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Units

We will adopt natural, or high energy physics, units. There is only one fundamental dimension,

energy, after setting ~ = c = kb = 1,

[Energy] = [Mass] = [Temperature] = [Length]−1 = [Time]−1 .

The most common conversion factors and quantities we will make use of are

1 GeV−1 = 1.97× 10−14 cm=6.59× 10−25 sec,

1 Mpc= 3.08×1034 cm=1.56×1033 GeV−1,

MPl = 1.22× 1019 GeV,

H0= 100 h Km sec−1 Mpc−1=2.1h × 10−42 GeV−1,

ρc = 1.87h2 · 10−29g cm−3 = 1.05h2 · 104 eV cm−3 = 8.1h2 × 10−47 GeV4,

T0 = 2.75 K=2.3×10−13 GeV,

Teq = 5.5(Ω0h
2) eV,

Tls = 0.26 (T0/2.75 K) eV.
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Part I

Introduction

Our current understanding of the evolution of the universe is based upon the Friedmann-Robertson-

Walker (FRW) cosmological model, or the hot big bang model as it is usually called. The model is

so successful that it has become known as the standard cosmology. times. The FRW cosmology is

so robust that it is possible to make sensible speculations about the universe at times as early as

10−43 sec after the Big Bang.

The most important feature of our universe is its large scale homogeneity and isotropy. This

feature ensures that observations made from our single point are representative of the universe as a

whole and can therefore be legitimately used to test cosmological models. For most of the twentieth

century, the homogeneity and isotropy of the universe had to be taken as an assumption, known as

the Cosmological Principle. The assumption of isotropy and homogeneity dates back to the earliest

work of Einstein, who made the assumption not based upon observations, but as theorists often do,

to simplify the mathematical analysis. The Cosmological Principle remained an intelligent guess

until firm empirical data, confirming large scale homogeneity and isotropy, were finally obtained

at the end of the twentieth century. The best evidence for the isotropy of the observed universe

Figure 1: The large-scale structure from the 2dF Galaxy Survey

is the uniformity of the temperature of the cosmic microwave background (CMB) radiation: aside

from the observed dipole anisotropy, the temperature difference between two antennas separated by

angles ranging from about 10 arc seconds to 180◦ is smaller than about one part in 105. The simplest

interpretation of the dipole anisotropy is that it is the result of our motion relative to the cosmic rest

frame. If the expansion of the universe were not isotropic, the expansion anisotiopy would lead to a

temperature anisotiopy in the CMBR of similar magnitude. Likewise, inhomogeneities in the density

of the universe on the last scattering surface would lead to temperature anisotropies. In this iegard,
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Figure 2: The CMB radiation projected onto a sphere

the CMBR is a very powerful probe: It is even sensitive to density inhomogeneities on scales larger

than our present Hubble volume. The remarkable uniformity of the CMB radiation indicates that

at the epoch of last scattering for the CMB radiation (about 200,000 yr after the bang) the universe

was to a high degree of precision (order of 10−5 or so) isotropic and homogeneous. Homogeneity and

isotropy is of course true if the universe is observed at sufficiently large scales. The observable patch

of the universe is of order 3000 Mpc. Redshift surveys suggest that the universe is homogeneous

and isotropic only when coarse grained on scales of the order of 100 Mpc. On smaller scales there

exist large inhomogeneities, such as galaxies, clusters and superclusters. Hence, the Cosmological

Principle is only valid within a limited range of scales, spanning a few orders of magnitude. The

inflationary theory, as we shall see, suggests that the universe continues to be homogeneous and

isotropic over distances larger than 3000 Mpc.

It is firmly established by observations that our universe therefore

• is homogeneous and isotropic on scales larger than 100 Mpc and has well developed inhomo-

geneous structure on smaller scales;

• expands according to the Hubble law for which the recession velocity of, say, galaxies is

proportional to their distances.

Concerning the matter composition of the universe, we know that

• it is pervaded by thermal microwave background radiation with temperature T0 ' 2.73 K;
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• there is baryonic matter, roughly one baryon per 109 photons, but no substantial amount of

antimatter;

• the chemical composition of baryonic matter is about 75% hydrogen, 25% helium, plus trace

amounts of heavier elements;

• baryons contribute only a small percentage of the total energy density; the rest is a dark

component, which appears to be composed of cold dark matter with negligible pressure (25%)

and dark energy with negative pressure (70%).

Observations of the fluctuations in the cosmic microwave background radiation suggest that

• there were only small fluctuations of order 10−5 in the energy density distribution when the

universe was a thousand times smaller than now.

Any cosmological model worthy of consideration must be consistent with established facts. While

the standard big bang model accommodates most known facts, a physical theory is also judged

by its predictive power. At present, inflationary theory, naturally incorporating the success of the

standard big bang, has no competitor in this regard. Therefore, we will build upon the standard big

bang model, which will be our starting point, until we reach contemporary ideas of inflation. We

will then show how its prediction influences the CMB physics as well as the physics of the matter

perturbations. This set of notes also offers two Appendices about the generation of the baryon

asymmetry of the universe and the phase transitions in the early universe. These subjects will not

be covered during the lectures.

1 The Friedmann-Robertson-Walker metric

As discussed in the previous section, the distribution of matter and radiation in the observable

universe is homogeneous and isotropic. While this by no means guarantees that the entire universe is

smooth, it does imply that a region at least as large as our present Hubble volume is smooth. So long

as the universe is spatially homogeneous and isotropic on scales as large as the Hubble volume, for

purposes of description of our local Hubble volume we may assume the entire universe is homogeneous

and isotropic. While a homogeneous and isotropic region within an otherwise inhomogeneous and

anisotropic universe will not remain so forever, causality implies that such a region will remain

smooth for a time comparable to its light-crossing time. This time corresponds to the Hubble time,

about 10 Gyr. We have determined during the last part of the GR course that the metric of a

maximally symmetric space satisfying the Cosmological Principle is the the metric for a space with

homogeneous and isotropic spatial sections, that is the Friedmann-Robertson-Walker metric, which

can be written in the form
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ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
, (1)

where (t, r, θ, φ) are are coordinates (referred to as comoving coordinates), a(t) is the cosmic scale

factor, and with an appropriate reseating of the coordinates, k can be chosen to be +1,−1, or 0

for spaces of constant positive, negative, or zero spatial curvature, respectively. The coordinate r is

dimensionless, i.e. a(t) has dimensions of length, and r ranges from 0 to 1 for k = +1. The time

coordinate is just the proper (or clock) time measured by an observer at rest in the comoving frame,

i.e., (r, θ, φ)=constant. As we shall discover shortly, the term comoving is well chosen: observers at

rest in the comoving frame remain at rest, i.e., (r, θ, φ) remain unchanged, and observers initially

moving with respect to this frame will eventually come to rest in it. Thus, if one introduces a

homogeneous, isotropic fluid initially at rest in this frame, the t =constant hypersurfaces will always

be orthogonal to the fluid flow, and will always coincide with the hypersurfaces of both spatial

homogeneity and constant fluid density.

We already know the curvature tensor of the maximally symmetric metric entering the FRW

metric (and its contractions), this is not difficult.

1. First of all, we write the FRW metric as

ds2 = −dt2 + a2(t)g̃ijdx
idxj . (2)

From now on, all objects with a tilde will refer to three-dimensional quantities calculated with

the metric g̃ij .

2. One can then calculate the Christoffel symbols in terms of a(t) and Γ̃ijk. The nonvanishing

components are (we had already established that Γµ00 = 0)

Γijk = Γ̃ijk,

Γij0 =
ȧ

a
δij ,

Γ0
ij =

ȧ

a
g̃ij . (3)

3. The relevant components of the Riemann tensor are

Ri0j0 = − ä
a
δij ,

R0
i0j = äag̃ij ,

Rkikj = R̃ij + 2ȧ2g̃ij . (4)
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4. Now we can use R̃ij = 2kg̃ij (as a consequence of the maximally symmetry of g̃ij) to calculate

Rµν . The nonzero components are

R00 = −3
ä

a
,

Rij =
(
aä+ 2ȧ2 + 2k

)
g̃ij ,

=

(
ä

a
+ 2

ȧ2

a2
+ 2

k

a2

)
gij . (5)

5. The Ricci scalar is

R =
6

a2

(
aä+ ȧ2 + k

)
, (6)

and

6. the Einstein tensor has the components

G00 = 3

(
ȧ2

a2
+

k

a2

)
,

G0i = 0,

Gij = −
(

2
ä

a
+
ȧ2

a2
+

k

a2

)
gij . (7)

1.1 Open, closed and flat spatial models

In order to illustrate the construction of the metric, consider the simpler case of a two spatial

dimensions. dimensions. Examples of two-dimensional spaces that are homogeneous and isotropic

are the flat plane R2, the positively-curved closed two sphere S2 and the negatively-curved hyperbolic

plane H2.

Consider first a two sphere S2 of radius a and embedded in a three-dimensional space R3. The

equation of the sphere of radius a is

x2
1 + x2

2 + x2
3 = a2. (8)

The element of length is the three-dimensional Euclidean space is

dx2 = dx2
1 + dx2

2 + dx2
3. (9)

Since x3 is a fictitious coordinate, we can eliminate it in favour of the other two and write

dx2 = dx2
1 + dx2

2 +
(x1dx1 + x2dx2)2

a2 − x2
1 − x2

2

. (10)
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Now, let us introduce the polar coordinates

x1 = r′ cos θ, x2 = r′ sin θ, (11)

in terms of which the infinitesimal line length becomes

dx2 =
a2dr

′2

a2 − r′2 + r
′2dθ2. (12)

Finally, with the definition of a dimensionless coordinate r = r′/a (0 ≤ r ≤ 1), the spatial metric

becomes

dx2 = a2

[
dr2

1− r2
+ r2dθ2

]
. (13)

Note the similarity between this metric and the k = 1 FRW metric. It should also now be clear that

a(t) is the radius of the space. The poles of the two-sphere are at r = 0, the equator is at r = 1.

The locus of points of constant r sweep out the latitudes of the sphere, while the locus of points of

constant θ sweep out the longitudes of the sphere. Another convenient coordinate system for the

two sphere is that specified by the usual polar and azimuthal angles (θ, φ) of spherical coordinates,

related to the xi by

x1 = a sin θ cosφ, x2 = a sin θ sinφ, x3 = a cos θ. (14)

In terms of these coordinates, the spatial line element becomes

dx2 = a2
[
dθ2 + sin2 θdφ2

]
. (15)

This form makes manifest the fact that the space is the two sphere of radius a. The volume of the

two sphere is easily calculated

VS2 =

∫
d2
√
g̃ =

∫ 2π

0
dφ

∫ π

0
dθ a2 sin2 θ = 4πa2, (16)

as expected. The two sphere is homogeneous and isotropic. Every point in the space is equivalent

to every other point, and there is no preferred direction. In other words, the space embodies

the Cosmological Principle, i.e., no observer (especially us) occupies a preferred position in the

universe. Note that this space is unbounded; there are no edges on the two sphere. It is possible to

circumnavigate the two sphere, but it is impossible to fall off. Although the space is unbounded, the

volume is finite. The expansion (or contraction) of this two-dimensional universe equivalent to an

increase (or decrease) in the radius of the two sphere a. Since the universe is apatiatly homogeneous

and isotropic, the scale factor can only be a function of time. As the two sphere expands or contracts,

the coordinates (r and θ in the case of the two sphere) remain unchanged; they are “comoving.”
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Also note that the physical distance between any two comoving points in the space scales with a

(hence the name scale factor).

The equivalent formulas for a space of constant negative curvature can be obtained with the

replacement a → ia. In this case the embedding is in a three-dimensional Minkowski space. The

metric corresponding to the form for the negative curvature case is

dx2 = a2

[
dr2

1− r2
+ r2dθ2

]
= a2

[
dθ2 + sinh2 θdφ2

]
. (17)

The hyperbolic plane H2 is unbounded with infinite volume since 0 ≤ θ < ∞. The embedding of

H2 in a Euclidean space requires three fictitious extra dimensions, and such an embedding is of

little use in visualizing the geometry. The spatially-flat model can be obtained from either of the

above examples by taking the radius a to infinity. The flat model is unbounded with infinite volume.

For the flat model the scale factor does not represent any physical radius as in the closed case, or

an imaginary radius as in the open case, but merely represents how the physical distance between

comoving points scales as the space expands or contracts.

The generalization of the two-dimensional models discussed above to three spatial dimensions

is trivial. For the three sphere a fictitious fourth spatial dimension is introduced, and in cartesian

coordinates the three sphere is denned by: a2 = x2
1 + x2

2 + x2
3 + x2

4. The spatial metric is dx2 =

dx2
1 + dx2

2 + dx2
3 + dx2

4. The fictitious coordinate can be removed to give

dx2 = dx2
1 + dx2

2 + dx2
3

(x1dx1 + x2dx2 + x3dx3)2

a2 − x2
1 − x2

2 − x2
3

. (18)

In terms of the coordinates x1 = r′ sin θ cosφ, x2 = r′ sin θ sinφ and x3 = r′ cos θ, this metric

becomes equal to the FRW metric with k = +1 and r = r′/a. In the coordinate system that

employes the three angular coordinates (χ, θ, φ) of a four-dimensional spherical coordinates system,

x1 = a sinχ sin θ cosφ, x2 = a sinχ sin θ sinφ, x3 = a sinχ cos θ and x4 = a cosχ, the metric is given

by

dx2 = a2
[
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

]
. (19)

The volume of the three-sphere is

VS3 =

∫
d3x

√
g̃ = 2πa3. (20)

As for the two-dimensional case, the three-dimensional open model is obtained by the replacement

a → ia, which gives the FRW metric with k = −1. Again the Again the space is unbounded with

infinite volume and a(t) sets the curvature scale. Embedding H3 in a Euclidean space requires four

fictitious extra dimensions.
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It should be noted that the assumption of local homogeneity and isotropy only implies that

the spatial metric is locally S3, H3 or R3 and the space can have different global properties. For

instance, for the spatially fiat case the global properties of the space might be that of the three torus,

T3, rather than R3; this is accomplished by identifying the opposite sides of a fundamental spatial

volume element. Such non-trivial topologies may be relevant in light of recent work on theories with

extra dimensions. In many such theories the internal space (of the extra dimensions) is compact,

but with non-trivial topology, e.g., containing topological defects such as holes, handles, and so

on. If the internal space is not simply connected, it suggests that the external space may also be

non-trivial, and the global properties of our three-space might be much richer than the simple S3,

H3 or R3 topologies.

1.2 The particle horizon and the Hubble radius

A fundamental question in cosmology that one might ask is: what fraction of the universe is in causal

contact? More precisely, for a comoving observer with coordinates (r0, θ0, φ0), for what values of

(r, θ, φ) would a light signal emitted at t = 0 reach the observer at, or before, time t? This can

be calculated directly in terms of the FRW metric. A light signal satisfies the geodesic equation

ds2 = 0. Because of the homogeneity of space, without loss of generality we may choose r0 = 0.

Geodesies passing through r=0 are lines of constant θ and φ, just as great circles eminating from the

poles of a two sphere are lines of constant θ (i.e., constant longitude), so dθ = dφ = 0. Of course,

the isotropy of space makes the choice of direction θ0, φ0) irrelevant. Thus, a light signal emitted

from coordinate position (rH, θ0, φ0) at time t = 0 will reach r0 = 0 in a time t determined by

∫ t

0

dt′

a(t′)
=

∫ rH

0

dr′√
1− kr′2

. (21)

The proper distance to the horizon measured at time t is

RH(t) = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ a

0

da′

a′
1

a′H(a′)
= a(t)

∫ rH

0

dr′√
1− kr′2

(PARTICLE HORIZON).

(22)

If RH(t) is finite, then our past light cone is limited by this particle horizon, which is the boundary

between the visible universe and the part of the universe from which light signals have not reached

us. The behavior of a(t) near the singularity will determine whether or not the particle horizon is

finite. We will see that in the standard cosmology RH(t) ∼ t, that is the particle horizon is finite.

The particle horizon should not be confused with the notion of Hubble radius

1

H
=
a

ȧ
(HUBBLE RADIUS). (23)
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Let us emphasize a subtle distinction between the particle horizon and the Hubble: if particles are

separated by distances greater than RH(t) they never could have communicated with one another;

if they are separated by distances greater than the Hubble radius H−1, they cannot talk to each

other at the time t.

We shall see that the standard cosmology the distance to the horizon is finite, and up to numerical

factors, equal to the Hubble radius, H−1, but during inflation, for instance, they are drastically

different. One can also define a comoving particle horizon distance

τH =

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

H(a′)a′2
=

∫ a

0
d ln a′

(
1

Ha′

)
(COMOVING PARTICLE HORIZON).

(24)

Here, we have expressed the comoving horizon as an integral of the comoving Hubble radius,

1

aH
(COMOVING HUBBLE RADIUS), (25)

which will play a crucial role in inflation. We see that the comoving horizon then is the logarithmic

integral of the comoving Hubble radius (aH)−1. The Hubble radius is the distance over which

particles can travel in the course of one expansion time, i.e. roughly the time in which the scale

factor doubles. So the Hubble radius is another way of measuring whether particles are causally

connected with each other: if they are separated by distances larger than the Hubble radius, then

they cannot communicate at a given time t (or τ). Let us reiterate that there is a subtle distinction

between the comoving horizon τH and the comoving Hubble radius (aH)−1. If particles are separated

by comoving distances greater than τH, they never could have communicated with one another;

if they are separated by distances greater than (aH)−1, they cannot talk to each other at some

time τ . It is therefore possible that τH could be much larger than (aH)−1 now, so that particles

cannot communicate today but were in causal contact early on. As we shall see, this might happen

if the comoving Hubble radius early on was much larger than it is now so that τH got most of

its contribution from early times. We will see that this could happen, but it does not happen

during matter-dominated or radiation-dominatd epochs. In those cases, the comoving Hubble radius

increases with time, so typically we expect the largest contribution to τH to come from the most

recent times.

A similar concept is the event horizon, or the maximum distance we can probe in the infinite

future

Re(t) = a(t)

∫ ∞
t

dt′

a(t′)
, (26)

which is clearly infinite if the universe expands a a ∼ tn (n < 1).
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1.3 Particle kinematics of a particle

Consider the geodesic motion of a particle that is not necessarily massless. The four-velocity uµ of

a particle with respect to the comoving frame is referred to as the peculiar velocity. The geodesic

equation of motion in terms of the affine parameter chosen to be the proper length is

duµ

ds
+ Γµνσu

νuσ = 0, uµ =
dxµ

ds
. (27)

The µ = 0 component of the geodesic equation is

du0

ds
+ Γ0

νσu
νuσ =

du0

ds
+ Γ0

iju
iuj =

du0

ds
+
ȧ

a
g̃iju

iuj = 0. (28)

Denoting by |u|2 = g̃iju
iuj and recalling that −(u0)2 + |u|2 = −1, it follows that u0du0 = |u|d|u|,

the geodesic equation becomes

du0

ds
+
ȧ

a
|u|2 =

1

u0

d|u|
ds

+
ȧ

a
|u| = 0. (29)

Finally, since u0 = dt/ds, this equation reduces to

1

|u|
d|u|
dt

= − ȧ
a
. (30)

It implies that |u| ∼ a−1. recalling that the four-momentum pµ = muµ, we see that the magnitude

of the three-momentum of a freely propagating particle red-shifts away as a−1. Note that in eq. (29)

the factors of ds cancel. That implies that the above discussion also applies to massless particles,

where ds = 0 (formally by the choice of a different affine parameter). In terms of the ordinary

three-velocity vi for which uµ = (u0, ui) = (γ, γvi) and γ = 1/
√

1− |v|2, we have

|u| = |v|√
1− |v|2

∼ 1

a
. (31)

We again see why the comoving frame is the natural frame. Consider an observer initially (t =

t1) moving non-relativistically with respect to the comoving frame with physical three velocity of

magnitude |v|1 . At a later time t2 the magnitude of the observer’s physical three-velocity |v|2 will

be

|v|2 = |v|1
a(t1)

a(t2)
. (32)

In an expanding universe, the freely-falling observer is destined to come to rest in the comoving

frame even if he has some initial velocity with respect to it.
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1.4 The cosmological redshift

Without explicitly solving Einstein’s equations for the dynamics of the expansion, it is still possible

to understand many of the kinematic effects of the expansion upon light from distant galaxies. The

light emitted by a distant object can be viewed quantum mechanically as freely-propagating photons,

or classically as propagating plane waves. In the quantum mechanical description, the wavelength

of light is in- inversely proportional to the photon momentum λ = h/p. If the momentum changes,

the wavelength of the light must change. It was shown in the previous section that the momentum

of a photon changes in proportion to a−1. Since the wavelength of a photon is inversely proportional

to its momentum, the wavelength at time t0, denoted as λ0, will differ from that at time t1, denoted

as λ1, by

λ1

λ0
=
a(t1)

a(t0)
. (33)

As the universe expands, the wavelength of a freely-propagating photon increases, just as all physical

distances increase with the expansion. This means that the red shift of the wavelength of a photon

is due to the fact that the universe was smaller when the photon was emitted.

It is also possible to derive the same result by considering the propagation of light from a distant

galaxy as a classical wave phenomenon. Let us again place ourselves at the origin r = 0. We consider

a radially travelling electro-magnetic wave (a light ray) and consider the equation ds2 = 0 or

dt2 = a2(t)
dr2

1− kr2
. (34)

Let us assume that the wave leaves a galaxy located at r at time t. Then it will reach us at time t0

given by

∫ t0

t

dt

a(t)
= f(r) =

∫ r

0

dr√
1− kr2

=


sin−1 r = r + r3/6 + · · · (k = +1),

r (k = 0),

sinh−1 r = r − r3/6 + · · · (k = −1).

(35)

As typical galaxies will have constant coordinates, f(r) (which can of course be given explicitly, but

this is not needed for the present analysis) is time-independent. If the next wave crest leaves the

galaxy at r at time (t+ δt), it will arrive at time (t0 + δt0) given by

f(r) =

∫ r

0

dr√
1− kr2

=

∫ t0+δt0

t+δt

dt

a(t)
. (36)

Subtracting these two equations and making the (eminently reasonable) assumption that the cosmic

scale factor a(t) does not vary significantly over the period δt given by the frequency of light, we

obtain
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δt0
a(t0)

=
δt

a(t)
. (37)

Therefore the observed frequency ν0 is related to the emitted frequency ν by

ν0

ν
=

a(t)

a(t0)
. (38)

Astronomers like to express this in terms of the red-shift parameter

1 + z =
λ0

λ
, (39)

which implies

z =
a(t0)

a(t)
− 1 . (40)

Thus if the universe expands one has z > 0 and ther is a red-shift while in a contracting universe

with a(t0) < a(t) the light of distant glaxies would be blue-shifted. A few remarks:

1. This cosmological red-shift has nothing to do with the stars own gravitational field - that

contribution to the red-shift is completely negligible compared to the effect of the cosmological

red-shift.

2. Unlike the gravitational red-shift i GR, this cosmological red-shift is symmetric between re-

ceiver and emitter, .e. light sent from the earth to the distant galaxy would likewise be

red-shifted if we observe a red-shift of the distant galaxy.

3. This red-shift is a combined effect of gravitational and Doppler red-shifts and it is not very

meaningful to interpret this only in terms of, say, a Doppler shift. Nevertheless, as mentioned

before, astronomers like to do just that, calling v = zc the recessional velocity.

4. Nowadays, astronomers tend to express the distance of a galaxy not in terms of light-years

or megaparsecs, but directly in terms of the observed red-shift factor z, the conversion to

distance then following from some version of Hubbles law.

5. The largest observed redshift of a galaxy is currently z ∼ 10, corresponding to a distance of

the order of 13 billion light-years, while the cosmic microwave background radiation, which

originated just a couple of 105 years after the Big Bang, has z ∼ 103.
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2 Standard cosmology

All of the discussions in the previous section concerned the kinematics of a universe described by a

FRW. The dynamics of the expanding universe only appeared implicitly in the time dependence of

the scale factor a(t). To make this time dependence explicit, one must solve for the evolution of the

scale factor using the Einstein equations

Rµν −
1

2
gµνR = 8πGNTµν + Λgµν , (41)

where Tµν is the stress-energy tensor for all the fields present (matter, radiation, and so on) and we

have also included the presence of a cosmological constant. With very minimal assumptions about

the right-hand side of the Einstein equations, it is possible to proceed without detailed knowledge

of the properties of the fundamental fields that contribute to the stress tensor Tµν .

2.1 The stress-energy momentum tensor

To be consistent with the symmetries of the metric, the total stress-energy tensor tensor must be

diagonal, and by isotropy the spatial components must be equal. The simplest realization of such a

stress-energy tensor is that of a perfect fluid characterized by a time-dependent energy density ρ(t)

and pressure P (t)

Tµν = (ρ+ P )uµuν + Pδµν = diag(−ρ, P, P, P ), (42)

where uµ = (1, 0, 0, 0) in a comoving coordinate system. This is precisely the energ-ymomentum

tensor of a perfect fluid. The four-vector uµ is known as the velocity field of the fluid, and the

comoving coordinates are those with respect to which the fluid is at rest. In general, this matter

content has to be supplemented by an equation of state. This is usually assumed to be that of a

barytropic fluid, i.e. one whose pressure depends only on its density, P = P (ρ). The most useful

toy-models of cosmological fluids arise from considering a linear relationship between P and ρ of the

type

P = wρ , (43)

where w is known as the equation of state parameter. Occasionally also more exotic equations of

state are considered. For non-relativistic particles (NR) particles, there is no pressure, pNR = 0, i.e.

wNR = 0, and such matter is usually referred to as dust. The trace of the energy-momentum tensor

is

Tµµ = −ρ+ 3P. (44)
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For relativistic particles, radiation for example, the energy-momentum tensor is (like that of Maxwell

theory) traceless, and hence relativistic particles hve the equation of state

Pr =
1

3
ρr, (45)

and thus wr = 1/3. For physical (gravitating instead of anti-gravitating) matter one usually requires

ρ > 0 (positive energy) and either P > 0, corresponding to w > 0 or, at least, (ρ + 3P ) > 0,

corresponding to the weaker condition w > 1/3. A cosmological constant, on the other hand,

corresponds, as we will see, to a matter contribution with wΛ = −1 and thus violates either ρ > 0

or (ρ+ 3P ) > 0.

Let us now turn to the conservation laws associated with the energy-momentum tensor,

∇µTµν = 0. (46)

The spatial components of this conservation law,

∇µTµi = 0, (47)

turn out to be identically satisfied, by virtue of the fact that the uµ are geodesic and that the

functions ρ and P are only functions of time. This could hardly be otherwise because ∇µTµi would

have to be an invariant vector, and we know that there are none. Nevertheless it is instructive to

check this explicitly

∇µTµi = ∇0T
0i +∇jT ji = 0 +∇jT ji = P∇jgij = 0. (48)

The only interesting conservation law is thus the zero-component

∇µTµ0 = ∂µT
µ0 + ΓµµνT

ν0 + Γ0
µνT

µν = 0, (49)

which for a perfect fluid becomes

ρ̇+ Γµµ0ρ+ Γ0
00ρ+ Γ0

ijT
ij = 0. (50)

Using the Christoffel symbols previously computed, see Eq. (3), we get

ρ̇+ 3H(ρ+ P ) = 0 . (51)

For instance, when the pressure of the cosmic matter is negligible, like in the universe today, and

we can treat the galaxies (without disrespect) as dust, then one has

ρNR a
3 = constant (MATTER) . (52)
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The energy (number) density scales like the inverse of the volume whose size is ∼ a3 On the other

hand, if the universe is dominated by, say, radiation, then one has the equation of state P = ρ/3,

then

ρr a
4 = constant (RADIATION). (53)

The energy density scales the like the inverse of the volume (whose size is ∼ a3) and the energy which

scales like 1/a because of the red-shift: photon energies scale like the inverse of their wavelenghts

which in turn scale like 1/a. More generally, for matter with equation of state parameter w, one

finds

ρ a3(1+w) = constant. (54)

In particular, for w = −1, ρ is constant and corresponds, as we will see more explicitly below, to a

cosmological constant vacuum energy

ρΛ = constant (VACUUM ENERGY). (55)

The early universe was radiation dominated, the adolescent universe was matter dominated and

the adult universe is dominated, as we shall see, by the cosmological constant. If the universe

underwent inflation, there was again a very early period when the stress-energy was dominated by

vacuum energy. As we shall see next, once we know the evolution of ρ and P in terms of the scale

factor a(t), it is straightforward to solve for a(t). Before going on, we want to emphasize the utility

of describing the stress energy in the universe by the simple equation of state P = wρ. This is

the most general form for the stress energy in a FRW space-time and the observational evidence

indicates that on large scales the RW metric is quite a good approximation to the space-time within

our Hubble volume. This simple, but often very accurate, approximation will allow us to explore

many early universe phenomena with a single parameter.

2.2 The Friedmann equations

After these preliminaries, we are now prepared to tackle the Einstein equations. We allow for the

presence of a cosmological constant and thus consider the equations

Gµν + Λgµν = 8πGNTµν . (56)

It will be convenient to rewrite these equations in the form

Rµν = 8πGN

(
Tµν −

1

2
gµνT

λ
λ

)
+ Λgµν . (57)
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Because of isotropy, there are only two independent equations, namely the 00-component and any

one of the non-zero ij-components. Using Eqs. (5) we find

−3
ä

a
= 4πGN(ρ+ 3P )− Λ ,

ä

a
+ 2

ȧ2

a2
+ 2

k

a2
= 4πGN(ρ− P ) + Λ. (58)

Using the first equation to eliminate ä from the second, one obtains the set of equations for the

Hubble rate

H2 +
k

a2
=

8πGN

3
ρ+

Λ

3
, (59)

for the acceleration

ä

a
= −4πGN

3
(ρ+ 3P )− Λ

3
. (60)

Together, this set of equation is known as the Friedman equations. They are supplemented this by

the conservation equation (51). Note that because of the Bianchi identities, the Einstein equations

and the conservation equations should not be independent, and indeed they are not. It is easy to

see that (59) and (51) imply the second order equation (60) so that, a pleasant simplification, in

practice one only has to deal with the two first order equations (59) and (51). Sometimes, however,

(60) is easier to solve than (59), because it is linear in a(t), and then (59) is just used to fix one

constant of integration.

Notice that Eqs. (59) and (60) can be obtained, in the non-relativistic limit P = 0 from

Newtonian physics. Imagine that the distribution of matter is uniform and its matter density is ρ.

Put a test particle with mass m on a surface of a sphere of radius a and let gravity act. The total

energy is constant and therefore

Ekin + Epot =
1

2
mȧ2 −GN

mM

a
= κ = constant. (61)

Since the mass M contained in a sphere of radius a is M = (4πρa3/3), we obtain

1

2
mȧ2 − 4πGN

3
ma2 = κ = constant. (62)

By divinding everything by (ma2/2) we obtain Eq. (59) with of course no cosmological constant

and after setting k = 2κ/m. Eq. (60) can be analogously obtained from Newton’s law relating the

gravitational force and the acceleration (but still with P = 0).

The expansion rate of the universe is determined by the Hubble rate H which is not a constant

and generically scales like t−1. The Friedmann equation (59) can be recast as
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Ω− 1 =
ρ

3H2/8πGN
=

k

a2H2
, (63)

where we have defined the parameter Ω as the ratio between the energy density ρ and the critical

energy density ρc

Ω =
ρ

ρc
, ρc =

3H2

8πGN
. (64)

Since a2H2 > 0, there is a correspondence between the sign of k and the sign of (Ω− 1)

k = +1 ⇒ Ω > 1 CLOSED,

k = 0 ⇒ Ω = 1 FLAT,

k = −1 ⇒ Ω < 1 OPEN.

(65)

Eq. (63) is valid at all times, note also that both Ω and ρc are not constant in time. At early times

once has a radiation-dominated (RD) phase radiation and H2 ∼ a−4 with (Ω− 1) ∼ a2; during the

matter-dominated phase (MD) one finds H2 ∼ a−3 with (Ω− 1) ∼ a. These relations will be crucial

when we will study the inflationary universe. The present day value of the critical energy density is

ρc = 1.87h2 · 10−29 gr cm−3 = 1.05h2 · 104 eV cm−3 = 8.1h2 × 10−47 GeV4. (66)

It is also common practice to define the Ω parameters for all the components of the universe

Ωi =
ρi
ρc
, (i = MATTER,RADIATION,VACUUM ,ENERGY, · · · ). (67)

If we define

ΩΛ =
ρΛ

ρc
=

Λ

8πGN

1

ρc
=

Λ

3H2
, (68)

and a curvature density parameter

Ωk = − k

H2a2
, (69)

we can obtain the so-called golden rule of cosmology

Ωm + Ωγ + Ωb + ΩΛ + Ωk + · · · = 1. (70)

We have indicated here with the subscript m the dark matter (DM) (see below) and b the baryons

(ordinary matter). Present day values do no carry the index 0 unless needed for the clarity of the

presentation. From each discussion it should be clear when we intend that the Ω parameters are at
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the present epoch or at a generic instant of time. In particular, the Fridmann equation (59) can be

wriiten as

H2 = H2
0 (Ωma

−3 + Ωra
−4 + ΩΛ + Ωka

−2 + · · · ), (71)

where we have set a0 = 1. In the previous section we have also introduced the deceleration parameter,

see Eq. (??). By combining Eqs. (59) and (60) and using the definition of Ω0, that is the value of

the parameter Ω today, it follows that

q0 = −4πGN

3H2
0

∑
i

ρi(1 + 3wi) '
1

2
(Ωm + 2Ωr − 2ΩΛ) . (72)

For a MD universe we have q0 = Ωm/2, for a RD we have q0 = Ωr, both positive. Nevertheless, for

a vacuum-dominated universe, we obtain q0 = −ΩΛ and the universe is indeed accelerating.

Recall also that from (6) the curvature of the three-dimensioanl spatial slices is 3R = 6k/a2.

Using the definition of Ω we obtain

3R =
6H2

Ω− 1
. (73)

From the FRW metric, it is clear that the effect of the curvature becomes important only at a

comoving radius r ∼ |k|−1/2. So we define the physical radius of curvature of the universe Rcurv =

a(t)|k|−1/2 = (6/|3R|)1/2, related to the Hibble radius H−1 by

Rcurv =
H−1

|Ω− 1|1/2 . (74)

When |Ω − 1| � 1, such a curvature radius turns out to be much larger than the Hubble radius

and we can safely neglect the effect of curvature in the universe. Note also that for closed universes,

k = +1, Rcurv is just the physical radius of the three-sphere.

2.3 Exact solutions of the Friedman-Robertson-Walker Cosmology

To solve the Friedman equations we have to account for the presence of several species of matter,

characterised by different equations of state or different equation of state parameters wi will coexist.

If we assume that these do not interact, then one can just add up their contributions in the Friedman

equations.

In order to make the dependence of the Friedman equation (59)

ȧ2 =
8πGN

3
ρa2 − k +

Λ

3
a2 (75)

on the equation of state parameters wi more manifest, it is useful to use the conservation law
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8πGN

3
ρia

2 = cia
−(1+3wi), (76)

for some constant ci. Then the Friedman equation takes the more explicit form

ȧ2 =
∑
i

cia
−(1+3wi) − k +

Λ

3
a2. (77)

In addition to the vacuum energy (and pressure), there are typically two other kinds of matter which

are relevant in our approximation, namely matter in the form of dust and radiation. Denoting the

corresponding constants by cm and cr respectively, the Friedman equation that we will be dealing

with takes the form

ȧ2 =
cm

a
+
cr

a2
− k +

Λ

3
a2, (78)

illustrating the qualitatively different conntributions to the time-evolution. One can then charac-

terise the different eras in the evolution of the universe by which of the above terms dominates, i.e.

gives the leading contribution to the equation of motion for a. This already gives some insight into

the physics of the situation. We will call a universe matter-diminated if the piece cm/a dominates;

radiation-dominated if the piece cr/a
2 dominates; curvature-dominated if the piece k dominates and

vacuum-dominated if the piece Λa2 dominates. As mentioned before, for a long time it was believed

that our present universe is purely matter dominated while recent observations appear to indicate

that contributions from both matter and the cosmological constant are non-negligible.

Here are some immediate consequences of the Friedman equation (78):

1. No matter how small cr is, provided that it is non-zero, for sufficiently small values of a that

term will dominate and one is in the radiation dominated era. In that case, one finds the

characteristic behaviour

ȧ2 =
cr

a2
⇒ a(t) ∼ t1/2 (RD). (79)

2. If matter dominates, one finds the characteristic behaviour

ȧ2 =
cm

a
⇒ a(t) ∼ t2/3 (MD). (80)

3. For a general equation of state w 6= −1, one finds

a(t) ∼ t
2

3(1+w) . (81)
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4. For sufficiently large a, a nonzero cosmological constant will always dominate, no matter how

small the cosmological constant may be, as all the other energy-content of the universe gets

more and more diluted.

5. Only for Λ = 0 does k dominates for large a.

6. Finally, for Λ = 0 the Friedman equation can be integrated in terms of elementary functions

whereas for Λ 6= 0 one typically encounters elliptic integrals.

7. If we extrapolate at t = 0, we see that the scale factor vanishes there and the energy density

becomes infinite. This is a mathematical, rather than physical singularity and goes under

the name of Big Bang. In practice, if the inflationary cosmology is correct, we are not really

interested in such a epoch as there is no observation which could test it, simply inflation erased

any information about it. Let us also stress that, because of the Cosmological Principle, such

singularity should have happened everywhere uniformly.

Let us study, for hystorical reasons, the so-called Einstein static solution. Einstein was looking for a

static cosmological solution and for this he was forced to introduce the cosmological constant. Static

means ȧ = 0. Energy conservation then tells us that ρ̇ = 0 and Eq. (60) tells us that (ρ+ 3P ) = Λ,

therefore also P must be a constant. We see that with Λ = 0 we would already not be able to satisfy

this equation for physical matter content (ρ+ 3P ) > 0. Furthermore Eq. (78) indicates that k must

be positive. Finally, going back to Eq. (59) we find

a2 = (8πGNρ/3 + 8πGN(ρ+ 3P )/3)−1 = (4πGN(ρ+ P ))−1 . (82)

This is thus a static universe, with topology R×S3 in which the gravitational attraction is precisely

balanced by the cosmological constant. Note that even though a positive cosmological constant has

a positive energy density, it has a negative pressure, and the net effect of a positive cosmological

constant is that of gravitational repulsion rather than attraction.

In the matter-dominated universe we have to solve

ȧ2 =
cm

a
− k. (83)

For k = 0 this is the equation (79) we already discussed and goes under the name of Einstein-de

Sitter universe. For k = +1, the equation is

ȧ2 =
cm

a
− 1. (84)

We recall that in this case we will have a recollapsing universe with amax = cm, which is attained

for ȧ = 0. This can be solved in closed form for t as a function of a, and the solution to

25



dt

da
=

(
a

amax − a

)−1/2

(85)

is

t(a) =
amax

2
arccos

(
1− 2

a

amax

)
−
(
aamax − a2

)1/2
, (86)

as can be easily verified. The universe starts at t = 0 with a(0) = 0, reaches its maximum at

a = amax at

tmax = amax arccos(−1)/2 =
π

2
amax, (87)

and ends in a Big Crunch at t = 2tmax. 2tmax. The curve a(t) is a cycloid, as is most readily seen by

writing the solution in parametrised form. For this it is convenient to introduce the time-coordinate

τ via

dτ

dt
=

1

a(t)
. (88)

As an aside, not that this time-coordinate renders the FRW metric conformal to Minkowski ds2 =

a2(τ)(−dτ2 + dx2). This coordinate system is very convenient for discussing the causal structure of

the FRW universes. In terms of the parameter τ , the solution to the Friedman equation for k = +1

can be written as

a(τ) =
amax

2
(1− cos τ) ,

t(τ) =
amax

2
(τ − sin τ) , (89)

which makes it transparent that the curve is indeed a cycloid. The maximal radius is reached at

tmax = t(a = amax) = t(τ = π) =
π

2
amax, (90)

as before. Analogously, for k == −1, the Friedman equation can be solved in parametrised form,

with the trignometric functions replaced by hyperbolic functions

a(τ) =
amax

2
(cosh τ − 1) ,

t(τ) =
amax

2
(sinh τ − τ) , (91)

In the case in which radiation is dominating the equation to solve is

a2ȧ2 = cr − ka2. (92)

It is convenient to make the change of variable b = a2 to obtain
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Figure 3: Qualitative behaviour of the Friedman-Robertson-Walker models for Λ = 0.

ḃ2

4
+ kb = cr. (93)

For k = 0 we already saw that the solution is a(t) ∼ t1/2. For k = ±1, one necessarily has

b(t) = b0 + b1t+ b2t
2. Fixing b(0) = 0 we find the solution

a(t) =
(

2c1/2
r t− kt

)1/2
, (94)

so, for k = +1

a(0) = a
(

2c1/2
r

)
= 0. (95)

Thus already electro-magnetic radiation is sufficient to shrink the universe again and make it recol-

lapse. For k = −1 on the other hand, the universe expands forever. All this is of course in agreement

with the results of the qualitative discussion given earlier.

Finally and for future applications, let us see what happens when the universe is dominated by

a cosmological constant. The equation to solve is

ȧ2 = −k +
Λ

3
a2. (96)

We see that Λ has to be positive for k = +1 or k = 0, whereas for k = −1 both positive and negative

λ are possible. This is one instance where the solution to the second order equation (60)

ä =
Λ

3
a, (97)

is more immediate, namely trigonometric functions for Λ < 0 (only possible for k =?1) and hyperbolic

functions for Λ > 0. The first order equation then fixes the constants of integration according to the

value of k. For k = 0, the solution is

27



a±(t) =

√
3

Λ
e±
√

Λ/3 t, (98)

and for k = +1, thus Λ > 0, one has

a±(t) =

√
3

Λ
cosh

√
Λ/3 t. (99)

This is also known as the de Sitter universe. It is a maximally symmetric (in space-time) solution

of the Einstein equations with a cosmological constant and thus has a metric of constant curvature.

But we know that such a metric is unique. Hence the three solutions with λ > 0, for k = 0, ±1 must

all represent the same space-time metric, only in different coordinate systems. This is interesting

because it shows that de Sitter space is so symmetric that it has space-like slicings by three-spheres,

by three-hyperboloids and by three-planes. The solution for k = −1 involves sin
√

Λ/3t for Λ < 0

and sinh
√

Λ/3t for Λ > 0. The former is known as the anti de Sitter universe.

