Rio 29.10-1.11 2013

Restricted random walk model as a new testing ground for the applicability of q-statistics

Henrik Jeldtoft Jensen Networks & Complexity Group and Department of Mathematics Imperial College London

Collaborators: Ugur Tirnakli and Constantino Tsallis

Reference:

U. Tirnakli, H.J. Jensen and C. Tsallis, *Restricted random walk model as a new testing ground for the applicability of q-statistics* EPL **96**, 40008 (2011) & arXiv:1105.6184.

Rio 29.10-11.11 2013

Constantino Tsallis congratulations! ! !

- A privilege to be here amongst all these brilliant scientists celebrating a bold and innovative friend
- Whatever "q-statistics" turns out to be about, it has already proved to be a source of great inspiration and motivated a concerted global effort to try to figure out "what is going on" in strongly correlated statistical mechanics.

A great teacher

Outline:

- I. Motivation
- 2. Model
- 3. The q-Gaussian and its nature
- 4. Generality issues
- 5. Summary
- 6. Conclusion

The q-Gaussian

$$P(y) = \begin{cases} P(0) \left[1 - \beta(1-q)y^2 \right]^{\frac{1}{1-q}} & \text{for } \beta(1-q)y^2 < 1 \\ 0 & \text{otherwise} \end{cases}$$

wide spread occurrence.

Frequently found to represent the probability density function of (appropriately scaled and shifted) sums.

$$y = \sum_{t=1}^{T} x_t$$

I.e. breaking of the CLT.

Question: when does this occur ??

why q-expo or q-Gaussians ??

excellent fits or more ??

For example

Tirnakli, Tsallis and Beck studied the logistic map at the edge of chaos

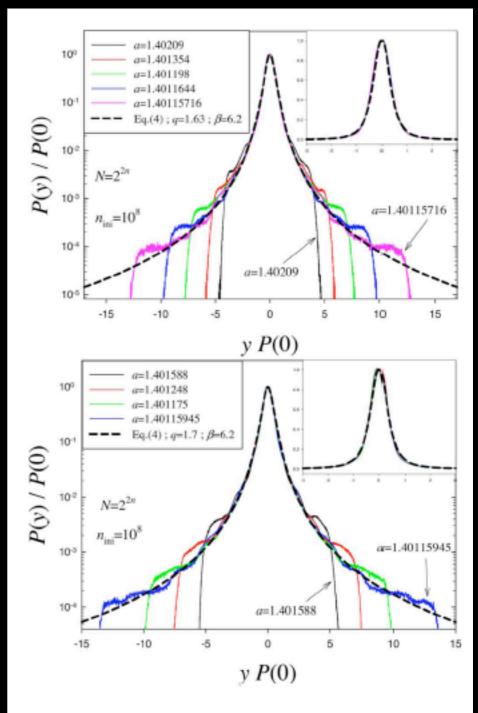
$$x_{n+1} = 1 - ax_n^2$$

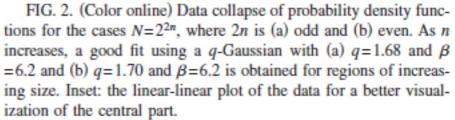
Focused on sums of the iterates

$$y_N = \sum_{n=1}^N (x_n - \langle x \rangle)$$

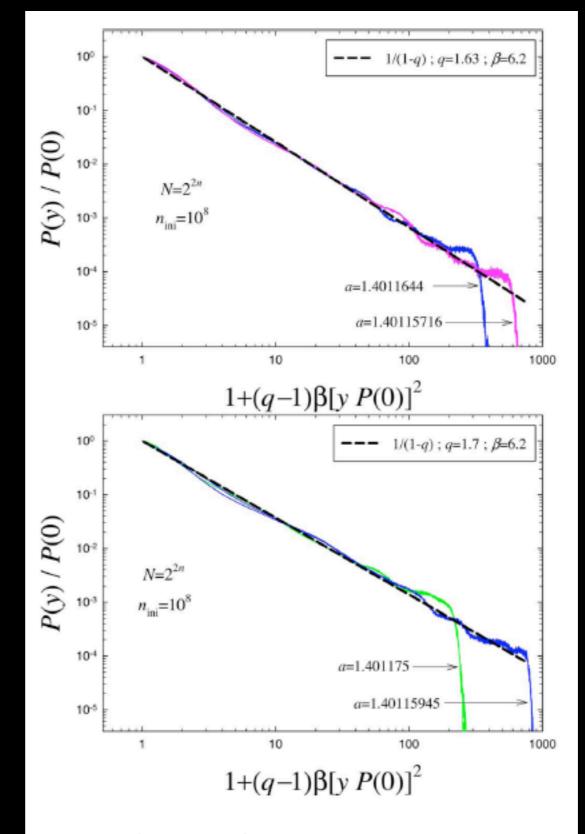
Found that the q-Gaussian fits well the distribution of the sum near onset of chaos

