig.1 is measured from the
spherically-averaged redshift-space correlation famctifrom
SDSS LRG sample by Eisenstein et al. (2005). There is no
verifiable detection of the radial and transverse BAO schitas
current data (Okumura et al. 2008; Gaztanaga, Cabre, & Hui

2008). This may be an indication of systematic uncertasntie

Mitigation of systematic effects in BAO scale extraction fom
£(r)

Simulated data must be used to study how the BAO scale
extraction from the measured galaxy two-point correlafiomc-
tion is affected by systematic effects. Using 50 low resoluiN-
body simulations (each with a comoving volume2of1 h =3 Gpc®
and with the dark matter followed using8® particles), Sanchez,
Baugh, & Angulo (2008) found that the BAO signature in the two
point correlation function is less affected by scale dependffects
than that in the power spectrum.

The two-point correlation function can be obtained by tgkin
the Fourier transform of Eq. (52):

€aw(r) = &in(r) @ G(r) + &ow(r) @ (1 = G(r)),
where the symbab denotes a convolution, ar(r) is the Fourier
transform of G(k). The first term contains the information about
the acoustic oscillations; it represents the convolutibtie linear
theory correlation function with a Gaussian kernel. Thiavadu-

tion implies that in the correlation function, the dampinigtioe
higher harmonic oscillations causes the acoustic peakdadean

and shift to smaller scales (Smith, Scoccimarro, & Sheth8200
Crocce & Scoccimarro 2008).

Fig. 12 compares the mean = 0 real-space correlation
function of the dark matter measured from an ensemble of sim-
ulations (open points) with the following models for the rear
lation function: (i) the linear theory correlation funaticii, ()
(solid line), (i) a nonlinear correlation functiogf"' () computed
usinghal of i t, without any damping of the acoustic oscillations
(short-dashed line), (iii) the dewiggled linear theory retation
function a4+ (), computed as described by Eq. (62) (long-dashed
line) and (iv) a dewiggled correlation function nonlinead using
hal of i t €3 (r) (dot-dashed line) (Sanchez, Baugh, & Angulo
2008). The error bars indicate the variance between thelation
functions measured from the different realizations in fheutation
ensemble.

Fig. 12 shows that the acoustic peak in the two-point correla
tion function at redshift = 0 shows strong deviations from the
predictions of linear theory. Clearly, the linear theorywiggled
correlation function from Eq. (62) gives a very good dedaipof
the results of numerical simulations; this indicates thatdamp-
ing of the oscillations is the most important effect to irt#un the
modeling of the real space correlation function on largéescd he
incorporation of the full change in the shape®(k) due to non-
linear evolution produces very little difference in the gbaf the
acoustic peak in the correlation function, but this effeagm be
important on intermediate scales£ 70 h~* Mpc).

The scale parameter from Eq.(23) corresponds to an equiva-
lent shift from scalerue t0 Tapp = Ttrue/c in the two-point cor-
relation function. Deviation fronax = 1 indicates biased estimate
of the BAO scale, and the uncertainty arindicates the precision
of the BAO scale measurement. Sanchez, Baugh, & Angulo (2008
used Eg. (62) to analyze an ensemble of 50 low resolution dN~bo
simulations (each with a comoving volume 2f41 h=3 Gpc®)
(Sanchez, Baugh, & Angulo 2008). The estimated scale paeame
is slightly biaseda: = 0.996 +0.006 atz = 0, & = 0.998 +0.004
atz = 0.5 anda = 0.997 4+ 0.003 at z = 1. The constraints on
become tighter with increasing redshift. This is becausehigher
harmonic oscillations are less damped as redshift inces@ggch
accompanies an increase in the range of wavenumbers oveln whi
density perturbations are linear), thus the position oBA® peak

(62)

(© 0000 RAS, MNRASDOG, 000-000
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Figure 12. Comparison by Sanchez, Baugh, & Angulo (2008) ofzhe 0
real-space dark matter two-point correlation functionraged over the en-
semble of simulations (open points) with: (i) the linearahecorrelation
function &, (r) (solid line), (ii) an estimate of the nonlinear correlation
function£™!(r) computed usingpal of i t without damping of the acous-
tic oscillations (dashed line), (iii) the dewiggled linetveory correlation
function &4+ () defined by Eq. (62) (dot-dashed line) and (iv) a dewig-
gled correlation function after being nonlinearized udiad of i t fgiv(r)
(long-dashed line). The error bars indicate the rms sché®wveen the dif-
ferent realizations in the ensemble of simulations.

can be more precisely determined. The deviation frers 1 in-
dicates the limitation of Eq. (62) in describing the full phaof the
correlation function.