Part II

Equilibrium thermodynamics

Today the radiation, or relativistic particles, in the universe is comprised of the 2.75 K microwave

photons and the three cosmic seas of about 1.96 K relic neutrinos. because the early universe was

to a good approximation in thermal equilibrium, there should have been other relativistic particles

present, with comparable abundances. Before going on to discuss the early RD phase, we will quickly

review some basic thermodynamics.

The number density n, energy density ρ and pressure P of a dilute, weakly interacting gas of

particles with g internal degrees of freedom is given in terms of its phase space distribution function

f(p)

n =
g

(2π)3

∫
d3p f(p),

ρ =
g

(2π)3

∫
d3pE(p) f(p),

P =
g

(2π)3

∫
d3p

|p|2
3E(p)

f(p), (100)

where E2 = |p|2 + m2. For a species in kinetic equilibrium, the phase occupancy f is given by the

familiar Fermi-Dirac or Bose-Einstein distributions

f(p) = [exp(E − µ)/T ± 1]−1 , (101)
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where µ is the chemical potential and +1 refers to Fermi-Dirac species and −1 to Bose-Einstein

species. Moreover, if the species is in chemical equilibrium, then its chemical potential µ is related

to the chemical potentials of other species with which it interacts. For example, if the species i

interacts with the species j, k and l

i+ j ↔ k + l, (102)

then we have

µi + µj = µk + µl. (103)

From the equilibrium distributions, it follows that the number density n, energy density ρ and

pressure P of a species of mass m, chemical potential µ and temperature T are

n =
g

2π2

∫ ∞
m

dE E
(E2 −m2)1/2

exp [(E − µ)/T ]± 1
,

ρ =
g

2π2

∫ ∞
m

dE E2 (E2 −m2)1/2

exp [(E − µ)/T ]± 1
,

P =
g

6π2

∫ ∞
m

dE
(E2 −m2)3/2

exp [(E − µ)/T ]± 1
. (104)

In the relativistic limit T � m and T � µ we obtain

ρ =

 (π2/30)gT 4 (BOSE)

(7/8)(π2/30)gT 4 (FERMI)

n =

 (ζ(3)/π2)gT 3 (BOSE)

(3/4)(ζ(3)/π2)gT 3 (FERMI)

P = ρ/3. (105)

For a degenerate gas for which µ� T we have

ρ = (1/8π2)gµ4,

n = (1/6π2)gµ3,

P = (1/24π2)gµ4. (106)

Here ζ(3) ' 1.2 is the Riemann zeta function of three. For a Bose-Einstein species µ > 0 indicates

the presence of a Bose condensate, which should be treated separately from the other modes. For

relativistic bosons or fermions with µ < 0 and |µ| < T , it follows that
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n = exp(µ/T )(g/π2)T 3,

ρ = exp(µ/T )(3g/π2)T 4,

P = exp(µ/T )(g/π2)T 4. (107)

In the non-relativistic limit, m � T , the number density and pressure are the same for the Bose

and Fermi species

n = g

(
mT

2π

)3/2

exp[−(m− µ)/T ],

ρ = mn,

P = nT � ρ. (108)

For a nondegenerate relativistic species, its average energy density per particle is

〈E〉 = ρ/n = [π4/30ζ(3)] ' 2.7T (BOSE),

〈E〉 = ρ/n = [7π4/180ζ(3)] ' 3.15T (FERMI). (109)

For a degenerate, relativistic species

〈E〉 = ρ/n = (3µ/4). (110)

Finally, for a non-relativistic particle

〈E〉 = m+ (3/2)T. (111)

The excess of a fermionic species over its antiparticle is often of interest and can be computed in the

relativistic and non-relativistic regimes. Assuming that µ+ = −µ− (true if the reactions like particle

+ antiparticles ↔ γ + γ occur rapidly), then the net fermion number is

n+ − n− =
g

2π2

∫ ∞
m

dE E(E2 −m2)1/2

×
[

1

exp[(E − µ)/T ] + 1
− 1

exp[(E + µ)/T ] + 1

]
=

gT 3

6π2

[
π2
(µ
T

)
+
(µ
T

)3
]

(T � m),

= 2g(mT/2π)3/2 sinh(µ/T ) exp(−m/T ) (T � m). (112)
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The total energy density and pressure of all species in equilibrium can be expressed in terms of the

photon temperature T

ρr = T 4
∑
all

species

(
Ti
T

)4 gi
2π2

∫ ∞
xi

du
(u2 − x2

i )
1/2u2

exp(u− yi)± 1
,

Pr = T 4
∑
all

species

(
Ti
T

)4 gi
6π2

∫ ∞
xi

du
(u2 − x2

i )
3/2

exp(u− yi)± 1
, (113)

where xi = mi/T and yi = /µi/T and we taken into account the possibility that the species have a

different temperature than the photons.

Since the energy density and pressure of non-relativistic species is exponentially smaller than

that of relativistic species, it is a very good approximation to include only the relativistic species in

the sums and we obtain

ρr = 3Pr =
π2

30
g∗(T )T 4, (114)

where

g∗(T ) =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

, (115)

counts the effective total number of relativistic degrees of freedom in the plasma. For instance, for

T � MeV, the only relativistic species are the three neutrinos with Tν = (4/11)1/3Tγ (see below)

and g∗(� MeV) ' 3.36. For 100 MeV >∼ T >∼ 1 MeV, the electron and positron are additional

relativistic degrees of freeedom and Tν = Tγ and g∗ ' 10.75. For T >∼ 300 GeV, all the species of the

Standard Model (SM) are in equilibrium: 8 gluons, W±, Z, three generations of quarks and leptons

and one complex Higgs field and g∗ ' 106.75.

During early RD phase when ρ ' ρr and supposing that g∗ ' constant, we have that the Hubble

rate is

H ' 1.66 g
1/2
∗

T 2

MPl
(116)

and the corresponding time is

t ' 0.3 g
−1/2
∗

MPl

T 2
'
(

T

MeV

)−2

sec. (117)
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3 Entropy

Throughout most of the history of the universe the reaction rates of particles in the thermal bath

were much greater than the expansion rate of the universe and local thermal equilibrium (LTE) was

attained. In this case the entropy per comoving volume element remains constant. The entropy in a

comoving volume provides a very useful quantity during the expansion of the universe. The second

law of theormodynamics as applied to a comoving volume elementof unit coordinate volume and

physical volume V = a3, implies that (we assume small chemical potentials)

TdS = d(ρV ) + PdV = d[(ρ+ P )V ]− V dP. (118)

The integrability condition

∂2S

∂T∂V
=

∂2S

∂V ∂T
(119)

relates the energy density and pressure

T
dP

dT
= ρ+ P, (120)

or, equivalently,

dP =
ρ+ P

T
dT. (121)

We therefore obtain from Eq. (118) that

dS =
1

T
d[(ρ+ P )V ]− (ρ+ P )V

dT

T 2
= d

[
(ρ+ P )V

T
+ const.

]
. (122)

That is, up to an additional constant, the entropy per comoving volume is

S = a3 (ρ+ P )

T
. (123)

Reacll that the first law (energy conservation) can be written as

d[(ρ+ P )V ] = V dP. (124)

Thus substituting (121) in Eq. (124), we obtain

d

[
(ρ+ P )V

T

]
= 0. (125)

This implies that in thermal equilibrium the entropy per comoving volume V , S, is conserved. It is

useful to define the entropy density s as
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s =
S

V
=
ρ+ P

T
. (126)

It is dominated by the relativistic degrees of freedom and to a very good approximation

s =
2π2

45
g∗ST

3, (127)

where

g∗S = g∗(T ) =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

, (128)

For most of the history of the universe, all particles had the same temperature and one replace

therefore g∗S with g∗. Note also that s is proportional to the number density of relativistic degrees

of freedom and in particular it can be related to the photon number density nγ

s ' 1.8g∗Snγ . (129)

Today s0 ' 7.04nγ,0. The conservation of S implies that s ∼ a−3 and therefore

g∗ST
3a3 = constant (130)

during the evolution of the universe and that the number density of a given species Y = a3n can be

written as

Y =
n

s
. (131)

For a species in thermal equilbrium

Y =
45ζ(3)g

2π4g∗S
(T � m),

Y =
45g

4
√

2π5g∗S
(m/T )3/2 exp(−m/T + µ/T ) (T � m). (132)

If the number of a given species in a comoving volume is not changing, i.e. particles are neither

created nor destroyed, then Y remains constant at a given temperature. For instance, as long as

the baryon number processes are out-of-equilibrium, then nb/s is conserved. Although η = nb/νγ =

1.8g∗S(nb/s), the baryon number-to-phton ratio does not remain constant with time because g∗S

chages. During the era of e± annihilations, the number density of photons per comoving volume

increases by a factor 11/4, so that η decreases by the same factor. After the time of e± annihilations,

however, g∗S is constant and η ' 7nb/s and nb/s can be used interchangeably.

33



The second fact, that S = g∗ST
3a3 = constant, implies that the temperature of the universe

evolves as

T ∼ g−1/3
∗S a−1. (133)

When g∗S is constant one gets the familiar result T ∼ a−1. The factor g
−1/3
∗S enters because whenever

a particle species becomes non-relativistic and disappears from the plasma, its entropy is transferred

to the other relativistic particles in the thermal plasma causing T to decrease slightly less slowly

(sometimes it is said, but in a wrong way, that the universe slightly reheats up).

Part III

The inflationary cosmology

In this chapter we will discuss the inflationary universe. As we will come out along the way, inflation

is responsible not only for the observed homogeneity and isotropy of the universe, but also for

its inhomogeneities. Furthermore, inflation links the quantum mechanical microphysics to the the

macrophysics of the universe as a whole. It is a beautiful example of connection between high energy

physics and cosmology.

Before launching ourselves into the description of inflation, we would like to go back to the

concept of conformal time which will be useful in the next sections. The conformal time τ is defined

through the following relation

dτ =
dt

a
. (134)

The metric ds2 = −dt2 + a2(t)dx2 then becomes

ds2 = a2(τ)
[
−dτ2 + dx2

]
. (135)

The reason why τ is called conformal is manifest from Eq. (135): the corresponding FRW line element

is conformal to the Minkowski line element describing a static four dimensional hypersurface.

Any function f(t) satisfies the rule

ḟ(t) =
f ′(τ)

a(τ)
, (136)

ḟ(t) =
f ′′(τ)

a2(τ)
− H f

′(τ)

a2(τ)
, (137)

where a prime now indicates differentation wrt to the conformal time τ and

H =
a′

a
. (138)

In particular we can set the following rules
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H =
ȧ

a
=
a′

a2
=
H
a
,

ȧ =
a′′

a2
− H

2

a
,

Ḣ =
H′
a2
− H

2

a2
,

H2 =
8πGρ

3
− k

a2
=⇒ H2 =

8πGρa2

3
− k

Ḣ = −4πG (ρ+ P ) =⇒ H′ = −4πG

3
(ρ+ 3P ) a2,

ρ̇ + 3H(ρ+ P ) = 0 =⇒ ρ′ + 3H(ρ+ P ) = 0

Finally, if the scale factor a(t) scales like a ∼ tn, solving the relation (134) we find

a ∼ tn =⇒ a(τ) ∼ τ n
1−n . (139)

Therefore, for a RD era a(t) ∼ t1/2 one has a(τ) ∼ τ and for a MD era a(t) ∼ t2/3, that is a(τ) ∼ τ2.

4 Again on the concept of particle horizon

We have already encountered the concept of the particle horizon. Let us see how it behaves in an

expanding universe and what this implies. In spite of the fact that the universe was vanishingly

small at early times, the rapid expansion precluded causal contact from being established throughout.

Photons travel on null paths characterized by ds2 = 0 or (along straight lines in polar coordinates)

dr = dt/a(t); the physical distance that a photon could have traveled since the bang until time t,

the distance to the particle horizon, is

RH(t) = a(t)

∫ t

0

dt′

a(t′)
= a(τ)

∫ τ

τ0

dτ ′

=
t

(1− n)
= n

H−1

(1− n)
∼ H−1 for a(t) ∝ tn, n < 1. (140)

Recall that in a universe dominated by a fluid with equation of state P = w/ρ we have n = 2/3(1+w).

The comoving Hubble radius goes like

COMOVING HUBBLE RADIUS =
1

aH
∼ t

tn
= t1−n (141)

In particular, for a MD universe w = 0 and n = 2/3, while for a RD universe w = 1/3 and 1/2. In

bot cases the comoving Huble radius increases with time. We see that in the standard cosmology

the distance to the horizon is finite, and up to numerical factors, equal to the Hubble radius, H−1.
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For this reason, one can use the words horizon and Hubble radius interchangeably for standard

cosmology. As we shall see, in inflationary models the horizon and Hubble radius are drastically

different as the horizon distance grows exponentially relative to the Hubble radius; in fact, at the

end of inflation they differ by eN , where N is the number of e-folds of inflation. The horizon sets

the length scale for which two points separated by a distance larger than RH(t) they could never

communicate, while the Hubble radius sets the scale at which these two points could not comunicate

at the time t.

Note also that a physical length scale λ is within the Hubble radius if λ < H−1. Since we can

identify the length scale λ with its wavenumber k, λ = 2πa/k, we will have the following rule

k

aH
� 1 =⇒ SCALE λ OUTSIDE THE HORIZON

k

aH
� 1 =⇒ SCALE λ WITHIN THE HORIZON

Notice that in standard cosmology

λ

PARTICLE HORIZON
=

λ

RH
= λH ∼ aH

k
. (142)

This shows once more that Hubble radius and particle horizon can be used interchangeably in

standard cosmology.

5 The shortcomings of the Standard Big-Bang Theory

By now the shortcomings of the standard cosmology are well appreciated: the horizon or large-scale

smoothness problem; the small-scale inhomogeneity problem (origin of density perturbations); and

the flatness or oldness problem. We will only briefly review them here. They do not indicate any

logical inconsistencies of the standard cosmology; rather, that very special initial data seem to be

required for evolution to a universe that is qualitatively similar to ours today. Nor is inflation the

first attempt to address these shortcomings: over the past two decades cosmologists have pondered

this question and proposed alternative solutions. Inflation is a solution based upon well-defined,

albeit speculative, early universe microphysics describing the post-Planck epoch.

5.1 The Flatness Problem

Let us make a tremendous extrapolation and assume that Einstein equations are valid until the

Plank era, when the temperature of the universe is TPl ∼∼ 1019 GeV. From the equation for the
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curvature

Ω− 1 =
k

H2a2
, (143)

we read that if the universe is perfectly flat, then (Ω = 1) at all times. On the other hand, if there

is even a small curvature term, the time dependence of (Ω− 1) is quite different.

During a RD period, we have that H2 ∝ ρr ∝ a−4 and

Ω− 1 ∝ 1

a2a−4
∝ a2. (144)

During MD, ρNR ∝ a−3 and

Ω− 1 ∝ 1

a2a−3
∝ a. (145)

In both cases (Ω − 1) decreases going backwards with time. Since we know that today (Ω0 − 1) is

of order unity at present, we can deduce its value at tPl (the time at which the temperature of the

universe is TPl ∼ 1019 GeV)

| Ω− 1 |T=TPl

| Ω− 1 |T=T0

≈
(
a2

Pl

a2
0

)
≈
(
T 2

0

T 2
Pl

)
≈ O(10−64). (146)

where 0 stands for the present epoch, and T0 ∼ 10−13 GeV is the present-day temperature of the

CMB radiation. If we are not so brave and go back simply to the epoch of nucleosynthesis when

light elements abundances were formed, at TN ∼ 1 MeV, we get

| Ω− 1 |T=TN

| Ω− 1 |T=T0

≈
(
a2
N

a2
0

)
≈
(
T 2

0

T 2
N

)
≈ O(10−16). (147)

In order to get the correct value of (Ω0 − 1) ∼ 1 at present, the value of (Ω− 1) at early times have

to be fine-tuned to values amazingly close to zero, but without being exactly zero. This is the reason

why the flatness problem is also dubbed the ‘fine-tuning problem’.

5.2 The Entropy Problem

Let us now see how the hypothesis of adiabatic expansion of the universe is connected with the

flatness problem. From the Friedman equations we know that during a RD period

H2 ' ρR '
T 4

M2
Pl

, (148)

from which we deduce

Ω− 1 =
kM2

Pl

a4T 4
=
kM2

Pl

S
2
3T 2

. (149)

Under the hypothesis of adiabaticity, S is constant over the evolution of the universe and therefore

|Ω− 1|t=tPl
=
M2

Pl

T 2
Pl

1

S
2/3
U

=
1

S
2/3
U

≈ 10−60, (150)

37



where we have used the fact that the present horizon contains a total entropy

SU =
4π

3
H−3

0 s =
4π

3
H−3

0

2π2g∗T
3

45
' 1090. (151)

We have discovered that (Ω − 1) is so close to zero at early epochs because the total entropy of

our universe is so incredibly large. The flatness problem is therefore a problem of understanding

why the (classical) initial conditions corresponded to a universe that was so close to spatial flatness.

In a sense, the problem is one of fine–tuning and although such a balance is possible in principle,

one nevertheless feels that it is unlikely. On the other hand, the flatness problem arises because

the entropy in a comoving volume is conserved. It is possible, therefore, that the problem could be

resolved if the cosmic expansion was non–adiabatic for some finite time interval during the early

history of the universe.

5.3 The horizon problem

According to the standard cosmology, photons decoupled from the rest of the components (electrons

and baryons) at a temperature of the order of 0.3 eV. This corresponds to the so-called surface of

‘last-scattering’ at a red shift of about 1100 and an age of about 180, 000 (Ω0h
2)−1/2 yrs. From the

Figure 4: The black body spectrum of the cosmic background radiation.

epoch of last-scattering onwards, photons free-stream and reach us basically untouched. Detecting

primordial photons is therefore equivalent to take a picture of the universe when the latter was

about 300,000 yrs old. The spectrum of the cosmic background radiation is consistent that of a

black body at temperature 2.73 K over more than three decades in wavelength; see Fig. 4. The length

corresponding to our present Hubble radius (which is approximately the radius of our observable

universe) at the time of last-scattering was

λH(tls) = RH(t0)

(
als

a0

)
= RH(t0)

(
T0

Tls

)
.
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On the other hand, during the MD period, the Hubble length has decreased with a different law

H2 ∝ ρNR ∝ a−3 ∝ T 3.

At last-scattering

H−1
ls = RH(t0)

(
Tls

T0

)−3/2

� RH(t0).

The length corresponding to our present Hubble radius was much larger that the horizon at that

time. This can be shown comparing the volumes corresponding to these two scales

λ3
H(Tls)

H−3
ls

=

(
T0

Tls

)− 3
2

≈ 106. (152)

There were ∼ 106 casually disconnected regions within the volume that now corresponds to our

horizon! It is difficult to come up with a process other than an early hot and dense phase in the

history of the universe that would lead to a precise black body for a bath of photons which were

causally disconnected the last time they interacted with the surrounding plasma.

The horizon problem is well represented by Fig. 5 where the green line indicates the horizon scale

and the red line any generic physical length scale λ. Suppose, indeed that λ indicates the distance

between two photons we detect today. From Eq. (152) we discover that at the time of emission

(last-scattering) the two photons could not talk to each other, the red line is above the green line.

There is another aspect of the horizon problem which is related to the problem of initial conditions

for the cosmological perturbations. We have every indication that the universe at early times, say

t� 300, 000 yrs, was very homogeneous; however, today inhomogeneity (or structure) is ubiquitous:

stars (δρ/ρ ∼ 1030), galaxies (δρ/ρ ∼ 105), clusters of galaxies (δρ/ρ ∼ 10 − 103), superclusters,

or “clusters of clusters” (δρ/ρ ∼ 1), voids (δρ/ρ ∼ −1), great walls, and so on. For some twenty-

five years the standard cosmology has provided a general framework for understanding this picture.

Once the universe becomes matter dominated (around 1000 yrs after the bang) primeval density

inhomogeneities (δρ/ρ ∼ 10−5) are amplified by gravity and grow into the structure we see today.

The existence of density inhomogeneities has another important consequence: fluctuations in the

temperature of the CMB radiation of a similar amplitude. The temperature difference measured

between two points separated by a large angle (>∼ 1◦) arises due to a very simple physical effect: the

difference in the gravitational potential between the two points on the last-scattering surface, which

in turn is related to the density perturbation, determines the temperature anisotropy on the angular

scale subtended by that length scale, (
δT

T

)
θ

≈
(
δρ

ρ

)
λ

, (153)

where the scale λ ∼ 100h−1 Mpc(θ/deg) subtends an angle θ on the last-scattering surface. This is

known as the Sachs-Wolfe effect. The CMB experiments looking for the tiny anisotropies are of three
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Figure 5: The horizon scale (green line) and a physical scale λ (red line) as function of the scale

factor a.

kinds: satellite experiments, balloon experiments, and ground based experiments. The technical

and economical advantages of ground based experiments are evident, but their main problem is

atmospheric fluctuations. The temperature anisotropy is commonly expanded in spherical harmonics

∆T

T
(x0, τ0,n) =

∑
`m

a`,m(x0)Y`m(n), (154)

where x0 and τ0 are our position and the preset time, respectively, n is the direction of observation,

`′s are the different multipoles and1

〈a`ma∗`′m′〉 = δ`,`′δm,m′C`, (155)

1An alternative definition is C` = 〈|a`m|2〉 = 1
2`+1

∑`
m=−` |a`m|

2
.
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Figure 6: The CMBR anisotropy as function of `.

where the deltas are due to the fact that the process that created the anisotropy is statistically

isotropic. The C` are the so-called CMB power spectrum. For homogeneity and isotropy, the C`’s

are neither a function of x0, nor of m. The two-point-correlation function is related to the C`’s in

the following way〈δT (n)

T

δT (n′)

T

〉
=

∑
``′mm′

〈a`ma∗`′m′〉Y`m(n)Y ∗`′m′(n
′)

=
∑
`

C`
∑
m

Y`m(n)Y ∗`m(n′) =
1

4π

∑
`

(2`+ 1)C`P`(µ = n · n′) (156)

where we have used the addition theorem for the spherical harmonics, and P` is the Legendre

polynom of order `. In expression (156) the expectation value is an ensamble average. It can be

regarded as an average over the possible observer positions, but not in general as an average over

the single sky we observe, because of the cosmic variance2.

Let us now consider the last-scattering surface. In comoving coordinates the latter is ‘far’ from

us a distance equal to ∫ t0

tls

dt

a
=

∫ τ0

τls

dτ = (τ0 − τls) . (157)

2The usual hypothesis is that we observe a typical realization of the ensamble. This means that we expect

the difference between the observed values |a`m|2 and the ensamble averages C` to be of the order of the

mean-square deviation of |a`m|2 from C`. The latter is called cosmic variance and, because we are dealing

with a Gaussian distribution, it is equal to 2C` for each multipole `. For a single `, averaging over the (2`+1)

values of m reduces the cosmic variance by a factor (2` + 1), but it remains a serious limitation for low

multipoles.
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A given comoving scale λ is therefore projected on the last-scattering surface sky on an angular scale

θ ' λ

(τ0 − τls)
, (158)

where we have neglected tiny curvature effects. Consider now that the scale λ is of the order of

the comoving sound horizon at the time of last-scattering, λ ∼ csτls, where cs ' 1/
√

3 is the sound

velocity at which photons propagate in the plasma at the last-scattering. This corresponds to an

angle

θ ' cs
τls

(τ0 − τls)
' cs

τls

τ0
, (159)

where the last passage has been performed knowing that τ0 � τls. Since the universe is MD from the

time of last-scattering onwards, the scale factor has the following behaviour: a ∼ T−1 ∼ t2/3 ∼ τ2,

where we have made use of the relation (139). The angle θHOR subtended by the sound horizon on

the last-scattering surface then becomes

θHOR ' cs
(
T0

Tls

)1/2

∼ 1◦, (160)

where we have used Tls ' 0.3 eV and T0 ∼ 10−13 GeV. This corresponds to a multipole `HOR

`HOR =
π

θHOR
' 200. (161)

From these estimates we conclude that two photons which on the last-scattering surface were

separated by an angle larger than θHOR, corresponding to multipoles smaller than `HOR ∼ 200 were

not in causal contact. On the other hand, from Fig. 6 it is clear that small anisotropies, of the

same order of magnitude δT/T ∼ 10−5 are present at `� 200. We conclude that one of the striking

features of the CMB fluctuations is that they appear to be noncausal. Photons at the last-scattering

surface which were causally disconnected have the same small anisotropies! The existence of particle

horizons in the standard cosmology precludes explaining the smoothness as a result of microphysical

events: the horizon at decoupling, the last time one could imagine temperature fluctuations being

smoothed by particle interactions, corresponds to an angular scale on the sky of about 1◦, which

precludes temperature variations on larger scales from being erased.

To account for the small-scale lumpiness of the universe today, density perturbations with

horizon-crossing amplitudes of 10−5 on scales of 1 Mpc to 104 Mpc or so are required. As can

be seen in Fig. 5, in the standard cosmology the physical size of a perturbation, which grows as the

scale factor, begins larger than the horizon and relatively late in the history of the universe crosses

inside the horizon. This precludes a causal microphysical explanation for the origin of the required

density perturbations.

From the considerations made so far, it appears that solving the shortcomings of the standard

Big Bang theory requires two basic modifications of the assumptions made so far:
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Figure 7: An illustration of the horizon problem stemming from the CMB anisotropy.

• The universe has to go through a non-adiabatic period. This is necessary to solve the entropy

and the flatness problem. A non-adiabatic phase may give rise to the large entropy SU we

observe today.

• The universe has to go through a primordial period during which the physical scales λ evolve

faster than the Hubble radius H−1.

The second condition is obvious from Fig. 8. If there is period during which physical length scales

grow faster than the Hubble radius H−1, length scales λ which are within the horizon today, λ < H−1

(such as the distance between two detected photons) and were outside the Hubble radius at some

period, λ > H−1 (for istance at the time of last-scattering when the two photons were emitted),

had a chance to be within the Hubble radius at some primordial epoch, λ < H−1 again. If this

happens, the homogeneity and the isotropy of the CMB can be easily explained: photons that we

receive today and were emitted from the last-scattering surface from causally disconnected regions

have the same temperature because they had a chance to talk to each other at some primordial

stage of the evolution of the universe. The distinction between the (comoving) particle horizon and
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Figure 8: The behaviour of a generic scale λ and the Hubble radiusH−1 in the standard inflationary

model.

the (comoving) Hubble radius is crucial now for the solution to the horizon problem which relies on

the following: It is possible that RH is much larger than the Hubble radius now, so that particles

cannot communicate today but were in causal contact early on.

The second condition can be easily expressed as a condition on the scale factor a. Since a given

scale λ scales like λ ∼ a and the Hubble radius H−1 = a/ȧ, we need to impose that there is a period

during which (
λ

H−1

)·
> 0⇒ ä > 0. (162)
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Notice that is equivalent to require that the ratio between the comoving length scales λ/a the

comoving Hubble radius during inflation

(
λ

H−1

)·
=

(
λ/a

H−1/a

)·
=

(
λ/a

1/aH

)·
> 0. (163)

increases with time. We can therefore introduced the following rigorous definition: an inflationary

stage is a period of the universe during which the latter accelerates

INFLATION ⇐⇒ ä > 0.

Comment: Let us stress that during such a accelerating phase the universe expands adiabatically.

This means that during inflation one can exploit the usual FRW equations. It must be clear therefore

that the non-adiabaticity condition is satisfied not during inflation, but during the phase transition

between the end of inflation and the beginning of the RD phase. At this transition phase a large

entropy is generated under the form of relativistic degrees of freedom: the Big Bange has taken

place.

6 The standard inflationary universe

From the previous section we have learned that an accelerating stage during the primordial phases

of the evolution of the universe might be able to solve the horizon problem. Therefore we obtain we

learn that

ȧ > 0⇐⇒ (ρ+ 3P ) < 0.

An accelerating period is obtainable only if the overall pressure p of the universe is negative: P <

−ρ/3. Neither a RD phase nor a MD phase (for which P = ρ/3 and P = 0, respectively) satisfy such

a condition. Let us postpone for the time being the problem of finding a ‘candidate’ able to provide

the condition P < −ρ/3. For sure, inflation is a phase of the history of the universe occurring before

the era of nucleosynthesis (t ≈ 1 sec, T ≈ 1 MeV) during which the light elements abundances were

formed. This is because nucleosynthesis is the earliest epoch we have experimental data from and

they are in agreement with the predictions of the standard Big-Bang theory. However, the thermal

history of the universe before the epoch of nucleosynthesis is unknown.

In order to study the properties of the period of inflation, we assume the extreme condition

P = −ρ which considerably simplifies the analysis. A period of the universe during which P = −ρ
is called de Sitter stage. By inspecting the FRW equations and the energy conservation equation,
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we learn that during the de Sitter phase

ρ = constant,

HI = constant,

where we have indicated by HI the value of the Hubble rate during inflation. Correspondingly, we

obtain

a = aI e
HI(t−tI), (164)

where tI denotes the time at which inflation starts. Let us now see how such a period of exponential

expansion takes care of the shortcomings of the standard Big Bang Theory.3

6.1 Inflation and the horizon Problem

During the inflationary (de Sitter) epoch the horizon scale H−1
I is constant. If inflation lasts long

enough, all the physical scales that have left the Hubble radius during the RD or MD phase can

re-enter the Hubble radius in the past: this is because such scales are exponentially reduced. Indeed,

while during inflation the particle horizon grow exponential

RH(t) = a(t)

∫ t

tI

dt′

a(t′)
= aI e

HI(t−tI)
(
− 1

HI

)[
e−HI(t−tI)

]t
tI
' a(t)

HI
, (165)

while the Hubble radius remains constant

HUBBLE RADIUS =
a

ȧ
= H−1

I , (166)

and points that our causally disconnected today could have been in contact during inflation. Notice

that in comoving coordinates the comoving Hubble radius shrink exponentially

COMOVING HUBBLE RADIUS = H−1
I e−HI(t−tI), (167)

while comoving length scales remain constant. An illustration of the solution to the horizon problem

can therefore be visualized as in Fig. 9. As we have seen in the previous section, this explains both

the problem of the homogeneity of CMB and the initial condition problem of small cosmological

perturbations. Once the physical length is within the horizon, microphysics can act, the universe

can be made approximately homogeneous and the primaeval inhomogeneities can be created.

3Despite the fact that the growth of the scale factor is exponential and the expansion is superluminal, this

is not in contradiction with what dictated by relativity. Indeed, it is the space-time itself which is progating

so fast and not a light signal in it.
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Figure 9: The solution of the horizon problem by inflation in comoving coordinates

Let us see how long inflation must be sustained in order to solve the horizon problem. Let tI

and tf be, respectively, the time of beginning and end of inflation. We can define the corresponding

number of e-foldings N

N = ln [HI(te − tI)] . (168)

A necessary condition to solve the horizon problem is that the largest scale we observe today, the

present horizon H−1
0 , was reduced during inflation to a value λH0(tI) smaller than the value of

horizon length H−1
I during inflation. This gives

λH0(tI) = H−1
0

(
atf
at0

)(
atI
atf

)
= H−1

0

(
T0

Tf

)
e−N <∼ H−1

I ,

where we have neglected for simplicity the short period of MD and we have called Tf the temperature

at the end of inflation (to be indentified with the reheating temperature TRH at the beginning of the

RD phase after inflation, see later). We get

N >∼ ln

(
T0

H0

)
− ln

(
Tf

HI

)
≈ 67 + ln

(
Tf

HI

)
.

Apart from the logarithmic dependence, we obtain N >∼ 70.

6.2 Inflation and the flateness problem

Inflation solves elegantly the flatness problem. Since during inflation the Hubble rate is constant

Ω− 1 =
k

a2H2
∝ 1

a2
.

On the other end the condition (150) tells us that to reproduce a value of (Ω0 − 1) of order of unity

today the initial value of (Ω− 1) at the beginning of the RD phase must be |Ω− 1| ∼ 10−60. Since

we identify the beginning of the RD phase with the beginning of inflation, we require

|Ω− 1|t=tf ∼ 10−60.
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During inflation
|Ω− 1|t=tf
|Ω− 1|t=tI

=

(
aI

af

)2

= e−2N . (169)

Taking |Ω− 1|t=tI of order unity, it is enough to require that N ≈ 70 to solve the flatness problem.

1. Comment: In the previous section we have written that the flateness problem can be also

seen as a fine-tuning problem of one part over 1060. Inflation ameliorates this fine-tuning problem,

by explaining a tiny number ∼ 10−60 with a number N of the order 70.

2. Comment: The number N ' 70 has been obtained requiring that the present-day value of

(Ω0 − 1) is of order unity. For the expression (169), it is clear that –if the period of inflation lasts

longer than 70 e-foldings the present-day value of Ω0 will be equal to unity with a great precision.

One can say that a generic prediction of inflation is that

INFLATION =⇒ Ω0 = 1.

Figure 10: Inflation predicts a local flat universe.

This statement, however, must be taken cum grano salis and properly specified. Inflation does not

change the global geometric properties of the space-time. If the universe is open or closed, it will
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always remain flat or closed, independently from inflation. What inflation does is to magnify the

radius of curvature Rcurv so that locally the universe is flat with a great precision. As we shall see,

the current data on the CMB anisotropies confirm this prediction!

6.3 Inflation and the entropy problem

In the previous section, we have seen that the flatness problem arises because the entropy in a

comoving volume is conserved. It is possible, therefore, that the problem could be resolved if the

cosmic expansion was non-adiabatic for some finite time interval during the early history of the

universe. We need to produce a large amount of entropy SU ∼ 1090. Let us postulate that the

entropy changed by an amount

Sf = Z3 Sm,i (170)

from the beginning to the end of the inflationary period, where Z is a numerical factor. It is very

natural to assume that the total entropy of the universe at the beginning of inflation was of order

unity, one particle per horizon. Since, from the end of inflation onwards, the universe expands

adiabatically, we have Sf = SU. This gives Z ∼ 1030. On the other hand, since Sf ∼ (afTf)
3 and

Sm,i ∼ (aItI)
3, where Tf and tI are the temperatures of the universe at the end and at the beginning

of inflation, we get (
af

aI

)
= eN ≈ 1030

(
tI
Tf

)
, (171)

which gives again N ∼ 70 up to the logarithmic factor ln
(
tI
Tf

)
. We stress again that such a large

amount of entopy is not produced during inflation, but during the non-adiabatic phase transition

which gives rise to the usual RD phase.

6.4 Inflation and the inflaton

In the previous subsections we have described the various adavantages of having a period of accel-

erating phase. The latter required P < −ρ/3. Now, we would like to show that this condition can

be attained by means of a simple scalar field. We shall call this field the inflaton φ.

The action of the inflaton field reads

S =

∫
d4x
√−gL =

∫
d4x
√−g

[
−1

2
∂µφ∂

µφ− V (φ)

]
, (172)

where
√−g = a3 for the FRW metric. From the Eulero-Lagrange equations

∂µ
δ(
√−gL)

δ ∂µφ
− δ(
√−gL)

δφ
= 0, (173)

we obtain

φ̈+ 3Hφ̇− ∇2φ

a2
+ V ′(φ) = 0 , (174)
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where V ′(φ) = (dV (φ)/dφ). Note, in particular, the appearance of the friction term 3Hφ̇: a scalar

field rolling down its potential suffers a friction due to the expansion of the universe.

We can write the energy-momentum tensor of the scalar field

Tµν = ∂µφ∂νφ− gµν L.

The corresponding energy density ρφ and pressure density Pφ are

T00 = ρφ =
φ̇2

2
+ V (φ) +

(∇φ)2

2a2
, (175)

Tii = Pφ =
φ̇2

2
− V (φ)− (∇φ)2

6a2
. (176)

Notice that, if the gradient term were dominant, we would obtain Pφ = −ρφ/3, not enough to drive

inflation. We can now split the inflaton field in

φ(t) = φ0(t) + δφ(x, t),

where φ0 is the ‘classical’ (infinite wavelength) field, that is the expectation value of the inflaton field

on the initial isotropic and homogeneous state, while δφ(x, t) represents the quantum fluctuations

around φ0. as for now, we will be only concerned with the evolution of the classical field φ0. This

separation is justified by the fact that quantum fluctuations are much smaller than the classical

value and therefore negligible when looking at the classical evolution. To not be overwhelmed by

the notation, we will keep indicating from now on the classical value of the inflaton field by φ. The

energy-momentum tensor becomes

T00 = ρφ =
φ̇0

2

2
+ V (φ0) (177)

Tii = Pφ =
φ̇2

0

2
− V (φ0). (178)

If

V (φ0)� φ̇2
0

we obtain the following condition

Pφ ' −ρφ
From this simple calculation, we realize that a scalar field whose energy is dominant in the universe

and whose potential energy dominates over the kinetic term gives inflation! Inflation is driven by

the vacuum energy of the inflaton field.

6.5 Slow-roll conditions

Let us now quantify better under which circumstances a scalar field may give rise to a period of

inflation. The equation of motion of the field is

φ̇0 + 3Hφ̇0 + V ′(φ0) = 0 (179)
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If we require that φ̇2
0 � V (φ0), the scalar field is slowly rolling down its potential. This is the reason

why such a period is called slow-roll. We may also expect that – being the potential flat – φ̇ is

negligible as well. We will assume that this is true and we will quantify this condition soon. The

FRW equation becomes

H2 ' 8πGN

3
V (φ0), (180)

where we have assumed that the inflaton field dominates the energy density of the universe. The

new equation of motion becomes

3Hφ̇0 = −V ′(φ0), (181)

which gives φ̇0 as a function of V ′(φ0). Using Eq. (181) slow-roll conditions then require

φ̇2
0 � V (φ0) =⇒ (V ′)2

V
� H2

and

φ̈0 � 3Hφ̇0 =⇒ V ′′ � H2 .

It is now useful to define the slow-roll parameters, ε and η in the following way

ε = − Ḣ

H2
= 4πGN

φ̇2
0

H2
=

1

16πGN

(
V ′

V

)2

,

η =
1

8πGN

(
V ′′

V

)
=

1

3

V ′′

H2
,

δ = η − ε = − φ̈0

Hφ̇0

.

It might be useful to have the same parameters expressed in terms of conformal time

ε = 1− H
′

H2
= 4πGN

φ0
′2

H2

δ = η − ε = 1− φ′′0
Hφ′ .

The parameter ε quantifies how much the Hubble rate H changes with time during inflation. Notice

that, since
ȧ

a
= Ḣ +H2 = (1− ε)H2,

inflation can be attained only if ε < 1:
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INFLATION ⇐⇒ ε < 1.

As soon as this condition fails, inflation ends. In general, slow-roll inflation is attained if ε� 1 and

|η| � 1. During inflation the slow-roll parameters ε and η can be considered to be approximately

constant since the potential V (φ) is very flat.

Comment: In the following, we will work at first-order perturbation in the slow-roll parameters,

that is we will take only the first power of them. Since, using their definition, it is easy to see that

ε̇, η̇ = O
(
ε2, η2

)
, this amounts to saying that we will trat the slow-roll parameters as constant in

time.

Within these approximations, it is easy to compute the number of e-foldings between the begin-

ning and the end of inflation. If we indicate by φm,i and φf the values of the inflaton field at the

beginning and at the end of inflation, respectively, we have that the total number of e-foldings is

N ≡
∫ tf

tI

H dt

' H

∫ φf

φm,i

dφ0

φ̇0

' −3H2

∫ φf

φm,i

dφ0

V ′

' −8πGN

∫ φf

φm,i

V

V ′
dφ0. (182)

We may also compute the number of e-foldings ∆N which are left to go to the end of inflation

∆N ' 8πGN

∫ φ∆N

φf

V

V ′
dφ0, (183)

where φ∆N is the value of the inflaton field when there are ∆N e-foldings to the end of inflation.

1. Comment: A given scale length λ = a/k leaves the horizon when k = aHk where Hk is the

the value of the Hubble rate at that time. One can compute easily the rate of change of H2
k as a

function of k

dlnH2
k

dln k
=

(
dlnH2

k

dt

)(
dt

dln a

)(
dln a

dln k

)
= 2

Ḣ

H
× 1

H
× 1 = 2

Ḣ

H2
= −2ε. (184)

2. Comment: Take a given physical scale λ today which crossed the horizon scale during inflation.

This happened when

λ

(
af

a0

)
e−∆Nλ = λ

(
T0

Tf

)
e−∆Nλ = H−1

I
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where ∆Nλ indicates the number of e-foldings from the time the scale crossed the horizon during

inflation and the end of inflation. This relation gives a way to determine the number of e-foldings

to the end of inflation corresponding to a given scale

∆Nλ ' 65 + ln

(
λ

3000 Mpc

)
+ 2 ln

(
V 1/4

1014 GeV

)
− ln

(
Tf

1010 GeV

)
.

Scales relevant for the CMB anisotropies correspond to ∆N ∼60.

6.6 The last stage of inflation and reheating

Inflation ended when the potential energy associated with the inflaton field became smaller than the

kinetic energy of the field. By that time, any pre-inflation entropy in the universe had been inflated

away, and the energy of the universe was entirely in the form of coherent oscillations of the inflaton

condensate around the minimum of its potential. The universe may be said to be frozen after the

end of inflation. We know that somehow the low-entropy cold universe dominated by the energy of

coherent motion of the φ field must be transformed into a high-entropy hot universe dominated by

radiation. The process by which the energy of the inflaton field is transferred from the inflaton field

to radiation has been dubbed reheating. In the old theory of reheating, the simplest way to envision

this process is if the comoving energy density in the zero mode of the inflaton decays into normal

particles, which then scatter and thermalize to form a thermal background. It is usually assumed

that the decay width of this process is the same as the decay width of a free inflaton field.

Of particular interest is a quantity known usually as the reheat temperature, denoted as TRH (so

far, we have indicated it with Tf). The reheat temperature is calculated by assuming an instantaneous

conversion of the energy density in the inflaton field into radiation when the decay width of the

inflaton energy, Γφ, is equal to H, the expansion rate of the universe.

