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OUTLINE

Nonequilibrium steady states (NESS)

Steady state thermodynamics (Oono-Paniconi, Sasa-
Tasaki, Pradhan et al)

Coexistence of NESS: definition of intensive variables
effective temperature and chemical potential

Weak exchange, virtual contact and virtual reservoirs
Consistency and utility of intensive variables: zeroth law

Driven NNE lattice gas: consistent definition of chemical
potential

Driven lattice gas with attractive interactions (KLS model):
- need for effective temperature
- violation of zeroth law



Coexistence of NESS

Consider systems A and B in steady states (equilibrium or not)

If A and B, at the same temperature, can exchange particles, and the
net particle flux between them is zero, we say they coexist wrt particle
exchange; we expect them to have the same value of “chemical
potential”

Analogous definition for coexistence wrt energy exchange,
temperature

If A is a particle reservoir of known chemical potential the zero-flux
condition defines the chemical potential of B

We study lattice gases with stochastic dynamics



Criteria for a valid chemical potential:

With p defined operationally as above, we stipulate two essential properties it must
satisfy, to be a valid chemical potential:

1) (Zeroth law) If pairs of systems (A,B) and (A,C) separately satisfy the zero-flux con-
dition, then, if B and C are allowed to exchange particles, the net flux should also be zero.

2) If systems A and B, at the same temperature, and initially isolated, with ps # pp,
are brought into contact so that they may exchange particles, then the ensuing flux should
reduce |4 — pp|, and should continue until the difference is null. In other words, knowing

the functions p4(p) and pp(p), of two systems in isolation should allow us to predict the

direction of particle transfer when they are placed in contact, and the coexisting densities.



Virtual exchange

Out of equilibrium, the stationary properties of the systems
in contact in general depend on the rate of exchange of
particles and/or energy.

To define the situation precisely, we consider the limit of
vanishing exchange rates.

This is formalized in virtual exchange: determining the fluxes
that would ensue if exchange were permitted, without actually
transferring anything.



Particle exchange with a virtual reservoir with chemical potential u

Choose a site at random, if vacant, insert particle w.p.

pr = min/1, ePlr— E”*“'_E’-"“*’H].

If occupied, remove particle w.p.

pr = min[1, e’7#~ Enew=Eeur)]

Mean particle flux per exchange attempt:

(An)p = P(C)(An)c.

P(C) is the probability distribution on configuration space

The flux is zero when the reservoir chemical potential equals that of the
system



Application to driven NNE lattice gas

In the NNE lattice gas a particle excludes nearest-neighbor
sites — a hard-core repulsive potential

The model is athermal — no characteristic energy

Only ul/=Buis of interest
Equilibrium dynamics: symmetric hopping attempts

Nonequilibrium (driven) dynamics: there is a preferred
hopping direction

We study the model in the disordered phase
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Let p denote the particle density and p,, the density of open sites, i.e., of vacant sites
with all their nearest neighbors also vacant. Since particles can only be inserted at open

sites, we have, under virtual exchange between the NNE lattice gas and a particle reservoir,

(An)p = p,, min{1,e" } — p min{1,e7 "} (8)

so that the zero-current condition implies p* = In(p/pop). The chemical potential defined

via Eq. (8) satisfies the zeroth law, regardless of whether the system is driven. To see this,
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FIG. 1: NNE lattice gas: simulation results for p* in equilibrium (black curve) and under maximum
drive (blue curve), system size L = 80. Pairs of points sharing the same value of p* represent
coexisting densities in the equilibrium and driven systems under weak exchange. Uncertainties are
smaller than line thickness and symbol size.



Given that p* 1s an increasing function of density, for any value of the drive, Eq. (9)
shows that if NNE models with different values of p* are permitted to exchange particles,
the ensuing Hux will tend to equalize the chemical potential. In summary, we verify that p*
defined via the zero-current condition with a virtual reservoir satisfies the mimimal conditions

for a chemical potential, both 1 equilibrium and n a nonequilibrium steady state.



DRIVEN LATTICE GAS WITH ATTRACTIVE INTERACTIONS:
A FIRST ATTEMPT

Driven lattice gas or Katz-Lebowitz-Spohn (KLS) model with
attractive nearest-neighbor interactions.

The system evolves via a particle-conserving dynamics with
a drive D = Di favoring particle displacements along the +x
direction and inhibiting those in the opposite sense. The
acceptance probability for a particle displacement Ax is

p = min{ 1, exp[-(AE - D - Ax)]}
Energy of configuration C:

E(C) = - 2> G0



We attempt to describe coexistence between KLS systems using
the approach employed for the NNE lattice gas.

Given a system S with density P, temperature T and drive D > O,

we determine U via the zero-current condition.