The model of Eq. (62) can be improved by utilizing the BAO
information contained igm. (), the correlation function generated
by the coupling of Fourier modes on small scales. According t
renormalized perturbation theory (RPT), the main contidsuto
&me(r) On the scale of BAO is of the form (Crocce & Scoccimarro
2008)

Eme(7) o €l €2 (1), (63)

where¢|,, is the derivative of the linear theory correlation function
and

i (1)

lin

7V i (r) = 4m /Pnn(k) g1 (kr)kdk. (64)
Thus an improved model of the correlation function is given
by (Crocce & Scoccimarro 2008)

(1) = &in(r) @ G(r) + Ame &bl (), (65)

where A, is a free parameter. The second term in Eq.(65) can
describe the shape of the residuals of the measured carelat
function with respect ti, ® G close to the BAO peak. At
smaller scales, where the approximation is not so accutiae,
model underestimates the correlation function (SanchengB,

& Angulo 2008). Applying Eq.(65) to an ensemble of 50 low
resolution N-body simulations (each with a comoving voluafe
2.41 h~3 Gpc?), Sanchez, Baugh, & Angulo (2008) found that the

(© 0000 RAS, MNRASD00, 000—-000
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scale parameter is measured more accurateb: 1.003 £ 0.008

atz =0, a =1.002+0.005 atz = 0.5 anda = 1.000 £ 0.003 at

z = 1. This indicates that the implementation of a full calcudati

of & using RPT over the full range of scales included in the anal-
ysis can lead to unbiased estimate of the BAO scale. Notelzdso
reducing the bias in the estimate of the BAO scale generedigs

to an increase in its statistical scatter.

In current analysis techniques explored, the correlatiowf
tion analysis leads to more accurate and precise estimatieeof
BAO scale than the power spectrum method (Sanchez, Baugh, &
Angulo 2008). The main reason for this is that the corretafioc-
tion is less affected by scale-dependent effects than tvepspec-
trum. Thus in a correlation function analysis, the entire@ation
function can be modeled (including the large scale shapkijew
in the power spectrum analysis, the information on ampéitadd
large scale shape is discarded in order to remove senstiivdys-
tematic effects such as nonlinear effects and redshiftespistor-
tions (Sanchez, Baugh, & Angulo 2008).

5 FUTURE PROSPECTS FOR BAO MEASUREMENTS

Given real or simulated galaxy redshift survey data, onelevoeed

to extract the radial and transverse BAO scales from theidate

der to estimaté? (z) andD 4 (z), before measuring the dark energy
parameters, as illustrated by Secs.4.1 and 4.2. Robusafirean
only come from a Monte Carlo based approach that begins with
extracting the radial and transverse BAO scales from ezl
simulated galaxy catalogs.

Most of the BAO forecasts have been done using the Fisher
matrix formalism, which gives the smallest possible staté un-
certainties. The Fisher information matrix of a given sepafam-
eters,s, approximately quantifies the amount of informationson
that we “expect” to get from our future data. The Fisher maten
be written as

I L
asiasj‘ ’

whereL is the likelihood function, the expected probability distr
bution of the observables given parameters

The Cramér-Rao inequality (Kendall & Stuart 1969) states
that no unbiased method can measureittieparameter with stan-
dard deviation less thaiy /F;; if other parameters are known, and
lessthan,/(F—1),; if other parameters are estimated from the data
as well. Note that the derivatives in Equation (66) are datedl
assuming that the cosmological parameters are given by eara p
model, and thus the errors on the parameters are somewtet-dep
dent on the assumed model. It is straightforward to applya6j;.

For Gaussian distributed measuremefitsx exp(—x>/2).

The Fisher matrix method allows an estimate of expected mea-
surement uncertainties aif (z) and D4 (z) from a future galaxy
redshift survey based on the assumed survey parameigspit
analyzing simulated galaxy catalogs to extract the BAO escal
While the Fisher matrix forecasts are likely too optimistiey are
easy and straightforward to make, thus provide the mosteroent
way to estimate the expected constraints on dark energyftrame
galaxy redshift surveys. Here we discuss the Fisher mairectist
methodology in detail.

In the limit where the length scale corresponding to the sur-
vey volume is much larger than the scale of any features in
Py(k), we can assume that the likelihood function for the band
powers of a galaxy redshift survey is Gaussian, and given by

Fyj = (66)
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Eq.(46) with a measurement error lim P(K) that is proportional
to [V.s5(k)]~*/2, with the effective volume of the survey defined

as (see Eq.[47]):
o[ nn)Py(kp) 17
/dr {n(r)Pg(k,u)—Fl}

2
nPg (k7 N’) V.
nPy(k. ) 1]

Vers(k, 1)

(67)

where the comoving nhumber densityis assumed to only depend
on the redshift (and constant in each redshift slice) fopéirity in
the last part of the equation.

In order to propagate the measurement errdnif, (k) into
measurement errors for the paramejgrsve can use Eq.(66), and
that

LPK)] = L(pi),

with £ [P (k)] given by Eq.(46). Ignoring the subdominant normal-
ization factors, this gives an approximated Fisher maffeg(mark
1997)

no /‘“mar d1ln P,(K) 01n P, (k)
YL Opi Opj

(68)

dk?

err(K) T@n)? (69)

min

wherep; are the parameters to be estimated from data, and the ¥

derivatives are evaluated at parameter values of the fiducidel.
Note that the Fisher matri¥;; is the inverse of the covariance
matrix of the parameteys; if the p; are Gaussian distributed.

