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What does it need for a theory?

• Take a few – but good assumptions (principles, postulates or axioms)

→ derive and explain many observable facts

→ bring order to hitherto unexplained separated facts

→ unite hitherto separated areas

→ find the sub-world where the theory applies and where not

• A theory is something highly coherent and not a collection of laws
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take ...

... and do 300 years of physics
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We try to present a theory of complex systems
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• The input: Three axioms

→ derive the possible forms of entropy

→ bring order in the zoo of entropies

→ understand the consequences of extensivity

→ when does the MEP exist?

→ understand the relation of the MEP and extensive entropy

→ understand the possible types of constraints in MEP

→ understand why trace-forms in MEP

→ find those systems where entropies for CS apply (process→entropy)
. aging
. path-dependent
. out-of-equilibrium

→ understand the entropies of superstatistics

• The rule of the game: no assumptions – just derivations – just math
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Entropy

S[p] =

W∑
i=1

g(pi)

pi ... probability for a particular (micro) state of the system,
∑
i pi = 1

W ... number of states

g ... some function. What does it look like?

rio nov 1 2013 5



The Shannon-Khinchin axioms

Measure for the amount of uncertainty S

• SK1: S depends continuously on p

• SK2: S maximum for equi-distribution pi = 1/W

• SK3: S(p1, p2, · · · , pW ) = S(p1, p2, · · · , pW , 0)

• SK4: S(A+B) = S(A) + S(B|A)

Theorem: If SK1- SK4 hold, the only possibility is S[p] = −
∑W
i=1 pi ln pi

Appendix 2, Theorem 2, C.E. Shannon, The Bell System Technical Journal 27, 379-423,

623-656, 1948.
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Where does this apply?

• Markov processes (no memory)

• Ergodic processes (probabilities coincide with experiment)

• Processes must be stationary
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stationary and ergodic
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No! no! no!
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No! no! no!
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We are not interested in information theory
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We are interested in complex systems
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What are Complex Systems ?

• CS are made up from many elements

• These elements are in strong contact with each other

As a consequence

• CS are intrinsically non-ergodic

• CS are most often intrinsically non-Markovian
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What are Complex Systems ?

• evolutionary

• path-dependent

• long-memory

• out-of-equilibrium

all of this violates ergodic, Markov, stationary
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Why SM of Complex Systems ?

• Central concept: understanding macroscopic system behavior on the basis
of microscopic elements and interactions → entropy

• Entropy relates number of states to an extensive quantity, plays funda-
mental role in the thermodynamical description

• Hope: From ’thermodynamical’ relations of CS → phase diagrams, etc.

• Dream: reduce number of parameters → understand and handle CS ?
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How should this be done?

rio nov 1 2013 16



What is the entropy of CS ?
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Remember Shannon-Khinchin axioms

• SK1: S depends continuously on p → g is continuous

• SK2: S maximal for equi-distribution pi = 1/W → g is concave

• SK3: S(p1, p2, · · · , pW ) = S(p1, p2, · · · , pW , 0) → g(0) = 0

• SK4: S(A+B) = S(A) + S(B|A)

note: S[p] =
∑W
i g(pi). If SK1-SK4 → g(x) = −kx lnx
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Shannon-Khinchin axiom 4 is non-sense for CS

SK4 ensures that system is Markovian and ergodic

→ SK4 violated for non-ergodic systems

→ nuke SK4
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The 3 Complex Systems axioms

• SK1 holds

• SK2 holds

• SK3 holds

• Sg =
∑W
i g(pi) , W � 1

Theorem: All systems for which these axioms hold

(1) can be uniquely classified by 2 numbers, c and d

(2) have the entropy

Sc,d =
e

1− c+ cd

[
W∑
i=1

Γ (1 + d , 1− c ln pi)−
c

e

]
e · · ·Euler const
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The argument: generic mathematical properties of g

• Scaling transformation W → λW : how does entropy change ?
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Mathematical property I: an unexpected scaling law !

lim
W→∞

Sg(Wλ)

Sg(W )
= ... = λ1−c

Define f(z) ≡ limx→0
g(zx)
g(x) with (0 < z < 1)

Theorem 1: For systems satisfying SK1, SK2, SK3: f(z) = zc, 0 < c ≤ 1
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Theorem 1

Let g be a continuous, concave function on [0, 1] with g(0) = 0 and let
f(z) = limx→0+ g(zx)/g(x) be continuous, then f is of the form f(z) = zc

with c ∈ (0, 1].

