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Statistical mechanics is statistics applied to mechanics

The weight of history

Ludwig Boltzmann (1844–1906) lived before Andrei Kolmogorov (1903–1987).

Statistical physics existed before probability theory was axiomatized.
Physicists still partly use terminology found in the book of Gibbs.

Statisticians introduced a different terminology.

⇒ Sometimes we need a dictionary.

4



The exponential family of models

In physics a model is determined by its
Hamiltonian H. For instance (HO),

H(q, p) =
1

2m
p2 +

1

2
mω2q2.

We use the Hamiltonian in the
canonical ensemble of statistical

physics to calculate the
Boltzmann-Gibbs distribution

p(q, p) =
1

Z (β)
e−βH(q,p).

Mathematicians then say that the
model belongs to the exponential

family of models.
For any model of the exponential

family one has the identity

d

dβ
ln Z (β) = −〈H〉

(= EH for mathematicians).

Mean-field models do NOT belong to the exponential family!
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Many models do not belong the exponential family.

Example The configurational pdf of any real gas in the
microcanonical ensemble.

H =
1

2m

N
∑

n=1

|pn|2 + V (q1,q2, · · ·qN).

fE (q1,q2, · · ·qN) ∼
∫

dp1 · · ·
∫

dpN δ(E − H).

This model with parameter E belongs to the q-exponential family with

q = 1 − 2

3N − 2
.

J. Naudts and M. Baeten, Non-extensivity of the Configurational Density

Distribution in the Classical Microcanonical Ensemble,

Entropy 11, 285–294 (2009).
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Generalized exponential families

The Maximum Entropy Principle applied to the Tsallis entropy Sq

yields a probability distribution which becomes Boltzmann-Gibbs for

q = 1.

It belongs to the q-exponential family.
Or 2 − q?

The intersection of q-exponential families with different q-values is

empty.

Different Hamiltonians lead to different models belonging to the same

q-exponential family.

An important model is the q-Gaussian.
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Why are generalized exponential families a new (and hot) topic in
mathematics?

Historically, mathematicians have considered another kind of

generalization.

Efron (1975): A model can be curved.

Models of the exponential family are flat, not curved.
Removing parameters of a flat model can make it curved.
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Example

Consider the normal distributions pµ,σ(x) with mean µ and standard

deviation σ

pµ,σ(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

With parameters µ and σ it belongs to the exponential family.
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Consider the subset of normal distributions
for which µ = σ

pθ(x) =
1√

2πθ2
e−(x−θ)2/2θ2

.

The one-parameter family pθ does not

belong to the exponential family. It is known

to be curved.
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Why curved?
Introduce canonical coordinates

θ1 = σ−2 and θ2 = −µσ−2.

The line µ = σ becomes the curve

θ1 + θ2
2 = 0.

Indeed, one can write the pdf as

pµ,σ(x) =
1√

2πσ2
exp

(

− µ2

2σ2

)

exp

(

− x2

2σ2
+

µx

σ2

)

.

The two ’Hamiltonians’ are H1(x) =
1
2
x2 and H2(x) = x .
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Statistics

Why are generalized exponential families of interest for statisticians?

Vishwanathan and Ding:

Inference with q-exponentials is more robust.
An outlier in the tail of an exponential is very unlikely,

more unlikely than for a q-exponential with algebraic tail.

T. D. Sears, Generalized Maximum Entropy, Convexity, and

Machine Learning, PhD thesis, Australian National University, 2008.

Nan Ding, Statistical machine learning in the t -exponential family

of distributions, PhD thesis, Purdue, 2013.

Nan Ding, S.V. N. Vishwanathan, t-Logistic Regression,

Adv. Neural Inf. Proc. Sys. 23, 514–522 (2010).

Note They change notation: p, q in statistics are probabilities.

t, replacing q as a parameter, comes from the t-student distribution

which belongs to the q-exponential family.

11



Deformed exponential and logarithmic functions

The q-deformed logarithmic function is defined by

lnq(x) =
1

1 − q

(

x1−q − 1
)

.
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In the limit q = 1 this reduces
to the natural logarithm.

The inverse function is the

q-deformed exponential function

expq(x) = [1 + (1 − q)x ]
1/(1−q)
+ .

The figure shows lnq(u) for

q = 0.5 (red), 1 (black), and 2 (blue).
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Definition of the q-exponential family

pθ(x) = c(x)expq

(

−α(θ)− θk Hk (x)
)

. (∗)

But alternative definitions exist!
Information geometry can help to give a covariant definition,

one which does not involve canonical coordinates.

(*) depends on the choice of parameters!
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C. Tsallis, What are the numbers that experiments provide?

Quimica Nova 17, 468, 115 (1994).
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Models may be curved.