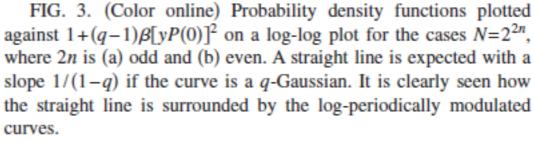
Reference: Tirnakli, Tsallis and Beck, PRE **79** 056209 (2009)





Scaling plots





Afsar and Tirnakli did similar study for the sine-circle map

$$x_{n+1} = x_n + \Omega - \frac{K}{2\pi}\sin(2\pi x_n)$$

and studied again

$$y_N = \sum_{n=1}^N (x_n - \langle x \rangle)$$

at the edge of chaos.

Found evidence of q-Gaussian with

q<

Reference: Afsar and Tirnakli arXiv:1001.2689

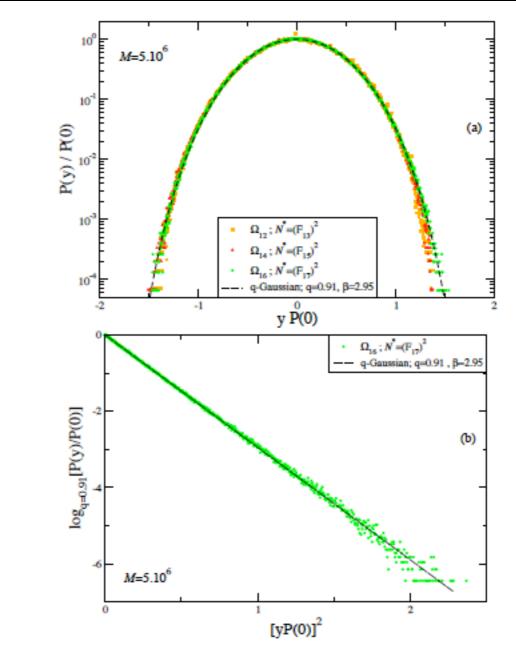


FIG. 3: (a) Probability distributions of the cases where the critical point is approached from below. (b) q-logarithmic plot of the same data for the case Ω_{16} which is the closest to the critical point that we can obtain numerically in our simulations.

Why is this?

Can we improve our understanding by turning to simpler situations?

Preferably solvable models.

Use the Random Walker

The random walker - the workhorse of stat mech

$$_{t+1} = \begin{cases} x_t + 1 & \text{with probability } \gamma/2 \\ x_t - 1 & \text{with probability } \gamma/2 \\ x_t & \text{with probability } 1 - \gamma \end{cases}$$

the sum of the position

 \mathcal{X}

$$y = \sum_{t=1}^{T} x_t$$

is Gaussian distributed - when shifted and scaled

We expect the q-Gaussian to be related to significant correlations

Consider Restricted Random Walker

 $x_{t+1} = \begin{cases} x_t + 1 & \text{with probability } g(x)/2 \\ x_t - 1 & \text{with probability } g(x)/2 \\ x_t & \text{with probability } 1 - g(x). \end{cases}$

with
$$g(x) = \begin{cases} \left| \frac{x}{L} \right|^a & \text{if } x \neq 0 \\ p & \text{if } x = 0 \end{cases}$$
 with $p << 1$

How is
$$y = \sum_{t=1}^{T} x_t$$
 distributed?

Henrik Jeldtoft Jensen - Imperial College London

The exponent *a* Since q-stat should essentially be a matter of correlations would expect applicability for a range of *a* values

According to e.g. Tsallis and Thurner & Hanel

Anomalous statistics occur when V

 $W(N) \neq \mu^N$

The (effective) number of possible paths visited after T time step may for the Restricted Random Walker very likely be different from

$$W(T) \neq 2^T$$

because of the position dependent transition probability.

But this should happen for all values of the exponent a (?)