The reheat temperature is calculated quite easily. After inflation the inflaton field executes

coherent oscillations about the minimum of the potential at some φ0 ' φm

V (φ0) ' 1

2
V ′′(φm)(φ0 − φm)2 ≡ 1

2
m2(φ0 − φm)2 (185)

Indeed, the equation of motion for φ0 is

φ̇0 + 3Hφ̇0 +m2(φ0 − φm) = 0, (186)

whose solution is

φ0(t) = φm,i

(aI

a

)3
cos [m(t− tI)] , (187)
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where tI denotes here the beginning of the oscillations. Since the period of the oscillation is much

shorter than the Hubble time, H � m, we can compute over many oscillations the the equation

satisfied by average energy density stored in the oscillating field

〈ρ̇φ〉 =
〈 d

dt

(
1

2
φ̇2

0 + V (φ0)

)〉
many oscillations

=
〈
φ̇0

(
φ̇0 + V ′(φ0)

)〉
many oscillations

=
〈
φ̇0

(
−3Hφ̇0

)〉
many oscillations

− 3H
〈
φ̇2

0

〉
many oscillations

= −3H
〈
ρφ

〉
many oscillations

, (188)

where we have used the equipartition property of the energy density during the oscillations 〈φ̇2
0/2〉 =

〈V (φ0)〉 = 〈ρφ/2〉 and Eq. (174). The solution of Eq. (188) is (removing the symbol of averaging)

ρφ = (ρφ)m,i

(aI

a

)3
. (189)

The Hubble expansion rate as a function of a is

H2(a) =
8π

3

(ρφ)m,i

M2
Pl

(aI

a

)3
. (190)

Equating H(a) and Γφ leads to an expression for a0/a. Now if we assume that all available coherent

energy density is instantaneously converted into radiation at this value of a0/a, we can find the

reheat temperature by setting the coherent energy density, ρφ = (ρφ)0(a0/a)3, equal to the radiation

energy density, ρR = (π2/30)g∗T
4
RH, where g∗ is the effective number of relativistic degrees of freedom

at temperature TRH. The result is

TRH =

(
90

8π3g∗

)1/4√
ΓφMPl = 0.2

(
200

g∗

)1/4√
ΓφMPl. (191)

In some models of inflation reheating can be anticipated by a period of preheating when the the

classical inflaton field very rapidly (explosively) decays into φ-particles or into other bosons due to

broad parametric resonance. This stage cannot be described by the standard elementary approach

to reheating based on perturbation theory. The bosons produced at this stage further decay into

other particles, which eventually become thermalized.

The presence of a preheating stage at the beginning of the reheating process is based on the

fact that, for some parameter ranges, there is a new decay channel that is non-perturbative: due to

the coherent oscillations of the inflaton field stimulated emissions of bosonic particles into energy

bands with large occupancy numbers are induced. The modes in these bands can be understood
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as Bose condensates, and they behave like classical waves. The back-reaction of these modes on

the homogeneous inflaton field and the rescattering among themselves produce a state that is far

from thermal equilibrium and may induce very interesting phenomena, such as non-thermal phase

transitions with production of a stochastic background of gravitational waves and of heavy particles

in a state far from equilibrium, which may constitute today the dark matter in our universe.

The idea of preheating is relatively simple, the oscillations of the inflaton field induce mixing

of positive and negative frequencies in the quantum state of the field it couples to because of the

time-dependent mass of the quantum field. Let us focus – for sake of simplicity – to the case of a

massive inflaton φ with quadratic potential V (φ) = 1
2m

2φ2 and coupled to a massless scalar field χ

via the quartic coupling g2φ2χ2.

The evolution equation for the Fourier modes of the χ field with momentum k is

Ẋk + ω2
kXk = 0, (192)

with

Xk = a3/2(t)χk,

ω2
k = k2/a2(t) + g2φ2(t). (193)

This Klein-Gordon equation may be cast in the form of a Mathieu equation

X ′′k + [A(k)− 2q cos 2z]Xk = 0, (194)

where z = mt and

A(k) =
k2

a2m2
+ 2q,

q = g2 Φ2

4m2
, (195)

where Φ is the amplitude and m is the frequency of inflaton oscillations, φ(t) = Φ(t) sin(mt). Notice

that, at least initially, if Φ�MPl

g2 Φ2

4m2
� g2M

2
Pl

m2
(196)

can be extremely large. If so, the resonance is broad. For certain values of the parameters (A, q)

there are exact solutions Xk and the corresponding number density nk that grow exponentially with

time because they belong to an instability band of the Mathieu equation

Xk ∝ eµkmt ⇒ nk ∝ e2µkmt, (197)

where the parameter µk depends upon the instability band and, in the broad resonance case, q � 1,

it is ∼ 0.2.
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These instabilities can be interpreted as coherent “particle” production with large occupancy

numbers. One way of understanding this phenomenon is to consider the energy of these modes as

that of a harmonic oscillator, Ek = |Ẋk|2/2 + ω2
k|Xk|2/2 = ωk(nk + 1/2). The occupancy number

of level k can grow exponentially fast, nk ∼ exp(2µkmt) � 1, and these modes soon behave like

classical waves. The parameter q during preheating determines the strength of the resonance. It is

possible that the model parameters are such that parametric resonance does not occur, and then the

usual perturbative approach would follow, with decay rate Γφ. In fact, as the universe expands, the

growth of the scale factor and the decrease of the amplitude of inflaton oscillations shifts the values

of (A, q) along the stability/instability chart of the Mathieu equation, going from broad resonance,

for q � 1, to narrow resonance, q � 1, and finally to the perturbative decay of the inflaton.

It is important to notice that, after the short period of preheating, the universe is likely to enter

a long period of matter domination where the biggest contribution to the energy density of the

universe is provided by the residual small amplitude oscillations of the classical inflaton field and/or

by the inflaton quanta produced during the back-reaction processes. This period will end when the

age of the universe becomes of the order of the perturbative lifetime of the inflaton field, t ∼ Γ−1
φ . At

this point, the universe will be reheated up to a temperature TRH obtained applying the old theory

of reheating described previously.

6.7 A brief survey of inflationary models

Even restricting ourselves to a simple single-field inflation scenario, the number of models available

to choose from is large. It is convenient to define a general classification scheme, or “zoology” for

models of inflation. We divide models into three general types: large-field, small-field, and hybrid,

with a fourth classification. A generic single-field potential can be characterized by two independent

mass scales: a “height” Λ4, corresponding to the vacuum energy density during inflation, and a

“width” µ, corresponding to the change in the field value ∆φ during inflation:

V (φ) = Λ4f

(
φ

µ

)
. (198)

Different models have different forms for the function f . Let us now briefly describe the different

class of models.

6.7.1 Large-field models

Large-field models are potentials typical of the “chaotic” inflation scenario, in which the scalar

field is displaced from the minimum of the potential by an amount usually of order the Planck

mass. Such models are characterized by V ′′ (φ) > 0, and −ε < δ ≤ ε. The generic large-field

potentials we consider are polynomial potentials V (φ) = Λ4 (φ/µ)p, and exponential potentials,
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Figure 11: Large field models of inflation.

V (φ) = Λ4 exp (φ/µ). In the chaotic inflation scenario, it is assumed that the universe emerged

from a quantum gravitational state with an energy density comparable to that of the Planck density.

This implies that V (φ) ≈ M4
Pl and results in a large friction term in the Friedmann equation.

Consequently, the inflaton will slowly roll down its potential. The condition for inflation is therefore

satisfied and the scale factor grows as

a(t) = aIe

(∫ t
tI

dt′H(t′)
)
. (199)

The simplest chaotic inflation model is that of a free field with a quadratic potential, V (φ) = m2φ2/2,

where m represents the mass of the inflaton. During inflation the scale factor grows as

a(t) = aIe
2π(φ2

m,i−φ
2(t)) (200)

and inflation ends when φ = O MPl. If inflation begins when V (φm,i) ≈M4
Pl, the scale factor grows

by a factor exp(4πM2
Pl/m

2) before the inflaton reaches the minimum of its potential. We will later

show that the mass of the field should be m ≈ 10−6MPl if the microwave background constraints are

to be satisfied. This implies that the volume of the universe will increase by a factor of Z3 ≈ 103×1012

and this is more than enough inflation to solve the problems of the hot big bang model.

In the chaotic inflationary scenarios, the present-day universe is only a small portion of the

universe which suffered inflation! Notice also that the typical values of the inflaton field during

inflation are of the order of MPl, giving rise to the possibility of testing planckian physics.

6.7.2 Small-field models

Small-field models are the type of potentials that arise naturally from spontaneous symmetry break-

ing (such as the original models of “new” inflation and from pseudo Nambu-Goldstone modes (natural

inflation). The field starts from near an unstable equilibrium (taken to be at the origin) and rolls

down the potential to a stable minimum. Small-field models are characterized by V ′′ (φ) < 0 and
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Figure 12: Small field models of inflation.

η < −ε. Typically ε is close to zero. The generic small-field potentials we consider are of the form

V (φ) = Λ4 [1− (φ/µ)p], which can be viewed as a lowest-order Taylor expansion of an arbitrary

potential about the origin.

6.7.3 Hybrid models

The hybrid scenario frequently appears in models which incorporate inflation into supersymmetry

and supergravity. In a typical hybrid inflation model, the scalar field responsible for inflation evolves

toward a minimum with nonzero vacuum energy. The end of inflation arises as a result of instability

in a second field. Such models are characterized by V ′′ (φ) > 0 and 0 < ε < δ. We consider generic

potentials for hybrid inflation of the form V (φ) = Λ4 [1 + (φ/µ)p] . The field value at the end of

inflation is determined by some other physics, so there is a second free parameter characterizing

the models. This enumeration of models is certainly not exhaustive. There are a number of single-

Figure 13: Hybrid field models of inflation.

field models that do not fit well into this scheme, for example logarithmic potentials V (φ) ∝ ln (φ)

typical of supersymmetry. Another example is potentials with negative powers of the scalar field
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V (φ) ∝ φ−p used in intermediate inflation and dynamical supersymmetric inflation. Both of these

cases require and auxilliary field to end inflation and are more properly categorized as hybrid models,

but fall into the small-field class. However, the three classes categorized by the relationship between

the slow-roll parameters as −ε < δ ≤ ε (large-field), δ ≤ −ε (small-field) and 0 < ε < δ (hybrid)

seems to be good enough for comparing theoretical expectations with experimental data.

Part IV

Inflation and the cosmological

perturbations

As we have seen in the previous section, the early universe was made very nearly uniform by a pri-

mordial inflationary stage. However, the important caveat in that statement is the word ‘nearly’. As

we shall see, our current understanding of the origin of structure in the universe is that it originated

from small ‘seed’ perturbations, which over time grew to become all of the structure we observe.

Once the universe becomes matter dominated (around 1000 yrs after the bang) primeval density

inhomogeneities (δρ/ρ ∼ 10−5) are amplified by gravity and grow into the structure we see today.

The fact that a fluid of self-gravitating particles is unstable to the growth of small inhomogeneities

was first pointed out by Jeans and is known as the Jeans instability. Furthermore, the existence of

these inhomogeneities is confirmed by detailed measurements of the CMB anisotropies; the tempera-

ture anisotropies detected almost certainly owe their existence to primeval density inhomogeneities,

since, as we have seen, causality precludes microphysical processes from producing anisotropies on

angular scales larger than about 1◦, the angular size of the horizon at last-scattering.

Let us just anticipate for the sake of the argument that the growth of small matter inhomo-

geneities of wavelength smaller than the Hubble scale (λ <∼ H−1) is governed by a Newtonian

equation:

δ̇k + 2Hδ̇k + v2
s

k2

a2
δk = 4πGNρNRδk, (201)

where v2
s = ∂p/∂ρNR is the square of the sound speed and we have expanded the perturbation to

the matter density in plane waves

δρNR(x, t)

ρNR
=

1

(2π)3

∫
d3k δk(t)e−ik·x. (202)

Competition between the pressure term and the gravity term on the rhs of Eq. (201) determines

whether or not pressure can counteract gravity: perturbations with wavenumber larger than the
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Jeans wavenumber, k2
J = 4πGNa

2ρNR/v
2
s , are Jeans stable and just oscillate; perturbations with

smaller wavenumber are Jeans unstable and can grow.

Let us discuss solutions to this equation under different circumstances. First, consider the Jeans

problem, evolution of perturbations in a static fluid, i.e., H = 0. In this case Jeans unstable

perturbations grow exponentially, δk ∝ exp(t/τ) where τ = 1/
√

4GNπρNR. Next, consider the

growth of Jeans unstable perturbations in a MD universe, i.e., H2 = 8πGNρNR/3 and a ∝ t2/3.

Because the expansion tends to “pull particles away from one another,” the growth is only power

law, δk ∝ t2/3; i.e., at the same rate as the scale factor. Finally, consider a RD universe. In this case,

the expansion is so rapid that matter perturbations grow very slowly, as ln a in RD epoch. Therefore,

perturbations may grow only in a MD period. Once a perturbation reaches an overdensity of order

unity or larger it “separates” from the expansion –i.e., becomes its own self-gravitating system and

ceases to expand any further. In the process of virial relaxation, its size decreases by a factor of

two—density increases by a factor of 8; thereafter, its density contrast grows as a3 since the average

matter density is decreasing as a−3, though smaller scales could become Jeans unstable and collapse

further to form smaller objects of higher density.

In order for structure formation to occur via gravitational instability, there must have been small

preexisting fluctuations on physical length scales when they crossed the Hubble radius in the RD

and MD eras. In the standard Big-Bang model these small perturbations have to be put in by

hand, because it is impossible to produce fluctuations on any length scale while it is larger than the

horizon. Since the goal of cosmology is to understand the universe on the basis of physical laws,

this appeal to initial conditions is unsatisfactory. The challenge is therefore to give an explanation

to the small seed perturbations which allow the gravitational growth of the matter perturbations.

Our best guess for the origin of these perturbations is quantum fluctuations during an inflationary

era in the early universe. Although originally introduced as a possible solution to the cosmological

conundrums such as the horizon, flatness and entopy problems, by far the most useful property of

inflation is that it generates spectra of both density perturbations and gravitational waves. These

perturbations extend from extremely short scales to scales considerably in excess of the size of the

observable universe.

During inflation the scale factor grows quasi-exponentially, while the Hubble radius remains

almost constant. Consequently the wavelength of a quantum fluctuation – either in the scalar field

whose potential energy drives inflation or in the graviton field – soon exceeds the Hubble radius.

The amplitude of the fluctuation therefore becomes ‘frozen in’. This is quantum mechanics in action

at macroscopic scales!

According to quantum field theory, empty space is not entirely empty. It is filled with quantum

fluctuations of all types of physical fields. The fluctuations can be regarded as waves of physical

fields with all possible wavelenghts, moving in all possible directions. If the values of these fields,
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averaged over some macroscopically large time, vanish then the space filled with these fields seems

to us empty and can be called the vacuum.

In the exponentially expanding universe the vacuum structure is much more complicated. The

wavelenghts of all vacuum fluctuations of the inflaton field φ grow exponentially in the expnading

universe. When the wavelength of any particular fluctuation becomes greater than H−1, this fluc-

tuation stops propagating, and its amplitude freezes at some nonzero value δφ because of the large

friction term 3Hδφ̇ in the equation of motion of the field δφ. The amplitude of this fluctuation

then remains almost unchanged for a very long time, whereas its wavelength grows exponentially.

Therefore, the appearance of such frozen fluctuation is equivalent to the appearance of a classical

field δφ that does not vanish after having averaged over some macroscopic interval of time. Because

the vacuum contains fluctuations of all possible wavelength, inflation leads to the creation of more

and more new perturbations of the classical field with wavelength larger than the horizon scale.

Once inflation has ended, however, the Hubble radius increases faster than the scale factor, so the

fluctuations eventually reenter the Hubble radius during the radiation- or MD eras. The fluctuations

that exit around 60 e-foldings or so before reheating reenter with physical wavelengths in the range

accessible to cosmological observations. These spectra provide a distinctive signature of inflation.

They can be measured in a variety of different ways including the analysis of microwave background

anisotropies.

The physical processes which give rise to the structures we observe today are well-explained in

Fig. 14.

Figure 14: A schematic representation of the generation of quantum fluctuations during inflation.

Since gravity talks to any component of the universe, small fluctuations of the inflaton field are

intimately related to fluctuations of the space-time metric, giving rise to perturbations of the curva-

ture R (which will be defined in the following; the reader may loosely think of it as a gravitational

potential). The wavelenghts λ of these perturbations grow exponentially and leave soon the horizon
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when λ > RH. On superHubble scales, curvature fluctuations are frozen in and may be considered as

classical. Finally, when the wavelength of these fluctuations reenters the horizon, at some radiation-

or MD epoch, the curvature (gravitational potential) perturbations of the space-time give rise to

matter (and temperature) perturbations δρ via the Poisson equation. These fluctuations will then

start growing giving rise to the structures we observe today.

In summary, two are the key ingredients for understanding the observed structures in the universe

within the inflationary scenario:

• Quantum fluctuations of the inflaton field are excited during inflation and stretched to cos-

mological scales. At the same time, being the inflaton fluctuations connected to the metric

perturbations through Einstein’s equations, ripples on the metric are also excited and stretched

to cosmological scales.

• Gravity acts a messanger since it communicates to baryons and photons the small seed per-

turbations once a given wavelength becomes smaller than the horizon scale after inflation.

Let us know see how quantum fluctuations are generated during inflation. We will proceed by

steps. First, we will consider the simplest problem of studying the quantum fluctuations of a generic

scalar field during inflation: we will learn how perturbations evolve as a function of time and compute

their spectrum. Then – since a satisfactory description of the generation of quantum fluctuations

have to take both the inflaton and the metric perturbations into account – we will study the system

composed by quantum fluctuations of the inflaton field and quantum fluctuations of the metric.

7 Quantum fluctuations of a generic massless scalar

field during inflation

Let us first see how the fluctuations of a generic scalar field χ, which is not the inflaton field, behave

during inflation. To warm up we first consider a de Sitter epoch during which the Hubble rate is

constant.

7.1 Quantum fluctuations of a generic massless scalar field during

a de Sitter stage

We assume this field to be massless. The massive case will be analyzed in the next subsection.

Expanding the scalar field χ in Fourier modes

δχ(x, t) =

∫
d3k

(2π)3/2
eik·x δχk(t),
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we can write the equation for the fluctuations as

δχ̇k + 3H δχ̇k +
k2

a2
δχk = 0. (203)

Let us study the qualitative behaviour of the solution to Eq. (203).

• For wavelengths within the Hubble radius, λ� H−1, the corresponding wavenumber satisfies

the relation k � aH. In this regime, we can neglect the friction term 3H δχ̇k and Eq. (203)

reduces to

δχ̇k +
k2

a2
δχk = 0, (204)

which is – basically – the equation of motion of an harmonic oscillator. Of course, the fre-

quency term k2/a2 depends upon time because the scale factor a grows exponentially. On the

qualitative level, however, one expects that when the wavelength of the fluctuation is within

the horizon, the fluctuation oscillates.

• For wavelengths above the Hubble radius, λ� H−1, the corresponding wavenumber satisfies

the relation k � aH and the term k2/a2 can be safely neglected. Eq. (203) reduces to

δχ̇k + 3H δχ̇k = 0, (205)

which tells us that on superHubble scales δχk remains constant.

We have therefore the following picture: take a given fluctuation whose initial wavelength λ ∼ a/k

is within the Hubble radius. The fluctuations oscillates till the wavelength becomes of the order of

the horizon scale. When the wavelength crosses the Hubble radius, the fluctuation ceases to oscillate

and gets frozen in.

Let us know study the evolution of the fluctuation is a more quantitative way. To do so, we

perform the following redefinition

δχk =
δσk
a

and we work in conformal time dτ = dt/a. For the time being, we solve the problem for a pure de

Sitter expansion and we take the scale factor exponentially growing as a ∼ eHt; the corresponding

conformal factor reads (after choosing properly the integration constants)

a(τ) = − 1

Hτ
(τ < 0).

In the following we will also solve the problem in the case of quasi de Sitter expansion. The beginning

of inflation coincides with some initial time τm,i � 0. Using the set of rules (139), we find that Eq.

(203) becomes

δσ′′k +

(
k2 − a′′

a

)
δσk = 0. (206)
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We obtain an equation which is very ‘close’ to the equation for a Klein-Gordon scalar field in flat

space-time, the only difference being a negative time-dependent mass term −a′′/a = −2/τ2. Eq.

(206) can be obtained from an action of the type

δSk =

∫
dτ

[
1

2
δσ′2k −

1

2

(
k2 − a′′

a

)
δσ2

k

]
, (207)

which is the canonical action for a simple harmonic oscillator with canonical commutation relations

δσ∗kδσ
′
k − δσkδσ∗′k = −i. (208)

Let us study the behaviour of this equation on subHubble and superHubble scales. Since

k

aH
= −k τ,

on subHubble scales k2 � a′′/a Eq. (206) reduces to

δσ′′k + k2 δσk = 0,

whose solution is a plane wave

δσk =
e−ikτ√

2k
(k � aH). (209)

We find again that fluctuations with wavelength within the horizon oscillate exactly like in flat

space-time. This does not come as a surprise. In the ultraviolet regime, that is for wavelengths

much smaller than the Hubble radius scale, one expects that approximating the space-time as flat

is a good approximation.

On superHubble scales, k2 � a′′/a Eq. (206) reduces to

δσ′′k −
a′′

a
δσk = 0,

which is satisfied by

δσk = B(k) a (k � aH). (210)

where B(k) is a constant of integration. Roughly matching the (absolute values of the) solutions

(209) and (210) at k = aH (−kτ = 1), we can determine the (absolute value of the) constant B(k)

|B(k)| a =
1√
2k

=⇒ |B(k)| = 1

a
√

2k
=

H√
2k3

.

Going back to the original variable δχk, we obtain that the quantum fluctuation of the χ field on

superHubble scales is constant and approximately equal to

|δχk| '
H√
2k3

(ON superHubble SCALES)
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In fact we can do much better, since Eq. (206) has an exact solution:

δσk =
e−ikτ√

2k

(
1− i

kτ

)
. (211)

This solution reproduces all what we have found by qualitative arguments in the two extreme regimes

k � aH and k � aH. The reason why we have performed the matching procedure is to show that

the latter can be very useful to determine the behaviour of the solution on superHubble scales when

the exact solution is not known.

7.2 Quantum fluctuations of a generic massive scalar field during

a de Sitter stage

So far, we have solved the equation for the quantum perturbations of a generic massless field, that

is neglecting the mass squared term m2
χ. Let us know discuss the solution when such a mass term

is present. Eq. (206) becomes

δσ′′k +
[
k2 +M2(τ)

]
δσk = 0, (212)

where

M2(τ) =
(
m2
χ − 2H2

)
a2(τ) =

1

τ2

(
m2

H2
− 2

)
.

Eq. (212) can be recast in the form

δσ′′k +

[
k2 − 1

τ2

(
ν2
χ −

1

4

)]
δσk = 0, (213)

where

ν2
χ =

(
9

4
−
m2
χ

H2

)
. (214)

The generic solution to Eq. (212) for νχ real is

δσk =
√
−τ
[
c1(k)Hνχ(−kτ) + c2(k)H(2)

νχ (−kτ)
]
,

where Hνχ and H
(2)
νχ are the Hankel’s functions of the first and second kind, respectively. If we

impose that in the ultraviolet regime k � aH (−kτ � 1) the solution matches the plane-wave

solution e−ikτ/
√

2k that we expect in flat space-time and knowing that

Hνχ(x� 1) ∼
√

2

πx
ei(x−

π
2
νχ−π4 ) , H(2)

νχ (x� 1) ∼
√

2

πx
e−i(x−

π
2
νχ−π4 ),

we set c2(k) = 0 and c1(k) =
√
π

2 ei(νχ+ 1
2)π2 . The exact solution becomes

δσk =

√
π

2
ei(νχ+ 1

2)π2
√
−τ Hνχ(−kτ). (215)
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On superHubble scales, since Hνχ(x � 1) ∼
√

2/π e−i
π
2 2νχ−

3
2 (Γ(νχ)/Γ(3/2))x−νχ , the fluctuation

(215) becomes

δσk = ei(νχ−
1
2)π2 2(νχ− 3

2) Γ(νχ)

Γ(3/2)

1√
2k

(−kτ)
1
2
−νχ .

Going back to the old variable δχk, we find that on superHubble scales, the fluctuation with nonva-

nishing mass is not exactly constant, but it acquires a tiny dependence upon the time

|δχk| '
H√
2k3

(
k

aH

) 3
2
−νχ

(ON superHubble SCALES)

If we now define, in analogy with the definition of the slow roll parameters η and ε for the inflaton

field, the parameter ηχ = (m2
χ/3H

2)� 1, one finds

3

2
− νχ ' ηχ. (216)

7.3 Quantum to classical transition

We have previously said that the quantum flactuations can be regarded as classical when their

corresponding wavelengths cross the horizon. To better motivate this statement, we should compute

the number of particles nk per wavenumber k on superHubble scales and check that it is indeed

much larger than unity, nk � 1 (in this limit one can neglect the “quantum” factor 1/2 in the

Hamiltonian Hk = ωk

(
nk + 1

2

)
where ωk is the energy eigenvalue). If so, the fluctuation can be

regarded as classical. The number of particles nk can be estimated to be of the order of Hk/ωk,

where Hk is the Hamiltonian corresponding to the action

δSk =

∫
dτ

[
1

2
δσ′2k +

1

2

(
k2 −M2(τ)

)
δσ2

k

]
. (217)

One obtains on superHubble scales

nk '
M2(τ) |δχk|2

ωk
∼
(
k

aH

)−3

� 1,

which confirms that fluctuations on superHubble scales may be indeed considered as classical.

7.4 The power spectrum

Let us define now the power spectrum, a useful quantity to characterize the properties of the per-

turbations. For a generic quantity g(x, t), which can expanded in Fourier space as

g(x, t) =

∫
d3k

(2π)3/2
eik·x gk(t),
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the power spectrum can be defined as

〈0|g∗k1
gk2 |0〉 ≡ δ(3) (k1 + k2)

2π2

k3
Pg(k), (218)

where |0〉 is the vacuum quantum state of the system. This definition leads to the relation

〈0|g2(x, t)|0〉 =

∫
dk

k
Pg(k). (219)

7.5 Quantum fluctuations of a generic scalar field in a quasi de

Sitter stage

So far, we have computed the time evolution and the spectrum of the quantum flutuations of a

generic scalar field χ supposing that the scale factor evolves like in a pure de Sitter expansion,

a(τ) = −1/(Hτ). However, during inflation the Hubble rate is not exactly constant, but changes

with time as Ḣ = −εH2 (quasi de Sitter expansion), In this subsection, we will solve for the

perturbations in a quasi de Sitter expansion. Using the definition of the conformal time, one can

show that the scale factor for small values of ε becomes

a(τ) = − 1

H

1

τ(1− ε) .

Eq. (212) has now a squared mass term

M2(τ) = m2
χa

2 − a′′

a
,

where

a′′

a
= a2

(
ȧ

a
+H2

)
= a2

(
Ḣ + 2H2

)
= a2 (2− ε)H2 =

(2− ε)
τ2 (1− ε)2

' 1

τ2
(2 + 3ε) . (220)

Taking m2
χ/H

2 = 3ηχ and expanding for small values of ε and η we get Eq. (213) with

νχ '
3

2
+ ε− ηχ. (221)

Armed with these results, we may compute the variance of the perturbations of the generic χ field

〈0| (δχ(x, t))2 |0〉 =

∫
d3k

(2π)3
|δχk|2

=

∫
dk

k

k3

2π2
|δχk|2

=

∫
dk

k
Pδχ(k), (222)
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which defines the power spectrum of the fluctuations of the scalar field χ

Pδχ(k) ≡ k3

2π2
|δχk|2 . (223)

Since we have seen that fluctuations are (nearly) frozen in on superHubble scales, a way of char-

acterizing the perturbations is to compute the spectrum on scales larger than the horizon. For a

massive scalar field, we obtain

Pδχ(k) =

(
H

2π

)2( k

aH

)3−2νχ

. (224)

We may also define the spectral index nδχ of the fluctuations as

nδχ − 1 =
dlnPδφ
dln k

= 3− 2νχ = 2ηχ − 2ε.

The power spectrum of fluctuations of the scalar field χ is therefore nearly flat, that is is nearly

independent from the wavelength λ = π/k: the amplitude of the fluctuation on superHubble scales

does not (almost) depend upon the time at which the fluctuations crosses the horizon and becomes

frozen in. The small tilt of the power spectrum arises from the fact that the scalar field χ is massive

and because during inflation the Hubble rate is not exactly constant, but nearly constant, where

‘nearly’ is quantified by the slow-roll parameters ε. Adopting the traditional terminology, we may

say that the spectrum of perturbations is blue if nδχ > 1 (more power in the ultraviolet) and red if

nδχ < 1 (more power in the infrared). The power spectrum of the perturbations of a generic scalar

field χ generated during a period of slow roll inflation may be either blue or red. This depends upon

the relative magnitude between ηχ and ε. For instance, in chaotic inflation with a quadric potential

V (φ) = m2φ2/2, one can easily compute

nδχ − 1 = 2ηχ − 2ε =
2

3H2

(
m2
χ −m2

)
,

which tells us that the spectrum is blue (red) if m2
χ > m2

φ (m2
χ > m2).

Comment: We might have computed the spectral index of the spectrum Pδχ(k) by first solving

the equation for the perturbations of the field χ in a di Sitter stage, with H = constant and therefore

ε = 0, and then taking into account the time-evolution of the Hubble rate introducing the subscript

in Hk whose time variation is determined by Eq. (184). Correspondingly, Hk is the value of the

Hubble rate when a given wavelength ∼ k−1 crosses the horizon (from that point on the fluctuations

remains frozen in). The power spectrum in such an approach would read

Pδχ(k) =

(
Hk

2π

)2( k

aH

)3−2νχ

(225)
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with 3− 2νχ ' ηχ. Using Eq. (184), one finds

nδχ − 1 =
dlnPδφ
dln k

=
dlnH2

k

dln k
+ 3− 2νχ = 2ηχ − 2ε

which reproduces our previous findings.

Comment: Since on superHubble scales

δχk '
H√
2k3

(
k

aH

)ηχ−ε
' H√

2k3

[
1 + (ηχ − ε) ln

(
k

aH

)]
,

we discover that

|δχ̇k| ' |H (ηχ − ε) δχk| � |H δχk| , (226)

that is on superHubble scales the time variation of the perturbations can be safely neglected.

8 Quantum fluctuations during inflation

As we have mentioned in the previous section, the linear theory of the cosmological perturbations

represent a cornerstone of modern cosmology and is used to describe the formation and evolution

of structures in the universe as well as the anisotrpies of the CMB. The seeds for these inhome-

geneities were generated during inflation and stretched over astronomical scales because of the rapid

superluminal expansion of the universe during the (quasi) de Sitter epoch.

In the previous section we have already seen that pertubations of a generic scalar field χ are

generated during a (quasi) de Sitter expansion. The inflaton field is a scalar field and, as such, we

conclude that inflaton fluctuations will be generated as well. However, the inflaton is special from

the point of view of perturbations. The reason is very simple. By assumption, the inflaton field

dominates the energy density of the universe during inflation. Any perturbation in the inflaton field

means a perturbation of the stress energy-momentum tensor

δφ =⇒ δTµν .

A perturbation in the stress energy-momentum tensor implies, through Einstein’s equations of mo-

tion, a perturbation of the metric

δTµν =⇒
[
δRµν −

1

2
δ (gµνR)

]
= 8πGδTµν =⇒ δgµν .

On the other hand, a pertubation of the metric induces a backreaction on the evolution of the

inflaton perturbation through the perturbed Klein-Gordon equation of the inflaton field
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δgµν =⇒ δ

(
∂µ∂

µφ+
∂V

∂φ

)
= 0 =⇒ δφ.

This logic chain makes us conclude that the perturbations of the inflaton field and of the metric are

tightly coupled to each other and have to be studied together

δφ⇐⇒ δgµν

As we will see shortly, this relation is stronger than one might thought because of the issue of gauge

invariance.

Before launching ourselves into the problem of finding the evolution of the quantum perturbations

of the inflaton field when they are coupled to gravity, let us give a heuristic explanation of why we

expect that during inflation such fluctuations are indeed present.

If we take Eq. (174) and split the inflaton field as its classical value φ0 plus the quantum

flucutation δφ, φ(x, t) = φ0(t) + δφ(x, t), the quantum perturbation δφ satisfies the equation of

motion

δφ̈+ 3H δφ̇− ∇2δφ

a2
+ V ′′ δφ = 0. (227)

Differentiating Eq. (179) with respect to time and taking H constant (de Sitter expansion) we find

(φ0)··· + 3Hφ̈0 + V ′′ φ̇0 = 0. (228)

Let us consider for simplicity the limit k/a� 1 and let us disregard the gradient term. Under this

condition we see that φ̇0 and δφ solve the same equation. The solutions have therefore to be related

to each other by a constant of proportionality which depends upon time, that is

δφ = −φ̇0 δt(x). (229)

This tells us that φ(x, t) will have the form

φ(x, t) = φ0 (x, t− δt(x)) .

This equation indicates that the inflaton field does not acquire the same value at a given time t in all

the space. On the contrary, when the inflaton field is rolling down its potential, it acquires different

values from one spatial point x to the other. The inflaton field is not homogeneous and fluctuations

are present. These fluctuations, in turn, will induce fluctuations in the metric.
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8.1 The metric fluctuations

The mathematical tool do describe the linear evolution of the cosmological perturbations is obtained

by perturbing at the first-order the FRW metric g
(0)
µν ,

gµν = g(0)
µν (t) + gµν(x, t) ; gµν � g(0)

µν . (230)

The metric perturbations can be decomposed according to their spin with respect to a local rotation

of the spatial coordinates on hypersurfaces of constant time. This leads to

• scalar perturbations

• vector perturbations

• tensor perturbations

Tensor perturbations or gravitational waves have spin 2 and are the “true” degrees of freedom

of the gravitational fields in the sense that they can exist even in the vacuum. Vector perturbations

are spin 1 modes arising from rotational velocity fields and are also called vorticity modes. Finally,

scalar perturbations have spin 0.

Let us make a simple exercise to count how many scalar degrees of freedom are present. Take a

space-time of dimensions D = n+ 1, of which n coordinates are spatial coordinates. The symmetric

metric tensor gµν has 1
2(n + 2)(n + 1) degrees of freedom. We can perform (n + 1) coordinate

transformations in order to eliminate (n+1) degrees of freedom, this leaves us with 1
2n(n+1) degrees

of freedom. These 1
2n(n+ 1) degrees of freedom contain scalar, vector and tensor modes. According

to Helmholtz’s theorem we can always decompose a vector Ui (i = 1, · · · , n) as Ui = ∂iv + vi,

where v is a scalar (usually called potential flow) which is curl-free, v[i,j] = 0, and vi is a real

vector (usually called vorticity) which is divergence-free, ∇ · v = 0. This means that the real vector

(vorticity) modes are (n−1). Furthermore, a generic traceless tensor Πij can always be decomposed

as Πij = ΠS
ij + ΠV

ij + ΠT
ij , where ΠS

ij =
(
−kikj

k2 + 1
3δij

)
Π, ΠV

ij = (−i/2k) (kiΠj + kjΠi) (KiΠi = 0)

and KiΠ
T
ij = 0. This means that the true symmetric, traceless and transverse tensor degreees of

freedom are 1
2(n− 2)(n+ 1).

The number of scalar degrees of freedom are therefore

1

2
n(n+ 1)− (n− 1)− 1

2
(n− 2)(n+ 1) = 2,

while the degrees of freedom of true vector modes are (n−1) and the number of degrees of freedom of

true tensor modes (gravitational waves) are 1
2(n−2)(n+1). In four dimensions n = 3, meaning that

one expects 2 scalar degrees of freedom, 2 vector degrees of freedom and 2 tensor degrees of freedom.

As we shall see, to the 2 scalar degrees of freedom from the metric, one has to add an another one,
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the inflaton field perturbation δφ. However, since Einstein’s equations will tell us that the two scalar

degrees of freedom from the metric are equal during inflation, we expect a total number of scalar

degrees of freedom equal to 2.

At the linear order, the scalar, vector and tensor perturbations evolve independently (they de-

couple) and it is therefore possible to analyze them separately. Vector perturbations are not excited

during inflation because there are no rotational velocity fields during the inflationary stage. We will

analyze the generation of tensor modes (gravitational waves) in the following. For the time being

we want to focus on the scalar degrees of freedom of the metric.

Considering only the scalar degrees of freedom of the perturbed metric, the most generic per-

turbed metric reads

gµν = a2

 −1 − 2 Φ ∂iB

∂iB (1 − 2 Ψ) δij + DijE

 , (231)

while the line-element can be written as

ds2 = a2
(
(−1− 2 Φ)dτ2 + 2 ∂iB dτ dxi + ((1− 2 Ψ)δij + DijE) dxi dxj

)
. (232)

Here Dij =
(
∂i∂j − 1

3 δij ∇
2
)
.

We now want to determine the inverse gµν of the metric at the linear order

gµα gαν = δµν . (233)

We have therefore to solve the equations(
gµα(0) + gµα

)(
g(0)
αν + gαν

)
= δµν , (234)

where gµα(0) is simply the unperturbed FRW metric. Since

gµν(0) =
1

a2

 −1 0

0 δij

 , (235)

we can write in general

g00 =
1

a2
(−1 + X) ;

g0i =
1

a2
∂iY ;

gij =
1

a2

(
(1 + 2Z) δij + DijK

)
. (236)

Plugging these expressions into Eq. (234) we find for µ = ν = 0

(−1 + X)(−1 − 2 Φ) + ∂iY ∂iB = 1. (237)
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Neglecting the terms − 2 Φ ·X e ∂iY · ∂iB because they are second-order in the perturbations, we

find

1 − X + 2 Φ = 1 ⇒ X = 2 Φ . (238)

Analogously, the components µ = 0, ν = i of Eq. (234) give

(−1 + 2 Φ)(∂iB) + ∂jY [(1 − 2 Ψ)δji + DjiE] = 0. (239)

At the first-order, we obtain

−∂iB + ∂iY = 0 ⇒ Y = B . (240)

Finally, the components µ = i, ν = j give

∂iB ∂jB +
(

(1 + 2Z)δik + DikK
)

((1− 2 Ψ)δkj + DkjE) = δij . (241)

Neglecting the second-order terms, we obtain

(1 − 2 Ψ + 2Z)δij + Di
jE + Di

jK = δij ⇒ Z = Ψ ; K = −E . (242)

The metric gµν finally reads

gµν =
1

a2

 −1 + 2 Φ ∂iB

∂iB (1 + 2 Ψ)δij − DijE

 . (243)

8.2 Perturbed affine connections and Einstein’s tensor

In this subsection we provide the reader with the perturbed affine connections and Einstein’s tensor.