This is the start of geometry applied to statistics

Wikipedia Information geometry is a branch of mathematics that

applies the techniques of differential geometry to the field of
probability theory.

A model is a statistical manifold.
A point of the statistical manifold is

determined by the value of the parameters
θ1, θ2, · · · , θn.

The parametrization of a model is not unique.

An equilibrium state can be identified by the

inverse temperature β or by the internal
energy U.

Parameter transformations are well-known

from thermodynamics.
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Massieu function

The Massieu function is given by Φ(β) = ln Z (β).
Its Legendre transform is the entropy S(U)

S(U) = inf
β
{Φ(β) + βU}.

They satisfy the dual relations

dΦ

dβ
= −U and

dS

dU
= θ.

Mathematicians call this duality a Hessian structure.

Distances on the manifold of model points are determined by a metric
tensor gk ,l . which is given by

gk ,l =
∂2Φ

∂θk∂θl
.
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Fisher information

The standard expression for the Fisher information matrix

Ik ,l(θ) =

∫

dx pθ(x)

(

∂

∂θk

ln pθ

)(

∂

∂θl

ln pθ

)

Theorem If the model belongs to the exponential family then
Ik ,l(θ) = gk ,l(θ).

For the q-deformed Fisher information different expressions are found

in the literature

Ik ,l(θ) ∼
∫

dx p
q
θ (x)

(

∂

∂θk

ln pθ

)(

∂

∂θl

ln pθ

)

(Plastino et al)

Ik ,l(θ) ∼
∫

dx p
2−q
θ (x)

(

∂

∂θk

ln pθ

)(

∂

∂θl

ln pθ

)

(Naudts).

The difference has to do with the q ↔ 2 − q-symmetry.
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Fitting data — the geometric approach

◮ Fitted model parameters deviate from the unknown exact values.

◮ The deviation can be measured using the Fisher information
matrix.

The fitting procedure itself can be described

as an orthogonal projection onto the
manifold of model parameters.

◮ The relative entropy can be used as a distance between

measured data and model points.
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Divergence

The relative entropy is in fact a relative Massieu function.
It is defined by

D(p||pβ) = [S(pβ)− β〈H〉β ]− [S(p)− β〈H〉p] .

Note that Φ(β) = sup
p

{S(p)− β〈H〉p}.

Hence D(p||pβ) ≥ 0 with equality if and only if p = pβ .

◮ Max of Massieu is equivalent with minimal free energy.

◮ Mathematicians call D(p||pβ) a divergence.

◮ It is a kind of squared distance between de measured data p and
the model point pβ .

◮ The standard definition of the Kullback-Leibler divergence is

D(p||pθ) =

∫

dp(x) ln
p(x)

pθ(x)
.
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Pythagorean Theorem If the model
belongs to the exponential family and pθ

minimizes D(p||pθ) then

D(p||pη) = D(p||pθ) + D(pθ||pη).

◮ This property does not involve

coordinates.

◮ A generalized exponential family must

have the same property.
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Extended Definition of Fisher Information

The Fisher information matrix is obtained from the divergence by

Ik ,l(θ) =
∂2

∂θk∂θl
D(p||pθ)

∣

∣

∣

∣

p=pθ

.

Definition The extended Fisher information of a pdf p is

Ik ,l(p) =
∂2

∂θk∂θl
D(p||pθ),

where pθ minimizes D(p||pθ).
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Proposition Ik ,l(p) is covariant.

Proposition If pθ belongs to the

exponential family then Ik ,l(p) is constant
along the orthogonal projection line.

These properties also hold for generalized exponential families.

J. Naudts and B. Anthonis, The exponential family in abstract information

theory, GSI 2013 LNCS proceedings, F. Nielsen and F. Barbaresco eds.,

(Springer, 2013), p. 265–272.
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Example revisited

Consider the manifold of normal distributions pµ,σ(x) with mean µ

and standard deviation σ

pµ,σ(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

Consider the submanifold of normal distributions for which µ = σ

pθ(x) =
1√

2πθ2
e−(x−θ)2/2θ2

.

Let us show that I(pµ,σ) is not constant along the projection lines.
(orthogonal projection of pµ,σ(x) on the normal distributions for which

µ = σ).
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The Kullback-Leibler divergence D(pµ,σ ||pθ) is minimal when θ is the

positive root of the equation

θ2 + µθ = µ2 + σ2.

The Fisher information I(pµ,σ) equals

I(pµ,σ) =
θ2 + µ2 + σ2

θ4
.

It is not constant on the projection lines —
it cannot be written as a function of θ alone.

This implies that the subset satisfying µ = σ is not an exponential

family.
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Kyoto 2009
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