We then examine the possibility of coexistence between S and a

nondriven (equilibrium) system SO at temperature T, whose

density is such that its chemical potential U, equal to U
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FIG. 3: KLS lattice gas: simulation results (points, L. = 40), and PA predictions (curves) for for
p* in equilibrium (black) and under a strong drive, D = 10, (red), for temperature T' = 1.



The results shown in Fig. 3 lead one to expect that if the two
systems are initialized with the same density, o> 1/2, then
particles will migrate from the driven to the undriven system, until

the corresponding U values are equal
In fact, particles flow in the opposite sense!

Equating the effective chemical potentials of a driven and an
undriven KLS system, does not predict the stationary densities
when thesesystems are allowed to exchange particles.

The reason for this becomes apparent when we examine the
energy transfer from the undriven to the driven system: on
Average, particle exchanges transfer energy from the driven to the
undriven system

The nonzero energy flux implies that the two systems are not, in
fact, at coexistence



FIG. 5: KLS lattice gas: PA predictions for coexisting densities pg (for D=0) and pp (for D=10).
Smooth curve: values obtained using equality of p*; black squares: stationary values obtained
applying the PA to the two-lattice system under weak exchange, p, = 1073: blue diamonds:
values obtained using equality of ¢* as obtained via simulation; blue crosses: values obtained in
simulations under weak exchange. The dotted diagonal line corresponds to pp = pg.



On average, the drive increases the energy of the system, since
it tends to increase the likelihood of transitions with AE > 0
more than those with AE < 0.

Under steady conditions, the energy increase due to the drive is
balanced by the energy transfer to the reservoir: this is the so-
called housekeeping heat associated with the stationary operation
of a driven system.

Thus the reservoir temperature is merely a parameter in the
definition of the transition probabilities; we shall refer to it as

the “nominal temperature” T,

The effective temperature, T, of the driven system, if one can

be defined, should be greater than T,

Define T, via zero energy flux under virtual exchange



The effective temperature and chemical potential of S are
determined by the conditions:

o
Z j)min{1, e’} — po(j) min{1, e ¥} =0

3=0
q .
(AE)s = =) i [p5(=j) min{1, ™ W9} — ps(j) min{1, e~} = 0
7=0

Ps(+j): density of vacant sites with j occupied neighbors

Ps(j): density of occupied sites with j occupied neighbors



FIG. 6: KLS lattice gas: effective temperature T. and chemical potential u, as defined via the
zero-current conditions, as functions of drive D in a system at nominal temperature 7, = 1 and
density p = 0.75. Lines: PA; points: simulation.



Let R be a reservoir with temperature and chemical potential
equal to that of S, and let S, be an undriven (equilibrium)

nearest-neighbor lattice gas with the same temperature and
chemical potential as R and S.

Since Sp and R are in equilibrium, we have the detailed-balance

relations,
_|_.

py (—j) = e bty

Po ()

We now ask whether S and S coexist, that is, whether the

particle and energy fluxes between these systems are zero
under virtual exchange.

Using detailed balance, the fluxes (from the nondriven to the
driven system) are given by



and

where

(An)ss, = Z{Z[pg(—j)pa(ju)eﬁe“—m—pg(j)pﬁ(—ju)]
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Now a (j) is an increasing function of jand has a different value
for each j

Thus the conditions <An>g5, = 0 and <AE>gs, = O are in general

distinct from those that define i/ and Te
In general the four conditions cannot be satis fied simultaneously

For example, for > 0, <An>¢ = 0 implies
Jjo

which is clearly different from the condition <An>g5, = 0.

We have therefore demonstrated a violation of the zeroth law:
although S and S o both coexist with R, in general they do

not coexis t with each other.



Numerically, the violations appear to be quite small in the KLS model
above the critical temperature
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TABLE I: PA results for coexistence of driven and undriven KLS lattices gases. The first three columns
give the parameters of the driven system &; T, and u are the effective parameters of & obtained using
a virtual reservoir. pp is the density of the undriven lattice gas Sp with temperature T, and chemical
potential . (An)ss, and (AFE)ss, are the particle and energy fluxes between & and Sp under virtual
contact. The final four columns give the stationary density and chemical potential (effective, in the

case of &), under weak exchange.

Simulations show violations of the same order of magnitude




S UMMARY

We have examined, in concrete, operational terms, the possibility
of devising a steady state thermodynamics for driven lattice gases

In the case of the lattice gas with nearest-neighbor exclusion, our
definition of an effective chemical potential turns out to be fully
consistent, obeying the zeroth law, and capable of predicting the
coexistence densities of systems with distinct values of the drive

We expect that this will be true of other models with purely
excluded-volume interactions



Direct application of this approach to the KLS lattice gas clearly
fails, motivating us to define an effective temperature T,

We then explore the possibility of predicting coexistence using
equality of the effective temperature and chemical potential

A theoretical argument shows that the zeroth law is violated

We are left without a consistent SST applicable to systems capable
of exchanging particles and energy

It appears that steady state thermodynamics is not viable for such
systems
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