“Wiggles Only” Method

In order to arrive at robust BAO forecasts, we may use the in-
formation contained in the BAO peaks only, and discard tif@rin
mation contained in the broad shapeyf k) (Blake & Glazebrook
2003; Seo & Eisenstein 2007). The measurement of the BAGspeak
gives measurements 8f D4 (z) ands H(z) (see Eq.[1]).

Note that Eq.(69) can be rewritten as

k
- e OPy(k, p) OPg(k, p)
Fzy = .survey/ d/j,/ apl 8])]
27Tk2dk (70)
P TT| 2E

wherey = k - £, with f denoting the unit vector along the line of
sight.

Seo & Eisenstein (2007) obtained simple fitting formulae for
estimated errorsin/D 4 (z) ands H(z) by approximating Eq.(70)

with
Ry o~ / / kma 9Py (k, ulz) 0Py (k. plz)
(%] — .su'r“vey _— apl apj
2
l 27rk: dk7 (71)
Pgl”(k,u|2)+n*1 2(2m)°

whereP, (k, u|z) is the power spectrum that contains baryonic fea-
tures. The linear galaxy power spectrum

Pk pls) = PR (M) RO)
() [ggog

whereP;’f;L(k|z) is the linear galaxy power spectrum in real space,
b(z) is the bias factor7(z) is the growth factor, andP}i" (k|z =

(72)

2
Py (k|2) ] P (k|2 = 0) (73)

0) is the present day linear matter power spectruty) is the
linear redshift distortion factor given by (see Eq.[18]pfEer 1987)

R(p) = (1+6p%)°.

The power spectrum that contains baryonic featuRe§s, 1),
is given by (Seo & Eisenstein 2007)

(74)

P, uls) = VEREAg P (ko., pl2) SR
2y12
-exp [_(kzs)“ _Fk 22”1 , (75)
where we have define
ko2 = 02hMpc ' (76)
1/2
o= (B2 4t 77)
kJH k-f= k,u (78)
ki o= (k=K =ky/1- (79)
The nonlinear damping scale
22 = (1-pE] + 475
X S+ fy)
_ G(z)
= 124h'M (—)
pc 09 0.758 ——= G(O) PNL
_ G(z)
— 8355h°'M (”8) , 80
pc 0.8 G(0) PNL (80)

where the growth ratef, dlnG(z)/dIna. The parameter
pn indicates the remaining level of nonlinearity in the datéhw
pn = 0.5 (50% nonlinearity) as the best case, and;
(100% nonlinearity) as the worst case (Seo & Eisenstein 2007
For a fiducial model based on WMAP3 results (Spergel et al7200
(Q = 0.24, h = 0.73, Qx = 0.76, Q. = 0, Qh? = 0.0223,

7 = 0.09, n, = 095 T/S = 0), Ao = 0.5817, Po.2 =
271003 ,, and the Silk damping scals, = 8.38 h~'Mpc (Seo

& Eisenstein 2007).

Defining
p1 = Ins ' =1In(Da/s), (81)
p2 = Ins) =In(sH), (82)

substituting Eq.(75) into Eq.(71), and making the appration of
cos® x ~ 1/2, we find

1 kmax
Fig 2 Veurven 43 / dpa fi() £ (1) / Ak k?
0 0

Pin(k|z = 0) 1 -
Piin(ko2|z = 0) Py (ko2 plz) e m?F
cexp [—2(kZs) M — K*Sh] (83)
where P} (ko.2, u|2) is given by EQ.(72) withk = ko.2, and

kmae = 0.5 AMpc™! (Seo & Eisenstein 2007). Note that we have
added the damping factof’“Q*‘%f, due to redshift uncertainties,
with

or = o (84)

a9z
wherer is the comoving distance from Eq.(2). The functigiéu)
are given by

fi(w)
f2(p)

dlnx/0p1 u2 -1
Olnz/dps = pi°.

(85)
(86)
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The square roots of diagonal elements of the inverse of the dP,(k, u|z) 0Py ™ (k, pu|z) .

Fisher matrix of EQ.(83) give the estimated smallest pdssib
measurement errors osi; " and s;. The estimated errors are
independent of cosmological priors, thus scale with (are&}?, for

a fixed survey depth.

Full P(k) Method

Since the full P, (k) is measured from a galaxy redshift sur-
vey, it is also useful to make forecasts of dark energy cairgs
using the full P;(k). The observed galaxy power spectrum can
be reconstructed using a particular reference cosmologlyding
the effects of bias and redshift-space distortions (Seosestein
2003):

LANCRNE)

M 2 o2 |:G(Z):|2
= DawFaGe L ) |G P
+P5hot7 (87)

wherep = k - f/k, with f denoting the unit vector along the line
of sight; k is the wavevector withk| = k. Henceu® = ki /k”
k:ﬁ/(kQl + kzﬁ). The values in the reference cosmology are denoted
by the subscript “ref”, while those in the true cosmology dvao
subscript. Note that

k' =ki1Da(2)/Da(2)",

ki = kyH(2)" /H(=).(88)

EQq.(87) characterizes the dependence of the observed/gadaer
spectrum orf (z) and D 4 (z) due to BAO, as well as the sensitiv-
ity of a galaxy redshift survey to the linear redshift-spdistortion
parametep (see Eq.[19]).