First, let us list the unperturbed affine connections

Γ0
00 =

a′

a
; Γi0j =

a′

a
δij ; Γ0

ij =
a′

a
δij ; (244)

Γi00 = Γ0
0i = Γijk = 0 . (245)

The expression for the affine connections in terms of the metric is

Γαβγ =
1

2
gαρ

(
∂gργ
∂xβ

+
∂gβρ
∂xγ

− ∂gβγ
∂xρ

)
(246)

which implies

δΓαβγ =
1

2
δgαρ

(
∂gργ
∂xβ

+
∂gβρ
∂xγ

− ∂gβγ
∂xρ

)
+

1

2
gαρ

(
∂δgργ
∂xβ

+
∂δgβρ
∂xγ

− ∂δgβγ
∂xρ

)
, (247)

or in components

δΓ0
00 = Φ′ ; (248)
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δΓ0
0i = ∂i Φ +

a′

a
∂iB ; (249)

δΓi00 =
a′

a
∂iB + ∂iB′ + ∂iΦ ; (250)

δΓ0
ij ,= − 2

a′

a
Φ δij − ∂i∂jB − 2

a′

a
ψ δij − Ψ′ δij −

a′

a
DijE +

1

2
DijE

′ ;

δΓi0j = −Ψ′δij +
1

2
DijE

′ ; (251)

δΓijk = ∂jΨ δik − ∂kΨ δij + ∂iΨ δjk −
a′

a
∂iB δjk +

1

2
∂jD

i
kE +

1

2
∂kD

i
jE −

1

2
∂iDjkE . (252)

We may now compute the Ricci scalar defines as

Rµν = ∂α Γαµν − ∂µ Γανα + Γασα Γσµν − Γασν Γσµα . (253)

Its variation at the first-order reads

δRµν = ∂α δΓ
α
µν − ∂µ δΓ

α
να + δΓασα Γσµν + Γασα δΓ

σ
µν

− δΓασν Γσµα − Γασν δΓ
σ
µα . (254)

The background values are given by

R00 = − 3
a′′

a
+ 3

(a′
a

)2
; R0i = 0 ; (255)

Rij =
(a′′
a

+
(a′
a

)2)
δij (256)

which give

δR00 =
a′

a
∂i∂

iB + ∂i∂
iB′ + ∂i∂

iΦ + 3Ψ′′ + 3
a′

a
Ψ′ + 3

a′

a
Φ′ ; (257)

δR0i =
a′′

a
∂iB +

(
a′

a

)2

∂iB + 2∂iΨ
′ + 2

a′

a
∂iΦ +

1

2
∂kD

K
i E

′ ; (258)

δRij =
(
− a′

a
Φ′ − 5

a′

a
ψ′ − 2

a′′

a
Φ− 2

(
a′

a

)2

Φ

− 2
a′′

a
Ψ− 2

(
a′

a

)2

Ψ−Ψ′′ + ∂k∂
kΨ− a′

a
∂k∂

kB
)
δij

− ∂i∂jB
′ +

a′

a
DijE

′ +
a′′

a
DijE +

(
a′

a

)2

DijE

+
1

2
DijE

′′ + ∂i∂jΨ− ∂i∂jΦ− 2
a′

a
∂i∂jB

+
1

2
∂k∂iD

k
jE +

1

2
∂k∂jD

k
i E −

1

2
∂k∂

kDijE ; (259)

The perturbation of the scalar curvature

R = gµαRαµ , (260)

74



for which the first-order perturbation is

δR = δgµα Rαµ + gµα δRαµ . (261)

The background value is

R =
6

a2

a′′

a
(262)

while from Eq. (261) one finds

δR =
1

a2

(
− 6

a′

a
∂i∂

iB − 2∂i∂
iB′ − 2∂i∂

iΦ− 6Ψ′′

− 6
a′

a
Φ′ − 18

a′

a
Ψ′ − 12

a′′

a
Φ + 4∂i∂

iΨ + ∂k∂
iDK

i E
)
. (263)

Finally, we may compute the perturbations of the Einstein tensor

Gµν = Rµν −
1

2
gµν R , (264)

whose background components are

G00 = 3
(a′
a

)2
; G0i = 0 ; Gij =

(
− 2

a′′

a
+
(a′
a

)2)
δij . (265)

At first-order, one finds

δGµν = δRµν −
1

2
δgµν R −

1

2
gµν δR , (266)

or in components

δG00 = −2
a′

a
∂i∂

iB − 6
a′

a
Ψ′ + 2 ∂i∂

i Ψ +
1

2
∂k∂

iDK
i E ; (267)

δG0i = −2
a′′

a
∂iB +

(
a′

a

)2

∂iB + 2∂i Ψ′ +
1

2
∂kD

K
i E

′ + 2
a′

a
∂iΦ ; (268)

δGij =

(
2
a′

a
Φ′ + 4

a′

a
Ψ′ + 4

a′′

a
Φ− 2

(
a′

a

)2

Φ

+ 4
a′′

a
Ψ− 2

(
a′

a

)2

Ψ + 2Ψ′′ − ∂k∂k Ψ

+ 2
a′

a
∂k∂

kB + ∂k∂
kB′ + ∂k∂

kΦ +
1

2
∂k∂

mDk
mE

)
δij

− ∂i∂jB
′ + ∂i∂jΨ− ∂i∂jA+

a′

a
DijE

′ − 2
a′′

a
DijE

+

(
a′

a

)2

DijE +
1

2
DijE

′′ +
1

2
∂k∂iD

k
jE

+
1

2
∂k∂jDikE −

1

2
∂k∂

kDijE − 2
a′

a
∂i∂jB . (269)
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For convenience, we also give the expressions for the pertubations with one index up and one index

down

δGµν = δ(gµαGαν)

= δgµα Gαν + gµα δGαν , (270)

or in components

δG0
0 =

1

a2

[
6
(a′
a

)2
Φ + 6

a′

a
Ψ′ + 2

a′

a
∂i ∂

iB − 2 ∂i ∂
iΨ − 1

2
∂k∂

iDK
i E

]
. (271)

δG0
i =

1

a2

[
−2

a′

a
∂iΦ − 2 ∂iΨ

′ − 1

2
∂kD

K
i E

′
]
. (272)

δGij =
1

a2

[(
2
a′

a
Φ′ + 4

a′′

a
Φ − 2

(a′
a

)2
Φ + ∂i ∂

iΦ + 4
a′

a
Ψ′ + 2 Ψ′′

− ∂i ∂
iΨ + 2

a′

a
∂i ∂

iB + ∂i ∂
iB′ +

1

2
∂k∂

mDk
mE

)
δij

− ∂i∂jΦ + ∂i∂jΨ − 2
a′

a
∂i∂jB − ∂i∂jB

′ +
a′

a
Di
jE
′ +

1

2
Di
jE
′′

+
1

2
∂k∂

iDk
jE +

1

2
∂k∂j D

ikE − 1

2
∂k∂

kDi
jE

]
. (273)

8.3 Perturbed stress energy-momentum tensor

As we have seen previously, the perturbations of the metric are induced by the perturbations of the

stress energy-momentum tensor of the inflaton field

Tµν = ∂µφ∂νφ − gµν

(
1

2
gαβ ∂αφ∂βφ + V (φ)

)
, (274)

whose background values are

T00 =
1

2
φ′

2
+ V (φ) a2 ;

T0i = 0 ;

Tij =

(
1

2
φ′

2 − V (φ) a2

)
δij . (275)

The perturbed stress energy-momentum tensor reads

δTµν = ∂µδφ ∂νφ + ∂µφ∂νδφ − δgµν

(
1

2
gαβ ∂αφ∂βφ + V (φ)

)
− gµν

(
1

2
δgαβ ∂αφ∂βφ + gαβ ∂αδφ ∂βφ +

∂V

∂φ
δφ +

∂V

∂φ
δφ

)
. (276)
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In components we have

δT00 = δφ′ φ′ + 2 ΦV (φ) a2 + a2 ∂V

∂φ
δφ ; (277)

δT 0i = ∂i δφ φ
′ +

1

2
∂iB φ

′2 − ∂iB V (φ) a2 ; (278)

δT ij =

(
δφ′ φ′ − Φφ′

2 − a2 ∂V

∂φ
δφ − Ψφ′

2
+ 2 ΨV (φ) a2

)
δij

+
1

2
DijE φ

′2 − DijE V (φ) a2 . (279)

For covenience, we list the mixed components

δTµν = δ(gµα Tαν)

= δgµα Tαν + gµα δTαν (280)

or

δT 0
0 = Φφ′

2 − δφ′ φ′ − δφ
∂V

∂φ
a2 ;

δT i0 = ∂iB φ′
2

+ ∂iδφ φ′ ;

δT 0
i = − ∂iδφ φ′ ;

δT ij =

(
−Φφ′

2
+ δφ′ φ′ − δφ

∂V

∂φ
a2

)
δij . (281)

8.4 Perturbed Klein-Gordon equation

The inflaton equation of motion is the Klein-Gordon equation of a scalar field under the action of

its potential V (φ). The equation to perturb is therefore

∂µ∂µ φ =
∂V

∂φ
;

∂µ∂
µφ =

1√−g ∂ν
(√−g gµν ∂νφ) ; (282)

which at the zero-th order gives the inflaton equation of motion

φ′′ + 2
a′

a
φ′ = − ∂V

∂φ
a2 . (283)

The variation of Eq. (282) is the sum of four different contributions corresponding to the variations

of 1√
−g ,
√−g, gµν and φ. For the variation of g we have

δg = g gµνδgνµ (284)

which give at the linear order

δ
√−g = − δg

2
√−g ;

δ
1√−g =

δ
√−g
g

. (285)
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Plugging these results into the expression for the variation of Eq. (283)

δ∂µ∂
µ φ = − δφ′′ − 2

a′

a
δφ′ + ∂i ∂

iδφ + 2 Φφ′′ + 4
a′

a
Φφ′ + Φ′φ′

+ 3 Ψ′φ′ + ∂i ∂
iB φ′

= δφ
∂2V

∂φ2
a2 . (286)

Using Eq. (283) to write

2 Φφ′′ + 4
a′

a
φ′ = 2 Φ

∂V

∂φ
, (287)

Eq. (286) becomes

δφ′′ + 2
a′

a
δφ′ − ∂i ∂

iδφ − Φ′φ′ − 3 Ψ′φ′ − ∂i ∂
iB φ′

= −δφ ∂
2V

∂φ2
a2 − 2 Φ

∂V

∂φ
. (288)

After having computed the perturbations at the linear order of the Einstein’s tensor and of the

stress energy-momentum tensor, we are ready to solve the perturbed Einstein’s equations in order

to quantify the inflaton and the metric fluctuations. We pause, however, for a moment in order to

deal with the problem of gauge invariance.

8.5 The issue of gauge invariance

When studying the cosmological density perturbations, what we are interested in is following the

evolution of a space-time which is neither homogeneous nor isotropic. This is done by following the

evolution of the differences between the actual space-time and a well understood reference space-

time. So we will consider small perturbations away from the homogeneous, isotropic space-time (see

Fig. 15). The reference system in our case is the spatially flat Friedmann–Robertson–Walker space-

time, with line element ds2 = a2(τ)
(
−dτ2 + dx2

)
. Now, the key issue is that general relativity is

a gauge theory where the gauge transformations are the generic coordinate transformations from a

local reference frame to another.

When we compute the perturbation of a given quantity, this is defined to be the difference between

the value that this quantity assumes on the real physical space-time and the value it assumes on

the unperturbed background. Nonetheless, to perform a comparison between these two values, it is

necessary to compute the at the same space-time point. Since the two values “live” on two different

geometries, it is necessary to specify a map which allows to link univocally the same point on the

two different space-times. This correspondance is called a gauge choice and changing the map means

performing a gauge transformation.

Fixing a gauge in general relativity implies choosing a coordinate system. A choice of coordinates

defines a threading of space-time into lines (corresponding to fixed spatial coordinates x) and a slicing
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Figure 15: In the reference unperturbed universe, constant-time surfaces have constant spatial

curvature (zero for a flat FRW model). In the actual perturbed universe, constant-time

surfaces have spatially varying spatial curvature

into hypersurfaces (corresponding to fixed time τ). A choice of coordinates is is called a gauge and

there is no unique preferred gauge

GAUGE CHOICE ⇐⇒ SLICING AND THREADING

Similarly, we can look at the change of coordinates either as an active transformation, in which we

slightly alter the manifold or as a passive transformation, in which we do not alter the manifold,

all the points remain fixed, and we just change the coordinate system. So this is tantamount to

a relabelling of the points. From the passive point of view, in which a coordinate transformation

represents a relabelling of the points of the space, one then compares a quantity, say the metric

(or its perturbations), at a point P (with coordinates xµ) with the new metric at the point P ′

which has the same values of the new coordinates as the point P had in the old coordinate system,

x̃µ(P ′) = xµ(P ). This is by the way an efficient way to detect symmetries (isometries if one is

concerned with the metric), we only need to consider infinitesimal coordinate transformations.

From a more formal point of view, operating an infinitesimal gauge tranformation on the coor-
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dinates

x̃µ = xµ + δxµ (289)

implies on a generic quantity Q a tranformation on its perturbation

δ̃Q = δQ + £δxQ0 (290)

where Q0 is the value assumed by the quantity Q on the background and £δx is the Lie-derivative

of Q along the vector δxµ. Notice that for a scalar, the Lie derivative is just the ordinary directional

derivative (and this is as it should be since saying that a function has a certain symmetry amounts

to the assertion that its derivative in a particular direction vanishes).

Decomposing in the usual manner the vector δxµ

δx0 = ξ0(xµ) ;

δxi = ∂iβ(xµ) + vi(xµ) ; ∂iv
i = 0 , (291)

we can easily deduce the transformation law of a scalar quantity f (like the inflaton scalar field φ

and energy density ρ). Instead of applying the formal definition (290), we find the transformation

law in an alternative (and more pedagogical) way. We first write δf(x) = f(x)− f0(x), where f0(x)

is the background value. Under a gauge transformation we have δ̃f(x̃µ) = f̃(x̃µ)− f̃0(x̃µ). Since f is

a scalar we can write f(x̃µ) = f(xµ) (the value of the scalar function in a given physical point is the

same in all the coordinate system). On the other side, on the unperturbed background hypersurface

f̃0 = f0. We have therefore

δ̃f(x̃µ) = f̃(x̃µ)− f̃0(x̃µ)

= f(xµ)− f0(x̃µ)

= f(xµ)− δxµ ∂f0

∂xµ
(x)− f0(xµ),

(292)

from which we finally deduce, being f0 = f0(x0),

δ̃f = δf − f ′0 ξ0

For the spin zero perturbations of the metric, we can proceed analogously. We use the following

trick. Upon a coordinate transformation xµ → x̃µ = xµ + δxµ, the line element is left invariant,

ds2 = d̃s2. This implies, for instance, that a2(x̃0)
(

1 + 2Φ̃
)(

dx̃0
)2

= a2(x0) (1 + 2Φ) (dx0)2. Since

a2(x̃0) ' a2(x0)+2a a′ ξ0 and dx̃0 =
(
1 + ξ0′) dx0 + ∂x0

∂xi
dxi, we obtain 1+2Φ = 1+2Φ̃+2Hξ0 +2ξ0′.

A similar procedure leads to the following transformation laws
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Φ̃ = Φ − ξ0′ − a′

a
ξ0 ;

B̃ = B + ξ0 + β′

Ψ̃ = Ψ − 1

3
∇2β +

a′

a
ξ0 ;

Ẽ = E + 2β .

The gauge problem stems from the fact that a change of the map (a change of the coordinate system)

implies the variation of the perturbation of a given quantity which may therefore assume different

values (all of them on a equal footing!) according to the gauge choice. To eliminate this ambiguity,

one has therefore a double choice:

• Indentify those combinations representing gauge invariant quantities;

• choose a given gauge and perform the calculations in that gauge.

Both options have advantages and drawbacks. Choosing a gauge may render the computation

technically simpler with the danger, however, of including gauge artifacts, i.e. gauge freedoms which

are not physical. Performing a gauge-invariant computation may be technically more involved, but

has the advantage of treating only physical quantities.

Let us first indicate some gauge-invariant quantities. They are the so-called gauge invariant

potentials or Bardeen’s potentials

ΦGI = −Φ +
1

a

[(
−B +

E′

2

)
a

]′
, (293)

ΨGI = −Ψ − 1

6
∇2E +

a′

a

(
B − E′

2

)
. (294)

Analogously, one can define a gauge invariant quantity for the perturbation of the inflaton field.

Since φ is a scalar field δ̃φ =
(
δφ− φ′ ξ0

)
and therefore

δφGI = −δφ + φ′
(
E′

2
− B

)
.

is gauge-invariant. Analogously, one can define a gauge-invariant energy-density perturbation

δρGI = −δρ + ρ′
(
E′

2
− B

)
.
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We now want to pause to introduce in details some gauge-invariant quantities which play a major

role in the computation of the density perturbations. In the following we will be interested only in

the coordinate transformations on constant time hypersurfaces and therefore gauge invariance will

be equivalent to independent of the slicing.

8.6 The comoving curvature perturbation

The intrinsic spatial curvature on hypersurfaces on constant conformal time τ and for a flat universe

is given by

(3)R =
4

a2
∇2 Ψ.

The quantity Ψ is usually referred to as the curvature perturbation. We have seen, however, that

the the curvature potential Ψ is not gauge invariant, but is defined only on a given slicing. Under a

transformation on constant time hypersurfaces t→ t+ δτ (change of the slicing)

Ψ→ Ψ + H δτ.

We now consider the comoving slicing which is defined to be the slicing orthogonal to the worldlines

of comoving observers. The latter are are free-falling and the expansion defined by them is isotropic.

In practice, what this means is that there is no flux of energy measured by these observers, that

is T0i = 0. During inflation this means that these observers measure δφcom = 0 since T0i goes like

∂iδφ(x, τ)φ′(τ).

Since δφ→ δφ− φ′δτ for a transformation on constant time hypersurfaces, this means that

δφ→ δφcom = δφ− φ′ δτ = 0 =⇒ δτ =
δφ

φ′
,

that is δτ = δφ
φ′ is the time-displacement needed to go from a generic slicing with generic δφ to the

comoving slicing where δφcom = 0. At the same time the curvature pertubation ψ transforms into

Ψ→ Ψcom = Ψ + H δτ = Ψ + Hδφ
φ′
.

The quantity

R = Ψ + Hδφ
φ′

= Ψ +H
δφ

φ̇
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is the comoving curvature perturbation. This quantity is gauge invariant by construction and is

related to the gauge-dependent curvature perturbation ψ on a generic slicing to the inflaton pertur-

bation δφ in that gauge. By construction, the meaning of R is that it represents the gravitational

potential on comoving hypersurfaces where δφ = 0

R = Ψ|δφ=0 .

8.7 The curvature perturbation on spatial slices of uniform energy

density

We now consider the slicing of uniform energy density which is defined to be the the slicing where

there is no perturbation in the energy density, δρ = 0.

Since δρ→ δρ− ρ′ δτ for a transformation on constant time hypersurfaces, this means that

δρ→ δρunif = δρ− ρ′ δτ = 0 =⇒ δτ =
δρ

ρ′
,

that is δτ = δρ
ρ′ is the time-displacement needed to go from a generic slicing with generic δρ to the

slicing of uniform energy density where δρunif = 0. At the same time the curvature pertubation ψ

transforms into

Ψ→ Ψunif = ψ + H δτ = Ψ + Hδρ
ρ′
.

The quantity

ζ = Ψ + Hδρ
ρ′

= Ψ +H
δρ

ρ̇

is the curvature perturbation on slices of uniform energy density. This quantity is gauge invariant

by construction and is related to the gauge-dependent curvature perturbation Ψ on a generic slicing

and to the energy density perturbation δρ in that gauge. By construction, the meaning of ζ is that

it represents the gravitational potential on slices of uniform energy density

ζ = Ψ|δρ=0 .

Notice that, using the energy-conservation equation ρ′+ 3H(ρ+P ) = 0, the curvature perturbation

on slices of uniform energy density can be also written as

ζ = Ψ− δρ

3(ρ+ P )
.
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During inflation ρ+P = φ̇2. Furthermore, on superHubble scales from what we have learned in the

previous section (and will be rigously shown in the following) the inflaton fluctuation δφ is frozen

in and δφ̇ = (slow roll parameters) × H δφ. This implies that δρ = φ̇δφ̇ + V ′δφ ' V ′δφ ' −3Hφ̇,

leading to

ζ ' Ψ +
3Hφ̇

3φ̇2
= Ψ +H

δφ

φ̇
R (ON superHubble SCALES)

The comoving curvature pertubation and the curvature perturbation on uniform energy density

slices are equal on superHubble scales.

8.8 Scalar field perturbations in the spatially flat gauge

We now consider the spatially flat gauge which is defined to be the the slicing where there is no

curvature Ψflat = 0.

Since ψ → Ψ + H δτ for a transformation on constant time hypersurfaces, this means that

Ψ→ Ψflat = Ψ + H δτ = 0 =⇒ δτ = −Ψ

H ,

that is δτ = −Ψ/H is the time-displacement needed to go from a generic slicing with generic ψ

to the spatially flat gauge where Ψflat = 0. At the same time the fluctuation of the inflaton field

transforms a

δφ→ δφ− φ′ δτ = δφ+
φ′

H Ψ.

The quantity

Q = δφ+
φ′

H Ψ = δφ+
φ̇

H
Ψ ≡ φ̇

H
R

is the inflaton perturbation on spatially flat gauges. This quantity is gauge invariant by construction

and is related to the inflaton perturbation δφ on a generic slicing and to to the curvature perturbation

Ψ in that gauge. By construction, the meaning of Q is that it represents the inflaton potential on

spatially flat slices

Q = δφ|δΨ=0 .

Notice that δφ = −φ′δτ = −φ̇δt on flat slices, where δt is the time displacement going from flat

to comoving slices. This relation makes somehow rigorous the expression (229). Analogously, going

from flat to comoving slices one has R = H δt.
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8.9 Comments about gauge invariance

While comparing the theoretical predictions (e.g. the CMB power spectrum) with obervations does

not represent a problem on sub-horizon scales where the matter perturbations computed in the dif-

ferent gauges all coincide, it is a delicate operation on scales comparable with the horizon where

different gauges provide different results even at the linear level. Truly gauge-independent pertur-

bations must be exactly constant in the background space-time. This apparently limits ones ability

to make a gauge-invariant study of quantities that evolve in the background space-time, e.g. density

perturbations in an expanding cosmology. In practice one can construct gauge-invariant definitions of

unambiguous, that is physically defined, perturbations. These are not unique gauge-independent per-

turbations, but are gauge-invariant in the sense commonly used by cosmologists to define a physical

perturbation. There is a distinction between quantities that are automatically gauge-independent,

i.e., those that have no gauge dependence (such as perturbations about a constant scalar field), and

quantities that are in general gauge-dependent (such as the curvature perturbation) but can have a

gauge-invariant definition once their gauge-dependence is fixed (such as the curvature perturbation

on uniform-density hypersurfaces). In other words, one can define gauge-invariant quantities which

are simply a coordinate independent definition of the perturbations in the given gauge. This can be

often achieved by defining unambiguously a specific slicing into spatial hypersurfaces. In this sense

it should be clear that one may define an infinite number of, e.g., gauge-invariant density contrasts.

Which one to use is a matter that can be decided only considering how the determination of a given

observable is performed.

8.10 Adiabatic and isocurvature perturbations

Arbitrary cosmological perturbations can be decomposed into:

• adiabatic or curvature perturbations which perturb the solution along the same trajectory in

phase-space as the as the background solution. The perturbations in any scalar quantity X

can be described by a unique perturbation in expansion with respect to the background

H δt = H
δX

Ẋ
FOR EVERY X.

In particular, this holds for the energy density and the pressure

δρ

ρ̇
=
δP

Ṗ

which implies that P = P (ρ). This explains why they are called adiabatic. They are called

curvature perturbations because a given time displacement δt causes the same relative change
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δX/Ẋ for all quantities. In other words the perturbations is democratically shared by all

components of the universe.

• isocurvature perturbations which perturb the solution off the background solution

δX

Ẋ
6= δY

Ẏ
FOR SOME X AND Y.

One way of specifying a generic isocurvature perturbation δX is to give its value on uniform-

density slices, related to its value on a different slicing by the gauge-invariant definition

H
δX

Ẋ

∣∣∣∣
δρ=0

= H

(
δX

Ẋ
− δρ

ρ̇

)
.

For a set of fluids with energy density ρi, the isocurvature perturbations are conventionally

defined by the gauge invariant quantities

Sij = 3H

(
δρi
ρ̇i
− δρj

ρ̇j

)
= 3 (ζi − ζj) .

One simple example of isocurvature perturbations is the baryon-to-photon ratio

S = δ(nb/nγ) =
δnb

nb
− δnγ

nγ
. (295)

1. Comment:

From the definitions above, it follows that the cosmological perturbations generated during

inflation are of the adiabatic type if the inflaton field is the only fiels driving inflation. However,

if inflation is driven by more than one field, isocurvature perturbations are expected to be

generated (and they might even be cross-correlated to the adiabatic ones. In the following we

will give one example of the utility of generating isocurvature perturbations.

2. Comment: The perturbations generated during inflation are Gaussian, i.e. the two-point

correlation functions (like the power spectrum) suffice to define all the higher-order even cor-

relation fucntions, while the odd correlation functions (such as the three-point correlation

function) vanish. This conclusion is drawn by the very same fact that cosmological pertur-

bations are studied linearizing Einstein’s and Klein-Gordon equations. This turns out to be

a good approximation because we know that the inflaton potential needs to be very flat in

order to drive inflation and the interaction terms in the inflaton potential might be present,

but they are small. Non-Gaussian features are therefore suppressed since the non-linearities

of the inflaton potential are suppressed too. The same argument applies to the metric pertur-

bations; non-linearities appear only at the second-order in deviations from the homogeneous
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background solution and are therefore small. This expectation is confirmed by a direct com-

putation of the cosmological perturbations generated during inflation up to second-order in

deviations from the homogeneous background solution which fully account for the inflaton

self-interactions as well as for the second-order fluctuations of the background metric. While

the subject of non-Gaussianity is extremely interesting both theoretically and observationally,

it goes beyond the scope of these lectures. The interested reader can ask more details during

and/or after the lectures.

8.11 The next steps

After all these technicalities, it is useful to rest for a moment and to go back to physics. Up to now

we have learned that during inflation quantum fluctuations of the inflaton field are generated and

their wavelengths are stretched on large scales by the rapid expansion of the universe. We have also

seen that the quantum fluctuations of the inflaton field are in fact impossible to disantagle from the

metric perturbations. This happens not only because they are tightly coupled to each other through

Einstein’s equations, but also because of the issue of gauge invariance. Take, for instance, the gauge

invariant quantity Q = δφ+ φ′

H Ψ. We can always go to a gauge where the fluctuation is entirely in

the curvature potential Ψ, Q = φ′

H Ψ, or entirely in the inflaton field, Q = δφ. However, as we have

stressed at the end of the previous section, once ripples in the curvature are frozen in on superHubble

scales during inflation, it is in fact gravity that acts as a messanger communicating to baryons and

photons the small seeds of perturbations once a given scale reenters the horizon after inflation.

This happens thanks to Newtonian physics; a small perturbation in the gravitational potential Ψ

induces a small perturbation of the energy density ρ through Poisson’s equiation ∇2Ψ = 4πGNδρ.

Similarly, if perturbations are adiabatic/curvature perturbations and, as such, treat democratically

all the components, a ripple in the curvature is communicated to photons as well, giving rise to a

nonvanishing δT/T .

These considerations make it clear that the next steps of these lectures will be

• Compute the curvature perturbation generated during inflation on superHubble scales. As

we have seen we can either compute the comoving curvature perturbation R or the curvature

on uniform energy density hypersurfaces ζ. They will tell us about the fluctuations of the

gravitational potential.

• See how the fluctuations of the gravitational potential are transmitted to photons, baryons

and matter in general.

We now intend to address the first point. As stressed previously, we are free to follow two alternative

roads: either pick up a gauge and compute the gauge-invariant curvature in that gauge or perform

a gauge-invariant calculation. We take both options.
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8.12 Computation of the curvature perturbation using the longi-

tudinal gauge

The longitudinal (or conformal newtonian) gauge is a convenient gauge to compute the cosmological

perturbations. It is defined by performing a coordinate transformation such that B = E = 0. This

leaves behind two degrees of freedom in the scalar perturbations, Φ and Ψ. As we have previously

seen, these two degrees of freedom fully account for the scalar perturbations in the metric.

First of all, we take the non-diagonal part (i 6= j) of Eq. (273). Since the stress energy-momentum

tensor does not have any non-diagonal component (no stress), we have

∂i∂j (Ψ− Φ) = 0 =⇒ Ψ = Φ

and we can now work only with one variable, let it be Ψ.

Eq. (272) gives (in cosmic time)

Ψ̇ +H Ψ = 4πGNφ̇ δφ = εH
δφ

φ̇
, (296)

while Eq. (271) and the diagonal part of (273) (i = j) give respectively

−3H
(

Ψ̇ +HΨ
)

+
∇2Ψ

a2
= 4πGN

(
φ̇δφ̇− φ̇2Ψ + V ′δφ

)
, (297)

−
(

2
ȧ

a
+

(
ȧ

a

)2
)

Ψ− 3HΨ̇− Ψ̇ = −
(
φ̇δφ̇− φ̇2Ψ− V ′δφ

)
, (298)

If we now use the fact that Ḣ = 4πGNφ̇
2, sum Eqs. (297) and 298) and use the background

Klein-Gordon equation to eliminate V ′, we arrive at the equation for the gravitational potential

Ψ̇k +

(
H − 2

φ̇

φ̇

)
Ψ̇k + 2

(
Ḣ −H φ̇

φ̇

)
Ψk +

k2

a2
Ψk = 0. (299)

We may rewrite it in conformal time

Ψ′′k + 2

(
H− φ′′

φ′

)
Ψ′k + 2

(
H′ − Hφ

′′

φ′

)
Ψk + k2 Ψk = 0 (300)

and in terms of the slow-roll parameters ε and η

Ψ′′k + 2H (η − ε) Ψ′k + 2H2 (η − 2ε) Ψk + k2 Ψk = 0. (301)

Using the same logic leading to Eq. (226), from Eq. (299) we can infer that on superHubble scales the

gravitational potential Ψ is nearly constant (up to a mild logarithmic time-dependence proportional

88



to slow-roll parameters), that is Ψ̇k ∼ (slow-roll parameters)×Ψk. This is hardly surprising, we

know that fluctuations are frozen in on superHubble scales.

Using Eq. (296), we can therefore relate the fluctuation of the gravitational potential Ψ to the

fluctuation of the inflaton field δφ on superHubble scales

Ψk ' εH
δφk

φ̇
(ON superHubble SCALES) (302)

This gives us the chance to compute the gauge-invariant comoving curvature perturbation Rk

Rk = Ψk +H
δφk

φ̇
= (1 + ε)

δφk

φ̇
' δφk

φ̇
. (303)

The power spectrum of the the comoving curvature perturbation Rk then reads on superHubble

scales

PR =
k3

2π2

H2

φ̇2
|δφk|2 =

k3

4M2
Plε π

2
|δφk|2 .

What is left to evaluate is the time evolution of δφk. To do so, we consider the perturbed Klein-

Gordon equation (288) in the longitudinal gauge (in cosmic time)

δφ̇k + 3Hδφ̇k +
k2

a2
δφk + V ′′δφk = −2ΨkV

′ + 4Ψ̇kφ̇.

Since on superHubble scales
∣∣∣4Ψ̇kφ̇

∣∣∣ � |ΨkV
′|, using Eq. (302) and the relation V ′ ' −3Hφ̇, we

can rewrite the perturbed Klein-Gordon equation on superHubble scales as

δφ̇k + 3Hδφ̇k +
(
V ′′ + 6εH2

)
δφk = 0.

We now introduce as usual the field δχk = δφk/a and go to conformal time τ . The perturbed

Klein-Gordon equation on superHubble scales becomes, using Eq. (220),

δχ′′k − 1

τ2

(
ν2 − 1

4

)
δχk = 0,

ν2 =
9

4
+ 9ε− 3η. (304)

Using what we have learned in the previous section, we conclude that

|δφk| '
H√
2k3

(
k

aH

) 3
2
−ν

(ON superHubble SCALES)

which justifies our initial assumption that both the inflaton perturbation and the gravitational

potential are nearly constant on superHubble scale.

We may now compute the power spectrum of the comoving curvature perturbation on super-

Hubble scales
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PR(k) =
1

2M2
Plε

(
H

2π

)2( k

aH

)nR−1

≡ A2
R

(
k

aH

)nR−1

where we have defined the spectral index nR of the comoving curvature perturbation as

nR − 1 =
dlnPR
dln k

= 3− 2ν = 2η − 6ε.

We conclude that inflation is responsible for the generation of adiabatic/curvature perturbations

with an almost scale-independent spectrum.

From the curvature perturbation we can easily deduce the behaviour of the gravitational potential

Ψk from Eq. (296). The latter is solved by

Ψk =
A(k)

a
+

4πGN

a

∫ t

dt′ a(t′) φ̇(t′) δφk(t′) ' A(k)

a
+ εRk.

We find that during inflation and on superHubble scales the gravitational potential is the sum of a

decreasing function plus a nearly constant in time piece proportional to the curvature perturbation.

Notice in particular that in an exact de Sitter stage, that is ε = 0, the gravitational potential is

not sourced and any initial condition in the gravitational potential is washed out as a−1 during the

inflationary stage.

Comment: We might have computed the spectral index of the spectrum PR(k) by first solving

the equation for the perturbation δφk in a di Sitter stage, with H = constant (ε = η = 0), whose

solution is Eq. (211) and then taking into account the time-evolution of the Hubble rate and of φ

introducing the subscript in Hk and φ̇k. The time variation of the latter is determined by

dln φ̇k
dln k

=

(
dln φ̇k

dt

)(
dt

dln a

)(
dln a

dln k

)
=
φ̇k

φ̇k
× 1

H
× 1 = −δ = ε− η. (305)

Correspondingly, φ̇k is the value of the time derivative of the inflaton field when a given wavelength

∼ k−1 crosses the horizon (from that point on the fluctuations remains frozen in). The curvature

perturbation in such an approach would read

Rk '
Hk

φ̇k
δφk '

1

2π

(
H2
k

φ̇k

)
.

Correspondigly

nR − 1 =
dlnPR
dln k

=
dlnH4

k

dln k
− dln φ̇2

k

dln k
= −4ε+ (2η − 2ε) = 2η − 6ε
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which reproduces our previous findings.

During inflation the curvature perturbation is generated on superHubble scales with a spectrum

which is nearly scale invariant, that is is nearly independent from the wavelength λ = π/k: the

amplitude of the fluctuation on superHubble scales does not (almost) depend upon the time at

which the fluctuations crosses the horizon and becomes frozen in. The small tilt of the power

spectrum arises from the fact that the inflaton field is massive, giving rise to a nonvanishing η and

because during inflation the Hubble rate is not exactly constant, but nearly constant, where ‘nearly’

is quantified by the slow-roll parameters ε.

Comment: From what found so far, we may conclude that on superHubble scales the comoving

curvature perturbation R and the uniform-density gauge curvature ζ satisfy on superHubble scales

the relation

Ṙk ' ζ̇k ' 0.

An independent argument of the fact that they are nearly constant on superHubble scales is given

in the next subsection.

8.13 A proof of time-independence of the comoving curvature per-

turbation for adiabatic modes: linear level

We give here a general argument following from energy-momentum conservation to show that

the curvature perturbation on constant-time hypersurfaces Ψ is constant on superHubble scales

if perturbations are adiabatic. Let us consider a generic fluid with energy-momentum tensor

Tµν = (ρ + P )uµuν + gµνP . The four-velocity uµ is subject to the constraint uµuν = −1. Since it

can be decomposed as

uµ =
1

a
(δµ0 + vµ) , (306)

we get

v0 = −Ψ. (307)

Similarly, we obtain

u0 = a(−1− Φ),

Ui = avi. (308)

Notice that, since we will work on superHubble scales we have only taken the gravitational potentials

in the metric. The associated perturbation of the energy-momentum tensor is
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δT 0
0 = −(δρ+ δP ) + (ρ̄+ P̄ )(1−Ψ)(−1− Φ) + δP ' −δρ,

δT i0 ' 0,

δT ij = δPδij , (309)

The associated continuity equation

∇µT
µ
ν = ∂µT

µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ (310)

gives

∂0T
0
0 + ∂iT

i
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ

= ∂0T
0
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ

= ∂0T
0
0 + Γµµ0T

0
0 − Γλ00T

0
λ − ∂0T

0
0 − Γλi0T

i
λ

= ∂0T
0
0 + Γ0

00T
0
0 + Γii0T

0
0 − Γ0

00T
0
0 − Γji0T

i
j . (311)

This expression, using the Christoffel symbols (246) gives

δρ̇ = −3H (δρ+ δP )− 3Ψ̇
(
ρ̄+ P̄

)
.

We write δP = δPnad+c2
sδρ, where δPnad is the non-adiabatic component of the pressure perturbation

and c2
s = δPad/δρ is the adiabatic one. In the uniform-density gauge Ψ = ζ and δρ = 0 and therefore

δpad = 0. The energy conservation equation implies

ζ̇ = − H

P̄ + ρ̄
δPnad.

If perturbations are adiabatic, the curvature on uniform-density gauge is constant on superHubble

scales. The same holds for the comoving curvature R as the latter and ζ are equal on superHubble

scales.

8.14 A proof of time-independence of the comoving curvature per-

turbation for adiabatic modes: linear level

We give here a general argument following from energy-momentum conservation to show that

the curvature perturbation on constant-time hypersurfaces Ψ is constant on superHubble scales

if perturbations are adiabatic. Let us consider a generic fluid with energy-momentum tensor

Tµν = (ρ + P )uµuν + gµνP . The four-velocity uµ is subject to the constraint uµuν = −1. Since it

can be decomposed as
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uµ =
1

a
(δµ0 + vµ) , (312)

we get

v0 = −Ψ. (313)

Similarly, we obtain

u0 = a(−1− Φ),

Ui = avi. (314)

Notice that, since we will work on superHubble scales we have only taken the gravitational potentials

in the metric. The associated perturbation of the energy-momentum tensor is

δT 0
0 = −(δρ+ δP ) + (ρ̄+ P̄ )(1−Ψ)(−1− Φ) + δP ' −δρ,

δT i0 ' 0,

δT ij = δPδij , (315)

The associated continuity equation

∇µT
µ
ν = ∂µT

µ
ν + ΓµµλT

λ
ν − ΓλµνT

µ
λ (316)

gives

∂0T
0
0 + ∂iT

i
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ

= ∂0T
0
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ

= ∂0T
0
0 + Γµµ0T

0
0 − Γλ00T

0
λ − ∂0T

0
0 − Γλi0T

i
λ

= ∂0T
0
0 + Γ0

00T
0
0 + Γii0T

0
0 − Γ0

00T
0
0 − Γji0T

i
j . (317)

This expression, using the Christoffel symbols (246) gives

δρ̇ = −3H (δρ+ δP )− 3Ψ̇
(
ρ̄+ P̄

)
.

We write δP = δPnad+c2
sδρ, where δPnad is the non-adiabatic component of the pressure perturbation

and c2
s = δPad/δρ is the adiabatic one. In the uniform-density gauge Ψ = ζ and δρ = 0 and therefore

δpad = 0. The energy conservation equation implies

ζ̇ = − H

P̄ + ρ̄
δPnad.

If perturbations are adiabatic, the curvature on uniform-density gauge is constant on superHubble

scales. The same holds for the comoving curvature R as the latter and ζ are equal on superHubble

scales.
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8.15 A proof of time-independence of the comoving curvature per-

turbation for adiabatic modes: all orders

We prove now that the comoving curvature perturbation is conserved at all orders in perturbation

theory for adiabatic models on scales larger than the horizon. To do so, at momenta k � Ha the

universe looks like a collection of separate almost homogeneous universes. We choose a threading of

spatial coordinates comoving with the fluid

uµ =
dxµ

dt
, vi =

ui

u0
=

dxi

dt
= 0. (318)

The rate of the expansion is

Θ = ∇µu
µ =

1

N ∂0 e
3α, (319)

where g00 = N 2, gij = e2αγij , with detγij = 1. The energy conservation equation

uν∇µT
µν = 0⇒ d

dτ
ρ+ (ρ+ P )Θ = 0, (320)

where dt/dτ = u0 = 1/N . Therefore, we obtain

ρ̇+ 3(ρ+ P )α̇ = 0. (321)

Upon defining

a(t)e−Ψ = eα, (322)

we obtain

3

(
ȧ

a
− Ψ̇

)
= 3α̇ = − ρ̇

ρ+ P
. (323)

This implies that the number of e-folds of expansion along an integral curve of the four-velocity

comoving with the fluid is

N(t2, t1, x
i) =

1

3

∫ τ2

τ1

dτ Θ =
1

3

∫ t2

t1

dtN Θ = −1

3

∫ t2

t1

dt
ρ̇

ρ+ P

∣∣∣∣
xi
. (324)

This implies that

Ψ(t2, x
i)−Ψ(t1, x

i) = −N(t2, t1, x
i) + ln

a(t2)

a(t1)
, (325)

that is the change in Ψ from one slice to another equals the difference of the actual number of e-folds

and the background. In particular, in a flat slice

N(t2, t1, x
i) = ln

a(t2)

a(t1)
, (326)
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From (325) we find therefore

−Ψ(t2, x
i) + Ψ(t1, x

i) = −1

3

∫ ρ(t2,xi)

ρ(t1,xi)

dρ

ρ+ P
− ln

a(t2)

a(t1)
. (327)

If the perturbation are adiabatic, that is if P = P (ρ), then we conclude that

ζ(xi) = Ψ(t, xi)− 1

3

∫ ρ(t,xi)

ρ(t)

dρ

ρ+ P
(328)

is constant and this holds at any order in perturbation theory. This is the non-linear generalization

of the comoving curvature perturbation.

Consider now two different slices A and B which coincide at t = t1. From (325) we have that

−NA(t2, t1, x
i) +NB(t2, t1, x

i) = ΨA(t2, x
i)−ΨB(t2, x

i). (329)

Now, choose the slice A such that it is flat at t = t1 and ends on a uniform energy slice at t = t2

and B to be flat both at t1 and t2

−ΨA(t2, x
i) = NA(t2, t1, x

i)−N0(t2, t1) ≡ δN , (330)

since B is flat. This means that −ΨA(t2, x
i) is the difference in the number of e-folds (from t = t1

to t = t2) between the uniform-density slicing and the flat slicing. Therefore, by choosing the initial

slice at the t1 to be the flat slice and the slice at generic time t to have uniform energy density, the

curvature perturbation on that slice is the difference in the number of e-folds between the uniform

energy density slice and the flat slice from t1 to t

−ζ = δN = δN(φ(x, t))⇒ ζ =
∂N

∂φ
δφ =

∂N

∂t

δφ

φ̇
= H

δφ

φ̇
. (331)

This is indeed the easiest way of computing the comoving curvature perturbation and is dubbed the

δN formalism. In general

ζ(xi) = −δN − 1

3

∫ ρ(t,xi)

ρ(t)

dρ

ρ+ P
(332)

where δN must be interpreted ad the amount of expansion along the worldline of a comoving observer

from a spatially flat Ψ = 0 slice at time t1 to a generic slice at time t.
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9 Comoving curvature perturbation from isocurvature

perturbation

Let us give one example of how the fact that the comoving curvature perturbation is not constant

when there are isocurvature perturbation can be useful. The paradigm we will describe goes under

the name of the curvaton mechanism.

Suppose that during inflation there is another field σ, the curvaton, which is supposed to give

a negligible contribution to the energy density and to be an almost free scalar field, with a small

effective mass m2
σ = |∂2V/∂σ2| � H2.

The unperturbed curvaton field satisfies the equation of motion

σ′′ + 2Hσ′ + a2∂V

∂σ
= 0 . (333)

It is also usually assumed that the curvaton field is very weakly coupled to the scalar fields driving

inflation and that the curvature perturbation from the inflaton fluctuations is negligible. Thus, if we

expand the curvaton field up to first-order in the perturbations around the homogeneous background

as σ(τ,x) = σ0(τ) + δσ, the linear perturbations satisfy on large scales

δσ′′ + 2Hδσ′ + a2∂
2V

∂σ2
δσ = 0 . (334)

As a result on superHubble scales its fluctuations δσ will be Gaussian distributed and with a nearly

scale-invariant spectrum given by

P
1
2
δσ(k) ≈ H∗

2π
, (335)

where the subscript ∗ denotes the epoch of horizon exit k = aH. Once inflation is over the inflaton

energy density will be converted to radiation (γ) and the curvaton field will remain approximately

constant until H2 ∼ m2
σ. At this epoch the curvaton field begins to oscillate around the minimum

of its potential which can be safely approximated to be quadratic V ≈ 1
2m

2
σσ

2. During this stage

the energy density of the curvaton field just scales as non-relativistic matter ρσ ∝ a−3. The energy

density in the oscillating field is

ρσ(τ,x) ≈ m2
σσ

2(τ,x) , (336)

and it can be expanded into a homogeneous background ρσ(τ) and a first-order perturbation δρσ as

ρσ(τ,x) = ρσ(τ) + δρσ(τ,x) = m2
σσ + 2m2

σ σ δσ . (337)

As it follows from Eqs. (333) and (334) for a quadratic potential the ratio δσ/σ remains constant

and the resulting relative energy density perturbation is

δρσ
ρσ

= 2

(
δσ

σ

)
∗
, (338)
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where the ∗ stands for the value at horizon crossing. Such perturbations in the energy density of the

curvaton field produce in fact a primordial density perturbation well after the end of inflation. The

primordial adiabatic density perturbation is associated with a perturbation in the spatial curvature Ψ

and it is, as we have shown, characterized in a gauge-invariant manner by the curvature perturbation

ζ on hypersurfaces of uniform total density ρ. We recall that at linear order the quantity ζ is given

by the gauge-invariant formula

ζ = Ψ + Hδρ
ρ′
, (339)

and on large scales it obeys the equation of motion

ζ ′ = − H
ρ+ P

δPnad , (340)

In the curvaton scenario the curvature perturbation is generated well after the end of inflation

during the oscillations of the curvaton field because the pressure of the mixture of matter (curvaton)

and radiation produced by the inflaton decay is not adiabatic. A convenient way to study this

mechanism is to consider the curvature perturbations ζi associated with each individual energy

density components, which to linear order are defined as

ζi ≡ Ψ + H
(
δρi
ρ′i

)
. (341)

Therefore, during the oscillations of the curvaton field, the total curvature perturbation in Eq. (339)

can be written as a weighted sum of the single curvature perturbations

ζ = (1− f)ζγ + fζσ , (342)

where the quantity

f =
3ρσ

4ργ + 3ρσ
(343)

defines the relative contribution of the curvaton field to the total curvature perturbation. From

now on we shall work under the approximation of sudden decay of the curvaton field. Under this

approximation the curvaton and the radiation components ρσ and ργ satisfy separately the energy

conservation equations

ρ′γ = −4Hργ ,
ρ′σ = −3Hρσ , (344)

and the curvature perturbations ζi remains constant on superHubble scales until the decay of the

curvaton. Therefore from Eq. (342) it follows that the first-oder curvature pertubation evolves on

large scales as

ζ ′ = f ′(ζσ − ζγ) = Hf(1− f)(ζσ − ζγ) , (345)
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and by comparison with Eq. (340) one obtains the expression for the non-adiabatic pressure pertur-

bation at first order

δPnad = ρσ(1− f)(ζγ − ζσ) . (346)

Since in the curvaton scenario it is supposed that the curvature perturbation in the radiation pro-

duced at the end of inflation is negligible

ζγ = Ψ− 1

4

δργ
ργ

= 0 . (347)

Similarly the value of ζσ is fixed by the fluctuations of the curvaton during inflation

ζσ = Ψ− 1

3

δρσ
ρσ

= ζσI , (348)

where I stands for the value of the fluctuations during inflation. From Eq. (342) the total curvature

perturbation during the curvaton oscillations is given by

ζ = fζσ . (349)

As it is clear from Eq. (349) initially, when the curvaton energy density is subdominant, the density

perturbation in the curvaton field ζσ gives a negligible contribution to the total curvature pertur-

bation, thus corresponding to an isocurvature (or entropy) perturbation. On the other hand during

the oscillations ρσ ∝ a−3 increases with respect to the energy density of radiation ργ ∝ a−4, and the

perturbations in the curvaton field are then converted into the curvature perturbation. Well after

the decay of the curvaton, during the conventional radiation and matter dominated eras, the total

curvature perturbation will remain constant on superHubble scales at a value which, in the sudden

decay approximation, is fixed by Eq. (349) at the epoch of curvaton decay

ζ = fD ζσ , (350)

where D stands for the epoch of the curvaton decay.

