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The weight of history

Ludwig Boltzmann wss-1906) lived before Andrei Kolmogorov (isos-1se7).
Statistical physics existed before probability theory was axiomatized.
Physicists still partly use terminology found in the book of Gibbs.
Statisticians introduced a different terminology.

= Sometimes we need a dictionary.



In physics a model is determined by its Mathematicians then say that the

Hamiltonian H. For instance (HO), model belongs to the exponential
1 ” family of models.
H(qg,p) = 2—p2 + Emwzqz. For any model of the exponential
m

family one has the identity
We use the Hamiltonian in the d
canonical ensemble of statistical a5 InZ(8) = —(H)
physics to calculate the - o
Boltzmann-Gibbs distribution (= EH for mathematicians).
1
,P) = =—¢€ .
p(q. p) Z0)

Mean-field models do NOT belong to the exponential family!



Many models do not belong the exponential family.

Example The configurational pdf of any real gas in the
microcanonical ensemble.

Z |pn|2 + V(q17q27 qN)

fe(Q1,92, - - /dp1 /dPN5 (E - H).

This model with parameter E belongs to the g-exponential family with

.2
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J. Naudts and M. Baeten, Non-extensivity of the Configurational Density
Distribution in the Classical Microcanonical Ensemble,
Entropy 11, 285-294 (2009).



The Maximum Entropy Principle applied to the Tsallis entropy S,
yields a probability distribution which becomes Boltzmann-Gibbs for
qg=1.

It belongs to the g-exponential family.
Or2—qg?

The intersection of g-exponential families with different g-values is
empty.

Different Hamiltonians lead to different models belonging to the same
g-exponential family.

An important model is the g-Gaussian.



Why are generalized exponential families a new (and hot) topic in
mathematics?

Historically, mathematicians have considered another kind of
generalization.

Efron (1975): A model can be curved.
Models of the exponential family are flat, not curved.
Removing parameters of a flat model can make it curved.




Consider the normal distributions p,, »(x) with mean x and standard
deviation o

:
Prel) = Voroz

With parameters i and o it belongs to the exponential family.

e_(x_l‘)z/zf"z_

Consider the subset of normal distributions
for which = o

. L R

. Po(x) = V2712

The one-parameter family py does not
. K belong to the exponential family. It is known

to be curved.




Why curved?
Introduce canonical coordinates

A 01 = o2 and 0> = —,uo_z.

The line u = o becomes the curve
01 + 9% =0.

Indeed, one can write the pdf as

1 p? X2 ux
Puo(¥) = oz 00 (552 )P 52+ 2 )

The two 'Hamiltonians’ are H(x) = $x2 and Ha(x) = x.




Why are generalized exponential families of interest for statisticians?

Vishwanathan and Ding:
Inference with g-exponentials is more robust.
An outlier in the tail of an exponential is very unlikely,
more unlikely than for a g-exponential with algebraic tail.

T. D. Sears, Generalized Maximum Entropy, Convexity, and

Machine Learning, PhD thesis, Australian National University, 2008.
Nan Ding, Statistical machine learning in the t -exponential family

of distributions, PhD thesis, Purdue, 2013.
Nan Ding, S.V. N. Vishwanathan, t-Logistic Regression,

Adv. Neural Inf. Proc. Sys. 23, 514-522 (2010).

Note They change notation: p, g in statistics are probabilities.
t, replacing g as a parameter, comes from the t-student distribution
which belongs to the g-exponential family.



Deformed exponential and logarithmic functions




Definition of the g-exponential family
po(x) = c(x)exp, (—a(0) — 0" Hi(x)) . (%)
But alternative definitions exist!

Information geometry can help to give a covariant definition,
one which does not involve canonical coordinates.

(*) depends on the choice of parameters!
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On the basis of a recently p d of B: Gibbs Statistical Mechanics and
Thermodynamics, we argue “that the numbers provided by experimental measurements are to be
interpreted as g-expectation values (0); = Tr 30, where 0 is the observable, 5 is the density opera-
tor and the real index g characterizes the corresponding (generically nonextensive) entropy and de-
pends on some general characteristics of the system. The familiar association with the mean value
{@) = Trj( as well as the extensivity of standard additive observables are recovered only for the
Boltzmann-Gibbs particular case (g = 1), ¥ 3, or for pure states, ¥q. This interpretation leaves un-
touched the standard additivity and conservation of energy for pure states, but, unless g = 1, modifies
the definition and additivity of internal energies for statistical mixtures.

