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What does it need for a theory?

e Take a few — but good assumptions (principles, postulates or axioms)
— derive and explain many observable facts

— bring order to hitherto unexplained separated facts

— unite hitherto separated areas

— find the sub-world where the theory applies and where not

e A theory is something highly coherent and not a collection of laws
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We try to present a theory of complex systems
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e The input: Three axioms

— derive the possible forms of entropy

— bring order in the zoo of entropies

— understand the consequences of extensivity

— when does the MEP exist?

— understand the relation of the MEP and extensive entropy
— understand the possible types of constraints in MEP

— understand why trace-forms in MEP

— find those systems where entropies for CS apply (process—entropy)

aging
path-dependent
out-of-equilibrium

— understand the entropies of superstatistics

e The rule of the game: no assumptions — just derivations — just math
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Entropy

pi ... probability for a particular (micro) state of the system, > .p; =1
W ... number of states

g ... some function. What does it look like?
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The Shannon-Khinchin axioms

Measure for the amount of uncertainty S

e SK1: S depends continuously on p
e SK2: § maximum for equi-distribution p; = 1/W

o SK3 S(p17p27 e 7pW) — S(p17p27 e 7pW7O)

o SK4: S(A+ B) = S(A) + S(B|A)

Theorem: If SK1- SK4 hold, the only possibility is S|p] = — Zzlpi In p;

Appendix 2, Theorem 2, C.E. Shannon, The Bell System Technical Journal 27, 379-423,
623-656, 1948.
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Where does this apply?

e Markov processes (no memory)
e Ergodic processes (probabilities coincide with experiment)

e Processes must be stationary
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stationary and ergodic




No! no! nol!




No! no! nol!




We are not interested in information theory
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We are interested in complex systems
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What are Complex Systems ?

e CS are made up from many elements

e These elements are in strong contact with each other
As a consequence

e CS are intrinsically non-ergodic

e CS are most often intrinsically non-Markovian
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What are Complex Systems ?
e evolutionary

e path-dependent

e long-memory

e out-of-equilibrium

all of this violates ergodic, Markov, stationary
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Why SM of Complex Systems ?

e Central concept: understanding macroscopic system behavior on the basis
of microscopic elements and interactions — entropy

e Entropy relates number of states to an extensive quantity, plays funda-
mental role in the thermodynamical description

e Hope: From 'thermodynamical’ relations of CS — phase diagrams, etc.

e Dream: reduce number of parameters — understand and handle CS 7

W

( 04 T
[1ASA rio nov 1 2013 15



How should this be done?
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What is the entropy of CS 7
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Remember Shannon-Khinchin axioms

e SK1: S depends continuously on p — ¢ is continuous

e SK2: § maximal for equi-distribution p; = 1/W — ¢ is concave

e SKa3: S(p17p27"'7pW) — S<p17p27"'7pW70) — g<0) =0

o SK4: S(A+ B) = S(A) + S(B|A)

note: S[p|] = ZzW g(pi). If SK1I-SK4 — g(x) = —kxInzx
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Shannon-Khinchin axiom 4 is non-sense for CS

SK4 ensures that system is Markovian and ergodic

— SK4 violated for non-ergodic systems

— nuke SK4
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The 3 Complex Systems axioms

e SK1 holds

e SK2 holds

e SK3 holds

¢ Sy=21glp) W1

Theorem: All systems for which these axioms hold

(1) can be uniquely classified by 2 numbers, ¢ and d

(2) have the entropy

e
1l —c+ cd

1%

ZF(ler,1—chr1pi)—E e - - - Euler const
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The argument: generic mathematical properties of g

e Scaling transformation W — AW: how does entropy change 7
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Mathematical property |I: an unexpected scaling law !

Jim So(WA) — ... =)\

W—ro0 Sg(W)

Define f(z) = lim,_q g;(zx“;) with (0 < z < 1)

Theorem 1: For systems satisfying SK1, SK2, SK3: f(z) =2 0<c¢ <1
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Theorem 1

Let g be a continuous, concave function on [0,1] with ¢g(0) = 0 and let
f(z) =lim,_, g+ g(zx)/g(x) be continuous, then f is of the form f(z) = z¢
with ¢ € (0, 1].

Proof. note

_ iy Jtab2) L glabz)g(bz)
flab) = };—>0 g(x) :l—>0 g(br) g(x) f(a)F0)

c > 1 explicitly violates SK2, ¢ < 0 explicitly violates SK3.
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Mathematical properties Il: yet another one !!