The Restricted Random Walk

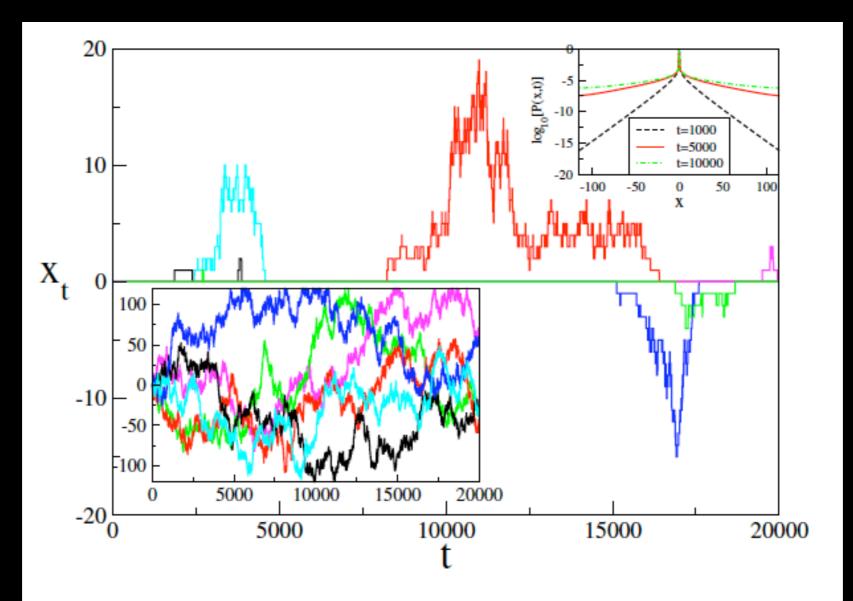
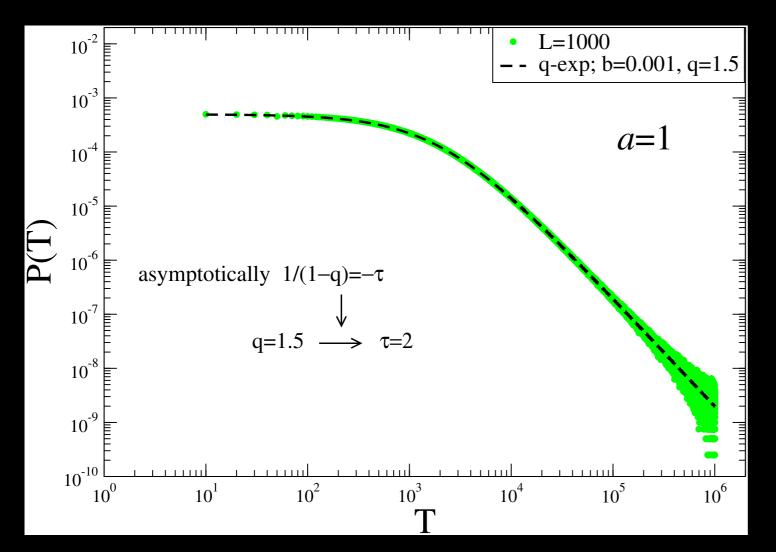


Fig. 1: (Colour on-line) Six representative trajectories for L = 120. Main panel: The restricted RW model $(p = 5 \cdot 10^{-6})$. Lower Inset: The standard RW model (p = 1). Non-ergodic behavior of the restricted RW model can easily be seen. Upper Inset: The time evolution of P(x, t) at three different t values (t = 1000, 5000 and 10000 from bottom to top).

Return time distribution - q-exponentials

a = 1



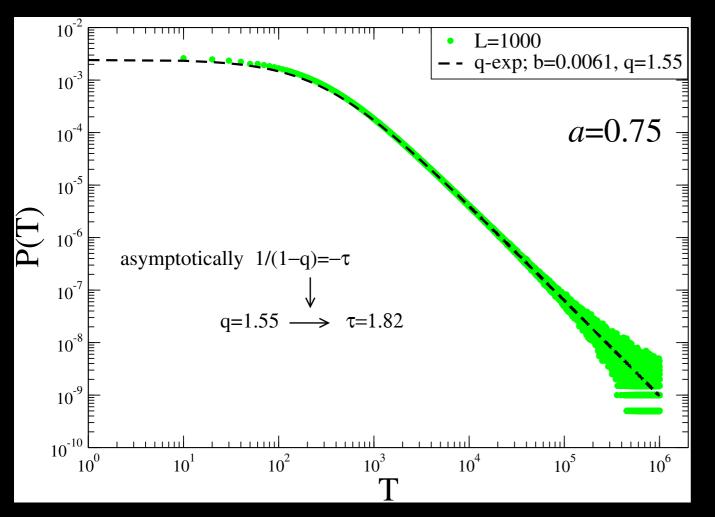
$$P(T_r) \sim T_r^{- au}$$
 with $au = 2$