The observed galaxy power spectrum in a given redshift shell
centered at redshift; can be described by a set of parameters,
{H(2:), Da(2:), G(2:), B(2i), Plposs N5, Wm, wp}, Whereng
is the power-law index of the primordial matter power spatty
wm = Qmh?, andw, = QWh? (h is the dimensionless Hubble
constant). Note thaP (k) doesnot depend ort if & is in units of
Mpc™*, since the matter transfer functid@f(k) only depends on
wm andw, (Eisenstein & Hu 1998), if the dark energy depen-
dence off’(k) can be neglected. Note also thatk) is normalized
such thatl'(k — 0) = 1. SinceG(z), b, and the power spectrum
normalizationP, are completely degenerate in Eq.(87), they can be

combined into a single parametéi(z;) = b(z) G(z) Py’ /G(0).

The square roots of diagonal elements of the inverse of the

full Fisher matrix of Eq.(69) gives the estimated smallestgible

measurement errors on the assumed parameters. The pasmmete

of interest are{ H(z:), Da(z:), B(z:)}, all other parameters are
marginalized over. Note that the estimated errors we olatagin-
dependent of cosmological priors since no priors are explicitly im-
posed, thus scale with (ared)? for a fixed survey depth. Priors
ONwm, ws, 2k, andns will be required to obtain the errors on dark
energy parameters if only BAO data are considered.

In order to compare the “wiggles only” method and the full
P(k) method for BAO forecast, we must include the nonlinear ef-
fects in the same way in both methods. We can include nonlin-
ear effects in the full power spectrum calculation by maidigythe
derivatives of P, (k) with respect to the parameteps as follows
(Seo & Eisenstein 2007)

1 Massive neutrinos can suppress the galaxy power spectrystitaaes
by > 4% on BAO scales (Hu, Eisenstein, & Tegmark 1998; Eisenstein &
Hu 1999).

(© 0000 RAS, MNRASD00, 000—-000
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exp (—% k22il) . (89)

The damping is applied to derivatives Bf (k), rather tharP, (k),
to ensure that no information is extracted from the dampiseifi
(Seo & Eisenstein 2007). Eq.(70) becomes

! Fmaz 9 1n PY™ (k, p) 0 1n PY™(k, p)
Vsu'r‘vey d/,L ) v .
—1 k ap’b apj

Opi Ipi

ij =
min

N onk2dk

n _—

lin 2
oty ) } 2(2m)3 " (90)

' [nPéi"(h w+1

Under the same assumptions, the fBjI(£) method can boost the
Figure-of-Merit (FoM) for constraining dark energy by a tfac

of ~3-4, compared to the “wiggles only” method (see e.g., Wang
(2009)), if no other data or priors are added, and redshdts
distortions are marginalized over in the(k) method (Seo &
Eisenstein 2003; Wang 2006). The two methods give very aimil
constraints on the BAO scales/D4(z) and s H(z) (Seo &
Eisenstein 2007; Wang 2009); the difference comes in theofise
additional information from the broad shape &f(k) in the full
P(k) method.

Galaxy Number Density
For a given galaxy redshift survey, the galaxy number den-
sity n(z) and bias functiom(z) should be modeled using available
data and supplemented by cosmological N-body simulatibas t
include galaxies (Angulo et al. 2008). Sineéz) andb(z) depend
on survey parameters such as the flux limit and the targettsaie
method and efficiency, a more generic galaxy number denisijng
by assumingn Py (ko.2|z) = 3 is often used in Fisher matrix fore-
casts (Seo & Eisenstein 2007), whe?g(ko.2|2) is the real space
power spectrum of galaxies &t = 0.2 hMpc™! and redshiftz.
Note that this assumption means
2
| -

whereG(z) is the growth factor, antl( =) is the bias factor. Assum-
ing a fiducial cosmological model that fits all current obs¢ional
data,G(z) decreases by about a factor of 2 fram= 0 to z = 2,
while b(z) may increase witkk somewhat and is dependent on the
type of galaxies sampled by the survey.

For an ambitious yet feasible galaxy redshift survey of H
emission line galaxies, using a fully empirica{z) derived from
current observational data (Geach et al. 2009), and a bias fa
tor b(z) derived from cosmological N-body simulations calibrated
with current observational data (Orsi et al. 2020 (ko.2|z) > 3
near the median redshift{, ~ 1), while nP; (ko.2|z) < 3 at
z ~ 2, assuming a realistic efficiency for galaxy spectroscopy
(Cimatti et al. 2009). This is as expected. The observedxgala
number density:(z) from a flux-limited survey peaks at the me-
dian redshift, and decreases sharply in the hitdil, as the number
of galaxies fainter than the flux limit increases. The insesim the
bias factorb(z) is not fast enough to compensate for the decrease
in bothG(z) andn(z) to satisfynP; (ko.2|z) > 3 atz ~ 2. There-
fore, assumingn P (ko.2|z) = 3 is likely too optimistic, while
assumingu(z) [b(z)/b(0)]* Pj (ko.2|z = 0) = 3 could be a con-
servative alternative in Fisher matrix forecasts for a gergalaxy
redshift survey (Wang 2009).

