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Introduction

Correlations in pure quantum states

Bipartite quantum system A + B

A pure quantum state |ΨAB〉 can be:

I. Separable: |ΨAB〉 = |ΨA〉 ⊗ |ΨB〉

II. Entangled: |ΨAB〉 6= |ΨA〉 ⊗ |ΨB〉

Schmidt Decomposition: |ΨAB〉 =
∑∑∑ns

k=1
√

pk |kA〉 ⊗ |kB〉
entangled if ns ≥ 2

Simplest example: Bell states |Ψ±AB〉 = |↑↑〉± |↓↓〉√
2

, |↑↓〉± |↓↑〉√
2

Entangled states cannot be created by local operations and
classical communication (LOCC)
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Introduction

Pure state entanglement

In an entangled state, the whole system is in a pure state, but . . .
Each part is in a mixed state: If ρAB = |ΨAB〉〈ΨAB|,

ρA = TrB ρAB =
ns∑∑∑

k=1

pk |kA〉〈kA|, ρB =
ns∑∑∑

k=1

pk |kB〉〈kB|

Consequently, entropy turns “wild”:

S(A,B) = 0 but S(A) = S(B) =
∑∑∑

k

f (pk) > 0 !!

Most basic classical entropic inequality S(A,B) ≥ S(A) broken!
Entanglement entropy defined as the “impossible” entropy:

E(A,B) = S(A) = S(B) (when S(A,B) = 0)
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Introduction

Correlations in mixed quantum states

More complex scenario:

A mixed quantum state ρAB =
∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !
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Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
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i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

(Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC

However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC

However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB|

i.e., ρAB = 1
2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include

II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB|

i.e., ρAB = 1
2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB|

i.e., ρAB = 1
2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB|

i.e., ρAB = 1
2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB|

i.e., ρAB = 1
2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states

Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Correlations in mixed quantum states

More complex scenario:
A mixed quantum state ρAB =

∑∑∑
ν pν |Ψν

AB〉〈Ψν
AB|, pν ≥ 0

can be:
I. Separable: ρAB =

∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0

II. Entangled: ρAB 6=
∑∑∑
α pα ραA ⊗ ραB, pα ≥ 0 (Werner PRA 1989)

Meaning: ρAB separable⇒ can be generated by LOCC
However:

1) Determination of separability difficult (E(A,B) 6= S(A) or S(B))

2) Separable states include
II.a Product states ρAB = ρA⊗ ρB

II.b Classically correlated states:
ρAB =

∑∑∑
i,j pij |iA〉〈iA| ⊗ |jB〉〈jB| i.e., ρAB = 1

2 (| ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |)

II.c And also mixtures of non-commuting product states
Quantum-like correlations still present in states ∈ II.c !

R. Rossignoli (UNLP-CIC) COMP.SYST. @ RIO 2013 4 / 32



Introduction

Entanglement and Discord

Entanglement measures vanish in all separable states

Entanglement of formation:

E(A,B) = Min∑
j

pj |Ψ
j
AB〉〈Ψ

j
AB |=ρAB

∑∑∑
j pj E(|ψj

AB〉)

Discord -type measures vanish just in product and classically
correlated states (II.a-b)
Quantum Discord (Ollivier-Zurek, 2001, Vedral 2001):

D(A|B) = Min
MB

SMB (A|B)− S(A|B)

S(A|B) = S(A,B)− S(B) von Neumann conditional entropy
SMB (A|B) =

∑∑∑
j pj S(A|B = j) Conditional v.N. entropy after local

measurement MB at B. pj probability of outcome j in B
Pure states: D(A|B) = D(B|A) = E(A,B)
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Introduction

Entanglement and Discord

Entanglement necessary for quantum teleportation (Bennet et al 1993)

Entanglement necessary for exponential speed-up in
pure state based quantum computation (Josza, Linden, Vidal, 2003)

However, some mixed state based quantum algorithms with
exponential speed-up exhibit no entanglement !
(Datta Flammia Caves PRA 2005)

Quantum algorithm for evaluating Tr[Un] of Knill and Laflamme (PRL 1998)

Yet they do exhibit finite Discord (Caves 2008)

Separable states II.c: Have finite Discord but no entanglement
They possess entangled eigenstates
No complete local measurement leaves them invariant
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Formalism

Generalized quantum correlation measures

QD based essentially on (conditional) V.N. entropy

Alternative approach:
Minimum information loss by local measurement
(RR LC NC PRA 2010, 2011)