S(Wite)

_ _ d
W Sy wat—a = (LT a)

g(z**th
xacg(x)

Theorem 2: Define h.(a) = lim,_,q
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Theorem 2
Let g be as before and f(z) = z¢ then h.(a) = (1 + a)? for d constant.

Proof. We determine h.(a) again by a similar trick as we have used for f.

g(z%th g(

hc(a’) — hmx—)O xACg(x) — ( b)( : )c ( b) — hc (a+1 - ]-) hc (b - ]-)
T glx

b

for some constant b. By a simple transformation of variables, a = bb’ — 1,
one gets h.(bb' — 1) = he(b— 1)ho(b' — 1). Setting H(x) = h.(x — 1) one
again gets H(bb') = H(b)H (V). So H(x) = % for some constant d and
consequently h.(a) is of the form (1 + a). (]
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Summary

CS (non-ergodic) systems — SK1-SK3 hold — 2 laws

= limy o0 Py = A1 0<ec<1
— lim SW) (1+a)? d real
W —o0 S(w)wa(l—c)

Remarkable:

e all systems are characterized by 2 exponents: (c,d) — universality class

e Which S fulfills above? — S, g =1 rel' (1+d, 1—clnp;) — rc

——<4 |\w,.(B 1+ﬂ5 —Wi(B
e Which distribution maximizes S. 4—pc.a(x) = e 1_0[ k< a5 ) i )}

___e _1—c 1—c). Rrrd : . W (z)
"= I —cFed B = “od €XP ( od ) Lambert-W: solution to x = W (x)e
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Examples

511 = ZZ 91,1(2%‘) = — Zipz' Inp; +1 (BG entropy)
® Sq0="2.:9q0pi) = - Z p" + 1 (Tsallis entropy)

® S1as0=2>_;91.4(p)) =53, T (1+d, 1 —1Inp;) — 5 (AP entropy)
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Classification of entropies: order in the zoo

entropy C d
Spa = >, piIn(1/p:) 1 1
I—qu
® Sg<1 = — =" (g<1) | c=g<1 0
e S. =2 pi(p; —p;")/(—2kK) O<k<sT) |c=1=~ 0
1— q
¢ Sq>1 — qézlpl (q > 1) 1 0
oSy =>.(1—e™)4+eb—1 (b > 0) 1 0
pi—1
QSE:Zipi(l—epi) 1 0
Sy = Zir(nTH, —Inp;) — Pz‘r(nTH) (n > 0) 1 d=1/n
S, =3, p;In'7(1/p;) 1 d=1/v
© S5 =>,p, In(1/pi) c=p 1
Sea=>_erI'(d+ 1,1 —clnp;) —cr c d

Theorem: all (¢, d) entropies are Lesche stable
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Distribution functions of CS

® p(1,1) — exponentials (Boltzmann distribution) p ~ e™%*
® P(q,0) — Power-laws (g-exponentials) p ~ (a—:x)b
. b
® P(1,d>0) — Stretched exponentials p ~ e™**
aW (z?)

® P(c,q) all others — Lambert-W exponentials p ~ ¢

NO OTHER POSSIBILITIES EXIST
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g-exponentials Lambert-exponentials

(b) d=0.025, r=0.9/(1-c)




The Lambert-W: a reminder

e solves x = W (x)eW(®)

e inverse of plnp = [W(P)]_l

e delayed differential equations &(t) = az(t — 7) — x(t) = e7W(am)t
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violates K2

compact support BG—entropy
(1,0) / of distr. function /

violates K2 Stretched exponentials — asymptotically stable

(c,d)—entropy, d<0 (c,d)—entropy, d>0
Lambert W__ exponentials Lambert W j exponentials

<— (g-entropy, 0<qg<1




Relaxing ergodicity opens door to ...

e ... bring order in the zoo of entropies through universality classes
e ... understand ubiquity of power laws (and extremely similar functions)

e ... understand how Tsallis entropy emerges from non-ergodicity
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c="d="

and the requirement of extensivity
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Entropy is an extensive quantity

extensive: double the system — value of an extensive quantity doubles
intensive: double the system — quantity stays the same (e.g. temperature)

imagine 2 systems A and B. W4 is the number of states in A. Wa.p is
the number of states in the combined system

extensive entropy means: S(Wa.pg) = S(W4) + S(Wp)
Don't confuse with additive: S(Wx.Wpg) = S(Wy4)+ S(Wpg)

W
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For SM program to work: need extensive entropies