Going beyond the sudden decay approximation it is possible to introduce a transfer parameter

r defined as

ζ = rζσ, (351)

where ζ is evaluated well after the epoch of the curvaton decay and ζσ is evaluated well before

this epoch. Numerical studies of the coupled perturbation equations has been performed show that

the sudden decay approximation is exact when the curvaton dominates the energy density before it

decays (r = 1), while in the opposite case

r ≈
(
ρσ
ρ

)
D

. (352)
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9.1 Gauge-invariant computation of the curvature perturbation

In this subsection we would like to show how the computation of the curvature perturbation can

be performed in a gauge-invariant way. We first rewrite Einstein’s equations in terms of Bardeen’s

potentials (293) and (294)

δG0
0 =

2

a2

(
− 3H

(
HΦGI + Ψ′GI

)
+ ∇2ΨGI + 3H

(
−H′ + H2

)(E′
2
− B

))
, (353)

δG0
i =

2

a2
∂i

(
HΦGI + Ψ′GI +

(
H′ − H2

)(E′
2
− B

))
, (354)

δGij = − 2

a2

(((
2H′ + 2H2

)
ΦGI + HΦ′GI + Ψ′′GI + 2HΨ′GI +

1

2
∇2DGI

)
δij

+
(
H′′ − HH′ − H3

)(E′
2
− B

)
δij −

1

2
∂i∂jDGI

)
, (355)

with DGI = ΦGI −ΨGI. These quantities are not gauge-invariant, but using the gauge transforma-

tions described previously, we can easily generalize them to gauge-invariant quantities

δG
(GI)0
0 = δG0

0 + (G0
0)′
(
E′

2
− B

)
, (356)

δG
(GI)0
i = δG0

i +

(
G0
i −

1

3
T kk

)
∂i

(
E′

2
− B

)
, (357)

δG
(GI)i
j = δGij + (Gij)

′
(
E′

2
− B

)
(358)

and

δT
(GI)0
0 = δT 0

0 + (T 0
0 )′
(
E′

2
− B

)
= −δρ(GI) , (359)

δT
(GI)0
i = δT 0

i +

(
T 0
i −

1

3
T kk

)
∂i

(
E′

2
− B

)
=
(
ρ̄+ P̄

)
a−1v

(GI)
i , (360)

δT
(GI)i
j = δT ij + (T ij )

′
(
E′

2
− B

)
= δP (GI) (361)

where we have written the stress energy-momentum tensor as Tµν = (ρ+ P )uµuν + Pηµν with

uµ = (1, vi). Barred quantities are to be intended as background quantities. Einstein’s equations

can now be written in a gauge-invariant way
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− 3H
(
HΦGI + Ψ′GI

)
+ ∇2 ΨGI (362)

= 4πGN

(
−ΦGI φ

′2 + δφ(GI) φ′ + δφ(GI) ∂V

∂φ
a2

)
,

∂i
(
HΦ + Ψ′GI

)
= 4πGN

(
∂i δφ

(GI) φ′
)
,((

2H′ + H2
)

ΦGI + HΦ′GI + Ψ′′GI + 2HΨ′GI +
1

2
∇2DGI

)
δij −

1

2
∂i∂jDGI,

= − 4πGN

(
ΦGI φ

′2 − δφ(GI) φ′ + δφ(GI) ∂V

∂φ
a2

)
δij . (363)

Taking i 6= j from the third equation, we find DGI = 0, that is ΨGI = ΦGI and from now on we can

work with only the variable ΦGI. Using the background relation

2
(a′
a

)2
− a′′

a
= 4πGN φ

′2 (364)

we can rewrite the system of Eqs. (363) in the form

∇2 ΦGI − 3HΦ′GI −
(
H′ + 2H2

)
ΦGI = 4πGN

(
δφ(GI) φ′ + δφ(GI) ∂V

∂φ
a2

)
;

Φ′GI + HΦGI = 4πGN

(
δφ(GI) φ′

)
;

Φ′′GI + 3HΦ′GI +
(
H′ + 2H2

)
ΦGI = 4πGN

(
δφ(GI) φ′ − δφ(GI) ∂V

∂φ
a2

)
. (365)

Substracting the first equation from the third, using the second equation to express δφ(GI) as a

function of ΦGI and Φ′GI and using the Klein-Gordon equation one finally finds the

Φ′′GI + 2

(
H − φ′′

φ′

)
Φ′GI − ∇2 ΦGI + 2

(
H′ − H φ′′

φ′

)
ΦGI = 0 , (366)

for the gauge-invariant potential ΦGI. We now introduce the gauge-invariant quantity

u ≡ a δφ(GI) + zΨGI , (367)

z ≡ a
φ′

H = a
φ̇

H
. (368)

Notice that the variable u is equal to −aQ, the gauge-invariant inflaton perturbation on spatially

flat gauges. Eq. (366) becomes

u′′ − ∇2 u − z′′

z
u = 0 , (369)

while the two remaining equations of the system (365) can be written as
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∇2 ΦGI = 4πGN
H
a2

(
z u′ − z′u

)
, (370)(

a2 ΦGI

H

)′
= 4πGN z u , (371)

which allow to determine the variables Φ and δφ(GI) .

We have now to solve Eq. (369). First, we have to evaluate z′′/z in terms of the slow-roll

parameters

z′

Hz =
a′

Ha +
φ′′

Hφ′ −
H′
H2

= ε+
φ′′

Hφ′ .

We then deduce that

δ ≡ 1− φ′′

Hφ′ = 1 + ε− z′

Hz .

Keeping the slow-roll parameters constat in time (as we have mentioned, this corresponds to expand

all quantities to first-order in the slow-roll parameters), we find

0 ' δ′ = ε′(' 0)− z′′

Hz +
z′H′
zH2

+
(z′)2

Hz2
,

from which we deduce

z′′

z
' z′H′

zH +
(z′)2

z2
.

Expanding in slow-roll parameters we find

z′′

z
' (1 + ε− δ) (1− ε) H2 + (1 + ε− δ)2 H2 ' H2 (2 + 2ε− 3δ) .

If we set

z′′

z
=

1

τ2

(
ν2 − 1

4

)
,

this corresponds to

ν ' 1

2

[
1 + 4

(1 + ε− δ) (2− δ)
(1− ε)2

]1/2

' 3

2
+ (2ε− δ) ' 3

2
+ 3ε− η.

On subHubble scales (k � aH), the solution of equation (369) is obviously uk ' e−ikτ/
√

2k.

Rewriting Eq. (371) as

ΦGI
k = −4πGa2

k2

φ̇2

H

(
H

aφ̇
uk

)·
,
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we infer that on subHubble scales

ΦGI
k ' i

4πGφ̇√
2k3

e−i
k
a .

On superHubble scales (k � aH), one obvious solution to Eq. (369) is uk ∝ z. To find the other

solution, we may set uk = z ũk, which satisfies the equation

ũ′′k
ũ′k

= −2
z′

z
,

which gives

ũk =

∫ τ dτ ′

z2(τ ′)
.

On superHubble scales therefore we find

uk = c1(k)
aφ̇

H
+ c2(k)

aφ̇

H

∫ t

dt′
H2

a3φ̇2
. ' c1(k)

aφ̇

H
− c2(k)

1

3a2φ̇
,

where the last passage has been performed supposing a de Sitter epoch, H = constant. The first

piece is the constant mode c1(k)z, while the second is the decreasing mode. To find the constant

c1(k), we apply what we have learned previously. We know that on superHubble scales the exact

solution of equation (369) is

uk =

√
π

2
ei(ν+ 1

2)π2
√
−τ Hν(−kτ). (372)

On superHubble scales, since Hν(x � 1) ∼
√

2/π e−i
π
2 2ν−

3
2 (Γ(νχ)/Γ(3/2))x−ν , the fluctuation

(372) becomes

uk = ei(ν−
1
2)π2 2(ν− 3

2) Γ(ν)

Γ(3/2)

1√
2k

(−kτ)
1
2
−ν .

Therefore

c1(k) = limk→0

∣∣∣uk
z

∣∣∣ =
H

aφ̇

1√
2k

(
k

aH

) 1
2
−ν

=
H

φ̇

1√
2k3

(
k

aH

)η−3ε

(373)

The last steps consist in relating the variable u to the comoving curvature R and to the gravitational

potential ΦGI. The comoving curvature takes the form

R ≡ −ΨGI −
H

φ′
δφ(GI) = −u

z
. (374)

Since z = aφ̇/H = a
√

2εMPl, the power spectrum of the comoving curvature can be expressed on

superHubble scales as

PR(k) =
k3

2π2

∣∣∣uk
z

∣∣∣2 =
1

2M2
Plε

(
H

2π

)2( k

aH

)nR−1

≡ A2
R

(
k

aH

)nR−1

(375)

102



with

nR − 1 = 3− 2ν = 2η − 6ε. (376)

These results reproduce those found in the previous subsection. The last step is to find the behaviour

of the gauge-invariant potential ΦGI on superHubble scales. If we recast equation (371) in the form

uk =
1

4πGN

H

φ̇

( a
H

ΦGI
k

)·
, (377)

we can infer that on superHubble scales the nearly constant mode of the gravitational potential

during inflation reads

ΦGI
k = c1(k)

[
1− H

a

∫ t

dt′ a
(
t′
)]
' −c1(k)

Ḣ

H2
= ε c1(k) ' εuk

z
' −εRk. (378)

Indeed, plugging this solution into Eq. (377), one reproduces uk = c1(k)aφ̇H .

10 Transferring the perturbation to radiation during

reheating

When the inflaton decays, the comoving curvature perturbation associated to the inflaton field are

transferred to radiation. Let us see how this works.

Let us consider the system composed by the oscillating scalar field φ and the radiation fluid.

Each component has energy-momentum tensor Tµν(φ) and Tµν(γ). The total energy momentum Tµν =

Tµν(φ) + Tµν(γ) is covariantly conserved, but allowing for an interaction between the two fluids

∇µT
µν
(φ) = Qν(φ) ,

∇µT
µν
(γ) = Qν(γ) , (379)

where Qν(φ) and Qν(γ) are the generic energy-momentum transfer to the scalar field and radiation

sector respectively and are subject to the constraint

Qν(φ) +Qν(γ) = 0 . (380)

The energy-momentum transfer Qν(φ) and Qν(γ) can be decomposed for convenience as

Qν(φ) = Q̂φu
ν + fν(φ) ,

Qν(γ) = Q̂γu
ν + fν(γ) , (381)
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where the fν ’s are required to be orthogonal to the the total velocity of the fluid uν . The energy

continuity equations for the scalar field and radiation can be obtained from uν∇µTµν(φ) = uνQ
ν
(φ) and

uν∇µTµν(γ) = uνQ
ν
(γ) and hence from Eq. (381)

uν∇µTµν(φ) = Q̂φ ,

uν∇µTµν(γ) = Q̂γ . (382)

In the case of an oscillating scalar field decaying into radiation the energy transfer coefficient Q̂φ is

given by

Q̂φ = −Γρφ,

Q̂γ = Γρφ, (383)

where Γ is the decay rate of the scalar field into radiation.

The equations of motion for the curvature perturbations ζφ and ζγ can be obtained perturbing

at first order the continuity energy equations (382) for the scalar field and radiation energy densities,

including the energy transfer. Expanding the transfer coefficients Q̂φ and Q̂γ up to first order in the

perturbations around the homogeneous background as

Q̂φ = Qφ + δQφ , (384)

Q̂γ = Qγ + δQγ , (385)

Eqs. (382) give on wavelengths larger than the horizon scale

δρ′φ + 3H (δρφ + δPφ)− 3 (ρφ + Pφ) Ψ
′

= aQφφ+ a δQφ , (386)

δρ′γ + 3H (δργ + δPγ)− 3 (ργ + Pγ) Ψ
′

= aQγφ+ a δQγ . (387)

Notice that the oscillating scalar field and radiation have fixed equations of state with δPφ = 0

and δPγ = δργ/3 (which correspond to vanishing intrinsic non-adiabatic pressure perturbations).

Using the perturbed (0− 0)-component of Einstein’s equations for super-horizon wavelengths Ψ
′
+

HΦ = −H(δρ/ρ)/2, we can rewrite Eqs. (386) and (387) in terms of the gauge-invariant curvature
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perturbations ζφ and ζγ

ζ
′
φ =

aH
ρ′φ

[
δQφ −

Q′φ
ρ′φ
δρφ

+ Qφ
ρ′

2ρ

(
δρφ
ρ′φ
− δρ

ρ′

)]
, (388)

ζ
′
γ =

aH
ρ′γ

[
δQγ −

Q′γ
ρ′γ
δργ

+ Qγ
ρ′

2ρ

(
δργ
ρ′γ
− δρ

ρ′

)]
, (389)

where δQγ = −δQφ from the constraint in Eq (380). If the energy transfer coefficients Q̂φ and Q̂γ

are given in terms of the decay rate Γ as in Eq. (383), the first order perturbation are respectively

δQφ = −Γδρφ, (390)

δQγ = Γδρφ. (391)

Plugging the expressions (390-391) into Eqs. (388-389), the first order curvature perturbations for

the scalar field and radiation obey on large scales

ζ
′
φ =

aΓ

2

ρφ
ρ′φ

ρ′

ρ
(ζ − ζφ) , (392)

ζ
′
γ = − a

ρ′γ

[
Γρ′

ρ′φ
ρ′γ

(
1− ρφ

2ρ

)
(ζ − ζφ)

]
.

(393)

From the total comoving curvature perturbation

ζ =
ρ̇φ
ρ̇
ζφ +

ρ̇γ
ρ̇
ζγ , ρ = ρφ + ργ . (394)

it is thus possible to find the equation of motion for the total curvature perturbation ζ using the

evolution of the individual curvature perturbations in Eqs. (392) and (393)

ζ
′

= f ′ (ζφ − ζγ) + fζ
′
φ + (1− f)ζ

′
γ

= Hf(1− f) (ζφ − ζγ) = −Hf (ζ − ζφ) , (395)

where f = (ρ̇φ/ρ̇). Notice that during the decay of the scalar field into the radiation fluid, ρ′γ

in Eq. (393) may vanish. So it is convenient to close the system of equations by using the two

equations (392) and (395) for the evolution of ζφ and ζ. These equations say that ζ = ζφ is a fixed

point: during the reheating phase the comoving curvature pertubation stored in the inflaton field is

transferred to radiation smoothly.
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11 The initial conditions provided by inflation

Inflation provides the initial conditions for all perturbations once the latter re-enter the horizon. Let

us turn again to the longitudinal gauge. On superHubble scales, from Eq. (271) we have

6H2Φk = −4πGNa
2 δρk
ρ̄
⇒ δρk

ρ̄
= −2Φ, (396)

on superHubble scales, where H2 = (8πGN/3)ρ̄a2 defines the average energy density. Recalling now

that Ψ = Φ and that ζ = Ψ+ Hδρ/ρ′ and ρ′ = −3H(ρ+P ) = −3H(1+w)ρ, where we have defined

P/ρ = w, we find that on superHubble scales

ζk = Φk −
δρk

3(1 + w)ρ̄
=

(
1 +

2

3(1 + w)

)
Φk =

5 + 3w

3(1 + w)
Φk. (397)

This means that during the RD phase one has (w = 1/3)

ΦRD
k =

2

3
ζk (RD) , (398)

and during the MD phase

ΦMD
k =

3

5
ζk (MD) , (399)

In particular, notice that

ΦMD
k =

9

10
ΦRD
k . (400)

One of the last steps we wish to take is now fixing the amplitude of the density perturbation in

the CMB through inflation. The CMB anisotropy has an oscillating structure (the famous Doppler

peaks) because the baryon-phton fluid oscillates, with 1) a boost for those modes which enter the

horizon at last scattering and 2) a damping due to photon diffusion. The overall amplitude of

the CMB anisotropy can be fixed at large angular scales (superHubble modes) where there is no

evolution and therefore one can match the amplitude with the theoretical prediction from inflation.

As on large scales and during matter-domination (recall that τls > τeq) we have at last scattering

δρm

ρ̄m
= −2ΦMD(τls), (401)

and, if the adiabatic condition holds,

1

3

δρm

ρ̄m
=

1

4

δργ
ρ̄γ
≡ ∆0(τls), (402)

we obtain that the observed CMB anisotropy on large scales at the last scattering epoch should be

the Sachs-Wolfe term (see later for an explanation of how this expression comes about)
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(
∆

4
+ ΦMD

)
SW

(τls) =

(
−2

3
+ 1

)
ΦMD =

1

3
ΦMD(τls). (403)

We have seen previously that the temperature anisotropy is commonly expanded in spherical har-

monics
∆T

T
(x0, τ0,n) =

∑
`m

a`,m(x0)Y`m(n), (404)

where x0 and τ0 are our position and the preset time, respectively, n is the direction of observation,

`′s are the different multipoles and

〈a`ma∗`′m′〉 = δ`,`′δm,m′C`, (405)

where the deltas are due to the fact that the process that created the anisotropy is statistically

isotropic. The C` are the so-called CMB power spectrum. For homogeneity and isotropy, the C`’s

are neither a function of x0, nor of m. The two-point-correlation function is related to the CL’s

according to Eq. (156). WE get therefore that

a`m(x0, τ0) =

∫
d3k

(2π)3
eik·x0

∫
dΩY ∗`m(n)Θ(k,n, τ0), (406)

where we have made use the orthonormality property of the spherical harmonics

∫
dΩY ∗`m(n)Y`′m′(n) = δ``′δmm′ . (407)

The C`

C` =

∫
d3k

(2π)3

∫
d3p

(2π)3
ei(k+p)·x0

∫
dΩY ∗`m(n)

∫
dΩ′ Y ∗`m(n′)

〈
Θ(k,n, τ0)Θ(p,n′, τ0)

〉
=

∑
`′`′′

(−i)`′+`′′(2`′ + 1)(2`′′ + 1)

∫
d3k

(2π)3

∫
d3p

(2π)3
ei(k+p)·x0

×
∫

dΩY ∗`m(n)P`′(k · n)

∫
dΩ′ Y ∗`m(n′)P`′′(p · n′)

〈
Θ`′(k)Θ`′′(p)

〉
. (408)

where we have decomposed the temperature anisotropy in multipoles as usual

Θ(k,k, τ0) =
∑
`

(−i)`(2`+ 1)P`(k · n)Θ`(k). (409)

In the SW limit we have

ΘSW
` (k) ' 1

3
ΦMD(k, τls)j`(kτ0), (410)

with the spectrum of the gravitational potential defined as
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〈
ΦMD(k, τls)Φ

MD(p, τls)
〉

= (2π)3δ(3)(k + p)PΦMD(k). (411)

Therefore we obtain

CSW
` =

∫
d3k

(2π)3
PΦMD(k)j2

` (kτ0)

×
∑
`′`′′

(−i)`′+`′′(2`′ + 1)(2`′′ + 1)

∫
dΩY ∗`m(n)P`′(k · n)

∫
dΩ′ Y ∗`m(n′)P`′′(p · n′)

=

∫
d3k

(2π)3
PΦMD(k)j2

` (kτ0)

×
∑
`′`′′

(−i)`′+`′′(2`′ + 1)(2`′′ + 1)
4π

(2`+ 1)
δ``′Y`m(n)

4π

(2`+ 1)
δ``′′Y

∗
`m(n)

=
2

π

∫
dk k2PΦMD(k)j2

` (kτ0)

∫
dΩ |Y`m(n)|2

=
2

π

∫
dk k2PΦMD(k)j2

` (kτ0). (412)

If we generically indicate by

〈 ∣∣ΦMD
k

∣∣2 〉k3 = A2 (kτ0)n−1, (413)

we can perform the integration and get

`(`+ 1)CSW
`

2π
=

[√
π

2
`(`+ 1)

Γ(3−n
2 )Γ(`+ n−)

2 )

Γ
(

4−n
2

)
Γ
(
`+ 5−n

2

)] A2

9

(
H0

2

)n−1

(414)

For n ' 1 and 100� `� 1, we can approximate this expression to

`(`+ 1)CSW
`

2π
=
A2

9
. (415)

This result shows that inflation predicts a very flat spectrum for low `. This prediction has been

confirmed by CMB anisotropy measurements. Furthermore, since inflation predicts ΦMD
k = 3

5ζk, we

find that

π `(`+ 1)CSW
L =

A2
ζ

25
=

1

25

1

2M2
Pl ε

(
H

2π

)2

. (416)

Assuming that
`(`+ 1)CSW

`

2π
' 10−10, (417)

we find

(
V

ε

)1/4

' 6.7× 1016 GeV.
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Take for instance a model of chaotic inflation with quadratic potential V (φ) = 1
2m

2
φφ

2. Using Eq.

(183) one easily computes that when there are ∆N e-foldings to go, the value of the inflaton field is

φ2
∆N = (∆N/2πG) and the corresponding value of ε is 1/(2∆N). Taking ∆N ' 60 (corresponding

to large-angle CMB anisotropies), one finds that COBE normalization imposes mφ ' 1013 GeV.

12 Symmetries of the de Sitter geometry

Before launching ourselves into the topic of non-Gaussianity of the cosmological perturbations, we

wish to summarize the symmetries of the de Sitter geometry to understand better the properties of

the inflationary perturbations.

The four-dimensional de Sitter space-time of radius H−1 is described by the hyperboloid

ηABX
AXB = −X2

0 +X2
i +X2

5 =
1

H2
(i = 1, 2, 3), (418)

embedded in five-dimensional Minkowski space-time M1,4 with coordinates XA and flat metric ηAB =

diag(−1, 1, 1, 1, 1). A particular parametrization of the de Sitter hyperboloid is provided by

X0 =
1

2H

(
Hη − 1

Hη

)
− 1

2

x2

η
,

Xi =
xi

Hη
,

X5 = − 1

2H

(
Hη +

1

Hη

)
+

1

2

x2

η
, (419)

which may easily be checked that satisfies Eq. (418). The de Sitter metric is the induced metric on

the hyperboloid from the five-dimensional ambient Minkowski space-time

ds2
5 = ηABdX

AdXB. (420)

For the particular parametrization (419), for example, we find

ds2 =
1

H2η2

(
−dη2 + dx2

)
. (421)

The group SO(1,4) acts linearly on M1,4. Its generators are

JAB = XA
∂

∂XB
−XB

∂

∂XA
A,B = (0, 1, 2, 3, 5) (422)

and satisfy the SO(1, 4) algebra

[JAB, JCD] = ηADJBC − ηACJBD + ηBCJAD − ηBDJAC . (423)

We may split these generators as

Jij , P0 = J05 , Π+
i = Ji5 + J0i , Π−i = Ji5 − J0i, (424)
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which act on the de Sitter hyperboloid as

Jij = xi
∂

∂xj
− xj

∂

∂xi
,

P0 = η
∂

∂η
+ xi

∂

∂xi
,

Π−i = −2Hηxi
∂

∂η
+H

(
x2δij − 2xixj

) ∂

∂xj
−Hη2 ∂

∂xi
,

Π+
i =

1

H

∂

∂xi
(425)

and satisfy the commutator relations

[Jij , Jkl] = δilJjk − δikJjl + δjkJil − δjlJik,
[Jij ,Π

±
k ] = δikΠ

±
j − δjkΠ±i ,

[Π±k , P0] = ∓Π±k ,

[Π−i ,Π
+
j ] = 2Jij + 2δijP0. (426)

This is nothing else that the conformal algebra. Indeed, by defining

Lij = iJij , D = −iP0 , Pi = −iΠ+
i , Ki = iΠ−i , (427)

we get

Pi = − i

H
∂i,

D = −i
(
η
∂

∂η
+ xi∂i

)
,

Ki = −2iHxi

(
η
∂

∂η
+ xi∂i

)
− iH(−η2 + x2)∂i,

Lij = i

(
xi

∂

∂xj
− xj

∂

∂xi

)
. (428)

These are also the Killing vectors of de Sitter space-time corresponding to symmetries under space

translations (Pi), dilitations (D), special conformal transformations (Ki) and space rotations (Lij).

They satisfy the conformal algebra in its standard form

[D,Pi] = iPi, (429)

[D,Ki] = −iKi, (430)

[Ki, Pj ] = 2i
(
δijD − Lij

)
(431)

[Lij , Pk] = i
(
δjkPi − δikPj

)
, (432)

[Lij ,Kk] = i
(
δjkKi − δikKj

)
, (433)

[Lij , D] = 0, (434)

[Lij , Lkl] = i
(
δilLjk − δikLjl + δjkLil − δjlLik

)
. (435)
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The de Sitter algebra SO(1,4) has two Casimir invariants

C1 = −1

2
JABJ

AB , (436)

C2 = WAW
A , WA = εABCDEJBCJDE . (437)

Using Eqs. (424) and (427), we find that

C1 = D2 +
1

2
{Pi,Ki}+

1

2
LijL

ij , (438)

which turns out to be, in the explicit representation Eq. (428),

H−2C1 = − ∂2

∂η2
− 2

η

∂

∂η
+ ∇2. (439)

As a result, C1 is the Laplace operator on the de Sitter hyperboloid and for a scalar field φ(x) we

have

C1φ(x) =
m2

H2
φ(x). (440)

Let us now consider the case Hη � 1. The parametrization (419) turns out then to be

X0 = − 1

2H2η
− 1

2

x2

η
,

Xi =
xi

Hη
,

X5 = − 1

2H2η
+

1

2

x2

η
(441)

and we may easily check that the hyperboloid has been degenerated to the hypercone

−X2
0 +X2

i +X2
5 = 0. (442)

We identify points XA ≡ λXA (which turns the cone (442) into a projective space). As a result, η

in the denominator of the XA can be ignored due to projectivity condition. Then, on the cone, the

conformal group acts linearly, whereas induces the (non-linear) conformal transformations xi → x′i

with

x′i = ai +M j
i xj , (443)

x′i = λxi, (444)

x′i =
xi + bix

2

1 + 2bixi + b2x2
. (445)

on Euclidean R3 with coordinates xi. These transformations correspond to translations and rotations

(generated by Pi, Lij), dilations (generated by D) and special conformal transformations (generated

by Ki), respectively, acting now on the constant time hypersurfaces of de Sitter space-time. It should

be noted that special conformal transformations can be written in terms of inversion

xi → x′i =
xi
x2

(446)

as inversion×translation×inversion.
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12.1 Killing vectors of the de Sitter space

We have seen that the essential kinematical feature of a vacuum dominated de Sitter universe is that

the conformal group of certain embeddings of three dimensional hypersurfaces in de Sitter space-time

may be mapped (either one-to-one or multiple-to-one) to the geometric isometry group of the full

four dimensional space-time into which the hypersurfaces are embedded. The first example of such

an embedding of three dimensional hypersurfaces is that of flat Euclidean R3 in de Sitter space-time

in coordinates. The conformal group of the three dimensional spatial R3 sections is in fact identical

(isomorphic) to the isometry group SO(4,1) of the four dimensional de Sitter space-time, as we now

review.

Since (eternal) de Sitter space is maximally symmetric, it posseses the maximum number of

isometries for a space-time in n = 4 dimensions, namely n(n+1)
2 = 10, corresponding to the 10

solutions of the Killing equation,

∇µε(α)
ν +∇νε(α)

µ = 0 , µ, ν = 0, 1, 2, 3 ; α = 1, . . . , 10 . (447)

Each of the 10 linearly independent solutions to this equation (labelled by α) is a vector field in

de Sitter space corresponding to an infinitesimal coordinate transformation, xµ → xµ + εµ(x) that

leaves the de Sitter geometry and line element invariant. These are the 10 generators of the de Sitter

isometry group, the non-compact Lie group SO(4,1).

The isomorphism with conformal transformations of R3 is that each of these 10 solutions of (447)

may be placed in one-to-one correspondence with the 10 solutions of the conformal Killing equation

of three dimensional flat space R3, i.e.

∂iξ
(α)
j + ∂jξ

(α)
i =

2

3
δij ∂kξ

(α)
k , i, j, k = 1, 2, 3; α = 1, . . . 10 . (448)

In (447) the space-time indices µ, ν range over 4 values and ∇ν is the covariant derivative with

respect to the full four dimensional metric of de Sitter space-time, whereas in (448), i, j are three

dimensional spatial indices of the three Cartesian coordinates xi of Euclidean R3 of one dimension

lower with flat metric δij . Solutions to the conformal Killing Eq. (448) are transformations of

xi → xi + ξi(~x) which preserve all angles in R3. This isomorphism between geometric isometries of

(3 + 1) dimensional de Sitter space-time and conformal transformations of 3 dimensional flat space

embedded in it is the origin of conformal invariance of correlation functions generated in a de Sitter

phase of the universe.

The 10 solutions of (448) for vector fields in flat R3 are easily found. They are of two kinds. First

there are 6 solutions of (448) with ∂kξk = 0, corresponding to the strict isometries of R3, namely 3

translations and 3 rotations. Second, there are also 4 solutions of (448) with ∂kξk 6= 0. These are

the 4 conformal transformations of flat space that are not strict isometries but preserve all angles.

They consist of one global dilation and three special conformal transformations. The Killing Eq.

(447) can be rewritten as
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gνλ∂µε
λ + gµλ∂νε

λ + ∂σgµνε
σ = 0 , (449)

which, for de Sitter space, they provide

∂tεt = 0 , (450)

∂tεi + ∂iεt = 2Hεi , (451)

∂iεj + ∂jεi = 2Ha2δijεt . (452)

Its solutions of can be catalogued as follows. For εt = 0 we have the three translations,

ε
(Tj)
t = 0 , ε

(Tj)
i = a2δ j

i , j = 1, 2, 3 , (453)

and the three rotations,

ε(R`)τ = 0 , ε
(R`)
i = a2εi`mx

m , ` = 1, 2, 3 . (454)

The spatial R3 sections also have four conformal Killing vectors which satisfy the Killing vector

equations with εt 6= 0. They are the three special conformal transformations of R3,

ε
(C)
t = −2Hxn , ε

(C)
i = H2a2(δ n

i δjkx
jxk − 2δijx

jxn)− δni , n = 1, 2, 3 , (455)

and the dilation,

ε
(D)
t = 1 , ε

(D)
i = Ha2 δijx

j . (456)

This last dilational Killing vector is the infinitesimal form of the finite dilational symmetry,

x→ λx , (457)

a(τ)→ λ−1a(τ) , (458)

t→ t−H−1 lnλ (459)

of de Sitter space. Since the maximum number of Killing isometries in 4 dimensions is 10, there

are no other solutions and de Sitter space, being a fully symmetric space, possesses the maximum

number of symmetries.

We can understand the issue of scale-invariance rather easily looking at the symmetries of de

Sitter. In conformal time the metric during inflation reads approximately de Sitter

ds2 =
1

H2τ2
(−dτ2 + dx2) , (460)

whose isometry group is SO(4,1). The time-evolving inflaton background is homogeneous and rota-

tionally invariant, so that translations and rotations are good symmetries of the whole system. The

dilation isometry
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τ → λτ, x→ λx , (461)

is also an approximate symmetry of the inflaton background in the limit in which its dynamics varies

slowly in time. It is this isometry which guarantees a scale invariant spectrum, independently of the

inflaton dynamics. In Fourier space dilatations act on a scalar field φ(x, τ) on large scales as

φk → λ−3φk/λ . (462)

Indeed, consider a transformation x→ λx. Then, in real space φ(x)→ φλ(x) = φ(λx). Expressing

this in terms of the Fourier transform of φ(x) gives how the rescaling acts in Fourier space

φ(λx) =

∫
d3k e−ik·λxφ(k) = λ−3

∫
d3p e−ip·xφ(p/λ) , (463)

where, in the last step, we have made a change in the variable of integration with p = λk. Therefore,

the two-point function is constrained to have the form

〈φk1φk2〉 = (2π)3δ(3)(k1 + k2)
F (k1τ)

k3
1

. (464)

If perturbations become time independent when out of the Hubble radius, the function F must be

a constant in this limit and this gives a scale invariant spectrum.

13 Non-Gaussianity of the cosmological perturbations

Non-Gaussianity (NG), i.e. the study of non-Gaussian contributions to the correlations of cosmolog-

ical fluctuations, is emerging as an important probe of the early universe. Being a direct measure of

inflaton interactions, constraints on primordial NG’s will teach us a great deal about the inflationary

dynamics and on the mechanism giving rise to the primordial cosmological perturbations. Over the

last decade we have accumulated a good deal of observational evidence from CMB and LSS power

spectra that the observed structures originated from seed fluctuations in the very early universe.

As we have seen, the leading theory explaining the primordial origin of cosmological fluctuations is

cosmic inflation, a period of accelerated expansion at very early times. During inflation, microscopic

quantum fluctuations were stretched to macroscopic scales to provide the seed fluctuations for the

formation of large-scale structures like our own Galaxy. Despite the simplicity of the inflationary

paradigm, the mechanism by which cosmological perturbations are generated is not yet established.

In the standard slow-roll inflationary scenario associated to one-single field, the inflaton, density

perturbations are due to fluctuations of the inflaton itself when it slowly rolls down along its po-

tential. In the curvaton mechanism the final curvature perturbation R is produced from an initial
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isocurvature mode associated with the quantum fluctuations of a light scalar (other than the infla-

ton), the curvaton, whose energy density is negligible during inflation. Recently, other mechanisms

for the generation of cosmological perturbations have been proposed: the inhomogeneous reheating

scenario, ghost-inflation, the DBI scenario, and from broken symmetries to mention a few.

A precise measurement of the spectral index nR of comoving curvature perturbations will pro-

vide a powerful constraint to slow-roll inflation models and the standard scenario for the generation

of cosmological perturbations which predicts nR close to unity. However, alternative mechanisms

generically also predict a value of nR very close to unity. Thus, even a precise measurement of the

spectral index will not allow us to efficiently discriminate among them. On the other hand, the

lack gravity-wave signals in CMB anisotropies will not give us any information about the pertur-

bation generation mechanism, since alternative mechanisms predict an amplitude of gravity waves

far too small to be detectable by future experiments aimed at observing the B-mode of the CMB

polarization.

There is, however, a third observable which will prove fundamental in providing information

about the mechanism chosen by Nature to produce the structures we see today. It is the deviation

from a Gaussian statistics, i.e., the presence of higher-order connected correlation functions of the

perturbations. Indeed, a possible source of NG could be primordial in origin, being specific to a

particular mechanism for the generation of the cosmological perturbations. This is what makes a

positive detection of NG so relevant: it might help in discriminating among competing scenarios

which otherwise might be undistinguishable. While, as we shall see, single-field models of inflation

with canonical kinetic terms generically predict a tiny level of NG (of the order of the slow-roll

parameters), other models for the generation of the curvature perturbation, such as the curvaton

models, may predict a high level of NG. While detection of large primordial NG would not rule out

inflation, it would rule out in a single shot the large class of slow-roll models where inflation is driven

by a single scalar field with canonical kinetic energy.

NG can measured by various methods. A standard approach is to measure non-Gaussian correla-

tions, i.e., the correlations that vanish for a Gaussian distribution, in the CMB and in high-redshift

galaxy surveys. The three-point function, or its Fourier transform, the bispectrum, and the four-

point function, the trispectrum, are examples of such correlations. The dimensionless quantities fNL

and gNL set the amplitude of the the bispectrum BΦ(k1, k2, k3) and trispectrum TΦ(k1, k2, k3, k4) of

the (gauge-invariant) gravitational potential Φ, respectively.

A large, detectable amount of NG can be produced when any of the following conditions is

violated: single field, canonical kinetic energy, slow-roll and initial adiabatic (the Bunch-Davies)

vacuum; an important theoretical discovery made toward the end of the last decade is that violation

of each of the above conditions results in unique signals with specific triangular shapes: multi-field

models, non-canonical kinetic term models, non-adiabatic-vacuum models (e.g., initially excited
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states), and non-slow-roll models can generate a NG of the local type where the amplitude of the

bispectrum is maximized for squeezed triangles (k3 � k2 ' k1); in such a case f loc
NL enters in the

second-order gravitational potential Φ expressed in terms of the linear Gaussian field Φg (on super-

horizon scales)

Φ(x) = Φg(x) + f loc
NL Φ2

g(x) . (465)

Notice that the parameter of the expansion is f loc
NL Φg(x which is much smaller than unity, for

sure perturbation theory holds. Alternatively, the NG can be for instance of the equilateral type

(k1 = k2 = k3) or of the flattened/folded type (k3 ' k2 ' 2k1), or even strongly scale-dependent

with a sharp cut-off so that NG is very suppressed on large cosmological scales, but sizeable on small

scales. The latest constraint on fNL come from the WMAP 7-year data; for instance, f loc
NL = 32± 21

(68% CL) and f eq
NL = 26± 140 (68% CL). While the statistical significance of the signal is still low,

future experiments, as we shall see, such as the Planck CMB satellite might lead to a detection of

local NG as small as f loc
NL ∼ 3 by combining the temperature and polarization bispectra. Bispectra

measured from high-redshift galaxy surveys at redshifts z > 2 should yield constraints on f loc
NL and

f eq
NL that are comparable to, or even better than, those from CMB experiments.

Non-Gaussianities are also particularly relevant in the high-mass end of the power spectrum

of perturbations, i.e. on the scale of galaxy clusters, since the effect of NG fluctuations becomes

especially visible on the tail of the probability distribution. As a result, both the abundance and

the clustering properties of very massive halos are sensitive probes of primordial NG. The dark

matter (DM) mass function dn(M, z)/dM of halos of mass M at redshift z has been computed in

the presence of NG adopting various different techniques: via N-body simulations and analytically

through the Press-Schechter (PS) approach to mildly NG fields, the Edgeworth expansion and the

excursion set formalism. Deviations from Gaussianity in the DM halo mass function could be

detected or significantly constrained by the various planned large-scale galaxy surveys, both ground

based (such as DES, PanSTARRS and LSST) and on satellite (such as EUCLID).

The local primordial NG also alters the clustering of DM halos inducing a scale-dependent bias

on large scales. Indeed, in the local biasing model the galaxy density field at a given position is

described as a local function of the DM density field at the same position. As the primordial NG

generates a cross-talk between short and long wavelengths, it alters significantly the local bias and

introduces a strong scale dependence. The corresponding limit is −29 < f loc
NL < +70 at 95% CL.

It is clear that measuring the primordial component of NG correlations offers a new window into

the details of the fundamental physics of the primordial universe that are not accessible by Gaussian

correlations. To some extent, understanding NG does for inflation what direct detection experiments

do for dark matter, or the Large Hadron Collider for the Higgs particle. It probes the interactions

of the field sourcing inflation, revealing the fundamental aspects of the physics at very high energies
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that are not accessible to any collider experiments.

13.1 The generation of non-Gaussianity in the primordial cosmo-

logical perturbations: generic considerations

In this subsection we wish to give a generic description of how large NG’s can be generated during

the primordial expansion of the universe. Suppose that there is a period of inflation, that is (quasi)

de Sitter expansion and that there are a number of light fields σI which are quantum mechanically

excited. A we have previously seen, by the δN formalism, the comoving curvature perturbation

ζ on a uniform energy density hypersurface at time tf is, on sufficiently large scales, equal to the

perturbation in the time integral of the local expansion from an initial flat hypersurface (t = t∗) to

the final uniform energy density hypersurface. On sufficiently large scales, the local expansion can

be approximated quite well by the expansion of the unperturbed Friedmann universe. Hence the

curvature perturbation at time tf can be expressed in terms of the values of the relevant scalar fields

σI(t∗, ~x) at t∗ (notice the change of an irrelevant sign with respect to the previous definition of ζ

(332))

ζ(tf , ~x) = NIσ
I +

1

2
NIJσ

IσJ + · · · , (466)

where NI and NIJ are the first and second derivative, respectively, of the number of e-folds

N(tf , t∗, ~x) =

∫ tf

t∗

dtH(t, ~x) . (467)

with respect to the field σI . From the expansion (466) one can read off the n-point correlators. For

instance, the three- and four-point correlators of the comoving curvature perturbation, the so-called

bispectrum and trispectrum respectively, is given by

Bζ(k1, k2, k3) = NINJNKB
IJK
k1k2k3

+NINJKNL

(
P IKk1

P JLk2
+ 2 permutations

)
(468)

and

Tζ(k1, k2, k3, k4) = NINJNKNLT
IJKL
k1k2k3k4

+ NIJNKNLNM

(
P IKk1

BJLM
k12k3k4

+ 11 permutations
)

+ NIJNKLNMNN

(
P JLk12

P IMk1
PKNk3

+ 11 permutations
)

+ NIJKNLNMNN

(
P ILk1

P JMk2
PKNk3

+ 3 permutations
)
, (469)

where
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〈σIk1
σJk2
〉 = (2π)3δ(3)(k1 + k2)P IJk1

, (470)

〈σIk1
σJk2

σKk3
〉 = (2π)3δ(3)(k1 + k2 + k3)BIJK

k1k2k3
, (471)

〈σIk1
σJk2

σJk3
σLk4
〉 = (2π)3δ(3)(k1 + k2 + k3 + k4)T IJKLk1k2k3k4

, (472)

and kij = (ki + kj). We see that the three-point correlator (and similarly for the four-point one) of

the comoving curvature perturbation is the sum of two pieces. One, proportional to the three-point

correlator of the σI fields, is model-dependent and present when the fields σI are intrinsically NG.