G(2)
G(0)

nP} (ko.2|z) = Pu(ko.2|0) n(2) b*(2) [ (91)
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6 PROBING THE COSMIC GROWTH RATE USING
REDSHIFT SPACE DISTORTIONS

A galaxy redshift survey can allow us to measure b#tfr) and
fq(2) (Guzzo et al. 2007; Wang 2008). The measuremerft, 0f)

can be obtained through independent measurements of ftedshi
space distortion parametgr= f,(z)/b (Kaiser 1987) and the bias
parameteb(z) (which describes how light traces mass) (Guzzo et
al. 2007).

6.1 Measuring redshift-space distortion parameterg

The parametef can be measured directly from galaxy redshift sur-
vey data by studying the observed two-point redshift-sgaree-
lation function (Hawkins et al. 2003; Tegmark et al. 2006sRet
al. 2007; daAngela et al. 2006). Hamilton (1998) reviewetious
techniques for measuring

Peculiar velocities of galaxies lead to systematic difiers
between redshift-space and real-space measurementsheed t
fects are a combination of large-scale coherent flows irdilge
the gravity of large-scale structure, and a small-scaldaanve-
locity of each galaxy (see Sec.3.2). The large-scale flowsgpcess
the contours o (r,, 7s) along ther, direction (along the line of
sight), with the degree of compression determinedsbyKaiser
(1987) showed that the coherent infall velocities lead &ftitlow-
ing relation between the redshift-space power spectRJf&) and
the real-space power spectrupa(k) (Kaiser 1987), see Eq.[18]):

Ps(kuu) = (1 + BH2)2 Pr(k,,u),

wherep = k - f/k, with f denoting the unit vector along the line
of sight; k is the wavevector wittk| = k. The small-scale random
motion of galaxies leads to a smearing in the radial direcftbe
“Finger of God” effect).

(92)

Linear Regime
In the linear regime, the ratio of the spherically-averatyeal
point correlation function in redshift-space and real spaaiven

by

£(s) 28, B
€ = I+ =+ =
Recall that the redshift-space correlation functigs) can be ob-
tained by spherically averaging the measured redshiftesparre-
lation function(rp, 75) (see Eq.[60]) at constagt= /72 + r2
(see Sec.4.2).

Since the two-point correlation function is defined by thatjo
probability of finding galaxies centered within the volunheneents
dVi anddV; at a given separation, the projected correlation func-
tion (integrated along the line-of-sight) should be the samreal
and redshift space — both give the two-point angular cdicgla
function. Thus the real-space correlation functign) can be es-
timated by inverting the projected redshift-space coti@tafunc-
tion Z(rp) (i.e., the angular correlation function) (Davis & Peebles
1983):

(93)

(=1 [ = (94

where

Erp) = 2/OQ drms §(rp, s). (95)
0

Fig.13 shows the ratio of(s) to &(r) for the 2dFGRS data

£(s)/&(r)

[h™"Mpc]

Scale

Figure 13. The ratio of¢(s) to &(r) for the 2dF combined data (solid
points), and the Hubble Volume simulation (solid line) (Héws et al.
2003). The mean of the mock catalog results is also showntévinie),
with the rms errors shaded. The error bars on the 2dF dataceretffie rms
spread in mock catalog results.

(Peacock et al. 2001), obtained by Hawkins et al. (2003).

Nonlinear Regime

In the nonlinear regime, the parametecan be measured by
fitting the measured(r,, 7s) (See Sec.4.2) to a phenomenological
model (Peebles 1980)

E(rp,ms) :/ dvf(v)é (Tpvﬂ's - m) )

whereé(rmm) is the linear redshift-space correlation function.
Hamilton (1992) derived the model fd(r,, ) by translating
Eq.(92) from Fourier space into real space:

E(rp, ms) = &o(s) Po(p) + &2(s) Pa (1) + Ea(s) Pa(p),

whereP; (1) are Legendre polynomialg, = cos 6, with 6 denoting
the angle between the position vectandrs, and

(96)

97)

2
6o(s) = <1 + 2y %) ), (99
2

() = <? - %) [6(r) ~ €], (99
2 _

u(s) = 3 [e) + 380) - 2800 (100)

where

&) = % / dr' (), (101)
0

2r) = % / dr' (), (102)
0

The small-scale random motions can be modeled by

g (2421)
Up\/§ b Op

whereo,, is the pairwise peculiar velocity dispersion. Convolution
in real space becomes multiplication in Fourier space, s@@E}
becomes

flv) =

(103)
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[h™"Mpc]

™

Figure 14. Contours of two-point correlation functiofi(rp, 7s) for the
2dFGRS data (solid lines) and the best-fitting model usiedg-thbble Vol-
umeé(r) fitted to scales < s < 30 h~Mpc (dashed lines) (Hawkins et
al. 2003). Contours levels are &t= 4.0, 2.0, 1.0, 0.5, 0.2, 0.1, 0.05, and
0.0 (thick line). Note that the labets = r, andm = 7s.