Projective local measurement at B: MB = {Πj = IA⊗ΠB
j }

Average state after local measurement:

ρ′AB =
∑

jpj ρAB/j =
∑

jΠjρABΠj

Classically correlated state (II.b)
Satisfies majorization property ρ′AB ≺ ρAB (

∑i

j=1
p′

j ≤
∑i

j=1
pj ∀ i)

Implies generalized entropic inequality

Sf (ρ′AB) ≥ Sf (ρAB) ∀ Sf (ρ) = Tr f (ρ)

with f concave (f (0) = f (1) = 0 ) (ρ ≺ ρ′ ⇔ Sf (ρ) ≥ Sf (ρ′) ∀ Sf )
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Formalism

Information loss by local measurement

Generalized Information loss by local measurement:

IMB
f (ρAB) = Sf (ρ′AB)− Sf (ρAB)

Fundamental property:
IMB
f ≥ 0 ∀ Sf , with IMB

f = 0 iff ρ′AB = ρAB
i.e., iff ρAB =

∑∑∑
j pjρA/j ⊗ΠB

j

Minimum information loss by local measurement:

IB
f (ρAB) = Min

MB
IMB
f (ρAB)

Generalized entropic measure of quantum correlations:
IB
f (ρAB) ≥ 0

IB
f (ρAB) = 0 iff ρAB is classically correlated (from B)

Same basic properties as Quantum Discord
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Formalism

Generalized quantum correlation measures

Similarly,

IA
f (ρAB) = Min

MA
IMA
f (ρAB)

IAB
f (ρAB) = Min

MAB
IMAB
f (ρAB), MAB = {ΠA

i ⊗ΠB
j }

IAB
f (ρAB) ≥ 0 ,

IAB
f (ρAB) = 0 iff ρAB is classically correlated (from A and B)

Pure states: All I f become the f -entanglement entropy:

IA
f = IB

f = IAB
f = E f (A,B) = Sf (A) = Sf (B)

Minimizing measurement the same ∀ Sf in this case:
Universal least disturbing local measurement
Not valid for general mixed states
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Formalism

Special Cases

Von Neumann case S(ρ) = −Trρ logρ

IB
1 (ρAB) = Min

MB
S(ρ′AB)− S(ρAB)

= Min
ρ′AB

S(ρAB||ρ′AB)

Minimum relative entropy to a classically correlated state
S(ρ||ρ′) = −Trρ(log ρ′ − log ρ)

Coincides with Information Deficit (DVB PRL 11)

Becomes the std. entanglement entropy in pure states
Relation with Quantum Discord:

D(A|B) = Min
MB

IMB
1 (ρAB)− IMB

1 (ρ) ≤ IB
1
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Formalism

Special cases

q = 2 Tsallis case S2(ρ) = 1− Trρ2 :

IB
2 (ρAB) = Min

MB
S2(ρ′AB)− S2(ρAB) (1)

= Min
ρ′AB

||ρAB − ρ′AB||2 (2)

Minimum distance to a classically correlated state
||O||2 = Tr O† O

Coincides with Geometric Discord (Vedral 2010)

Most convenient form for computability and analytical evaluations!
Becomes the squared concurrence in pure states
General Tsallis case Sq(ρ) = 1−Tr ρq

q−1 (f(ρ) = ρ(I−ρq−1)
q−1 , q > 0)

IB
q (ρAB) = Min

MB
Sq(ρ′AB)− Sq(ρAB)
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Most convenient form for computability and analytical evaluations!
Becomes the squared concurrence in pure states
General Tsallis case Sq(ρ) = 1−Tr ρq

q−1 (f(ρ) = ρ(I−ρq−1)
q−1 , q > 0)

IB
q (ρAB) = Min

MB
Sq(ρ′AB)− Sq(ρAB)
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Formalism

General stationary condition

Determination of MB hard:
d2

B − dB real parameters required if B of dimension dB

General stationary condition:

TrA[f ′(ρ′AB), ρAB] = 0

Determines least disturbing local measurement (RR NC LC 2011)

May not correspond to basis of local eigenstates of ρB

Universality: Some MB can be stationary ∀ Sf in some states
Example: Pure states (Schmidt basis)
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Formalism

Example

General pure state + maximally mixed state:

ρAB = x|ΨAB〉〈ΨAB|+ 1−x
d IA⊗ IB , x ∈ [0,1]

|ΨAB〉 =
∑∑∑

k
√

pk |kA〉|kB〉
Again universal minimum for I f : Schmidt basis
Allows analytic evaluation ∀ Sf , with IB

f = IA
f = IAB

f :