Proof. note

f(ab) = lim
x→0

g(abx)

g(x)
= lim

x→0

g(abx)

g(bx)

g(bx)

g(x)
= f(a)f(b)

c > 1 explicitly violates SK2, c < 0 explicitly violates SK3.
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Mathematical properties II: yet another one !!

lim
W→∞

S(W 1+a)

S(W )W a(1−c) = ... = (1 + a)d

Theorem 2: Define hc(a) = limx→0
g(xa+1)
xacg(x) ...

rio nov 1 2013 25



Theorem 2

Let g be as before and f(z) = zc then hc(a) = (1 + a)d for d constant.

Proof. We determine hc(a) again by a similar trick as we have used for f .

hc(a) = limx→0
g(xa+1)
xacg(x) =

g

(
(xb)

(
a+1
b
−1
)

+1
)

(xb)

(
a+1
b
−1
)
c
g(xb)

g(xb)

x(b−1)cg(x)
= hc

(
a+1
b − 1

)
hc (b− 1)

for some constant b. By a simple transformation of variables, a = bb′ − 1,
one gets hc(bb

′ − 1) = hc(b− 1)hc(b
′ − 1). Setting H(x) = hc(x− 1) one

again gets H(bb′) = H(b)H(b′). So H(x) = xd for some constant d and
consequently hc(a) is of the form (1 + a)d.
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Summary

CS (non-ergodic) systems → SK1-SK3 hold → 2 laws

→ limW→∞
Sg(Wλ)
Sg(W ) = λ1−c 0 ≤ c < 1

→ limW→∞
S(W 1+a)

S(W )Wa(1−c) = (1 + a)d d real

Remarkable:

• all systems are characterized by 2 exponents: (c, d) – universality class

• Which S fulfills above? → Sc,d =
∑W
i=1 reΓ (1 + d , 1− c ln pi)− rc

•Which distribution maximizes Sc,d→pc,d(x) = e
− d

1−c

[
Wk

(
B(1+ex

r )
1
d

)
−Wk(B)

]

r = e
1−c+cd , B = 1−c

cd
exp

(
1−c
cd

)
; Lambert-W : solution to x = W (x)eW (x)
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Examples

• S1,1 =
∑
i g1,1(pi) = −

∑
i pi ln pi + 1 (BG entropy)

• Sq,0 =
∑
i gq,0(pi) =

1−
∑
i p
q
i

q−1 + 1 (Tsallis entropy)

• S1,d>0 =
∑
i g1,d(pi) = e

d

∑
i Γ (1 + d , 1− ln pi)− 1

d (AP entropy)

• ...
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Classification of entropies: order in the zoo

entropy c d
SBG =

∑
i pi ln(1/pi) 1 1

• Sq<1 =
1−
∑
p
q
i

q−1 (q < 1) c = q < 1 0

• Sκ =
∑

i pi(p
κ
i − p

−κ
i )/(−2κ) (0 < κ ≤ 1) c = 1− κ 0

• Sq>1 =
1−
∑
p
q
i

q−1 (q > 1) 1 0

• Sb =
∑

i(1− e
−bpi) + e−b− 1 (b > 0) 1 0

• SE =
∑

i pi(1− e
pi−1
pi ) 1 0

• Sη =
∑

i Γ(η+1
η ,− ln pi)− piΓ(η+1

η ) (η > 0) 1 d = 1/η

• Sγ =
∑

i pi ln
1/γ(1/pi) 1 d = 1/γ

• Sβ =
∑

i p
β
i ln(1/pi) c = β 1

Sc,d =
∑

i erΓ(d+ 1, 1− c ln pi)− cr c d

Theorem: all (c, d) entropies are Lesche stable
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Distribution functions of CS

• p(1,1) → exponentials (Boltzmann distribution) p ∼ e−ax

• p(q,0) → power-laws (q-exponentials) p ∼ 1
(a+x)b

• p(1,d>0) → stretched exponentials p ∼ e−axb

• p(c,d) all others → Lambert-W exponentials p ∼ eaW (xb)

NO OTHER POSSIBILITIES EXIST
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q-exponentials Lambert-exponentials
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The Lambert-W: a reminder

• solves x = W (x)eW (x)

• inverse of p ln p = [W (p)]
−1

• delayed differential equations ẋ(t) = αx(t− τ) → x(t) = e
1
τW (ατ)t
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−1 0 1 2

0

1

violates K2 

violates K2 Stretched exponentials − asymptotically stable 

(c,d)−entropy, d>0
Lambert W0 exponentials

q−entropy, 0<q<1 

compact support
of distr. function 

BG−entropy

violates K3

(1,0)

(c,0)

(0,0)

d

c (c,d)−entropy, d<0
Lambert W−1 exponentials
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Relaxing ergodicity opens door to ...