P(k) = f(ky) P (k) = f(ky) (1+ Bu?)” Pelk),

wheref(k”) is the Fourier transform of (v) (Hamilton 1998):

(104)

f = o _ L
fy = [ g = s (105)
wherek) = kp.

Fig.14 shows the 2dF two-point galaxy correlation function
&(rp, ws), with the redshift-space distortions very clearly indazht
This yielded a measurement ¢f = 0.49 £ 0.09 in a multi-
parameter fit to(rp, 7s) (Hawkins et al. 2003). The error bars
are determined using the rms spread of results in Mock agalo
These catalogs are generated from Hubble Volume simukation
the fiducial cosmology.

Guzzo et al. (2007) showed how the estimatorgiafan be
tested for both statistical and systematic errors.

6.2 Measuring the bias factor

In order to measure the growth ratg(z) = b(z)3(z), we need to
measure the bias factdfz), in addition to the linear redshift-space
distortion factor3(z). If we know that bias is linear, i.edg(x) =
bém (X), thenb(z) ~ os,4/0s,m (the ratio ofos for galaxies and
matter). Thusfy(z)os,m =~ B(z)os,q. The measurement ¢f(z)
andos,g thus provides a measurementfQf z)os,m, which can be
used directly to test gravity (Percival & White 2009; WhiBnong,
& Percival 2009).

However, itis important to directly measure the bias faéter
cluding its scale-dependence (which is one of the main syaie
uncertainties in the BAO scale measurement, see Sec.&i8)cdn
be done through the comparison of the measured probabhiiti-d
bution function of galaxy fluctuations with theoretical expations
(Sigad, Branchini, & Dekel 2000; Marinoni et al. 2005). Heve
focus on another method that utilizes the galaxy bispectrum

We can assume that the galaxy density perturbafjois re-

(© 0000 RAS, MNRASD00, 000—-000
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lated to the matter density perturbati@fx) as follows (Fry & Gaz-
tanaga 1993):
8y FI6(X)] =~ b18(X) + bad”(x)/2

~ 516D (%) + b16@ (%) + %bz BRI

(106)

Thus to second order (Matarrese, Verde, & Heavens 1997)
3/ <(1) s(1) £(2) b2by
(85516428,3) = b <51 515 >+cyc.+T
where “cyc.” refers to the permutatiof831} and{312}.
The galaxy bispectrum is defined by
<5gk1(59k2(59k3> = (271')3 B(kl7 k27 kg) (5D(k1 + ko + kg) (108)

Using the expression foﬁff) from Catelan et al. (1995) and
Eq.(107), we find

2.J(k1, k b
B(ki, ko, ks) = {Pg(kl)Pg(kg) [% + b—ﬁ} +cyc.} :
1
P (k1 + ko + k3), (109)
where we have used
(6,k, 00k,) = (2m)° Py(k1)8” (k1 + ko), (110)

with 6o denoting the Dirac delta function. Eq.(110) follows from
Eqgs.(56), (57), (27) and (29). is a function that depends on the
shape of the triangle formed b, k2, ks) in k space, but only

depends very weakly on cosmology (Matarrese, Verde, & Heave

1997):
k1 . k2 k)1 kg k1 . k2
2k1 ks (k:_2 * k_1)+B(Qm) ( k1ks
where B(Q,»,) ~ 2/7 (assuming no coupling of dark enegry to
matter), and is insensitive 1, (Bouchet et al. 1992; Catelan et
al. 1995).

Verde et al. (2002) applied the galaxy bispectrum method for
measuring; to the 2dF data. Independent measuremenis(ef
andb;(z) have only been published for the 2dF and VVDS data
(Hawkins et al. 2003; Verde et al. 2002; Marinoni et al. 2005;
Guzzo et al. 2007).

The large-scale infall (parametrized by the redshift-spac
distortion parameter3, see Eq.[92]) and small-scale smearing
(parametrized by the pairwise velocity) lead to the power spec-
trum in redshift space (see Eq.[104]):

(1481%)"
1+ k2u202/2°

Note thato, is implicitly divided by Hy. The bispectrum is modi-
fied similarly (Verde et al. 2002):

J(kl, kg, Qm) = 1—B(Qm)+

P.(k) = P(k) (112)

o2 k2 U202
Bs(k1,kz,ks) = (Bi2 + Ba2s + B31) {<1 + Sl Vel

2
272 2 2 272 2 2 —1/2
k k21
X (1 4 QviaH2Tp 2;2%) (1 y Qvialiaop 3;3%)} ) (113)

whereks = —k; — ko, andu; = r - k;/(rk;). The adjustable

parameteryy depends on the shape of the triangle, and must be

calibrated from simulations (Verde et al. 2002). Also

Ker(kl,kg) + b_2:| .
by

B
12 b

() (14.00d) |

-Py(k1)Py(k2). (114)

2
<5§1>5;” [5@”} >+cyc.(107)

)2 (111)
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Figure 15.Ratio of the average measured bispectrum from 2dF galaxy red
shift survey and the average perturbation theory predisticelative to the
bispectrum for a fiducial unbiased modBk, (Verde et al. 2002). The
dashed line corresponds t9 = 1.3,b2 = 0, and the dot-dashed line
corresponds tb; = 1.0,b2 = 0.5. The error bars are obtained via Monte
Carlo from 16 mock catalogs, and are placed centrally on teamof the
estimates from the mock catalogs. This illustrates thd teeias in the es-
timator. The figure shows that there is no evidence of scglert#ent bias
from the 2dF data.