The second one is universal and is generated when the modes of the fluctuations are superHubble

and is present even if the σI fields are Gaussian. Therefore, we learn immediately that NG can be

induced even if the light fields are purely Gaussian at horizon-crossing, this is, for instance, the case

of the curvaton. Nevertheless, in general the NG gets both contributions. Therefore, to compute

the three-point function for a specific inflationary model requires a careful treatment of the time-

evolution of the vacuum in the presence of interactions (while for the two-point function this effect is

higher-order). In practice, computing three-point functions can be algebraically very cumbersome,

so we restrict us to citing the final results. The details on how to compute these three-point functions

deserves a review of its own. Let us just sketch them.

13.2 A brief Review of the in-in formalism

The problem of computing correlation functions in cosmology differs in important ways from the

corresponding analysis of quantum field theory applied to particle physics. In particle physics the

central object is the S-matrix describing the transition probability for a state in the far past |ψ〉
to become some state |ψ′〉 in the far future, 〈ψ′|S|ψ〉 = 〈ψ′(+∞)|ψ(−∞)〉. Imposing asymptotic

conditions at very early and very late times makes sense in this case, since in Minkowski space,

states are assumed to non-interacting in the far past and the far future, i.e. the asymptotic state

are taken to be vacuum state of the free Hamiltonian H0.

In cosmology, however, we evaluate the expectation values of products of fields at a fixed time.

Conditions are not imposed on the fields at both very early and very late times, but only at very early

times, when the wavelength is deep inside the horizon. In this limit (according to the equivalence

principle) the interaction picture fields should have the same firm as in Minkowski space. This lead

us to the definition of the Bunch-Davies vacuum (the free vacuum in Minkowski space).

To describe the time evolution of cosmological perturbations we split the Hamiltonian into a free

part and an interacting part

H = H0 +Hint . (473)

The free-field Hamiltonian H0 is quadratic in perturbations. Quadratic order was sufficient to

compute the two-point correlations. However, the higher-order correlations that concerned us in
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our study of NG require going beyond quadratic order and defining the interaction Hamiltonian

Hint. The interaction Hamiltonian defines the evolution of states via the well-known time-evolution

operator

U(τ2, τ1) = T exp

(
−i
∫ τ2

τ1

dτ ′Hint(τ
′)

)
, (474)

where T denotes the time-ordering operator. The time-evolution operator U may be used to relate

the interacting vacuum at arbitrary time |Ω(τ)〉 to the free (Bunch-Davies) vacuum |0〉. We first

expand Ω(τ) in eigenstates of the free Hamiltonian,

|Ω〉 =
∑
n

|n〉〈n|Ω(τ)〉 . (475)

Then we evolve |Ω(τ)〉 as

|Ω(τ2)〉 = U(τ2, τ1)|Ω(τ1)〉 = |0〉〈0|Ω〉+
∑
n≥1

e+iEn(τ2−τ1)|n〉〈n|Ω(τ1)〉 . (476)

From Eq. (476) we see that the choice τ2 = −∞(1 − iε) projects out all excited states. Hence, we

have the following relation between the interacting vacuum at τ = −∞(1− iε) and the free vacuum

|0〉
|Ω(−∞(1− iε))〉 = |0〉〈0|Ω〉 . (477)

Finally, the interacting vacuum at an arbitrary time τ is

|in〉 ≡ |Ω(τ)〉 = U(τ,−∞(1− iε))|Ω(−∞(1− iε))〉 (478)

= T exp

(
−i
∫ τ

−∞(1−iε)
dτ ′Hint(τ

′)

)
|0〉〈0|Ω〉 . (479)

In the “in-in” formalism, the expectation value 〈W (τ)〉, of a product of operators W (τ) at time τ ,

is evaluated as

〈W (τ)〉 ≡ 〈in|W (τ)|in〉
〈in|in〉 (480)

=
〈

0
∣∣∣ (Te−i ∫ τ−∞+ Hint(τ

′)dτ ′
)†
W (τ)

(
Te−i

∫ τ
−∞+ Hint(τ

′′)dτ ′′
) ∣∣∣0〉 , (481)

or

〈W (τ)〉 =
〈

0
∣∣∣ (T̄ e−i ∫ τ−∞− Hint(τ

′)dτ ′
)
W (τ)

(
Te−i

∫ τ
−∞+ Hint(τ

′′)dτ ′′
) ∣∣∣0〉 , (482)

where we defined the anti-time-ordering operator T̄ and the notation −∞± ≡ −∞(1 ∓ iε). This

definition of the correlation functions 〈W (τ)〉 in terms of the interaction Hamiltonian Hint is the

main result of the “in-in” formalism. The interaction Hamiltonian is computed in the ADM approach

to General Relativity and 〈W (τ)〉 is then evaluated perturbatively.

119



For instance, this formalism can be used to compute the three-point function of the curvature

perturbation ζ for various inflationary models,

〈ζk1ζk2ζk3〉(τ) =
〈

0
∣∣∣ (T̄ e−i ∫ τ−∞− Hint(τ

′)dτ ′
)
ζk1(τ)ζk2(τ)ζk3(τ)

(
Te−i

∫ τ
−∞+ Hint(τ

′′)dτ ′′
) ∣∣∣0〉 . (483)

Let us sketch how the interaction Hamiltonian is computed The inflationary action is expanded

perturbatively

S = S0[φ̄, ḡµν ] + S2[ζ2] + S3[ζ3] + · · · . (484)

Here, we have defined a background part S0, a quadratic free-field part S2 and a non-linear interaction

term S3. The background action S0 defines the Hubble parameter H and the slow-roll parameters

ε and η. The free-field action S2 defines the time-evolution of the mode functions ζ(τ) in the

interaction picture (often denoted by ζI(τ)). The non-linear part of the action defines the interaction

Hamiltonian, e.g. at cubic order S3 = −
∫

dτHint(ζI). Schematically, the interaction Hamiltonian

takes the following form

Hint =
∑
i

fi(ε, η, . . . )ζ
3
I (τ) . (485)

If we define the expansion of the operator corresponding to the Mukhanov variable, v = 2a2εR, in

terms of creation and annihilation operators

v̂k(τ) = vk(τ)âk + v∗k(τ)â†−k . (486)

The mode functions vk(τ) were defined uniquely by initial state boundary conditions when all modes

were deep inside the horizon

vk(τ) =
e−ikτ√

2k

(
1− i

kτ

)
. (487)

The free two-point correlation function is

〈0|v̂k1(τ1)v̂k2(τ2)|0〉 = (2π)3δ(3)(k1 + k2)Gk1(τ1, τ2) , (488)

with

Gk1(τ1, τ2) ≡ vk(τ1)v∗k(τ2) . (489)

Expansion of Eqn. (483) in powers of Hint gives:

• at zeroth order

〈W (τ)〉(0) = 〈0|W (τ)|0〉 , (490)

where W (τ) ≡ ζk1(τ)ζk2(τ)ζk3(τ).

• at first order

〈W (τ)〉(1) = 2 Re

[
−i
∫ τ

−∞+

dτ ′〈0|W (τ)Hint(τ
′)|0〉

]
. (491)
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• at second order

〈W (τ)〉(2) = −2 Re

[∫ τ

−∞+

dτ ′
∫ τ ′

−∞+

dτ ′′〈0|W (τ)Hint(τ
′)Hint(τ

′′)|0〉
]

+

∫ τ

−∞−
dτ ′
∫ τ

−∞+

dτ ′′〈0|Hint(τ
′)W (τ)Hint(τ

′′)|0〉 . (492)

In the bispectrum calculations the zeroth-order term (490) vanishes for Gaussian initial conditions.

The leading result therefore comes from Eq. (491). Evaluating Eq. (491) makes use of Wick’s theorem

to expresses the result as products of two-point functions (489).

13.3 The shapes of non-Gaussianity

Let us discuss the various shapes of the NG. One of the first ways to parameterize non-Gaussianity

phenomenologically was via a non-linear correction to a Gaussian perturbation Rg,

ζ(x) = ζg(x) +
3

5
f local

NL

[
ζg(x)2 − 〈ζg(x)2〉

]
. (493)

This definition is local in real space and therefore called local NG. Experimental constraints on

non-Gaussianity are often set on the parameter f local
NL defined via Eq. (493). The factor of 3/5 in

Eq. (493) is conventional since non-Gaussianity was first defined in terms of the Newtonian potential,

Φ(x) = Φg(x) + f local
NL

[
Φg(x)2 − 〈Φg(x)2〉

]
, which during the matter era is related to ζ by a factor

of 3/5. Using Eq. (493) the bispectrum of local non-Gaussianity may be derived

Bζ(k1, k2, k3) =
6

5
f local

NL × [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)] . (494)

For a scale-invariant spectrum, Pζ(k) = Ak−3, this is

Bζ(k1, k2, k3) =
6

5
f local

NL ×A2

[
1

(k1k2)3
+

1

(k2k3)3
+

1

(k3k1)3

]
. (495)

Without loss of generality, let us order the momenta such that k3 ≤ k2 ≤ k1. The bispectrum for

local non-Gaussianity is then largest when the smallest k (i.e. k3) is very small, k3 � k1 ∼ k2.

The other two momenta are then nearly equal. In this squeezed limit, the bispectrum for local

non-Gaussianity becomes

lim
k3�k1∼k2

BR(k1, k2, k3) =
12

5
f local

NL × Pζ(k1)Pζ(k3) . (496)

The delta function in the definition of the bispectrum enforces that the three Fourier modes of

the bispectrum form a closed triangle. Different inflationary models predict maximal signal for

different triangle configurations. This shape of non-Gaussianity is potentially a powerful probe of

the mechanism that laid down the primordial perturbations.
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It will be convenient to define the shape function

S(k1, k2, k3) ≡ N(k1k2k3)2Bζ(k1, k2, k3) , (497)

where N is an appropriate normalization factor. Two commonly discussed shapes are the local

model, cf. Eq. (495),

S local(k1, k2, k3) ∝ K3

K111
, (498)

and the equilateral model,

Sequil(k1, k2, k3) ∝ k̃1k̃2k̃3

K111
. (499)

Here, we have introduced a notation

Kp =
∑
i

(ki)
p with K = K1 (500)

Kpq =
1

∆pq

∑
i 6=j

(ki)
p(kj)

q (501)

Kpqr =
1

∆pqr

∑
i 6=j 6=l

(ki)
p(kj)

q(kl)
q (502)

k̃ip = Kp − 2(ki)
p with k̃i = k̃i1 , (503)

where ∆pq = 1 + δpq and ∆pqr = ∆pq(∆qr + δpr) (no summation). This notation significantly

compresses the increasingly complex expressions for the bispectra discussed in the literature.

We have argued above that for scale-invariant fluctuations the bispectrum is only a function of

the two ratios k2/k1 and k3/k1. We hence define the rescaled momenta

xi ≡
ki
k1
. (504)

We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In

the following we plot S(1, x2, x3) (see Figs. 16, 18, and 19). We use the normalization, S(1, 1, 1) ≡ 1.

To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular

region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 16 that the signal for the local shape is concentrated at

x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 17 illustrates how the different

triangle shapes are distributed in the x2-x3 plane.

Physically motivated models for producing non-Gaussian perturbations often produce signals

that peak at special triangle configurations. Three important special cases are:

i) squeezed triangle (k1 ≈ k2 � k3)

This is the dominant mode of models with multiple light fields during inflation.

ii) equilateral triangle (k1 = k2 = k3)

Signals that peak at equilateral triangles arise in models with higher-derivative interactions

and non-trivial speeds of sound.
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Figure 16: 3D plots of the local and equilateral bispectra. The coordinates x2 and x3 are the

rescaled momenta k2/k1 and k3/k1, respectively. Momenta are order such that x3 <

x2 < 1 and satsify the triangle inequality x2 + x3 > 1.
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Figure 17: Shapes of Non-Gaussianity. The coordinates x2 and x3 are the rescaled momenta k2/k1

and k3/k1, respectively. Momenta are order such that x3 < x2 < 1 and satsify the

triangle inequality x2 + x3 > 1.

iii) folded triangle (k1 = 2k2 = 2k3)

Folded triangles arise in models with non-standard initial states.

In addition, there are the intermediate cases: elongated triangles (k1 = k2+k3) and isosceles triangles

(k1 > k2 = k3). For arbitrary shape functions we measure the magnitude of NG by defining the

123



0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

0

5

10

15

20

25

30

x3

x2

S local(1, x2, x3)

Figure 18: Contour plot of the local bispectrum.
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Figure 19: Contour plot of the equilateral bispectrum.

generalized fNL parameter

fNL ≡
5

18

Bζ(k, k, k)

Pζ(k)2
. (505)

In this definition the amplitude of non-Gaussianity is normalized in the equilateral configuration.

13.4 Theoretical Expectations

Let us analyze what are the theoretical expectations from the various classes of models.

13.4.1 Single-Field Slow-Roll Inflation

Successful slow-roll inflation demands that the interactions of the inflaton field are weak. Since the

wave function of free fields in the ground state is Gaussian, the fluctuations created during slow-roll

inflation are expected to be Gaussian. A lengthy computation gives
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SSR(k1, k2, k3) ∝ (ε− 2η)
K3

K111
+ ε

(
K12 + 8

K22

K

)
(506)

≈ (4ε− 2η)S local(k1, k2, k3) +
5

3
εSequil(k1, k2, k3) , (507)

where S local and Sequil are normalized so that S local(k, k, k) = Sequil(k, k, k). The bispectrum for

slow-roll inflation peaks at squeezed triangles and has an amplitude that is suppressed by slow-roll

parameters

fSR
NL = O(ε, η) . (508)

To get convinced about this result one can use the δN formalism applied to a single field model.

One finds that

fNL ∼
Nφφ

N2
φ

. (509)

Using the fact that Nφ = H/φ̇, one gets that

Nφφ

N2
φ

=
1

N2
φ

d

φ̇ dt
Nφ =

(
Ḣ

φ̇
− Hφ̈

φ̇2

)
× 1

φ̇
× φ̇2

H2
=

(
Ḣ

H2
− φ̈

Hφ̇

)
= (−ε+ η − ε) = η − 2ε . (510)

This incomplete result makes intuitive sense since the slow-roll parameters characterize deviations

of the inflaton from a free field. To get the full behaviour, let us consider Eq. (468) restricting

ourselves to the one-single field case. Then

Bζ(k1, k2, k3) = N3
φB

φ
k1k2k3

+N2
φNφφ

(
P φ(k1)P φ(k2) + 2 permutations

)
. (511)

At first-order we have δφ
(1)
k ' (H/2π). However at second-order there is a local correction to the

amplitude of vacuum fluctuations at Hubble exit due to first-order perturbations in the local Hubble

rate H̃(φ). This is determined by the local scalar field value due to longer wavelength modes that

have already left the horizon

H̃(φ) = H(φ) +H ′(φ)

∫ kc

0

d3k

(2π)3
δφk , (512)

where kc is the cut-off wavenumber which selects only long wavelength perturbation at horizon

crossing. Thus for a mode k1 ' k2 � k3 one can write at second-order

δφ
(2)
k1
' H ′

H

∫ kc

0

d3k′

(2π)3
δφ

(1)
k′ δφ

(1)
k1−k′ , (513)

where k1 ' k2 � kc. The bispectrum for the inflation field therefore reads in the squeezed limit
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Bφ
k1k2k3

' 〈δφ(2)
k1
δφ

(1)
k2
δφ

(1)
k3
〉+ 〈δφ(1)

k1
δφ

(2)
k2
δφ

(1)
k3
〉 ' (2π)3δ(3)(k1 + k2 + k3)2

H ′

H
P φ(k3)P φ(k1)

' −2ε

(
H

φ̇

)
(2π)3δ(3)(k1 + k2 + k3)P φ(k3)P φ(k1)

= −2εNφ(2π)3δ(3)(k1 + k2 + k3)P φ(k3)P φ(k1) . (514)

Using Eq. (510) we then get

Bζ(k1, k2, k3) = (2π)3δ(3)(k1 + k2 + k3)
[
−2εN4

φP
φ(k3)P φ(k1) + 2(η − 2ε)P ζ(k3)P ζ(k1)

]
= (2η − 6ε)P ζ(k3)P ζ(k1)

= (nζ − 1)P ζ(k3)P ζ(k1) (515)

and we have obtained a (nζ−1) suppression. In fact, this result goes beyond the slow-roll assumption:

under the assumption of single-field inflation, but no other assumptions about the inflationary action,

one is able to prove a powerful theorem

lim
k3→0
〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3) (nζ − 1)Pζ(k1)Pζ(k3) . (516)

Eq. (516) states that for single-field inflation, the squeezed limit of the three-point function is

suppressed by (1− nζ) and vanishes for perfectly scale-invariant perturbations. The same happens

for higher-order correlators. A detection of non-Gaussianity in the squeezed limit can therefore rule

out single-field inflation. In particular, this statement is independent of: the form of the potential,

the form of the kinetic term (or sound speed) and the initial vacuum state.

The proof is the following. The squeezed triangle correlates one long-wavelength mode, kL = k3

to two short-wavelength modes, kS = k1 ≈ k2,

〈ζk1ζk2ζk3〉 ≈ 〈(ζkS
)2ζkL

〉 . (517)

Modes with longer wavelengths freeze earlier. Therefore, kL will be already frozen outside the horizon

when the two smaller modes freeze and acts as a background field for the two short-wavelength modes.

Why should (ζkS
)2 be correlated with ζkL

? The theorem says that “it is not correlated if ζk

is precisely scale-invariant”. The proof is simplest in real-space. The long-wavelength curvature

perturbation ζkL
rescales the spatial coordinates (or changes the effective scale factor) within a

given Hubble patch

ds2 = −dt2 + a2(t)e−2ζdx2 . (518)

The two-point function 〈ζk1ζk2〉 will depend on the value of the background fluctuations ζkL
already

frozen outside the horizon. In position space the variation of the two-point function given by the
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long-wavelength fluctuations ζL is at linear order

∂

∂ζL
〈ζ(x)ζ(0)〉 · ζL = −x d

dx
〈ζ(x)ζ(0)〉 · ζL . (519)

To get the three-point function one multiplies Eq. (519) by ζL and average over it. Going to Fourier

space gives Eq. (516).

13.4.2 Models with Large Non-Gaussianity

Although for a single-field slow-roll inflation non-Gaussianity is always small, single-field models can

still give large non-Gaussianity if higher-derivative terms are important during inflation (as opposed

to assuming a canonical kinetic term and no higher-derivative corrections as in slow-roll inflation).

Consider the following action

S =
1

2

∫
d4x
√−g [R− P (X,φ)] , where X ≡ (∂µφ)2 . (520)

Here, P (X,φ) is an arbitrary function of the kinetic term X = (∂µφ)2 and hence can contain higher-

derivative interactions. These models in general have a non-trivial sound speed for the propagation

of fluctuations

c2
s ≡

P,X
P,X + 2XP,XX

. (521)

The second-order action for ζ (giving PR) is

S(2) =

∫
d4x ε

[
a3(ζ̇)2/c2

s − a(∂iζ)2
]

+O(ε2) (522)

The third-order action for ζ is

S(3) =

∫
d4x ε2

[
. . . a3(ζ̇)2ζ/c2

s + . . . a(∂iζ)2ζ + . . . a3(ζ̇)3/c2
s

]
+O(ε3) . (523)

We notice that the third-order action is surpressed by an extra factor of ε relative to the second-

order action. This is a reflection of the fact that non-Gaussianity is small in the slow-roll limit:

P (X,φ) = X−V (φ), c2
s = 1. However, away from the slow-roll limit, for small sound speeds, c2

s � 1,

a few interaction terms in Eq. (523) get boosted and non-Gaussianity can become significant. The

signal is peaked at equilateral triangles, with

f equil
NL = − 35

108

(
1

c2
s

− 1

)
+

5

81

(
1

c2
s

− 1− 2Λ

)
, (524)

where

Λ ≡ X2P,XX + 2
3X

3P,XXX

XP,X + 2X2P,XX
. (525)

Whether actions with arbitrary P (X,φ) exist in consistent high-energy theories is an important

challenge for these models. It is encouraging that one of the most interesting models of inflation in

string theory,
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13.4.3 Multiple Fields

In single-field slow-roll inflation interactions of the inflaton are constrained by the requirement that

inflation should occur. However, if more than one field was relevant during inflation this constraint

may be circumvented. Models like the curvaton mechanism or inhomogeneous reheating exploit this

to create non-Gaussian fluctuations via fluctuations is a second field that is not the inflaton. The

signal is peaked at squeezed triangles. Let us describe in some detail the curvaton case. We expand

the curvaton field up to first-order in the perturbations around the homogeneous background as

σ(τ,x) = σ0(τ) + δσ, the linear perturbations satisfy on large scales

δσ′′ + 2Hδσ′ + a2∂
2V

∂σ2
δσ = 0 . (526)

As a result on superHubble scales its fluctuations δσ will be Gaussian distributed and with a nearly

scale-invariant spectrum given by

P
1
2
δσ(k) ≈ H∗

2π
, (527)

where the subscript ∗ denotes the epoch of horizon exit k = aH. Once inflation is over the inflaton

energy density will be converted to radiation (γ) and the curvaton field will remain approximately

constant until H2 ∼ m2
σ. At this epoch the curvaton field begins to oscillate around the minimum

of its potential which can be safely approximated to be quadratic V ≈ 1
2m

2
σσ

2. During this stage

the energy density of the curvaton field just scales as non-relativistic matter ρσ ∝ a−3. The energy

density in the oscillating field is

ρσ(τ,x) ≈ m2
σσ

2(τ,x) , (528)

and it can be expanded into a homogeneous background ρσ(τ) and a second-order perturbation δρσ

as

ρσ(τ,x) = ρσ(τ) + δρσ(τ,x) = m2
σσ + 2m2

σ σ δσ +m2
σδσ

2 . (529)

The ratio δσ/σ remains constant and the resulting relative energy density perturbation is

δρσ
ρσ

= 2

(
δσ

σ

)
∗

+

(
δσ

σ

)2

∗
, (530)

where the ∗ stands for the value at horizon crossing. Such perturbations in the energy density of

the curvaton field produce in fact a primordial density perturbation well after the end of inflation

and a potentially large NG.

During the oscillations of the curvaton field, the total curvature perturbation can be written as

a weighted sum of the single curvature perturbations

ζ = (1− f)ζγ + fζσ , (531)

where the quantity

f =
3ρσ

4ργ + 3ρσ
(532)
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defines the relative contribution of the curvaton field to the total curvature perturbation. Working

under the approximation of sudden decay of the curvaton field. Under this approximation the cur-

vaton and the radiation components ρσ and ργ satisfy separately the energy conservation equations

ρ′γ = −4Hργ ,
ρ′σ = −3Hρσ , (533)

and the curvature perturbations ζi remains constant on superHubble scales until the decay of the

curvaton. In the curvaton scenario it is supposed that the curvature perturbation in the radiation

produced at the end of inflation is negligible. From Eq. (531) the total curvature perturbation during

the curvaton oscillations is given by

ζ = fζσ '
f

3

δρσ
ρσ
' f

3

[
2

(
δσ

σ

)
∗

+

(
δσ

σ

)2

∗

]
, (534)

from which we deduce that

ζ = ζg +
3

4f
(ζ2

g − 〈ζ2
g 〉) , ζg = (2f/3)(δσ/σ)∗ , (535)

and therefore

f loc
NL =

5

4f
. (536)

We discover that the NG can be very large if f � 1. Furthermore, the NG is of the local type. This

is because it is generated not at horizon-crossing, but when the fluctuations are already outside the

horizon.

It is nice to reproduce the same result with the δN formalism. In the absence of interactions,

fluids with a barotropic equation of state, such as radiation (Pγ = ργ/3) or the non-relativistic

curvaton (Pσ = 0), have a conserved curvature perturbation (notice again a change of an irrelevant

sign from Eq. (332))

ζi = δN +
1

3

∫ ρi

ρ̄i

dρ̃i
ρ̃i + Pi(ρ̃i)

. (537)

We assume that the curvaton decays on a uniform-total density hypersurface corresponding to H =

Γ, i.e., when the local Hubble rate equals the decay rate for the curvaton (assumed constant). Thus

on this hypersurface we have

ργ(tdec,x) + ρσ(tdec,x) = ρ̄(tdec) , (538)

where, for the sake of clarity, we use a bar to denote the homogeneous, unperturbed quantity. Note

that we have ζ = δN on the decay surface, and we can interpret ζ as the perturbed expansion, or

“δN”. Assuming all the curvaton decay products are relativistic, we have that ζ is conserved after

the curvaton decay since the total pressure is simply P = ρ/3.
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By contrast the local curvaton and radiation densities on this decay surface may be inhomoge-

neous and we have from Eq. (537)

ζγ = ζ +
1

4
ln

(
ργ
ρ̄γ

)
, (539)

ζσ = ζ +
1

3
ln

(
ρσ
ρ̄σ

)
, (540)

or, equivalently,

ργ = ρ̄γe
4(ζγ−ζ) , (541)

ρσ = ρ̄σe
3(ζσ−ζ) . (542)

Requiring that the total density is uniform on the decay surface, we obtain the relation

(1− Ωσ,dec)e
4(ζγ−ζ) + Ωσ,dece

3(ζσ−ζ) = 1 , (543)

where Ωσ,dec = ρ̄σ/(ρ̄γ + ρ̄σ) is the dimensionless density parameter for the curvaton at the decay

time.

For simplicity we will restrict the following analysis to the simplest curvaton scenario in which

the curvature perturbation in the radiation fluid before the curvaton decays is negligible, i.e., ζγ = 0.

After the curvaton decays the universe is dominated by radiation, with equation of state P = ρ/3,

and hence the curvature perturbation, ζ, is non-linearly conserved on large scales. With ζγ = 0

Eq. (543) reads

e4ζ −
[
Ωσ,dece

3ζσ
]
eζ + [Ωσ,dec − 1] = 0 . (544)

At first-order Eq. (543) gives

4(1− Ωσ,dec)ζ
(1) = 3Ωσ,dec(ζ

(1)
σ − ζ(1)) , (545)

and hence we can write

ζ(1) = fζ(1)
σ , (546)

where

f =
3Ωσ,dec

4− Ωσ,dec
=

3ρ̄σ
3ρ̄σ + 4ρ̄γ

∣∣∣∣
tdec

. (547)

At second order Eq. (543) gives

4(1− Ωσ,dec)ζ
(2) − 16(1− Ωσ,dec)ζ

(1)2 = 3Ωσ,dec(ζ
(2)
σ − ζ(2)) + 9Ωσ,dec(ζ

(1)
σ − ζ(1))2 , (548)

and hence

ζ(2) =
3

4f
ζ(1)2 , (549)

which gives again Eq. (536).
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13.4.4 A test of multi-field models of inflation

The collapsed limit of the four-point correlator is particularly important because, together with

the squeezed limit of the three-point correlator, it may lead to the so-called Suyama-Yamaguchi

(SY) inequality. Consider a class of multi-field models which satisfy the following conditions: a)

scalar fields are responsible for generating curvature perturbations and b) the fluctuations in scalar

fields at the horizon crossing are scale invariant and Gaussian. The second condition amounts to

assuming that the connected three- and four-point correlations of the σI fields vanish and that the

NG is generated at superHubble scales. If so, the three- and four-point correlators of the comoving

curvature perturbation (468) and (469) respectively reduce to

Bζ(k1, k2, k3) = NINJKNL

(
P IKk1

P JLk2
+ 2 permutations

)
(550)

and

Tζ(k1, k2, k3, k4) = NIJNKLNMNN

(
P JLk12

P IMk1
PKNk3

+ 11 permutations
)

+ NIJKNLNMNN

(
P ILk1

P JMk2
PKNk3

+ 3 permutations
)
, (551)

Notice in particular that in the collapsed limit k12 ' 0 the last term of the four-point correlator

(551) is subleading. By defining the nonlinear parameters fNL and τNL as

fNL =
5

12

〈ζk1ζk2ζk3〉′
P ζk1

P ζk2

(k1 � k2 ∼ k3),

τNL =
1

4

〈ζk1ζk2ζk3ζk4〉′
P ζk1

P ζk3
P ζk12

(k12 ' 0) . (552)

From these expressions we deduce that

6

5
fNL =

N INIJN
J

(NIN I)2
, (553)

and

τNL =
N INJIN

JKNK

(NIN I)3
. (554)

Defining now the vectors VI = NIJN
J and N Iand using the Cauchy-Schwarz inequality (V ·N)2 ≤

V 2N2, we may immediately deduce that

(VIV
I)(NIN

I) ≥ (VIN
I)2 ⇒ (N INIJNJKN

K)(NIN
I) ≥ (NJNIJN

I)2 (555)

or

τNL ≥
(

6

5
fNL

)2

. (556)
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In fact, this inequality holds also if the light fields are not Gaussian at horizon-crossing. The SY in-

equality is more a consequence of fundamental physical principles rather than of pure mathematical

arrangements. The observation of a strong violation of the inequality will then have profound impli-

cations for inflationary models as it will imply either that multi-field inflation cannot be responsible

for generating the observed fluctuations independently of the details of the model or that some new

non-trivial degrees of freedom play a role during inflation.

13.4.5 Non-Standard Vacuum

If inflation started in an excited state rather than in the Bunch-Davies vacuum, remnant non-

Gaussianity may be observable (unless inflation lasted much more than the minimal number of

e-folds, in which case the effect is exponentially diluted). The signal is peaked at folded triangles

with a shape function

S folded(k1, k2, k3) ∝ 1

K111
(K12 −K3) + 4

K2

(k̃1k̃2k̃3)2
. (557)

Part V

The impact of the non-Gaussianity on

the CMB anisotropies

Statistics like the bispectrum and the trispectrum of the CMB can be used to assess the level of

primordial NG (and possibly its shape) on various cosmological scales and to discriminate it from the

one induced by secondary anisotropies and systematic effects. A positive detection of a primordial

NG in the CMB at some level might therefore confirm and/or rule out a whole class of mechanisms

by which the cosmological perturbations have been generated.

One should take into account that there are many sources of NG in CMB anisotropies, beyond

the primordial one. The most relevant sources are the so-called secondary anisotropies, which arise

after the last scattering epoch. These anisotropies can be divided into two categories: scattering

secondaries, when the CMB photons scatter with electrons along the line of sight, and gravitational

secondaries when effects are mediated by gravity. Among the scattering secondaries we may list the

thermal Sunyaev-Zeldovich effect, where hot electrons in clusters transfer energy to the CMB pho-

tons, the kinetic Sunyaev-Zeldovich effect produced by the bulk motion of the electrons in clusters,

the Ostriker-Vishniac effect, produced by bulk motions modulated by linear density perturbations,

and effects due to reionization processes. The scattering secondaries are most significant on small
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angular scales as density inhomogeneities, bulk and thermal motions grow and become sizeable on

small length-scales when structure formation proceeds.

Gravitational secondaries arise from the change in energy of photons when the gravitational

potential is time-dependent, the ISW effect, and gravitational lensing. At late times, when the

Universe becomes dominated by the dark energy, the gravitational potential on linear scales starts

to decay, causing the ISW effect mainly on large angular scales. Other secondaries that result from a

time dependent potential are the Rees-Sciama effect, produced during the matter-dominated epoch

by the time evolution of the potential on non-linear scales.

The fact that the potential never grows appreciably means that most second order effects created

by gravitational secondaries are generically small compared to those created by scattering ones.

However, when a photon propagates from the last scattering to us, its path may be deflected because

of the gravitational lensing. This effect does not create anisotropies, but only modifies existing ones.

Since photons with large wavenumbers k are lensed over many regions (∼ k/H, whereH is the Hubble

rate) along the line of sight, the corresponding second-order effect may be sizeable. The three-point

function arising from the correlation of the gravitational lensing and ISW effects generated by the

matter distribution along the line of sight and the Sunyaev-Zeldovich effect are large and detectable

by Planck. A crucial issue is the level of contamination to the extraction of the primordial NG the

secondary effects can produce.

Another relevant source of NG comes from the physics operating at the recombination. A

naive estimate would tell that these non-linearities are tiny being suppressed by an extra power

of the gravitational potential. However, the dynamics at recombination is quite involved because

all the non-linearities in the evolution of the baryon-photon fluid at recombination and the ones

coming from general relativity should be accounted for. This complicated dynamics might lead to

unexpected suppressions or enhancements of the NG at recombination. Recently the computation

of the full system of Boltzmann equations, describing the evolution of the photon, baryon and Cold

Dark Matter (CDM) fluids, at second order and neglecting polarization, has been performed. These

equations allow to follow the time evolution of the CMB anisotropies at second order on all angular

scales from the early epochs, when the cosmological perturbations were generated, to the present

time, through the recombination era. These calculations set the stage for the computation of the

full second-order radiation transfer function at all scales and for a a generic set of initial conditions

specifying the level of primordial NG. Of course, for specific effects on small angular scales like

Sunyaev-Zel’dovich, gravitational lensing, etc., fully non-linear calculations would provide a more

accurate estimate of the resulting CMB anisotropy, however, as long as the leading contribution to

second-order statistics like the bispectrum is concerned, second-order perturbation theory suffices.

While post-inflationary contributions to the NG in the CMB anisotropies are expected to be of

order unity, as we shall describe later in a oversimplified example, if the primordial NG is much
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larger than unity one can safely use the linear transfer function. Indeed, in the evolution of the

CMB anistropies, the primordial NG enters as an initial condition. Suppose for instance that at

second-order one has an equation of the symbolic form

F [Φ̈(2), Φ̇(1), · · · ] = S[Φ(1)2, · · · ] . (558)

The second-order gravitational potential Φ(2) will be the sum of the homogeneous solution plus

the inhomogeneous proportional to the source. The homogeneous solution resembles the first-order

solution with some NG initial condition set on primordial epochs. If, for instance, |fNL| � 1, then

the primordial NG dominates and one can effectively work at the linear level. This observation is

crucial to assess the impact of large NG on the CMB anisotropies.

13.5 Why do we expect NG in the cosmological perturbations?

Before tackling the problem of interest – the computation of the cosmological perturbations at

second-order after the inflationary era– we first provide a simple, but insightful computation, which

illustrates why we expect that the cosmological perturbations develop some NG even if the latter

is not present at some primordial epoch. This example will help the reader to understand why

the cosmological perturbations are inevitably affected by nonlinearities, beyond those arising at

some primordial epoch. The reason is clear: gravity is nonlinear and it feeds this property into the

cosmological perturbations during the post-inflationary evolution of the universe. As gravity talks

to all fluids, this transmission is inevitable. We will adopt the Poisson gauge which eliminates one

scalar degree of freedom from the g0i component of the metric and one scalar and two vector degrees

of freedom from gij . We will use a metric of the form

ds2 = −e2Φdt2 + 2a(t)ωidx
idt+ a2(t)(e−2Ψδij + χij)dx

idxj , (559)

where ωi and χij are the vector and tensor peturbation modes respectively. Each metric perturbation

can be expanded into a linear (first-order) and a second-order part, as for example, the gravitational

potential Φ = Φ(1) +Φ(2)/2. However in the metric (559) the choice of the exponentials greatly helps

in computing the relevant expressions, and thus we will always keep them where it is convenient.

We now consider the long wavelength modes of the CMB anisotropies, i.e. we focus on scales

larger than the horizon at last-scattering. We can therefore neglect vector and tensor perturbation

modes in the metric. For the vector perturbations the reason is that we are they contain gradient

terms being produced as non-linear combination of scalar-modes and thus they will be more impor-

tant on small scales (remember linear vector modes are not generated in standard mechanisms for

cosmological perturbations, as inflation). The tensor contribution can be neglected for two reasons.

First, the tensor perturbations produced from inflation on large scales give a negligible contribution
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to the higher-order statistics of the Sachs-Wolfe effect being of the order of (powers of) the slow-roll

parameters during inflation (this holds for linear tensor modes as well as for tensor modes generated

by the non-linear evolution of scalar perturbations during inflation).

Since we are interested in the cosmological perturbations on large scales, that is in perturbations

whose wavelength is larger than the Hubble radius at last scattering, a local observer would see them

in the form of a classical – possibly time-dependent – (nearly zero-momentum) homogeneous and

isotropic background. Therefore, it should be possible to perform a change of coordinates in such a

way as to absorb the super-Hubble modes and work with a metric of an homogeneous and isotropic

Universe (plus, of course, cosmological perturbations on scale smaller than the horizon). We split

the gravitational potential Φ as

Φ = Φ` + Φs , (560)

where Φ` stands for the part of the gravitational potential receiving contributions only from the

super-Hubble modes; Φs receives contributions only from the sub-horizon modes

Φ` =

∫
d3k

(2π)3
θ (aH − k) Φk e

ik·x ,

Φs =

∫
d3k

(2π)3
θ (k − aH) Φk e

ik·x , (561)

where H is the Hubble rate computed with respect to the cosmic time, H = ȧ/a, and θ(x) is the

step function. Analogous definitions hold for the other gravitational potential Ψ.

By construction Φ` and Ψ` are a collection of Fourier modes whose wavelengths are larger than

the horizon length and we may safely neglect their spatial gradients. Therefore Φ` and Ψ` are only

functions of time. This amounts to saying that we can absorb the large-scale perturbations in the

metric (559) by the following redefinitions

dt = eΦ`dt , (562)

a = a e−Ψ` . (563)

The new metric describes a homogeneous and isotropic Universe

ds2 = −dt
2

+ a2δij dxi dxj , (564)

where for simplicity we have not included the sub-horizon modes. On super-horizon scales one can

regard the Universe as a collection of regions of size of the Hubble radius evolving like unperturbed

patches with metric (564).

Let us now go back to the quantity we are interested in, namely the anisotropies of the CMB as

measured today by an observer O. If she/he is interested in the CMB anisotropies at large scales,

the effect of super-Hubble modes is encoded in the metric (564). During their travel from the last
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scattering surface – to be considered as the emitter point E – to the observer, the CMB photons

suffer a redshift determined by the ratio of the emitted frequency ωE to the observed one ωO

TO = T E
ωO
ωE

, (565)

where TO and T E are the temperatures at the observer point and at the last scattering surface,

respectively.

What is then the temperature anisotropy measured by the observer? The expression (565)

shows that the measured large-scale anisotropies are made of two contributions: the intrinsic inho-

mogeneities in the temperature at the last scattering surface and the inhomogeneities in the scaling

factor provided by the ratio of the frequencies of the photons at the departure and arrival points.

Let us first consider the second contribution. As the frequency of the photon is the inverse of a time

period, we get immediately the fully non-linear relation

ωE
ωO

=
ωE
ωO

e−Φ`E+Φ`O . (566)

As for the temperature anisotropies coming from the intrinsic temperature fluctuation at the emis-

sion point, it maybe worth to recall how to obtain this quantity in the longitudinal gauge at first-

order. By expanding the photon energy density ργ ∝ T 4
γ , the intrinsic temperature anisotropies

at last scattering are given by δ(1)TE/TE = (1/4)δ(1)ργ/ργ . One relates the photon energy den-

sity fluctuation to the gravitational perturbation first by implementing the adiabaticity condition

δ(1)ργ/ργ = (4/3)δ(1)ρm/ρm, where δ(1)ρm/ρm is the relative fluctuation in the matter component,

and then using the energy constraint of Einstein equations Φ(1) = −(1/2)δ(1)ρm/ρm. The result

is δ(1)TE/TE = −2Φ
(1)
E /3. Summing this contribution to the anisotropies coming from the redshift

factor (566) expanded at first order provides the standard (linear) Sachs-Wolfe effect δ(1)TO/TO =

Φ
(1)
E /3. Following the same steps, we may easily obtain its full non-linear generalization.

Let us first relate the photon energy density ργ to the energy density of the non-relativistic matter

ρm by using the adiabaticity conditon. Again here a bar indicates that we are considering quantities

in the locally homogeneous Universe described by the metric (564). Using the energy continuity

equation on large scales ∂ρ/∂t = −3H(ρ + P ), where H = d ln a/dt and P is the pressure of the

fluid, we have shown that there exists a conserved quantity in time at any order in perturbation

theory

−ζ ≡ ln a+
1

3

∫ ρ dρ′(
ρ′ + P ′

) . (567)

As we know, the perturbation ζ is a gauge-invariant quantity representing the non-linear extension

of the curvature perturbation on uniform energy density hypersurfaces on superHubble scales for

adiabatic fluids. At the non-linear level the adiabaticity condition generalizes to

1

3

∫
dρm

ρm

=
1

4

∫
dργ
ργ

, (568)
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or

ln ρm = ln ρ3/4
γ . (569)

Next we need to relate the photon energy density to the gravitational potentials at the non-linear

level. The energy constraint inferred from the (0-0) component of Einstein equations in the matter-

dominated era with the “barred” metric (564) is

H
2

=
8πGN

3
ρm . (570)

Using Eqs. (562) and (563) the Hubble parameter H reads

H =
1

a

da

dt
= e−Φ`(H − Ψ̇`) , (571)

where H = d ln a/dt is the Hubble parameter in the “unbarred” metric. Eq. (570) thus yields

an expression for the energy density of the non-relativistic matter which is fully nonlinear, being

expressed in terms of the gravitational potential Φ`

ρm = ρme
−2Φ` , (572)

where we have dropped Ψ̇` which is negligible on large scales.