• ... bring order in the zoo of entropies through universality classes

• ... understand ubiquity of power laws (and extremely similar functions)

• ... understand how Tsallis entropy emerges from non-ergodicity

rio nov 1 2013 34



c =? d =?

and the requirement of extensivity
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Entropy is an extensive quantity

extensive: double the system → value of an extensive quantity doubles
intensive: double the system → quantity stays the same (e.g. temperature)

imagine 2 systems A and B. WA is the number of states in A. WA+B is
the number of states in the combined system

extensive entropy means: S(WA+B) = S(WA) + S(WB)

Don’t confuse with additive: S(WA.WB) = S(WA) + S(WB)
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For SM program to work: need extensive entropies

System has N elements → W (N)... phase-space volume (system property)

Extensive: S(WA+B) = S(WA) + S(WB) = · · · [use scaling laws] →

Theorem: Extensivity is equivalent toW (N) = exp
[
d

1−cWk

(
µ(1− c)N 1

d

)]

c = lim
N→∞

1− 1/N
W ′(N)

W (N)

d = lim
N→∞

logW

(
1

N

W

W ′
+ c− 1

)

Message: Growth of phase-space volume determines entropy and vice versa
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Examples

• W (N) = 2N → (c, d) = (1, 1) and system is BG

• W (N) = N b → (c, d) = (1− 1
b, 0) and system is Tsallis

• W (N) = exp(λNγ) → (c, d) = (1, 1
γ)

• ...

you give us your phase-space volume → we tell you the extensive entropy
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Examples for extensive entropies
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Example: Super-diffusion: Accelerating random walks
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(b)

β=0.5

β=0.6

β=0.7

• up-down decision of walker is followed by [Nβ]+ steps in same direction

• k(N) number of random decisions up to step N → k(N) ∼ N1−β

• number of all possible sequences W (N) ∼ 2N
1−β → (c, d) = (1, 1

1−β)

• note that continuum limit of such processes is well defined
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Example: Join-a-club spin system

• NW growth: new node links to αN(t) random neighbors, α < 1
constant connectency network A (e.g. person joining club)

• each node i has 2 states: si = ±1 ; YES / NO (e.g. opinion)

• each node i has initial (’kinetic’) energy εi (e.g. free will)

• interaction Hij = −JAijsisj

• spin-flip of node can occur if node has enough energy for it (microcanonic)

→ Can show extensive entropy is Tsallis entropy (c, d) = (q, 0), Sc,d = Sq,0
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N(t)=t

k i (t+1) = a N(t) 
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Example from physics: Black hole entropy

logWblack−hole ∝ area

• Extensive entropy is (c, d) = (0, 3/2)-entropy

Details, see C. Tsallis L.J.L. Cirto, arxiv 1202.2154 [cond-mat.stat-mech]
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Now, what to do with extensive (c,d)-entropy?

• If you maximize it – will you get the right distribution functions?

→ in general NO !

• Can the Maximum Entropy Principle be derived from the three axioms?

• How is extensive entropy related to the Maximum Entropy Principle?

→ see next talk
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• The input: Three axioms

3 derive the possible forms of entropy

3 bring order in the zoo of entropies

3 understand the consequences of extensivity

→ when does the MEP exist?

→ understand the relation of the MEP and extensive entropy

→ understand the possible types of constraints in MEP see PNAS 2012

→ why trace-forms?

→ find those systems where entropies for CS apply (process→entropy)
. aging
. path-dependent
. out-of-equilibrium

→ understand the entropies of superstatistics see PNAS 2011

• The rule of the game: no assumptions – just derivations – just math
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Conclusions

• Complex Systems are non-ergodic by nature

• Hope: describe CS with a few parameters a là thermodynamics

• Interpret CS as those where Shannon axioms 1-3 hold

• Showed: all macroscopic statistical systems can be uniquely classified in
terms of 2 scaling exponents (c, d)

• Single entropy covers all systems: Sc,d = re
∑
i Γ (1 + d , 1− c ln pi)− rc

• All known entropies of SK1-SK3 systems are special cases

• Distribution functions of all systems are Lambert-W exponentials. There
are no other options

• Phasespace growth determines entropy

• Systems with such entropies are related to surface effects: SOC, ...
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A note on Rényi entropy

It is it not sooo relevant for CS. Why?

• Relax Khinchin axiom 4:

S(A+B) = S(A)+S(B|A)→ S(A+B) = S(A)+S(B)→ Rényi entropy

• SR = 1
α−1 ln

∑
i p
α
i violates our S =

∑
i g(pi)

But: our above argument also holds for Rényi-type entropies !!!

S = G

(
W∑
i=1

g(pi)

)

lim
W→∞

S(λW )

S(W )
= lim
R→∞

G
(
fg(z)
z G−1(R)

)
R

= [for G ≡ ln] = 1
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