The kernel function Ker is/ modified for redshift space (Verde et
al. 1998; Heavens, Matarrese, & Verde 1998):

Ker(ki, ko) = J(ki,ka)br + p°Bb1 K@ (k1,K2) + pip35°07

biB ;o 2 bi g ki ke
5 () + 2 e (417
bi g sky | ok
2 iR 115
+=3 #1H2(H2k,1+ﬂlk,2)7 (115)
with . = —pus, and (Catelan & Moscardini 1994)
@) _ 3 kike (E @) 4 (kl'k2)2
K (kike) =7+ 2kiks \ka ki) 7 \ kika (116)

Eqgs.(113)-(115) show how the bispectrum can allow us to ureas
the bias parameters.

The bispectrum depends @h o, and P, in addition to the
bias parameters; and b2. The bispectrum and power spectrum
data come from Fourier transforming the galaxy number dgnsi
distributionn(r) through (see the discussion of the FKP method in
Sec.4.1)

F(r) = Aw(r) [n(r) — asns(r)], (117)

where ) is a constant to be determined, angr) is the number
density of a random catalog with the same selection functothe
real catalog, but with /o, times (s < 0.2) as many particles. The
weightw(r) = 1/[1 4+ Pon(r)] has been chosen to minimize the
variance of higher-order correlation functions (Scoceim2000),
wheren(r) is the average number density of galaxies at positjon

(F?) = Pulk) + 722 (1 + ),

and Eq.(112) can be used to remove the redshift-space tibsiar
The bispectrum may be estimated from

133

(119)

I
(Fic P, Fie,) = i { Bolka ke k) 72 [Palka) + Patke) + Pyks)]

I3
2 131
H1Q)M}
Itis assumed implicitly that the power spectrum is rougldgpstant
over the width of the survey window function kaspace.

The real parts ofj F F, are taken as data, for triangles
in k space ki + k2 + ks = 0). Each triangle yields an estimate of
a linear combination of; = 1/b; andce = be /b3 (see Egs.[113]
and [115]). Triangles of different shapes (i.e., differeri [k, k2])
must be used to lift the degeneracy between nonlinear grawid
nonlinear bias (Verde et al. 2002).

Verde et al. (2002) found that = 1.04 & 0.11 andbe =
—0.054 £ 0.08 for the 2dF galaxy redshift survey. Their results

were marginalized oves ando,. Fig.15 shows their bispectrum
measurement from 2dF (Verde et al. 2002).

22

6.3 Usingf,(z) and H(z) to test gravity

The cause for the observed cosmic acceleration could be an un
known energy component in the universe (i.e., dark enemy),
a modification of general relativity (i.e., modified grayityrhese
two possibilities can be differentiated, since given shme cos-
mic expansion historyd (z), the modified gravity model is likely
to predict a growth rate of cosmic large scale struc@’& (z) that
differs from the prediction of general relativiM(z). The growth
rate associated with dark enerdf/ (2), depends only o (z) if
dark energy is not coupled to dark matter, and dark energumper
bations are negligible (which is true except on very largaes)
(Ma et al. 1999). The growth rate associated with modifiedigra

MG (2), depends on the details of how general relativity is modi-
fied.

A suitably designed galaxy redshift survey would allow the

measurement of the cosmic expansion histdiz) from BAO (see
Sec.1), and the growth rate of cosmic large scale structure

fo(2) = B(2)b(2) (121)

from the independent measurements of the linear redgaftes
distortion parametef (see Sec.6.1), and the bias factor between
the galaxy and matter distributiort$z) (see Sec.6.2). The mea-
surement of bott#/ (z) andf, (z) allows us to differentiate between
dark energy and modified gravity.

Fig.16 shows the errors aH (z) and f4(z) = B(z)b(z) for
a dark energy model that gives the safii¢z) as a DGP gravity
model with the sam@2,, for a NIR galaxy redshift survey covering
11,931 (deq, and the redshift rangé.5 < z < 2 (assuming a
conservative nonlinear cut equivalentjgg ;. = 0.6), compared
with current data (Wang 2008). We have neglected the verkwea

and P, is the power spectrum to be estimated. Since the results aregependence of the transfer function on dark energy at vege la
not sensitive ta, it can be chosen to be a constant, for example, scales in this model (Ma et al. 1999), and added an unceytiint

Py = 5000 h~3Mpc3, to enable the use of a fast Fourier transform.
If we setA = I,,"/?, where (Matarrese, Verde, & Heavens 1997)
Ii; = /dgwi(l’)ﬁj (r) (118)

then the power spectrum may be estimated from

In b (extrapolated from the 2dF measurement) in quadratureeto th
estimated error op3.