The expression for the intrinsic temperature of the photons at the last scattering surface T E ∝
ρ

1/4
γ follows from Eqs. (569) and (572)

T E = TE e
−2Φ`/3 . (573)

Plugging Eqs. (566) and (573) into the expression (565) we are finally able to provide the expression

for the CMB temperature which is fully nonlinear and takes into account both the gravitational red-

shift of the photons due to the metric perturbations at last scattering and the intrinsic temperature

anisotropies

TO =

(
ωO
ωE

)
TE e

Φ`/3 . (574)

From Eq. (574) we read the non-perturbative anisotropy corresponding to the Sachs-Wolfe effect

δnpTO
TO

= eΦ`/3 − 1 . (575)

Eq. (575) represents at any order in perturbation theory the extension of the linear Sachs-Wolfe

effect. At first order one gets
δ(1)TO
TO

=
1

3
Φ(1) , (576)

and at second order
1

2

δ(2)TO
TO

=
1

6
Φ(2) +

1

18

(
Φ(1)

)2
. (577)

This result shows that the CMB anisotropies is nonlinear on large scales and that a source of NG is

inevitably sourced by gravity and that the corresponding nonlinearities are order unity in units of

the linear gravitational potential.
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13.6 Primordial non-Gaussianity and the CMB anisotropies

With the assumption of working with large primordial NG, one can estimate the impact of primordial

NG on the on the CMB anisotropies as follows. The observed CMB temperature fluctuation field

∆T (n̂)/T is expanded into the spherical harmonics:

a`m ≡
∫

d2n̂
∆T (n̂)

T
Y ∗`m(n̂) , (578)

where hats denote unit vectors. The CMB angular bispectrum is given by

Bm1m2m3
`1`2`3

≡ 〈a`1m1a`2m2a`3m3〉 , (579)

and the angle-averaged bispectrum is defined by

B`1`2`3 ≡
∑

m1m2m3

 `1 `2 `3

m1 m2 m3

Bm1m2m3
`1`2`3

, (580)

where the matrix is the Wigner-3j symbol. The bispectrum Bm1m2m3
`1`2`3

must satisfy the triangle

conditions and selection rules: m1 + m2 + m3 = 0, `1 + `2 + `3 = even, and |`i − `j | ≤ `k ≤ `i + `j

for all permutations of indices. Thus, Bm1m2m3
`1`2`3

consists of the Gaunt integral, Gm1m2m3
`1`2`3

, defined by

Gm1m2m3
`1`2`3

≡
∫

d2n̂Y`1m1(n̂)Y`2m2(n̂)Y`3m3(n̂)

=

√
(2`1 + 1) (2`2 + 1) (2`3 + 1)

4π

 `1 `2 `3

0 0 0

 `1 `2 `3

m1 m2 m3

 . (581)

Gm1m2m3
`1`2`3

is real, and satisfies all the conditions mentioned above.

Given the rotational invariance of the universe, B`1`2`3 is written as

Bm1m2m3
`1`2`3

= Gm1m2m3
`1`2`3

b`1`2`3 , (582)

where b`1`2`3 is an arbitrary real symmetric function of `1, `2, and `3. This form of equation (582)

is necessary and sufficient to construct generic Bm1m2m3
`1`2`3

under the rotational invariance. Thus, we

shall frequently use b`1`2`3 instead of Bm1m2m3
`1`2`3

in this paper, and call this function the “reduced”

bispectrum, as b`1`2`3 contains all physical information in Bm1m2m3
`1`2`3

. Since the reduced bispectrum

does not contain the Wigner-3j symbol that merely ensures the triangle conditions and selection

rules, it is easier to calculate and useful to quantify the physical properties of the bispectrum.

The observable quantity, the angle-averaged bispectrum B`1`2`3 , is obtained by substituting

equation (582) into (580),

B`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

 `1 `2 `3

0 0 0

 b`1`2`3 , (583)
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where we have used the identity:

∑
m1m2m3

 `1 `2 `3

m1 m2 m3

Gm1m2m3
`1`2`3

=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

 `1 `2 `3

0 0 0

 . (584)

Alternatively, one can define the bispectrum in the flat-sky approximation,

〈a(`1)a(`1)a(`3)〉 = (2π)2δ(2) (`1 + `2 + `3)B(`1, `2, `3) , (585)

where ` is the two dimensional wave-vector on the sky. This definition of B(`1, `2, `3) corresponds

to equation (582), given the correspondence of Gm1m2m3
`1`2`3

→ δ(2) (`1 + `2 + `3) in the flat-sky limit.

Thus,

b`1`2`3 ≈ B(`1, `2, `3) (flat-sky approximation) (586)

is satisfied.

If the primordial fluctuations are adiabatic scalar fluctuations, then

a`m = 4π(−i)`
∫

d3k

(2π)3
Φ(k)gT`(k)Y ∗`m(k̂) , (587)

where, as usual, Φ(k) is the primordial curvature perturbation in the Fourier space, and gT`(k) is

the radiation transfer function. a`m thus takes over the non-Gaussianity, if any, from Φ(k).

In this subsection, we explore the simplest weak local model of NG non-linear case:

Φ(x) = Φg(x) + fNL

(
Φ2

g(x)−
〈
Φ2

g(x)
〉)
, (588)

in real space, where Φg(x) denotes as usual the linear Gaussian part of the perturbation.

In the Fourier space, Φ(k) is decomposed into two parts:

Φ(k) = Φg(k) + ΦNG(k) , (589)

and accordingly,

a`m = ag
`m + aNG

`m , (590)

where ΦNG(k) is the non-linear part defined by

ΦNG(k) ≡ fNL

[∫
d3p

(2π)3
Φg(k + p)Φ∗g(p)− (2π)3δ(3)(k)

〈
Φ2

g(x)
〉]

. (591)

In this model, a non-vanishing component of the Φ(k)-field bispectrum is

〈Φg(k1)Φg(k2)ΦNG(k3)〉 = 2(2π)3δ(3)(k1 + k2 + k3)fNLPΦ(k1)PΦ(k2) , (592)

where PΦ(k) is as usual the linear power spectrum given by Substituting equation (587) into (579),

using equation (592) for the Φ(k)-field bispectrum, and then integrating over angles k̂1, k̂3, and k̂3,
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we obtain the primary CMB angular bispectrum,

Bm1m2m3
`1`2`3

=
〈
ag
`1m1

ag
`2m2

aNG
`3m3

〉
+
〈
ag
`1m1

aNG
`2m2

ag
`3m3

〉
+
〈
aNG
`1m1

ag
`2m2

ag
`3m3

〉
= 2Gm1m2m3

`1`2`3

∫ ∞
0

r2dr
[
bg`1(r)bg`2(r)bNG

l3 (r) + bg`1(r)b
|rmNG
`2

(r)bg`3(r) + bNG
`1 (r)bg`2(r)bg`3(r)

]
,

(593)

where

bg` (r) ≡
2

π

∫ ∞
0

k2dkPΦ(k)gT`(k)j`(kr), (594)

bNG
` (r) ≡ 2

π

∫ ∞
0

k2dkfNLgT`(k)j`(kr) . (595)

Note that bg` (r) is a dimensionless quantity, while bNG
` (r) has a dimension of L−3. One confirms that

the form of equation (582) holds. Thus, the reduced bispectrum, b`1`2`3 = Bm1m2m3
`1`2`3

(
Gm1m2m3
`1`2`3

)−1

(Eq.(582)), for the primordial non-Gaussianity is

b`1`2`3 = 2

∫ ∞
0

r2dr
[
b`1(r)bg`2(r)bNG

`3 (r) + cyclic
]
. (596)

Therefore b`1`2`3 is fully specified by a single constant parameter fNL, as the cosmological parameters

will be precisely determined by measuring the CMB angular power spectrum C`.

We now discuss the detectability of CMB experiments to the primary non-Gaussianity in the

bispectrum. Suppose that we try to fit the observed bispectrum Bobs
`1`2`3

by theoretically calculated

bispectra which include both primary and secondary sources. Then we minimize χ2 defined by

χ2 ≡
∑

2≤`1≤`2≤`3

(
Bobs
`1`2`3

−∑iAiB
(i)
`1`2`3

)2

σ2
`1`2`3

, (597)

where i denotes a component such as the primary, the SZ and lensing effects, extragalactic sources,

and so on. Unobservable modes ` = 0 and 1 are removed. In case that the non-Gaussianity is small,

the cosmic variance of the bispectrum is given by the six-point function of a`lm. The variance of

B`1`2`3 is then calculated as

σ2
`1`2`3 ≡

〈
B2
`1`2`3

〉
− 〈B`1`2`3〉2 ≈ C`1C`2C`3∆`1`2`3 , (598)

where ∆`1`2`3 takes values 1, 2, and 6 for cases of that all `’s are different, two of them are same, and

all are same, respectively. C` ≡ C` + CN
` is the total CMB angular power spectrum, which includes

the power spectrum of the detector noise CN
` . We do not include C` from secondary sources, as they

are totally subdominant compared with the primary C` and CN
` for relevant experiments.

Taking ∂χ2/∂Ai = 0, we obtain the normal equation,

∑
j

 ∑
2≤`1≤`2≤`3

B
(i)
`1`2`3

B
(j)
`1`2`3

σ2
`1`2`3

Aj =
∑

2≤`1≤`2≤`3

Bobs
`1`2`3

B
(i)
`1`2`3

σ2
`1`2`3

. (599)
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Thus, we define the Fisher matrix Fij as

Fij ≡
∑

2≤`1≤`2≤`3

B
(i)
`1`2`3

B
(j)
`1`2`3

σ2
`1`2`3

=
2

π

∑
2≤`1≤`2≤`3

(
`1 +

1

2

)(
`2 +

1

2

)(
`3 +

1

2

) `1 `2 `3

0 0 0

2

×
b
(i)
`1`2`3

b
(j)
`1`2`3

σ2
`1`2`3

, (600)

where we have used equation (583) to replace B`1`2`3 by the reduced bispectrum b`1`2`3 (see Eq.(582)

for definition). Since the covariance matrix of Ai is F−1
ij , we define the signal-to-noise ratio (S/N)i

for a component i, the correlation coefficient rij between different components i and j, and the

degradation parameter di of (S/N)i due to rij as(
S

N

)
i

≡ 1√
F−1
ii

, (601)

rij ≡
F−1
ij√

F−1
ii F

−1
jj

, (602)

di ≡ FiiF
−1
ii . (603)

Note that rij does not depend on amplitudes of bispectra, but shapes. di is defined so as di = 1 for

zero degradation, while di > 1 for degraded (S/N)i.

An order of magnitude estimation of S/N as a function of a certain angular resolution l is possible

as follows. Since the number of modes contributing to S/N increases as `3/2 and `3