Keywords: measure; entropy; ensembles; generalized statistical mechanics and thermodynamics.

...One who brings the mean value Tr 5 0. We shall argue here that this is only a
A mind not to be changed by place or time. particular (though extremely ubiquitous, hence important)
The mind is its own place, and in itself case. We propose instead to generically interpret the experi-

Can make a heaven of hell, a hell of heaven. mental result as the g-expecration value

Paradise Lost (1658-1665), John Milton. { 0)., = Trpu o @
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Models may be curved.
This is the start of geometry applied to statistics

Wikipedia Information geometry is a branch of mathematics that
applies the techniques of differential geometry to the field of
probability theory.

A model is a statistical manifold.

A point of the statistical manifold is
determined by the value of the parameters
01,02, 0.

The parametrization of a model is not unique.
An equilibrium state can be identified by the
inverse temperature $ or by the internal
energy U.

Parameter transformations are well-known
from thermodynamics.



The Massieu function is given by ®(8) = In Z(3).
Its Legendre transform is the entropy S(U)

S(U) = irﬁ1f{¢(ﬁ) + BU}.

They satisfy the dual relations

do dSs
ﬁ_—u and m_e.

Mathematicians call this duality a Hessian structure.

Distances on the manifold of model points are determined by a metric
tensor gk ;. which is given by

A
9kl = Hokop1



The standard expression for the Fisher information matrix
0 3]
lat6) = [ axpal) ( " |npe> ( " |npe>

Theorem If the model belongs to the exponential family then
lk1(0) = gk.1(6).

For the g-deformed Fisher information different expressions are found
in the literature

i(0) ~ /dxpg(x) (606 Inp9> (606 Inp9> (Plastino et al)
lei(6) ~ / dx p5~9(x) ((%ln pg> ( 609 In p9> (Naudts).

The difference has to do with the g <+ 2 — g-symmetry.



Fitted model parameters deviate from the unknown exact values.

The deviation can be measured using the Fisher information
matrix.

The fitting procedure itself can be described
- + as an orthogonal projection onto the
2N\ manifold of model parameters.

The relative entropy can be used as a distance between
measured data and model points.



The relative entropy is in fact a relative Massieu function.
It is defined by

D(pllps) = [S(ps) — B{H) ] = [S(P) — B{H)p] -

Note that ¢(5) = sup{S(p) — B(H)p}.
p
Hence D(p||pg) > 0 with equality if and only if p = pg.

Max of Massieu is equivalent with minimal free energy.
Mathematicians call D(p||ps) a divergence.

It is a kind of squared distance between de measured data p and
the model point pg.

The standard definition of the Kullback-Leibler divergence is

D(pilps) = [ apx) In ,:;((XX)).




Pythagorean Theorem |[f the model
belongs to the exponential family and py
minimizes D(p||ps) then

D(pllp,) = D(pllps) + D(psllpy)-

This property does not involve
coordinates.

A generalized exponential family must
have the same property.

_



The Fisher information matrix is obtained from the divergence by

2

0
le1(0) = WD(PHPG) o
=o

Definition The extended Fisher information of a pdf p is

82
Iki(p) = 205001 D(pl|ps),

where pg minimizes D(p||py).



. Proposition [ (p) is covariant.
P

Proposition If py belongs to the
exponential family then Ik ;(p) is constant
along the orthogonal projection line.

These properties also hold for generalized exponential families.

J. Naudts and B. Anthonis, The exponential family in abstract information
theory, GSI 2013 LNCS proceedings, F. Nielsen and F. Barbaresco eds.,
(Springer, 2013), p. 265—-272.



Consider the manifold of normal distributions p,, ,(x) with mean
and standard deviation o

1
Puo(X) = o=z

Consider the submanifold of normal distributions for which . = o

o (x—n)?/20°

_ 1 gtxep/es

Po(x) = V2onh2

Let us show that /(p, ) is not constant along the projection lines.
(orthogonal projection of p,, ,(x) on the normal distributions for which
W= o0).



The Kullback-Leibler divergence D(p,.-||ps) is minimal when 6 is the
positive root of the equation

62 + pub = 2 + o2
The Fisher information /(p, ) equals

02 + p? + o?
(puo) = ¢

It is not constant on the projection lines —
it cannot be written as a function of 6 alone.

This implies that the subset satisfying . = o is not an exponential
family.
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