Fig.16(b) shows thg,(z) for a modified gravity model (the
DGP gravity model) withQ2, = 0.25 (solid line), as well as a
dark energy model that gives the sarfidz) for the sameQ?,
(dashed line). The cosmological constant model from Fig)l&

(© 0000 RAS, MNRASDOG, 000-000
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Figure 16.Current and expected future measurements of the cosmia-expa
sion historyH (z) and the growth rate of cosmic large scale strucifye:)
(Wang 2008). The future data correspond to a NIR galaxy ifdsirvey
covering>10,000 square degrees aid < z < 2. If the H(z) data are

fit by both a DGP gravity model and an equivalent dark energgehthat
predicts the same expansion history, a survey area &ft, 000 (deg} is
required to rule out the DGP gravity model:at99% confidence level.

also shown (dotted line). Clearly, current data can noediifitiate

Figure 17.Precision ofry (z) = H(z)s andz4(z) = D a(z)/s expected
from StagelV+BOSS. The top panel shows the percentagesesmry, (=)
andz 4(z) per Az = 0.1 redshift bin, the bottom panel shows the normal-
ized correlation coefficient between, (z) andz4(z).

(Wang 2012). The measurement ff(z)G(z)B,/? /s* provides
a powerful test of gravity, and significantly boosts the damkrgy
FoM when general relativity is assumed. Fig.17 shows thesorea
ment precision ofc;,(z) andz4(z) for StagelV+BOSS. The top
panel shows the percentage errorseiiz) andzq(z), the bottom
panel shows the normalized correlation coefficient betwiaem.
The thick solid and dashed lines represent the measuremesit p
sion ofzy, (z) andx4(z) from the P(k) method, marginalized over
all other parameters. The thin dotted and dot-dashed lepssent
the measurement afy, (z) andz4(z) from the BAO only method.
The top panel of Fig.18 shows the measurement uncertainties

between dark energy and modified gravity. A very wide and deep fg(z)G(z)POl/Q/s‘l and 3(z) for StagelV+BOSS peAz = 0.1

galaxy redshift survey provides measurement,gt) accurate to a
few percent [see Fig.16(b)]; this will allow an unambiguadiistinc-
tion between dark energy models and modified gravity modhels t
give identical H(z) [see the solid and dashed lines in Fig.16(b)].
A survey covering~ 14, 000 (deg¥ would rule out the DGP grav-
ity model that gives the samié (z) andQ22, at> 99% confidence
level (Wang 2008).

Under quite conservative assumptions about systemat&runc
tainties, a Stage IV galaxy redshift survey, withh < z < 2 over
15,000 (ded) (e.g., the Euclid galaxy redshift survey), can measure
{zn(2), 2a(2), f4(2)G(z) B)/? /s*} with high precision (where
fq(2) andG(z) are the linear growth rate and factor of large scale
structure respectively, arf) is the dimensionless normalization of
P2%(k)), when redshift-space distortion information is included

(© 0000 RAS, MNRASD0Q, 000—-000

redshift bin. The bottom panel of Fig.18 shows the uncetitsn
on the growth rate powerlaw indexfor StagelV+BOSS, with and
without Planck priors. Note that is defined by parametrizing the
growth rate as a powerlaw (Wang & Steinhardt 1998; Lue, Seocc
marro, & Starkman 2004),

fqe(2)

where Q,,(a) 87Gpm(a)/(3H?). The solid lines in the
bottom panel of Fig.18 show the precision enusing only
the {zn(2),za(2), f4(2)om(z)/s*} measured fromP(k) and
marginalized over all other parameters. The dashed lines e
precision oy when the full P(k) is used, including the growth
information (i.e., the P(k) + f,” method).

[Qm(a)]”, (122)
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Figure 18. Top: uncertainties onfg(z)G(z)ﬁOl/2/s4 and 8(z) for
StagelV+BOSS per\z = 0.1 redshift bin. Bottom: uncertainties on the
growth rate powerlaw index for StagelV+BOSS, with and without Planck
priors.

7 THE ALCOCK-PACZYNSKI TEST

Alcock & Paczynski (1979) noted that if an astrophysicalsture
is spherically symmetric, then its measured radial andstrarse
dimensions can be used to constrain the cosmological médel.
galaxy redshift survey enables the Alcock-Paczynski tebetcar-
ried out.

Features in the galaxy power spectrum, such as the BAO,
should have the same length scale in the radial and tramsders
rections. The radial length scale is measured using

H(z)Ar| = cAz, (123)

whereAz is the redshift interval spanned ldyr|. The transverse
length scale is measured using

Ar, = Da(z)A0, (124)

whereAd is the angle subtended kyr .
Thus the Alcock-Paczynski test of requiring titat, = Ar
leads to

H(z)Da(z) Az

c A0

This provides a cross check of the measufgt) and D 4 (z) de-
rived from the BAO scale measurements.

Redshift-space distortions (a source of cosmologicakriné

tion themselves) introduce a systematic uncertainty inrAlseck-

Paczynski test. Unless properly modeled and removed, ifedsh
space distortions can alter the measured length scale imathe

(125)

dial direction from galaxy redshift surveys, and bias theo&k-
Paczynski test.
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