Iνf (x) =
∑∑∑

k

f(xpk + 1−x
d )− f(xδk1 + 1−x

d )

universal quadratic increase for x → 0: (RR NC LC PRA 2010)

Iνf (x) ≈ 1
2x2|f ′′( 1

n)|S2(p)

In contrast, entanglement needs finite threshold:
ρAB entangled for x > 1

d−1
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Formalism

Example

Pure state + noise
ρAB = x|ΨAB〉〈ΨAB|+ 1−x

d I, |ΨAB〉 = √p|00〉+
√

1− p|11〉

0 0.5 1
0

0.5

1

I 2B
Hx
L,

C
2 H

xL

I2
BHxL

C2HxL

p=1�2

p=0.9

0 0.5 1
0

0.5

1

IB
Hx
L,

E
Hx
L

IBHxL

EHxL

p=1�2

p=0.9

0 0.5 1
x

0

0.5

1

I qB
Hx
L

q=1�2
q=1
q=2
q=4
q=8
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Qubit systems

General two-qubit case

General two qubit state

ρAB = 1
4 [I +~rA · ~σA +~rB · ~σB + ~σA ⊗ J ~σB]

q = 2 case (Geometric Discord): Exactly solvable (Vedral 2010)

For a spin measurement along ~k ,

I~k2 = 1
2(tr M2− ~k

t
M2 ~k) , M2 =~rB~r

t
B + J tJ

Stationary condition: M2~k = λ~k
Minimum obtained for ~k along eigenvector associated with
largest eigenvalue of M2
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Qubit systems

General two-qubit case

q = 3 case also exactly solvable (RR NC LC PRA 2011)

S3(ρAB) ∝ 1− Trρ3
AB = 1

2 [S2(ρAB) + 1− (~r t
AJ~rB − det J)]

I~k3 = 1
4(tr M3− 2 detJ − ~k

t
M3 ~k) ,

M3 =~rB~r
t
B + J tJ +~rB~r

t
AJ + J t~rA~r

t
B

Stationary condition: M3~k = λ~k
Minimum obtained for ~k along eigenvector with largest
eigenvalue of M3

Universality: States with maximally mixed marginals
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Qubit systems

Example: Mixture of aligned states

Aligned states of two spins
| ↗↗〉 = |θθ〉, | ↖↖〉 = |− θ− θ〉
with |θ〉 = exp [iθsy ]| ↑〉

θ-θ

Mixture

ρAB(θ) = 1
2(| ↗↗〉〈↗↗ |+ | ↖↖〉〈↖↖ |)

Represents exact pair state in XY spin chains in the vicinity of
transverse separability field
Also fair approximation in symmetry breaking phase (|B| < Bc)
Separable state: No entanglement
However, Finite Discord and I f for θ ∈ (0, π/2)
RR NC LC PRA 2010, 2011
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Qubit systems

Example: Mixture of aligned states

Exact expressions for geometric and cubic discord:

I2(θ) = 1
2

{
sin4θ θ < θc

cos2θ(1 + cos2θ) θ > θc

I3(θ) = 1
4

{
sin4θ θ < θ′c

cos2θ(1 + 3cos2θ) θ > θ′c

Both exhibit sharp z → x measurement transition
However, no transition in Quantum Discord (x ∀ θ)
Transitions present in all If (RR NC LC PRA 2011)
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Qutrit systems

Results
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Qutrit systems

Measurements in spin 1 systems
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Spin averages in basis states
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Application to spin chains

Entanglement and Discord of spin pairs in a spin chain

Finite cyclic spin 1/2 chain with
XY couplings in a transverse field

i j

Hamiltonian

H = b
∑

i

sz
i − 1
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∑
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y sy
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Application to spin chains

Results
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Conclusions

Minimum generalized entropy loss by local measurement Iνf :
Quantifier of quantum correlations
Coincides with f -entanglement entropy in pure states
Includes Information Deficit, Geometric Discord and q -Discords
as particular cases
Allows to identify universal features valid for any entropic choice
Use of q = 2 or low integer q in Tsallis entropies allows closed
analytic expressions in some important general cases
Same basic properties as Quantum Discord but important
differences in minimizing measurement
Spin chains: Infinite range of I f and QD of pairs in the vicinity of
separability field Bs . Confirms Bs as a QPT in the finite chain
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