 ` ` `

0 0 0

2

∼

0.36× `, we estimate (S/N)i ∼ (Fii)
1/2 as

(
S

N

)
i

∼ 1

3π
`3/2 × `3/2

∣∣∣∣∣∣
 ` ` `

0 0 0

∣∣∣∣∣∣× `3b
(i)
```

(`2C`)3/2
∼ `5b(i)``` × 4× 1012, (604)

where we have used `2C` ∼ 6× 10−10. A full numerical computation leads to

(
S

N

)
NG

∼ `× 10−4fNL . (605)

For an experiment like Planck for which the maximum multipole is about 2000 we get that the

minimum value of fNL detectable is about 104/2000 ∼ 5. How can we estimate analytically the

(S/N)? As we are interested in large multipoles, where the (S/N) is higher, it is convenient to make

use of the flat-sky approximation and write

a(`) =

∫
d2`

δT

T
(n̂)e−i`·n̂ , (606)
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Figure 20: Signal-to-Noise ratio induced by the bispectrum and by the skewness (the bispectrum

at three coincidence points) for the various experiments.

where we have decomposed n̂ into a part orthogonal and parallel to the line of sight as n̂ ' (`, 1).

Indeed, In the flat-sky formalism one chooses a fiducial direction ẑ and expands at the lowest order

in the angle θ between ẑ and n̂

n̂ = (sin θ cosφ, sin θ sinφ, cos θ) ' (`, 1) , (607)

` being a two-dimensional vector normal to ẑ. it is convenient to separate k as the sum of a two-

dimensional vector parallel to the flat sky and a component orthogonal to it, k = (k‖, kz). The

multipole is simply the two-dimensional Fourier transform with respect to `

a(`) =

∫ τ0

0
dτ

∫
d3k

2π
δ(2)

(
`− k‖(τ0 − τls)

)
eik

z(τ0−τls)S(k, τ) =

∫
dkz

2π
eik

z(τ0−τls)S(`, kz, τ) , (608)

where
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S(`, kz, τ) =

∫ τ0

0

dτ

(τ0 − τ)2
S(
√

(kz)2 + `2/(τ0 − τ)2, τ) , (609)

is the radiation transfer function defined by the CMB source function S(k, τ). In this notation, τ0

and τls represent the present-day and the recombination conformal time, respectively and, as we

have said, kz and k‖ are the momentum components perpendicular and parallel respectively to the

plane orthogonal to the line-of-sight. The radiation transfer function, as we know, is proportional

to the gravitational potential Φ(k′), where k′ means k evaluated such that k‖ = `/(τ0 − τls).

The (S/N) ratio in the flat-sky formalism is

(
S

N

)2

=
fsky

π

1

(2π)2

∫
d2`1d2`2d2`3 δ

(2)(`1 + `2 + `3)
B2(`1, `2, `3)

6C(`1)C(`2)C(`3)
, (610)

where fsky stands for the portion of the observed sky. The power spectrum in the flat-sky approxi-

mation is given by

〈a(`1)a(`2)〉 = (2π)2δ(2)(`1 + `2)C(`1) , (611)

with

C(`) =
(τ0 − τls)

2

(2π)

∫
dkz|S(`, kz)|2 . (612)

If we adopt a model with no radiative transfer, that is simply S(`, kz) = 1/3Φ(k′)(τ0 − τls)
2, we get

`2C(`)

2π
=

1

9

A

2π2
, (613)

where we have taken PΦ(k) = A/k3. Likewise we can find the bispectrum

B(`1, `2, `3) =
2fNLA

2

33π2

(
1

`21`
2
2

+ cyclic

)
= 6fNL [C(`1)C(`2) + cyclic] . (614)

The (S/N) becomes(
S

N

)2

=
fskyf

2
NLA

6π4

∫
d2`1d2`2d2`3δ

(2)(`1 + `2 + `3)`21`
2
2`

2
3

(
1

`21`
2
2

+ cyclic

)2

, (615)

and evaluating the above expression we find(
S

N

)2

=
4

π2
fskyf

2
NLA`

2
max ln

`max

`min
. (616)

The logarithm is typical of scale invariant primordial power spectra. If the primordial perturbations

were generated by a Poisson process so each point in space was statistically independent, the log-

arithm would be absent and the dependence on `max would solely be `2max. Equation (616) can be

written in a more physical way by relating it to other observables,(
S

N

)2

=
4

π2
f2

NLANpix ln
`max

`min
. (617)
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where Npix = fsky`
2
max is the number of observed pixels. We thus reproduce the scaling

(
S
N

)
∝ `

that one can find with an exact numerical calculation.

There remains the question of why physical processes like Silk damping or cancellation due to

oscillations during the finite width of the last scattering surface do not cause a strong change in the

slope of (S/N) curve at high `. The reason is that there are an equal number of transfer functions

in the numerator and denominator of (S/N)2 , so there is a sense that the effects of radiative

transfer cancel out. Of course the transfer functions are not simple multiplicative factors that can

be cancelled, and one has to be careful. We will attempt to explore this in the model by including

the effects of Silk damping by introducing an exponential cutoff to mimic the effects of Silk damping

on the radiation transfer function, S(`, kz) = Φ(k′)(τ0 − τls)
2 exp(−k′2/2k2

D).

Repeating the above steps we find the power spectrum can be formally evaluated in terms of

Hypergeometric U-functions as

C(`) =

√
πA

2πl2
e−`

2/`2DU(1/2, 0, `2/`2D) , (618)

where `D is the Fourier multiple corresponding to the Silk damping scale. We can make an approx-

imation in order to better understand the effects of Silk damping on the CMB power spectrum by

cutting off the integral at k ∼ kD, then

C(`) =
A

π`2
e−`

2/`2D√
1 + `2/`2D

, (619)

so when ` � `D we recover (apart from the factor 1/9) the no radiative case. Likewise we can

evaluate the three-point functions again in order to facilitate the evaluation of this integral assume

that the exponentials cutoff the region of integration at k1, k2 ∼ kD.

B(`1, `2, `3) =
2fNLA

2

π2
e−(`21+`22+`23)/2`2D

 1

`21

√
1 + `21/`

2
D

1

`22

√
1 + `22/`

2
D

+ cyclic

 . (620)

Then using Eq. (619) and Eq. (620) and assuming `� `D, the (S/N) becomes(
S

N

)2

=
fskyf

2
NLA`D

6π4

∫
d2`1d2`2d2`3δ

(2)(`1 + `2 + `3)
(`31 + `32 + `33)2

`31`
3
2`

3
3

. (621)

The leading term scales as (
S

N

)2

∝ fskyf
2
NLA`

2
max . (622)

This shows that we can still expect to recover information about fNL on scales where photon diffusion

is exponentially damping the transfer functions. In practice, both detector noise, angular resolution

and secondary anisotropies will limit the smallest scale that could be used. We see from Fig. (21)

that the exact numerical result is well reproduced. We conclude that a primordial NG of the local

type can be detected through the CMB by an experiment like Planck up to fNL = O(5).
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Figure 21: Signal-to-Noise ratio for the no radiative transfer, the Silk damping model and the

exact numerical case.

13.7 Non-Gaussianity in the CMB anisotropies at recombination

in the squeezed limit

In this subsection we come back to the question of how large is the contamination of NG coming from

the inherently nonlinear evolution of the photon-baryon fluid. While the full computation requires

the full set of second-order Boltzmann equations, here we show that, as long as we are interested in

the squeezed limit of NG, we can indeed perform the computation entirely analytically. Indeed, a

transparent computation of the bispectrum in the squeezed limit can be performed through a conve-

nient coordinate rescaling. To understand such a rescaling, it is important to recall what is generally

the origin of a squeezed non-Gaussian signal: typically the local-form bispectrum is generated when

short-wavelength fluctuations are modulated by long-wavelength fluctuations. In particular we will

focus on the temperature anisotropies at recombination when the long wavelength mode is outside

the horizon, but observable at the present epoch. Thus, the effect of the long wavelength mode
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imprinted at recombination can be described simply by a coordinate transformation. In this way we

can describe in a simple way the coupling of small scales to large scales that can generally produce

the local form bispectrum. A similar cross-talk between large and small scales gives rise to the

ISW-lensing cross-correlation bispectrum.

Our starting metric is

ds2 = a2(τ)
[
−e2Φdτ2 + e−2Ψdx2

]
, (623)

where a(τ) is the scale factor as a function of the conformal time τ , and we have neglected vector

and tensor perturbations. Instead of solving the complicated network of second-order Boltzmann

equations for the CMB temperature anisotropies, we use the following trick. As the wavenumber

k1 <∼ keq corresponds to a perturbation which is almost larger than the horizon at recombination and

the evolution in time of the corresponding gravitational potential is very moderate (one can easily

check, for instance, that Φ
(1)
k1

(τ) changes its magnitude by at most 10% during the radiation epoch

for k1 = keq), we can absorb the large-scale perturbation with wavelength ∼ k−1
1 in the metric by

redefining the time and the space coordinates as follows. Let us indicate with Φ` and Ψ` the parts

of the gravitational potentials that receive contributions only from the large-scale modes k1 <∼ keq.

If the scale factor is a power law a(τ) ∝ τα (α = 1 and α = 2 for the period of radiation and matter

domination, respectively), we can perform the redefinitions

a2(τ)e2Φ`dτ2 = τ2αe2Φ`dτ2 = τ2αdτ2 = a2(τ)dτ2 ⇒ τ = e
1

1+α
Φ`τ , (624)

and

a2(τ)e−2Ψ`dx2 = τ2αe−2Ψ`dx2 = τ2αe
−2α
1+α

Φ`e−2Ψ`dx2 = a2(τ)dx2 ⇒ x = e
−α
1+α

Φ`e−Ψ`x . (625)

In particular, the combination

kτ = eΦ`+Ψ` kτ , (626)

where k and k are the wavenumbers in the two coordinate systems. Obviously, if one wishes to

account for the fact that at recombination the universe is not fully matter-dominated, one should

perform a more involved coordinate transformation which will eventually depend also on the param-

eter R.

We make the simplifying assumption that τls � τeq in such a way that the coordinate trans-

formations (624) and (625) can be performed in a matter-dominated period, that is we take α = 2

and

x→ e−5Φ`/3 x , k→ e5Φ`/3 k , τls → eΦ`/3 τls , (627)
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is the transformation for modes which were outside the horizon at recombination, but are subHubble

at the time of observation. Notice that the rescaling (627) changes also the gravitational potential

Φ
(1)
k → e5Φ` Φ

(1)

e5Φ`/3k
. (628)

Notice that for a long wavelength modulating mode that is outside the cosmological horizon today

the power spectrum does not change. This is because in this case both (τ0 − τls) and k must be

rescaled, so that the integral (612) goes like 1/(τ0−τls)
2k2 and does not feel the coordinate rescaling,

as one would expect for such a modulating mode. To compute the bispectrum, we go to the squeezed

limit `1 � `2, `3 (or k1 � k2, k3). In this case Φ
(1)
k1

acts as a background for the other two modes.

One can therefore compute the three-point function in a two-step process: first compute the two-

point function in the background of Φ
(1)
k1

and then the result from the correlation induced by the

background field. Using the Sachs-Wolfe limit for the multipole `1, this procedure leads to (notice

that the coordinate rescaling, operating the the recombination point, is not relevant for the time as

τ0 � τls)

〈a(`2)a(`3)〉
Φ

(1)
k1

= 〈a(`2)a(`3)〉0 + 5 a(`2 + `3)C(`2)
d ln

[
`22C(`2)

]
d ln `2

. (629)

In fact, in general, think of a function F (x2,x3) that depends on the short distance (x2 − x3), but

also modulated by a long wavelength mode background function FB(|x2 + x3|/2). One can expand

F (x2,x3) = F0(|x2 − x3|) + FB(|x2 + x3|/2)
d

dFB
F0(|x2 − x3|)

∣∣∣∣
0

+ · · · . (630)

If the long wavelength background modulates the amplitude of the two point function is equivalent to

a rescaling of the spatial coordinates, one can trade the derivative with respect to FB for a derivative

with respect to the log-distance between the points

F (x2,x3) ' F0(|x2 − x3|) +

∫
d3k

(2π)3
FB(k)eik·(x1+x2)/2 d

d ln |x2 − x3|
F0(|x2 − x3|)

∣∣∣∣
0

. (631)

If we now integrate over x1 and x2, or better over (x1 + x2)/2 and (x1 − x2)/2 = xS, the second

piece becomes proportional to (being kS = (k2 − k3)/2)

∫
d3xS

d

d lnxS
F0(xS) e−ikS·xS ∼

∫
d lnxS x

3
S

d

d lnxS
F0(xS) e−ikS·xS

∼ −
∫

d lnxS F0(xS)
d

d lnxS

(
x3

S e
−ikS·xS

)
∼ −

∫
d lnxS F0(xS)x3

S

d

d ln kS
e−ikS·xS

− 3

∫
d lnxS F0(xS)x3

S e
−ikS·xS

= − 1

k3
S

d

d ln kS

(
k3

SF0(kS)
)
. (632)
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Now, repeating these steps for the two-dimensional problem, being the the rescaling given by x →
e−5Φ`/3 x, and remembering that a(`2 + `3) = a(−`1) has a coefficient 1/3 for the SW effect, we get

the expression (629). The corresponding bispectrum therefore reads

B(`1, `2, `3) =
〈
a(`1)〈a(`2)a(`3)〉

〉
= (2π)2 δ(2)(`1 + `2 + `3) 5 C(`1)C(`2)

d ln
[
`22C(`2)

]
d ln `2

. (633)

In multipole space the bispectrum induced by a local primordial NG in the squeezed limit is given

by

Bloc(`1, `2, `3) = 6 f loc
NL [C(`1)C(`2) + cycl.] . (634)

Since at large multipoles the exponential of the transfer function allows to cut off the integral for

k ' k∗ ∼ 750

C(`) ' 9
A

π

`∗
`3
e−(`/`∗)1.2

, (635)

which holds for `� `∗, we see that, roughly speaking, the effective f loc
NL coming from the second-order

effects at recombination in the squeezed limit is

f rec
NL '

5

6

d ln
[
`22C(`2)

]
d ln `2

= O(1) , (636)

which confirms our expectation that second-order effects lead to a contamination of order unity in

f loc
NL.

Part VI

Matter perturbations

We now discuss how matter perturbations evolve since inflation to the present. We have shown that

inflation generates the seeds for the growth of perturbations with a power spectrum which is nearly

scale invariant on superHubble scales. After perturbations become sub-Hubble again, their evolution

can be described by simple Newtonian analysis and once can show that, at the linear level, the CDM

perturbations grow with a growth function function D+(a) which reduces to the scale factor a in a

MD epoch

δm(k, τ > τeq) = −
(

2 +
k2τ2

6

)
D1(k), (637)

This equation, at least at the linear level, is the essence of the phenomenon called gravitational

instability responsible for structure formation. From this equation we see immediately that pertur-

bation theory however is limited to ranges of wavenumber and times such that kτ <∼ 1. Perturbation
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theory breaks down either when we go to large times and/or when we probe the system at short

wavelength. This is hardly a surprise. Perturbations grow because gravity is is in action and gravity,

being a derivative theory, leads to ultraviolet divergences at large momenta. What happens when

we go to higher order in perturbation theory? To study (or better just to introduce it) the problem

we adopt again the metric in the Poisson gauge and derive a generic equation for the gravitational

potential which is an alternative to the standard continuity and Euler equations we have found in

the previous section.

The write the metric in the following form

ds2 = −a2(τ)
[
−(1 + 2Φ) dτ2 + 2ΩI dτdxi + ((1− 2Ψ)δij + χij) dxidxj

]
. (638)

Here Φ and Ψ are the gravitational potential as usual, ΩI are the vector perturbations and χij the

tensor ones. As we are interested in subHubble scales, we will retain first-order terms in Ψ and Φ

and only the would-be second-order terms with two space derivatives. In particular, the difference

(Ψ− Φ) is second-order in Ψ, so we need to keep ∇(Ψ− Φ).

We do not assume that the vector perturbations vanish ΩI = 0, rather use the fact that the

divergence of ΩI vanishes, ∇iΩI = 0. Similarly with the tensor modes χij which are transverse and

traceless. This leads us to use the traceless-longitudinal projection operator

P ij = δij − 3
∇i∇j

∇2 (639)

to determine Φ in terms of Ψ from the Einstein equations. This procedure should be compared to

the lowest order procedure in which one simply uses the i 6= j Einstein equation to determine that

Φ = Ψ. We also use only the longitudinal part of the (i0) equations so the contribution of the vector

perturbations drops.

We take the energy-momentum tensor to be that of a cold pressureless fluid of density ρ and

three-velocity vector v,

Tµν = ρ vµvν . (640)

Finally, and for simplicity, we choose units for which 8πGN = 1. With these assumptions, the

relevant Einstein equations are

(00) : 3H2 + 2∇2Ψ = ρ v2
0 , (641)

(i0) : ∇iΨ
′ + H∇iΨ =

1

2
ρ v0 vi , (642)

(ij) :

(
2Ψ′′ + 6HΨ′ − 2

(
H2 − 2

a′′

a

)
Ψ + (∇Ψ)2 −∇2 (Ψ− Φ)

)
δij

+∇i∇j (Ψ− Φ)− 2∇iΨ∇jΨ = ρ vivj . (643)

The density contrast is as usual expressed in terms of the gravitational potential through the Poisson

equation

δ =
2∇2Ψ

3H2
. (644)
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The traceless-longitudinal part of the (ij) equation is given by

P ij (∇i∇j(Ψ− Φ)− 2∇iΨ∇jΨ) = P ij (ρ vivj) . (645)

We may evaluate explicitly some of the terms (and divide the whole equation by −2),

∇2(Ψ− Φ) + (∇Ψ)2 − 3
∇i∇j

∇2 (∇iΨ∇jΨ) = −1

2
ρv2 +

3

2

∇i∇j

∇2 (ρvivj) . (646)

We will use Eqs. (646) and (642) to express ∇2(Ψ − Φ) in terms of Ψ only which will allow us to

derive an equation for Ψ that does not involve Φ. Despite appearances, Eq. (646) is completely

local. In fact, all terms have at least two space derivatives acting on the fields.

Let us now look at 1/6 of the trace of Eq. (643)

Ψ′′ + 3HΨ′ −
(
H2 − 2

a′′

a

)
Ψ +

1

6
(∇Ψ)2 − 1

3
∇2 (Ψ− Φ) =

1

6
ρv2 . (647)

The next step is to substitute Eq. (646) into Eq. (647) and obtain

Ψ′′ + 3HΨ′ −
(
H2 − 2

a′′

a

)
Ψ +

1

2
(∇Ψ)2 − ∇i∇j

∇2 (∇iΨ∇jΨ) =
1

2

∇i∇j

∇2 (ρ vivj) . (648)

Finally, we can use the (0i) equation (642) to integrate out the three-velocity Um,i from Eq. (648)

Ψ′′ + 3HΨ′ −
(
H2 − 2

a′′

a

)
Ψ +

1

2
(∇Ψ)2 − ∇i∇j

∇2 (∇iΨ∇jΨ)

= 2
∇i∇j

∇2

(
(∇iΨ

′ + H∇iΨ) (∇jΨ
′ + H∇jΨ)

ρv2
0

)
, (649)

and the (00) equation (641) to integrate out the energy density ρ

Ψ′′+3HΨ′−
(
H2 − 2

a′′

a

)
Ψ+

1

2
(∇Ψ)2−∇i∇j

∇2 (∇iΨ∇jΨ) =
2

3H2

∇i∇j

∇2

(
(∇iΨ

′ + H∇iΨ) (∇jΨ
′ + H∇jΨ)

1 + 2∇2Ψ/3H2

)
.

(650)

We now verify that the perturbative solution of Eq. (650) reproduces the known perturbative solu-

tions for Ψ, the density contrast δ and the velocity u. First, we linearize Eq. (650) and obtain the

standard equation

Ψ′′ + 3HΨ′ − 2

(
H2 − 2

a′′

a

)
Ψ = 0 , (651)

whose solution in matter domination does not evolve with time

Ψ(x, τ) = ΨL(x) . (652)

For future use we recall that the resulting solution for u is

uL =
2∇ΨL

3H =
τ

3
∇ΨL , (653)
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where in the second equality we have used the explicit form of H for matter domination, H = 2/τ .

The corresponding solution for δ can be obtained from its relation to Ψ, Eq. (644), so

δL =
1

6
τ2∇2ΨL =

1

6
a(τ)∇2ΨL . (654)

It agrees of course with what obtained in the previous sections once we have dropped the initial

condition (which is subleading at larger times). Next we solve for Ψ to second-order in perturbation

theory. The idea is to substitute in the second-order terms the linear solution. Therefore, we take

the non-perturbative Eq. (650), expand it to second-order in Ψ and take only terms that do not

vanish on the constant leading order solution (652),

Ψ′′ + 3HΨ′ −Ψ

(
H2 − 2

a′′

a

)
+

1

2
(∇Ψ)2 − ∇i∇j

∇2

(
∇iΨ∇jΨ

)
=

2

3

∇i∇j

∇2

(
∇iΨ∇jΨ

)
. (655)

For matter domination it reduces to

Ψ′′ + 3HΨ′ =
5

3

∇i∇j

∇2

(
∇iΨL∇jΨL

)
− 1

2
(∇ΨL)2 , (656)

whose solution is

Ψ2 =
1

14
τ2

[
5

3

∇i∇j

∇2

(
∇iΨL∇jΨL

)
− 1

2
(∇ΨL)2

]
. (657)

To evaluate Ψ2 in an explicit way it is easier to calculate ∇2Ψ2,

∇2Ψ2 =
1

14
τ2

(
5

3
∇i∇j (∇iΨL∇jΨL)− 1

2
∇
(
∇ΨL)2

))
. (658)

Thus, we need

∇i∇j (∇iΨL∇jΨL) = (∇2ΨL)2 + 2∇iΨL∇2∇iΨL + ∇i∇jΨL∇i∇jΨL (659)

and

∇i∇i

(
∇jΨL∇jΨL

)
= 2∇iΨL∇2∇iΨL + 2∇i∇jΨL∇i∇jΨL . (660)

Substituting into Eq. (658) we find

∇2Ψ2 =
1

14
τ2

(
5

3
(∇2ΨL)2 +

7

3
∇iΨL∇2∇iΨL +

2

3
∇i∇jΨL∇i∇jΨL

)
(661)

In momentum space it gives

δ2(k3, τ) = −1

6
k2

3τ
2Ψ2(k3, τ)

=

∫
d3k1

(2π)3

∫
d3k2

(2π)3

[
5

7
+

1

2
(k1 · k2)

k2
1 + k2

2

k2
1k

2
2

+
2

7

(k1 · k2)2

k2
1k

2
2

]
(662)

× δ(3) (k1 + k2 − k3) δL(k1, τ)δL(k2, τ) ,
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which reproduces the standard second-order kernel for the density contrast. Using Eqs. (642) and

(661), it is also straightforward to recover the kernel for the (divergence of the) velocity θ = ∇ · v.

One expands Eq. (642) to second-order, using the time dependence of Ψ2

4H∇Ψ2 = ρ (v2 + δLvL) . (663)

Using the lowest order relations, the equation for the divergence of the velocity at second-order

becomes
∇ · v
H = 2 δ2 − (δL)2 −∇δL ·

∇δL

∇2 . (664)

In momentum space, using the explicit solution (661) the final result is,

−θ2(k3, τ)

H =

∫
d3k1

(2π)3

∫
d3k2

(2π)3

[
3

7
+

1

2
(k1 · k2)

k2
1 + k2

2

k2
1k

2
2

+
4

7

(k1 · k2)2

k2
1k

2
2

]
(665)

× δ(3) (k1 + k2 − k3) δL(k1, τ) δL(k2, τ) ,

which agrees with the standard Newtonian kernel. The expressions (664) and (665) render explicit

what we have said at the beginning of this section. Once we go to higher orders in perturbation

theory the series does not converge. Indeed, already at the second order we see that formally

δ2 ∼ (δL)2 ∼ (kτ)4. In general one has

δn−th order ∼ (kτ)2n, (666)

where the k is a short-hand notation for the kernel in momentum space. This leads clearly to a

breakdown of perturbation theory. Again, this is not a surprise, after all the structures we see today

in the universe have δ � 1, they are highly non-linear.

At what scales one expects perturbation theory to break down? Let us choose to work at the

present time. The power spectrum has dimensions of volume and so a quantity that lends itself more

easily to direct interpretation is the dimensionless combination

∆2
m(k) ≡ k3Pm(k)

2π2
. (667)

In the standard CDM scenario ∆2
m(k) increases with wavenumber (at least until some exceedingly

small scale determined by the physics of the production of the CDM in the early universe), but we

observe the density field smoothed with some resolution. Therefore, a quantity of physical interest

is the density field smoothed on a particular scale R,

δm(x, R) ≡
∫

d3x′ W (|x′ − x|, R)δm(x′) (668)

The function W (x, R) is the window function that weights the density field in a manner that is

relevant for the particular application. According to the convention used in Eq. (668), the window
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function (sometimes called filter function) has units of inverse volume by dimensional arguments.

The Fourier transform of the smoothed field is

δm(k, R) ≡W (k, R)δm(k), (669)

where W (k, R) is the Fourier transform of the window function. Once can chose for instance the

tophat in Fourier space as

W (k, R) =

 1 (k ≤ R−1),

0 (k > R−1),
(670)

and is

W (x, R) =
1

2π2R3

(sin(xR−1)− xR−1 cos(xR−1))

(xR−1)3
(671)

in real space. A disadvantage of this window is that it does not have a well-defined volume. Therefore

the associated mass is simply defined as M = 4πρ̄mR
3/3. The density fluctuation field is assumed to

be a Gaussian random variable so the smoothed density fluctuation field δm(x, R) is then a Gaussian

random variable as well because it represents a sum of Gaussian random variables. The variance of

δm(x, R) is

σ2
m(R) =

〈
δ2

m(x, R)
〉

=

∫
d ln k ∆2

m(k)|W (k,R)|2. (672)

From Fig. 22 we learn two basics things about the CDM paradigm. First, the variance of the density

contrasted smoothed over a radius R becomes of the order of unity when R = O(10)h−1 Mpc. This

means that perturbation theory breaks down when k ∼ 1/R = O(10−1)h/Mpc. Historically, one

set the amplitude of the perturbations by setting σ8, that is the value of the variance at 8h−1 Mpc.

Secondly, the fact that ∆m(k) has more power at large wavenumber means that the first scales to

go no-linear are the small ones (as repeatedly said), that is in the CDM paradigm the first objects

to form are the ones on small scales. Largers structures may form because of merging of smaller

structures. This is the so-called hierarchical paradigm: big DM halos form from the merging of small

DM halos. In the next section we discuss a classical example on how to deal with the nonlinearities

of the DM perturbations.

14 Spherical collapse

One of the simplest and best studied models of nonlinear gravitational instability is the spherical

model. In this model one ignores the tidal effects of neighbouring density perturbations upon the

evolution of an isolated, homogeneous, spherical density perturbation. To justify this we can appeal

to Birkhoff’s theorem in General Relativity, or Gauss’s law in Newtonian Gravity. Under these

simplifying assumptions an exact analytical treatment is possible.
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Figure 22: Power spectra in the standard ΛCDM cosmology with Ωm = 1 − ΩΛ = 0.3, h = 0.7,

σ8 = 0.93, and Ωbh
2 = 0.022. The left panel shows the mass variance smoothed with a

real space tophat window as a function of the smoothing mass or smoothing radius. The

right panel shows the rms density fluctuation per logarithmic interval of wavenumber

as a function of wavenumber.

In order to understand the dynamics of non–linear spherical collapse, consider a spherical density

perturbation expanding in the background of a homogeneous and isotropic background universe. The

density of the fluctuation is characterised by Ω′m whereas that of the background universe by Ωm

(Ω′m > Ωm will correspond to an overdensity and Ω′m < Ωm to an underdensity). The subsequent

fate of the spherical density perturbation will depend crucially upon the value of Ω′m. For Ω′m > 1

the perturbation will behave just like a part of a closed FRW universe and will therefore expand

to a maximum radius, turn around at a time tta, and thereafter collapse to a point at tcoll ' 2tta.

A spherical density perturbation with Ω′m < 1 on the other hand, will mimic an open universe

and never recollapse (if Ω′m < Ωm then such an underdensity will correspond to a void). In an

idealised cosmological scenario spherical overdensities might be thought of as progenitors of clusters

of galaxies, whereas underdensities would correspond to voids.

In order to treat the collapse of a spherical overdensity quantitatively let us consider a spherical

shell of radius R with an initial overdensity δI and a constant mass M = 4πR3ρ̄m(1 + δI)/3, where

ρ̄m is the density of the backround universe. Conservation of energy guarantees

1

2
Ṙ2 − GNM

R
= E = const. (673)

At early times the expansion of the shell is virtually indistinguishable from that of the rest of the
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universe so that Ṙm,i = HIRm,i, Rm,i being the radius of the shell and HI is the Hubble parameter

at an initial time t = tI. The kinetic energy of the shell is therefore Km,i = 1
2H

2
I R

2
m,i and its

potential energy is Um,i = −GM/Rm,i = −Km,iΩI(1 + δI) where ΩI is the density parameter at tI:

3H2
I ΩI/2 = 4πGρ̄m,i. As a result we obtain

E = Km,i + Um,i = Km,iΩI[Ω
−1
I − (1 + δI)]. (674)

The requirement for collapse E < 0 leads to the condition 1 + δI > Ω−1
I . Substituting ΩI ≡ Ωm(z) =

Ωm(1 + z)/(1 + Ωmz), δI ≡ δm(z) we get

δm(z) >
1− Ωm

Ωm(1 + z)
(675)

as a precondition for collapse to occur. Equation (675) indicates that in flat or closed cosmological

models an infinitesimal initial density perturbation is sufficient to give rise to collapsed objects. In

open models on the other hand δm(z) must exceed a critical positive value in order for collapse to

occur.

It is relatively straightforward to relate the maximum expansion radius reached by an overdensity

at turnaround Rta to its “seed” values Rm,i, and δI (equivalently Rm(z) and δm(z)). Since the mass

of a perturbation is conserved, and Ṙ
∣∣
ta

= 0 we get

E = Uta = −GNM

Rta
= −Rm,i

Rta
Km,iΩI(1 + δI). (676)

Equating (674) and (676) we get

Rta

Rm,i
=

1 + δI

δI − (Ω−1
I − 1)

≡ 1 + δm(z)

δm(z)− 1−Ωm
Ωm(1+z)

. (677)

The time evolution of a spherical mass shell is identical to that of a spatially open or closed FRW

universe. The resulting equations of motion may be obtained by integrating Eq. (673) giving

R = A(1− cos θ),

t = B(θ − sin θ), (678)

for the case E < 0, and

R = A(cosh θ − 1),

t = B(sinh θ − θ), (679)

for the case E > 0. In Eqs. (678) and (679) we have A3 = GNMB2. The behaviour of the

background universe is described by similar equations.

Setting θ = π in equation (678) we can express the constants A and B in terms of the turnaround

radius Rta and the turnaround time tta: A = Rta/2, B = tta/π. Next using Eq. (677) and the
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relationships B2 = A3/GNM , M = 4πR3ρm/3 and 8πGNρ = 3H2Ωm, we can re-express A and B in

terms of Rm,i and δI

A =

(
Rm,i

2

)
1 + δI

δI − (Ω−1
I − 1)

B =
1 + δI

2HΩ
1/2
I [δI − (Ω−1

I − 1)]3/2
. (680)

In a spatially flat universe, Eq. (680) becomes

A ' Rm,i

2δI
, B ' 3

4
tIδ
−3/2
I , (681)

where we assume δI � 1. It is now relatively straightforward to compute the overdensity in each

mass shell. Since mass is conserved we get, using M = 4πR3ρm/3 and Eq. (678),

ρm(t) =
3M

4πA3(1− cos θ)3
. (682)

In a spatially flat matter dominated universe the background density scales as

ρ̄m(t) =
1

6πGNt2
=

1

6πGNB2(θ − sin θ)2
. (683)

So, combining Eqs. (682) and (683), we get

δm(θ) ≡ ρm(t)

ρ̄m(t)
− 1 =

9

2

(θ − sin θ)2

(1− cos θ)3
− 1, (684)

for positive density fluctuations, and

δm(θ) =
9

2

(θ − sinh θ)2

(cosh θ − 1)3
− 1 (685)

for negative density fluctuations. From equations (684) and (681) we recover the linear limit for

small θ, t:

lim
θ→0

δm(θ) ' 3θ2

20
' 3

20

(
6t

B

)2/3

=
3

5
δI

(
t

tI

)2/3

, (686)

indicating that only 3/5th of the initial amplitude is in the growing mode. In view of eq. (686) the

criticality condition (675) translates into δI > 3(Ω−1
I − 1)/5 or, equivalently,

δm(z) >
3

5

1− Ωm,0

Ωm(1 + z)
. (687)

From eq. (684) we find δm(θ = π) ' 4.6 at the radius of maximum expansion (“turnaround”), and

δm(2π) → ∞ at recollapse. The corresponding extrapolated linear density contrast can be found

from equations (686), (678) & (681):

δL(θ) ' 3

5

(
3

4

) 2
3

(θ − sin θ)
2
3 . (688)
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We thus obtain δL(π) ' 1.063 for the linear density contrast at turnaround, and δL(2π) ≡ δc ' 1.686

at recollapse. Knowing the linear density contrast corresponding to a given perturbation, the redshift

at which that perturbation “turned around” and “collapsed” can be found from

1 + zta ' δL

1.063

1 + zcoll '
δL

1.686
. (689)

In reality δcoll → ∞ will never be achieved since exact spherical collapse is at best a rather crude

approximation, which will break down as the overdensity begins to contract, dynamical relaxation

and shocks both ensuring that the system reaches virial equilibrium at a finite density. The maximum

density at recollapse can be estimated using the virial theorem and the fact that at R = Rta all the

energy in the system is potential:

U(R = Rvir) = 2E = 2U(R = Rta), (690)

since U = −GNM/R we get Rvir = Rta/2 and ρvir = 8ρm,ta. The mean density of an object

at turnaround is ρm,ta/ρ̄m = δm,ta + 1 ' 5.6 so that ρm,ta ' 5.6ρ̄m,ta. We therefore get ρm,vir '
8 ·5.6ρ̄m,ta. Since ρ̄m = (6πGNt

2)−1 and setting tvir ' tcoll ' 2tta we finally get ρm,vir ' 8×5.6×4ρ̄vir

or since ρ̄m,vir = (1 + z)3ρm,0

ρm,vir ' 179.2(1 + zvir)
3ρm,0, (691)

where zvir is the collapse redshift, and ρ0 the present matter density. Equation (691) permits us to

relate the virialised density of a collapsed object to the epoch of its formation zvir ' 0.18(ρ/ρ0)1/3−1.

Since the present overdensity in clusters is between 102 and 104, the above arguments might indicate

that clusters formed relatively recently at redshifts z ≤ 3, provided they formed from spherical

density enhancements.

Generalisations of these arguments show that the addition of a cosmological constant to the

Einstein equations does not significantly affect the dynamics of a spherical overdensity. The final

(virial) radius of a spherical overdensity in this case turns out to be

Rvir

Rta
' 1− η/2

2− η/2 <
1

2
, (692)

where η = Λ/8πGNρ̄(t = tta) is the ratio of the cosmological constant to the background density at

turnaround. Equation (692) indicates that the presence of a positive cosmological constant leads to

a somewhat smaller final radius (and consequently higher density) of a collapsed object. This effect

is clearly larger for objects that collapse later, when the turnaround density is lower.

According to the spherical collapse model, CDM overdensities collapse to highly nonlinear ob-

jects, the spherical DM halos, whose potential wells will make the baryons fall into them and

HALOS ARE PEAKS OF THE UNDERLYING MATTER DISTRIBUTION. (693)
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It is therefore clear that one basic object in cosmology is the number of DM halos as function of

their mass or radius. This is the quantity we would like to discuss in the next section.

15 The dark matter halo mass function and the excur-

sion set method

The computation of the mass function of dark matter halos is a central problem in modern cosmology.

The halo mass function is both a sensitive probe of cosmological parameters and a crucial ingredient

when one studies the dark matter distribution, as well as the formation, evolution and distribution

of galaxies, so its accurate prediction is obviously important.

The formation and evolution of dark matter halos is a highly complex dynamical process, and a

detailed understanding of it can only come through large-scale N -body simulations. Some analytical

understanding is however also desirable, both for obtaining a better physical intuition, and for the

flexibility under changes of models or parameters.

The halo mass function dn/dM can be written as (we drop from now on the subscript m for

DM)

dn(M)

dM
= f(σ)

ρ̄

M2

d lnσ−1(M)

d lnM
, (694)

where n(M) is the number density of dark matter halos of mass M , σ2 is the variance of the linear

density field smoothed on a scale R corresponding to a mass M , and ρ̄ is the average density of the

universe.

Now, to compute dn/dM or f(σ) we use the famous Press-Schecther (PS) formalism. Press and

Schechter observed that the fraction of mass in collapsed objects more massive than some mass M

is related to the fraction of volume samples in which the smoothed initial density fluctuations are

above some density threshold. This yields a formula for the mass function (distribution of masses) of

objects at any given time. In other words the philosophy is the following. We know that the collapse

of DM halo is a very complicated phenomenon. Nevertheless we are not interested in describing

the dynamics itself, but only in computing the probability that at a given point x a halo will form.

But when does it? Press and Schechter assumed that the collapse is spherical and argued that a

halo of mass M and radius R is formed when the corresponding smoothed linear density contrast at

recollapse is larger than the critical value δc ' 1.68 computed in the previous section. Of course the

real density contrast will be much larger, of the order of 200, but we are not interested in it. Notice

that in the PS formalism therefore there is no dynamics in time, it only provides the probability

that at a given point a halo of mass M will form. In order to compute such a probability we turn

to a beautiful statistical tool, the excursion set method.
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15.1 The computation of the halo mass function as a stochastic

problem

The computation of the halo mass function can be formulated in terms of a stochastic process

One considers the density contrast δ(x) and smooths it on some scale R

δ(x, R) =

∫
d3k

(2π)3
δkW (k,R)e−ik·x, (695)

We focus on the evolution of δ(x, R) with R at a fixed value of x, that we can choose without loss

of generality as x = 0, and we write δ(x = 0, R) simply as δ(R). Taking the derivative of Eq. (695)

with respect to R we get
∂δ(R)

∂R
= ζ(R), (696)

where

ζ(R) ≡
∫

d3k

(2π)3
δk
∂W (k,R)

∂R
. (697)

Since the modes δk are stochastic variables, ζ(R) is a stochastic variable too, and Eq. (696) has the

form of a Langevin equation, with R playing the role of time, and ζ(R) playing the role of noise.

When δ(R) is a Gaussian variable, only its two-point connected correlator is non-vanishing. In this

case, we see from Eq. (zetadelta) that also ζ is Gaussian. The two-point function of δ defines the

power spectrum P (k),

〈δ(k)δ(k
′)〉 = (2π)3δ(3)(k + k′)P (k) . (698)

From this it follows that

〈ζ(R1)ζ(R2)〉 =

∫ ∞
−∞

d(ln k) ∆2(k)
∂W (k,R1)

∂R1

∂W (k,R2)

∂R2
, (699)

where, as usual, ∆2(k) = k3P (k)/2π2. For a generic filter function the right-hand side is a function

of R1 and R2, different from a Dirac delta δD(R1 − R2). In the literature on stochastic processes

this case is known as colored Gaussian noise. Things simplify considerably for a sharp k-space filter

W (k,R) = θ(k − kf). Using kf = 1/R instead of R, and defining Q(kf) = −(1/kf)ζ(kf), we find

∂δ(kf)

∂ ln kf
= Q(kf), (700)

and

〈Q(kf 1)Q(kf 2)〉 = ∆2(kf 1)δ(3)(ln kf 1 − ln kf 2). (701)

Therefore, we have a Dirac delta noise. We can write these equations in an even simpler form using

as “pseudotime” variable the variance S = σ2

S(R) =

∫ ∞
−∞

d(ln k) ∆2(k)|W (k,R)|2. (702)
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For a sharp k-space filter, S becomes

S(kf) =

∫ ln kf

−∞
d(ln k) ∆2(k), (703)

so
∂S

∂ ln kf
= ∆2(kf). (704)

Thus, redefining finally η(kf) = Q(kf)/∆
2(kf), we get

Figure 23: The stochastic motion of the smoothed density contrast.

∂δ(S)

∂S
= η(S), (705)

with

〈η(S1)η(S2)〉 = δ(S1 − S2), (706)

which is a the Langevin equation with Dirac-delta noise, with S playing the role of time. In hier-

archical power spectra, at R = ∞ we have S = 0, and S increases monotonically as R decreases.

Therefore we can start from R = ∞, corresponding to “time” S = 0, where d = 0, and follow the

evolution of δ(S) as we decrease R, i.e. as we increase S. The fact that this evolution is governed by

the Langevin equation means that δ(S) performs a random walk, with respect to the “time” variable
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S. We may refer to the evolution of δ as a function of S as a “trajectory”. In the spherical collapse

model, a virialized object forms as soon as the trajectory exceeds the threshold δ = δc.

According to the PS formalism an halo is formed when the stochastic quantity δ(R) in its

random walk crosses the barrier at δc for the first time. It is therefore a problem known in statistical

mechanics as the first-time passage problem. We are not interested in subsequent crossing of the

barrier as the halo has formed after the first crossing.

We therefore consider an ensemble of trajectories, all starting from the initial value δ = 0 at

initial “time” S = 0, and have compute the function that gives the probability distribution of

reaching a value δc at “time” S for the first time.

Notice that or a Gaussian theory, the only non-vanishing connected correlator is then the two-

point correlator 〈δ(S1)δ(S2)〉c, where the subscript c stands for connected.

We consider an ensemble of trajectories all starting at S0 = 0 from an initial position δ(0) = δ0,

and we follow them for a time S. We discretize the interval [0, S] in steps ∆S = ε, so Sk = kε with

k = 1, . . . n, and Sn ≡ S. A trajectory is defined by the collection of values {δ1, . . . , δn}, such that

δ(Sk) = δk. There is no absorbing barrier, i.e. δ(S) is allowed to range freely from −∞ to +∞. The

probability density in the space of trajectories is

W (δ0; δ1, . . . , δn;Sn) ≡ 〈δD(δ(S1)− δ1) . . . δD(δ(Sn)− δn)〉, (707)

In terms of W we define

Π(δ0; δn;Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1W (δ0; δ1, . . . , δn−1, δn;Sn) , (708)

where Sn = nε. So, Π(δ0; δ;S) is the probability density of arriving at the ”position” δ in a ”time”

S, starting from δ0 at time S0 = 0, through trajectories that never exceeded δc. Observe that the

final point δ ranges over −∞ < δ <∞.

The usefulness of Π is that it allows us to compute the first-crossing rate from first principles,

without the need of postulating the existence of an absorbing barrier. Simply, the quantity

F (S) = 1−
∫ δc

−∞
dδΠ(δ0; δ;S) (709)

gives the fraction of trajectories that crossed the barrier at time S. The rate of change of this

quantity is therefore equal to minus the rate at which trajectories cross for the first time the barrier,

so the first-crossing rate is

F(S) = −dF

dS
= −

∫ δc

−∞
dδ

∂

∂S
Π(δ0; δ;S). (710)

The halo mass function follows if one has a relation M = M(R) that gives the mass associated to the

smoothing of d over a region of radius R. Once M(R) is given, we can consider F as a function of
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M rather than of S(R). Then |dF/dM |dM is the fraction of volume occupied by virialized objects

with mass between M and M + dM . Since each one occupies a volume V = M/ρ̄, where ρ̄ is the

average density of the universe, the number of virialized object n(M) with mass between M and

M + dM is given by
dn

dM
dM =

ρ̄

M

∣∣∣∣ dF

dM

∣∣∣∣dM, (711)

so
dn

dM
=

ρ̄

M

dF

dS

∣∣∣∣ dS

dM

∣∣∣∣ =
ρ̄

M2
F(S)2σ2 d lnσ−1

d lnM
, (712)

where we used S = σ2. Therefore, in terms of the first-crossing rate F(S) = dF/dS, the function

f(σ) defined from Eq. (769) is given by

f(σ) = 2σ2F(σ2). (713)

To deduce Π(δ0; δn;S) we use a path integral formulation. We use the integral representation of

the Dirac delta

δD(x) =

∫ ∞
−∞

dλ

2π
e−iλx, (714)

and we write Eq. (741) as

W (δ0; δ1, . . . , δn;Sn) =

∫ ∞
−∞

dλ1

2π
. . .

dλn
2π

ei
∑n
i=1 λiδi〈e−i

∑n
i=1 λiδ(Si)〉. (715)

Observe that the dependence on δ0 here is hidden in the correlators of δ, e.g. 〈δ2(S = 0)〉 = δ2
0 . It

is convenient to set for simplicity δ0 = 0 from now on. For Gaussian fluctuations,

〈e−i
∑n
i=1 λiδ(Si)〉 = e−

1
2

∑n
i,j=1 λiλj〈δ(Si)δ(Sj)〉c , (716)

as can be checked immediately by performing the Taylor expansion of the exponential on the left-

hand side, and using the fact that, for Gaussian fluctuations, the generic correlator factorizes into

sum of products of two-points correlators. This gives

W (δ0; δ1, . . . , δn;Sn) =

∫
Dλ ei

∑n
i=1 λiδi−

1
2

∑n
i,j=1 λiλj〈δiδj〉c , (717)

where ∫
Dλ ≡

∫ ∞
−∞

dλ1

2π
. . .

dλn
2π

, (718)

and δi ≡ δ(Si). Then

Π(δn;Sn) =

∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ exp

i
n∑
i=1

λiδi −
1

2

n∑
i,j=1

λiλj〈δiδj〉c

 . (719)

Let us now compute the two-point correlator. Using as initial condition Eq. (705) integrates to

δ(S) =

∫ S

0
dS′ η(S′) , (720)
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so the two-point correlator is given by

〈δ(Si)δ(Sj)〉c =

∫ Si

0
dS

∫ Sj

0
dS′〈η(S)η(S′)〉 = min(Si, Sj). (721)

Let us now take the derivative of Eq. (753) with respect to Sn

∂

∂Sn
Π(δn;Sn) =

∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ

(
−λ

2
n

2

)
exp

i
n∑
i=1

λiδi −
1

2

n∑
i,j=1

λiλj〈δiδj〉c


=

1

2

∂2

∂δ2
n

∫ δc

−∞
dδ1 . . . dδn−1

∫
Dλ exp

i
n∑
i=1

λiδi −
1

2

n∑
i,j=1

λiλj〈δiδj〉c

 .

(722)

We discover that the probability Pi(δ0; δn;Sn) satisfies a Fokker-Planck equation (setting Sn = S

and δn = δ)

∂

∂S
Π(δ;S) =

1

2

∂2

∂δ2
Π(δ;S), (723)

which has to be solved with the following boundary conditions

Π(δ; 0) = δD(δ − δ0), and Π(δc;S) = 0, (724)

where we have restored a non vanishing initial condition. The first condition says that the trajectory

has to start from δ(0) = δ0, while the second condition simply states that as the random walk reaches

the barrier at δc for the first time the motion should stop, or in other words, the trajectory should

be removed.

The solution of the Fokker-Planck equation with such boundary conditions is given by

Π(δ;S) =
1√
2πS

(
e−(δ−δ0)2/2S − e(2δc−δ+δ0)2/2S

)
. (725)

Correspondingly

F(S) = −1

2

∂Π

∂δ

∣∣∣∣
δ=δc

=
1√

2πS3/2
e−(δc−δ0)2/2S , (726)

and (now setting δ0 back to zero)

(
dn

dM

)
PS

=

(
2

π

)1/2 δc

σ
e−δ

2
c/(2σ

2) ρ̄

M2

d lnσ−1

d lnM
. (727)

This result can be extended to arbitrary redshift z reabsorbing the evolution of the variance into δc,

so that δc in the above result is replaced by δc(z) = δc(0)/D+(z), where D+(z) is the linear growth

factor.
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Figure 24: The Press-Schechter prediction (solid line) versus N-body data.

One can see from Fig. 24, where we plot the PS halo mass function as a function of the parameter

ν = δc/S
1/2, that PS theory predicts a little bit too many low-mass halos, roughly by a factor of

two, and too few high-mass halos, by a factor O(10) or so. Nevertheless, the simple logic behind

the PS theory work surprisingly well if we think of how complicated the collapse is. In particular,

the exponential tail of the halo mass function is obtained (even though not with quite the correct

coefficient in the exponent) and due to the Gaussian nature of the perturbations. Nowdays analytic

techniques generally go beyond the PS approach and model the collapse as, e.g. ellipsoidal. However,

the PS theory is able to reproduce, at least qualitatively, several properties of dark matter halos

such as their conditional and unconditional mass function, halo accretion histories, merger rates and

halo bias.
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16 The bias

In order to make full use of the cosmological information encoded in large-scale structure, it is

essential to understand the relation between the number density of galaxies and the mass density

field. It was first appreciated during the 1980s that these two fields need not be strictly proportional.

So it is useful to introduce the linear bias parameter

(
δρ

ρ

)
g

=

(
δρ

ρ

)
m

. (728)

This seems a reasonable assumption when δρ/ρ � 1, although it leaves open the question of how

the effective value of b would be expected to change on nonlinear scales. Galaxy clustering on

large scales therefore allows us to determine mass fluctuations only if we know the value of the

bias parameter b. We now consider the central mechanism of biased clustering, in which a rare

high density fluctuation, corresponding to a massive object, collapses sooner if it lies in a region of

large-scale overdensity. This helping hand from the long-wavelength modes means that overdense

regions contain an enhanced abundance of massive objects with respect to the mean, so that these

systems display enhanced clustering. The basic mechanism can be immediately understood via the

Fig. 25 which explains the peak-background split model. If we decompose a density field into a

fluctuating component on galaxy scales, together with a long-wavelength as well, then those regions

of density that lie above a threshold in density of ν times the variance σ will be strongly clustered.

If proto-objects are presumed to form at the sites of these high peaks, then this is a population

with Lagrangian bias, i.e. a non-uniform spatial distribution even prior to dynamical evolution of

the density field. The key question is the physical origin of the threshold: for massive objects such

as clusters, the requirement of collapse by the present imposes a threshold of ν >∼ 2. For galaxies,

there will be no bias without additional mechanisms to cause star formation to favour those objects

that collapse first. The excursion set formalism provides a neat framework to understand how the

clustering of dark matter halos differs from the overall clustering of matter. Consider the solution

to the excursion set problem in we derived in the previous section. This gives the probability

distribution of δ given that on a smoothing scale S0, the smoothed density fluctuation is δ0. Notice

that the important quantity is the relative height of the density threshold (δc−δ0) so that in regions

with δ0 > 0 on large scales, trajectories are more likely to penetrate the barrier at δc and conversely

for δ0 < 0.

The fraction of mass in collapsed halos of mass greater than M in a region that has a smoothed

density fluctuation δ0 on scale S0 (corresponding to mass M0 and volume V0) is given

F (M |δ0, S0) = Erfc

(
δc − δ0√
2(S − S0)

)
. (729)

Notice that as the density of the region increases, F increases because smaller upward excursions
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Figure 25: The peak-background split model.

are needed to cross the threshold. When δ0 → δc, F → 1 because the entire region will then be

interpreted as a collapsed halo of mass M0. The fraction of mass in halos with mass in the range M

to M + dM is

f(M |δ0, S0)

∣∣∣∣∣ dS

dM

∣∣∣∣∣dM ≡ dF (M |δ0, S0)

dM
dM

=
1√
2π

δc − δ0

(S − S0)3/2

∣∣∣∣∣ dS

dM

∣∣∣∣∣ exp

[
− (δc − δ0)2

2(S − S0)

]
dM, (730)

so that regions with smoothed density δ0 on scale S0 contain, on average,

N (M |δ0, S0)dM =
M0

M
f(M |δ0, S0)

∣∣∣∣∣ dS

dM

∣∣∣∣∣dM (731)

halos in this mass range. The quantity of interest is the relative over-abundance of halos in dense

regions compared to the mean abundance of halos,

δL
halo =

N (M |δ0, S0)

(dn(M)/dM)V0
− 1, (732)

where dn(M)/dM is the mean number density of halos in a mass range of width dM about M . The

superscript L indicates that this is the overdensity in the initial Lagrangian space determined by the

mass distribution at some very early time, ignoring the dynamical evolution of the overdense patch.

The relative overdensity of halos in large overdense and underdense patches is easy to compute.

In sufficiently large regions, S0 � S, δ0 � δc. Expanding Eq. (732) to first order in the variables

S0/S and δ0/δc gives a simple relation between halo abundance and dark matter density

δL
halo =

ν2 − 1

δc
δ0, (733)
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where ν = δc/S
1/2 = δc/σ(M) as before. The overdensity in the initial Lagrangian space is propor-

tional to the dark matter overdensity and is a function of halo mass through ν. The final ingredient

needed to relate the abundance of halos to the matter density is a model for the dynamics that can

map the initial Lagrangian volume to the final Eulerian space. Let V and δ represent the Eulerian

space variables corresponding to the Lagrangian space variables V0 and δ0. The final halo abundance

is

δh =
N (M |δ0, S0)

(dn(M)/dM)V
− 1. (734)

Mass conservation implies V (1 + δ) = V0(1 + δ0), but In the limit of a small overdensity, δ0 � 1,

δ ' δ0, and V ' V0, and therefore

δh =

(
1 +

ν2 − 1

δc

)
δ (735)

≡ bhδ. (736)

This expression states that the overdensity of halos is linearly proportional to the overdensity of

the mass. The constant of proportionality bh(M, z) depends on the masses of the halos, and the

redshifts they virialized, but is independent of the size of the cells. Furthermore, its says that low-

mass haloes are antibiased and high mass haloes are positively biased. We can now understand the

observation that there are much more strongly clustered than galaxies in general: regions of large-

scale overdensity contain systematically more high-mass haloes than expected if the haloes traced

the mass. Indeed, by defining the correlation function

ξ(r) =
〈
δm(x + r)δm(x)

〉
=

∫
dk3

(2π)3V
|δm
k |2 e−ik·r =

∫ ∞
0

d ln k
k3 |δm

k |2
2π2

sin kr

kr
,

=

∫ ∞
0

d ln k∆m(k)
sin kr

kr
(737)

for which, if ∆2
m(k) ∼ kn+3 we have ξ(r) ∼ r−n−3, it turns out observationally that

ξcc(r) '
(

r

25h−1 Mpc

)−1.8

' 20ξgg(r) ' 20

(
r

5h−1 Mpc

)−1.8

, (738)

that is clusters are more correlated than galaxies. However, one should be careful that applying the

idea to galaxies is not straightforward: we have shown that enhanced clustering is only expected for

massive fluctuations with σ <∼ 1, but galaxies at z = 0 fail this criterion. The high-peak idea applies

will at high redshift, where massive galaxies are still assembling, but today there has been time for

galaxy-scale haloes to collapse in all environments.
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Part VII

The impact of the non-Gaussianity on

the halo mass function

Non-Gaussianities are particularly relevant in the high-mass end of the power spectrum of pertur-

bations, i.e. on the scale of galaxy clusters, since the effect of non-Gaussian fluctuations becomes

especially visible on the tail of the probability distribution. As a result, both the abundance and

the clustering properties of very massive halos are sensitive probes of primordial non-Gaussianities,

and could be detected or significantly constrained by the various planned large-scale galaxy surveys,

both ground based (such as DES, PanSTARRS and LSST) and on satellite (such as EUCLID and

ADEPT). Furthermore, the primordial non-Gaussianity alters the clustering of dark matter halos

inducing a scale-dependent bias on large scales while even for small primordial non-Gaussianity the

evolution of perturbations on super-Hubble scales yields extra contributions on smaller scales. This

will be the subject of the next subsection.

At present, there exist already various N -body simulations where non-Gaussianity has been

included in the initial conditions and which are useful to test the accuracy of the different theoretical

predictions for the dark matter halo mass function with non-Gaussianity.

Various attempts at computing analytically the effect of primordial non-Gaussianities on the

mass function exist in the literature and here we follow what we have developed in Section 47 based

on the excursion set method.

In this section we extend to non-Gaussian fluctuations the path integral approach that we devel-

oped in Section 47 whose notation we follow. In particular, we consider the density field δ smoothed

over a radius R with a tophat filter in momentum space. We denote by S the variance of the

smoothed density field and, as usual in excursion set theory, we consider δ as a variable evolving

stochastically with respect to the “pseudotime” S. The statistical properties of a random variable

δ(S) are specified by its connected correlators

〈δ(S1) . . . δ(Sp)〉c , (739)

where the subscript c stands for “connected”. We will also use the notation

〈δp(S)〉c ≡ µp(S) , (740)

when all arguments S1, S2, . . . are equal. The quantities µp(S) are also called the cumulants. As in

Section 47, we consider an ensemble of trajectories all starting at S0 = 0 from an initial position

δ(0) = δ0 (we will typically choose δ0 = 0 but the computation can be performed in full generality)
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and we follow them for a “time” S. We discretize the interval [0, S] in steps Sk = kε with k = 1, . . . n,

and Sn ≡ S. A trajectory is then defined by the collection of values {δ1, . . . , δn}, such that δ(Sk) = δk.

The probability density in the space of trajectories is

W (δ0; δ1, . . . , δn;Sn) ≡ 〈δD(δ(S1)− δ1) . . . δD(δ(Sn)− δn)〉 , (741)

where δD denotes the Dirac delta. Our basic object will be

Πε(δ0; δn;Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1W (δ0; δ1, . . . , δn−1, δn;Sn). (742)

The usefulness of Πε is that it allows us to compute the first-crossing rate from first principles,

without the need of postulating the existence of an absorbing barrier. In fact, the quantity∫ δc

−∞
dδn Πε(δ0; δn;Sn) (743)

gives the probability that at “time” Sn a trajectory always stayed in the region δ < δc, for all times’

smaller than Sn. The rate of change of this quantity is therefore equal to minus the rate at which

trajectories cross for the first time the barrier, so the first-crossing rate is

F(Sn) = − ∂

∂Sn

∫ δc

−∞
dδn Πε(δ0; δn;Sn) . (744)

The halo mass function is then obtained from the first-crossing rate

f(σ) = 2σ2F(σ2) , (745)

where S = σ2.

The first problem that we address is how to express Πε(δ0; δn;S), in terms of the correlators of

the theory. Using the integral representation of the Dirac delta

δD(x) =

∫ ∞
−∞

dλ

2π
e−iλx , (746)

we may write

W (δ0; δ1, . . . , δn;Sn) =

∫ ∞
−∞

dλ1

2π
. . .

dλn
2π

ei
∑n
i=1 λiδi〈e−i

∑n
i=1 λiδ(Si)〉 . (747)

We must therefore compute

eZ ≡ 〈e−i
∑n
i=1 λiδ(Si)〉 . (748)

This is a well-known object both in quantum field theory and in statistical mechanics, since it is the

generating functional of the connected Green’s functions. To a field theorist this is even more clear

if we define the “current” J from −iλ = εJ , and we use a continuous notation, so that

eZ = 〈ei
∫

dS J(S)δ(S)〉 . (749)
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Therefore

Z =
∞∑
p=2

(−i)p
p!

n∑
i1=1

. . .
n∑

ip=1

λi1 . . . λip 〈δi1 . . . δip〉c

= −1

2
λiλj 〈δiδj〉c +

(−i)3

3!
λiλjλk 〈δiδjδk〉c

+
(−i)4

4!
λiλjλkλl 〈δiδjδkδl〉c + . . . , (750)

where δi = δ(Si) and the sum over i, j, . . . is understood. This gives

W (δ0; δ1, . . . , δn;Sn) = Dλ exp

i
n∑
i=1

λiδi +

∞∑
p=2

(−i)p
p!

n∑
i1=1

. . .
n∑

ip=1

λi1 . . . λip 〈δi1 . . . δip〉c

 ,

(751)

where

Dλ ≡
∫ ∞
−∞

dλ1

2π
. . .

dλn
2π

. (752)

Therefore we get

Πε(δ0; δn;Sn) =

∫ δc

−∞
dδ1 . . . dδn−1Dλ exp

i
n∑

i1=1

λiδi +
∞∑
p=2

(−i)p
p!

n∑
i=1

. . .
n∑

ip=1

λi1 . . . λip 〈δi1 . . . δip〉c

 .

(753)

If we retain only the three-point correlator, and we use the tophat filter in momentum space, we

have

Πε(δ0; δn;Sn) =

∫ δc

−∞
dδ1 . . . dδn−1Dλ exp

{
iλiδi −

1

2
min(Si, Sj)λiλj +

(−i)3

6
〈δiδjδk〉λiλjλk

}
.

(754)

Expanding to first order in NG, we must compute

Π(3)
ε (δ0; δn;Sn) ≡ −1

6

n∑
i,j,k=1

〈δiδjδk〉
∫ δc

−∞
dδ1 . . . dδn−1 ∂i∂j∂kW

gm , (755)

where the superscript (3) in Π
(3)
ε refers to the fact that this is the contribution linear in the three-

point correlator. To proceed, we remember that the non-Gaussianities are particularly interesting

at large masses. Large masses correspond to small values of the variance S = σ2(M). Each of

the integrals over dSi, dSj ,dSk must therefore be performed over an interval [0, Sn] that shrinks to

zero as Sn → 0. In this limit it is not necessary to take into account the exact functional form of

〈δ(Si)δ(Sj)δ(Sk)〉. Rather, to lowest order we can replace it simply by 〈δ3(Sn)〉. More generally, we
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can expand the three-point correlator in a triple Taylor series around the point Si = Sj = Sk = Sn.

We introduce the notation

G
(p,q,r)
3 (Sn) ≡

[
dp

dSpi

dq

dSqj

dr

dSrk
〈δ(Si)δ(Sj)δ(Sk)〉

]
Si=Sj=Sk=Sn

. (756)

Then

〈δ(Si)δ(Sj)δ(Sk)〉 =

∞∑
p,q,r=0

(−1)p+q+r

p!q!r!
(Sn − Si)p(Sn − Sj)q(Sn − Sk)rG(p,q,r)

3 (Sn) . (757)

We expect that the leading contribution to the halo mass function will be given by the term in with

p = q = r = 0. The leading term in Π(3) is therefore

Π(3)
ε (δ0; δn;Sn) = −〈δ

3
n〉
6

n∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1∂i∂j∂kW

gm . (758)

This expression can be computed very easily by making use of the following trick. Namely, we

consider the derivative of Πgm
ε with respect to δc. The first derivative with respect to δc can be

written as
∂

∂δc
Πgm
ε (δ0; δn;Sn) =

n−1∑
i=1

∫ δc

−∞
dδ1 . . . dδn−1 ∂iW

gm , (759)

since, when ∂/∂δc acts on the upper integration limit of the integral over dδi, it producesW (δ1, . . . , δi =

δc, . . . , δn;Sn), which is the same as the integral of ∂iW with respect to dδi from δi = −∞ to δi = δc.

Similarly

∂2

∂δ2
c

Πgm
ε (δ0; δn;Sn) =

n−1∑
i,j=1

∫ δc

−∞
dδ1 . . . dδn−1 ∂i∂jW

gm , (760)

In the same way we find that

∂3

∂δ3
c

Πgm
ε (δ0; δn;Sn) =

n−1∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1 ∂i∂j∂kW

gm . (761)

The right-hand side of this identity is not yet equal to the quantity that appears in Eq. (758), since

there the sums run up to n while the above identities only run up to n− 1. However, what we need

is not really Π
(3)
ε (δ0; δn;Sn), but rather its integral over dδn. Then we consider∫ δc

−∞
dδn Π(3,L)

ε (δ0; δn;Sn) = −1

6
〈δ3
n〉

n∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1dδn∂i∂j∂kW

gm , (762)

and we can now use the identity

n∑
i,j,k=1

∫ δc

−∞
dδ1 . . . dδn−1dδn ∂i∂j∂kW

gm =
∂3

∂δ3
c

∫ δc

−∞
dδ1 . . . dδn−1dδnW

gm

=
∂3

∂δ3
c

∫ δc

−∞
dδn Πgm

ε (δ0; δn;Sn) , (763)
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so ∫ δc

−∞
dδn Π(3

ε (δ0; δn;Sn) = −〈δ
3
n〉
6

∂3

∂δ3
c

∫ δc

−∞
dδn Πgm

ε (δ0; δn;Sn) . (764)

Using

Πgm
ε=0(δ0 = 0; δn;Sn) =

1√
2πSn

[e−δ
2
n/(2Sn) − e−(2δc−δn)2/(2Sn)] , (765)

we immediately find the result in the continuum limit,∫ δc

−∞
dδn Π

(3)
ε=0(0; δn;Sn) =

〈δ3
n〉

3
√

2π S
3/2
n

(
1− δ2

c

Sn

)
e−δ

2
c/(2Sn) . (766)

We may express the result in terms of the normalized skewness

S3(σ) ≡ 1

S2
〈δ3(S)〉 ' 2.4× 10−4

S0.45
fNL . (767)

Putting the contribution of Π(3) together with the gaussian contribution, we find

f(σ) =

(
2

π

)1/2 δc
σ
e−δ

2
c/(2σ

2)

{
1 +

σ2

6δc

[
S3(σ)

(
δ4
c

σ4
− 2δ2

c

σ2
− 1

)
+

dS3

d lnσ

(
δ2
c

σ2
− 1

)]}
. (768)

The halo mass function in the presence of NG can therefore be written as can be written as

dn(M)

dM
= f(σ)

ρ̄

M2

d lnσ−1(M)

d lnM
=

dn(M)

dM

∣∣∣∣
Gaussian

{
1 +

σ2

6δc

[
S3(σ)

(
δ4
c

σ4
− 2δ2

c

σ2
− 1

)
+

dS3

d lnσ

(
δ2
c

σ2
− 1

)]}
.

(769)

From Fig. (26) one sees that the halo mass function is considerably affected by NG for large halo

masses (rare events) and at high redshifts.

Part VIII

The impact of the non-Gaussianity on

the halo clustering

Let us conclude this set of lectures by studying the impact of NG on the halo clustering. As we have

seen in Section 48, in the biased clustering idea, a rare high density fluctuation, corresponding to

a massive object, collapses sooner if it lies in a region of large-scale overdensity. This helping hand

from the long-wavelength modes means that overdense regions contain an enhanced abundance

of massive objects with respect to the mean, so that these systems display enhanced clustering.

This is the essence of the peak-background split model. If we decompose a density field into a

fluctuating component on galaxy scales, together with a long-wavelength as well, then those regions
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Figure 26: The ratio between the halo mass function with and without NG for three different

values of fNL.

of density that lie above a threshold in density of ν times the variance σ will be strongly clustered.

If proto-objects are presumed to form at the sites of these high peaks, then this is a population with

Lagrangian bias, i.e. a non-uniform spatial distribution even prior to dynamical evolution of the

density field. By extending the classical calculation for calculating the clustering of rare peaks in a

Gaussian field to the local type non-Gaussianity, one can show that clustering of rare peaks exhibits

a very distinct scale-dependent bias on the largest scales. The analytical result has been tested using

N-body simulations, which confirm this basic picture. Following the peak-background split one can

split the density field into a long-wavelength piece δ` and a short-wavelength piece δs as in

ρ(x) = ρ̄ (1 + δ` + δs) . (770)

The local Lagrangian number density of haloes n(x) at position x can then be written as a function

of the local value of the long-wavelength perturbation δ`(x) and the statistics of the short-wavelength

fluctuations Ps(ks). The sufficiently averaged local density of halos follows the large scale matter

perturbations, that is its average is a function of (1 + bLδ`)

n(x) = n̄ (1 + bLδ`) (771)
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Figure 27: Non-Gaussianity of the local type modulates the peaks.

and so the Lagrangian bias is then

bLhalo = n̄−1 ∂n

∂δ`
. (772)

For Eulerian space bias one needs to add the Eulerian space clustering, so the total or Eulerian bias

is b = (bLhalo + 1). Essentially, in the presence of a long wavelength mode perturbation δ` it is easier

to form a halo, the barrier value is no longer δc, but (δc − δ`). The corresponding number of halos

is therefore shifted

n→ n− dn

dδc
δ` . (773)

This leads to a revised density
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ρ→ n

(
1 +

δn

n

)
(1 + δ`) (774)

where the first piece comes from the change in the halo number density and the second directly from

the large scale mode. To first order this leads to the Eulerian bias

δs =

(
1 +

δn

n

)
δ` and b = 1− d lnn

dδc
. (775)

This argument leads to a generically scale-independent bias at sufficiently large scales. The specific

function b(M) is obtained by constructing a specific function n[δ`(x), Ps(ks);M ], generally fit to

simulations, and then differentiating it.

The non-Gaussian case is complicated by the fact that large and small-scale density fluctuations

are no longer independent. Instead, one may separate long- and short-wavelength Gaussian potential

fluctuations,

Φ = Φ` + Φs, (776)

which are independent. For the local non-Gaussian potential fluctuations,

Φ = Φs + Φ` + fNLΦ2
` + (1 + 2fNLΦ`)Φs + fNLΦ2

s . (777)

We can then convert this to a density field using the expression δ(k) = α(k)Φ(k), with

α(k) =
2k2T (k)D(z)

3ΩmH2
0

. (778)

Here T (k) is the transfer function, D(z) the linear growth factor normalised to be (1 + z)−1 in the

matter domination, Ωm the matter density today and H0 the Hubble parameter today. The operator

α(k) makes it non-local on scales of ∼ 100 Mpc, so this can also be thought of as a convolution

operator in real space. For long-wavelength modes of the density field, one may write

δ`(k) = α(k)Φ`(k) . (779)

The remaining terms in Equation (777) are either much smaller like fNLΦ2
` , have only short-

wavelength pieces like (1 + 2fNLΦ`)Φs, or simply add a small white noise contribution on large

scales, like fNLΦ2
s.

Within a region of given large-scale over-density δ` and potential Φ`, the short-wavelength modes

of the density field are

δs = α
[
(1 + 2fNLΦ`)Φs + fNLΦ2

s

]
. (780)

This is a special case of

δs = α
[
X1Φs +X2Φ2

s

]
, (781)
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where X1 = 1+2fNLΦ` and X2 = fNL. In the non-Gaussian case, the local number density of haloes

of mass M is a function of not just δ`, but also X1 and X2: n[δ`, X1, X2;Ps(ks);M ]. The halo bias

is then

bLhalo(M,k) = n̄−1

[
∂n

∂δ`(x)
+ 2fNL

dΦ`(k)

dδ`(k)

∂n

∂X1

]
, (782)

where the derivative is taken at the mean value X1 = 1. There is no X2 term since X2 is not spatially

variable. The first term here is the usual Gaussian bias, which has no dependence on k.

Equation (781) shows that the effect on non-Gaussianity is a local rescaling of amplitude of

(small scale) matter fluctuations. To keep the cosmologist’s intuition we write this in terms of σ8:

σlocal
8 (x) = σ8X1(x) , (783)

so δσlocal
8 = σ8δX1. This allows us to rewrite Equation (782) as

bLhalo(M,k) = bGaussian
L (M) + 2fNL

dΦ`(k)

dδ`(k)

∂ lnn

∂ lnσlocal
8

. (784)

Substituting in dΦ`(k)/dδ`(k) = α−1(k) and dropping the local label, we find

∆b(M,k) =
3ΩmH

2
0

k2T (k)D(z)
fNL

∂ lnn

∂ lnσ8
. (785)

This formula is extremely useful because it applies to the bias of any type of object and is expressible

entirely in terms of quantities in Gaussian cosmologies, which have received enormous attention from

N -body simulators. Within the peak-background split model, the task of performing non-Gaussian

calculations is thus reduced to an ensemble of Gaussian simulations with varying amplitude of matter

fluctuations.

We now apply Eq. (785) to halo abundance models with a universal mass function. Universal

mass functions are those that depend only significance ν(M), i.e.

n(M) = n(M,ν) = 2M−2ν2f(ν)
d ln ν

d lnM
, (786)

where, as usual, we have defined ν = δc/σ(M) and f(ν) is the fraction of mass that collapses into

haloes of significance between ν and (ν + dν). Universality of the halo mass function has been

tested in numerous simulations, with results generally confirming the assumption even if the specific

functional forms for f(ν) may differ from one another.

The significance of a halo of mass M depends on the background density field δ`, so one can

compute ∂n/∂δ`(x) to compute the bias

bLhalo = 1− 1

δc
ν

d

dν
ln[ν2f(ν)] . (787)

The derivative ∂ lnn/∂ lnσ8 appearing in Equation (785) can be obtained under the same universality

assumption. In fact, the calculation is simpler. The definition of the significance implies ν2 ∝ σ−2
8 ,
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so that d ln ν/d lnM does not depend on σ8 at fixed M . Therefore n ∝ ν2f(ν) and

∂ lnn

∂ lnσ8
=

∂ ln ν

∂ lnσ8

∂ ln[ν2f(ν)]

∂ ln ν
= −ν d

dν
ln[ν2f(ν)] . (788)

Thus by comparison to Equation (787), we find

∆b(M,k) = 3fNL(bLhalo − 1)δc
Ωm

k2T (k)D(z)
H2

0 . (789)

The strong 1/k2 dependence on large scales of the halo bias is a prediction of the local models of

NG and can help to measure values of fNL of order of unity.

This concludes this series of lectures on non-Gaussianity. As we mentioned at the beginning,

they are not intended at all to be complete. Th reader is invited to consult more literature on the

subject if interested.

Part IX

Exercises

Exercise 1: Determine the inflationary prediction for a model of inflation with potential V (φ) =

λφ4.

Exercise 2: In one-single field models of inflation relate the prediction for the tensor-to-scalar ratio

r to the field excursion ∆φ in units of MPl.

Exercise 3: Show that gravity waves are not sourced by the scalar field during inflation.

Exercise 4: By corse-graining the inflaton field on a scale (aH) compute the equation of motion for

the long wavelength part of the field and compute its variance. This approach is called stochastic

inflation.

Exercise 5: Photons are no produced during inflation. Find why.

Exercise 6: Describe the non-Gaussianity generated in the modulated decay scenario, that is when

the decay rate of the inflaton field depends on a light field and its fluctuations.

Exercise 7: Discuss the origin in configuration space of the various shapes of NG.

Exercise 8: Extend the SY inequality to higher-order correlators.

Exercise 9: Compute through the in-in formalism the four-point correlator of a light field σ with

potential λσ4/4.
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Exercise 10: Compute the CMB (S/N) ratio for the equilateral bispectrum.

Exercise 11: Discuss the (S/N) ratio for the local NG coming from the bias.
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