System has N elements — W (N)... phase-space volume (system property)

Extensive: S(Waip) = S(Wa)+ S(Wp) =--- [use scaling laws] —

Theorem: Extensivity is equivalent to W (V) = exp [%CI/V;C (,u(l — c)Né)}

/
N
c = lim 1—1/NW( )
1 W
— ' —— —1
d A}l_fgologW(NW,—l—c )

Message: Growth of phase-space volume determines entropy and vice versa
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Examples

e W(N)=2N — (c,d) = (1,1) and system is BG
e W(N)=N"—= (c,d) = (1—1,0) and system is Tsallis

o W(N) = exp(AN") — (¢, d) = (1,2)

"y

you give us your phase-space volume — we tell you the extensive entropy

&
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Examples for extensive entropies
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Example: Super-diffusion: Accelerating random walks

x105

=05
———p=06
057 po07

40+ P=0.5 free decisions

\
Q‘,,
\\

A/ AAA
Y
AN
A \
\ \A\/ AN/
\ANNAN/ AN/ \/\/
\ WYVWVVVVVY VVV
AAAAAA/ £ AAAAA
AAAA \

R
\
\
y
(X
i
[/
f

)
\
S

X
o
<.
//
)
(
)
.;.2:‘ J iy
00U
)
i
X
\
)

f
i

/W
\

/

)
£

{

/

i
\ i
)
o
/

Jil
()
I

N
o
X\
\)\\?\’”‘g
\
i

00
i

VAVS
\/\/
A/
\/
X
A

e up-down decision of walker is followed by [IN”] steps in same direction
e k(N) number of random decisions up to step N — k(N) ~ N1=F
e number of all possible sequences W(N) ~ 2V ™7 — (¢,d) = (1, =3

e note that continuum limit of such processes is well defined
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Example: Join-a-club spin system

e NW growth: new node links to a/N(t) random neighbors, o < 1
constant connectency network A (e.g. person joining club)

e each node i has 2 states: s; = +1 ; YES / NO (e.g. opinion)
e each node i has initial ('kinetic') energy ¢; (e.g. free will)
e interaction Hij — —JAZ']'SZ'SJ'

e spin-flip of node can occur if node has enough energy for it (microcanonic)

— Can show extensive entropy is Tsallis entropy (¢, d) = (q,0), Sc.a = Sq.0
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Example from physics: Black hole entropy

lOg Wblack—hole X area

e Extensive entropy is (¢, d) = (0,3/2)-entropy

Details, see C. Tsallis L.J.L. Cirto, arxiv 1202.2154 [cond-mat.stat-mech]
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Now, what to do with extensive (c,d)-entropy?

e If you maximize it — will you get the right distribution functions?

— in general NO !

e Can the Maximum Entropy Principle be derived from the three axioms?

e How is extensive entropy related to the Maximum Entropy Principle?

— see next talk
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e The input: Three axioms

v derive the possible forms of entropy

v’ bring order in the zoo of entropies

v/ understand the consequences of extensivity
when does the MEP exist?
understand the relation of the MEP and extensive entropy

— understand the possible types of constraints in MEP see PNAS 2012
why trace-forms?

find those systems where entropies for CS apply (process—entropy)

aging
path-dependent
out-of-equilibrium

— understand the entropies of superstatistics see PNAS 2011

e The rule of the game: no assumptions — just derivations — just math
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Conclusions

e Complex Systems are non-ergodic by nature
e Hope: describe CS with a few parameters a la thermodynamics
e Interpret CS as those where Shannon axioms 1-3 hold

e Showed: all macroscopic statistical systems can be uniquely classified in
terms of 2 scaling exponents (c, d)

e Single entropy covers all systems: S, g =re) . I'(1+d,1—clnp;)—rc
e All known entropies of SK1-SK3 systems are special cases

e Distribution functions of all systems are Lambert-1W exponentials. There
are no other options

e Phasespace growth determines entropy
e Systems with such entropies are related to surface effects: SOC, ...
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A note on Rényi entropy

It is it not sooo relevant for CS. Why?

e Relax Khinchin axiom 4:
S(A+B)=5(A)+S(B|A) — S(A+B) = S(A)+S(B) — Rényi entropy

e Sp=--In) . p¥ violates our S =", g(p;)

But: our above argument also holds for Rényi-type entropies !!!

S=G <§: g(pz-))

S(AW) : )
li 11 = | =In|l=1
Wooe S(W)  Reseo R ffor & =1n]
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