rather than the usual $\tau=3/2$

Ugur Tirnakli - 30.10.13

Return time distribution

a = 0.75



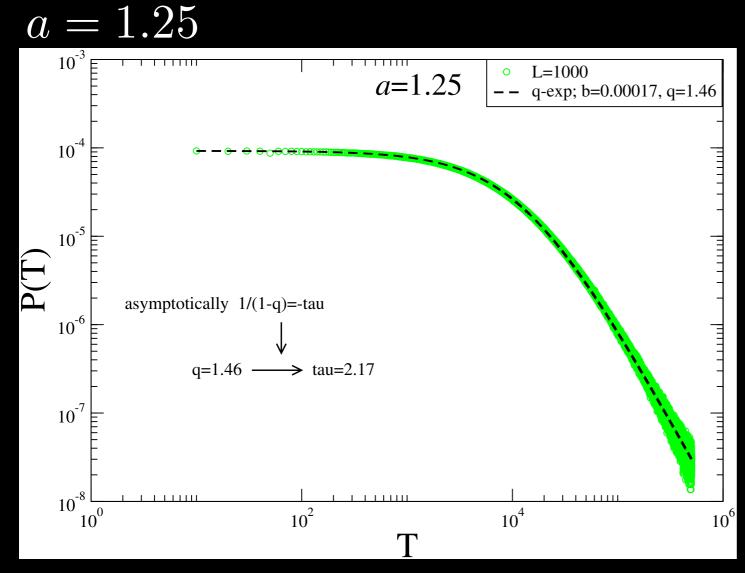
$$P(T_r) \sim T_r^{- au}$$

with $au = 1.82$

rather than the usual $\tau = 3/2$

Ugur Tirnakli - 30.10.13

Return time distribution



$$P(T_r) \sim T_r^{- au}$$
 with $au = 2.17$

rather than the usual $\tau=3/2$

Ugur Tirnakli - 30.10.13

Summary

a	0.75	1	1.25
q	1.55	1.5	1.46
au	1.82	2	2.17

How about P(x,t)

P(x,t) = prob{walker is at position x at time t}

Obviously a Gaussian for the ordinary Random Walker

The Restricted Random Walker

$$x_{t+1} = \begin{cases} x_t + 1 & \text{with probability } g(x)/2 \\ x_t - 1 & \text{with probability } g(x)/2 \\ x_t & \text{with probability } 1 - g(x). \end{cases}$$

with
$$g(x) = \begin{cases} |\frac{x}{L}|^a & \text{if } x \neq 0 \\ p & \text{if } x = 0 \end{cases}$$
 with $p << 1$

Master Equation for P(x,t)

$$P_X(x,t+1) = P_X(x,t) + \frac{1}{2}g(x-1)P_X(x-1,t) + \frac{1}{2}g(x+1)P_X(x+1,t) - g(x)P_X(x,t)$$

from

$$x_{t+1} = \begin{cases} x_t + 1 & \text{with probability } g(x)/2 \\ x_t - 1 & \text{with probability } g(x)/2 \\ x_t & \text{with probability } 1 - g(x). \end{cases}$$

$$g(x) = \begin{cases} |\frac{x}{L}|^a & \text{if } x \neq 0\\ p & \text{if } x = 0 \end{cases}$$

Continuum approximation for P(x,t)

$$\partial_t P(x,t) = \kappa \partial_x^2 [g(x)P(x,t)]$$

Stationary solution is
$$P(x) = rac{ ext{constant}}{g(x)}$$

which is in very good agreement with the numerical solution of the discrete Master Equation

For
$$a = 1$$
 hence $g(x) = |x/L|$ the continuum equation becomes

$$\partial_t P(x,t) = \gamma \partial_x^2 [x P(x,t)]$$

$$\partial_t P(x,t) = \gamma \partial_x^2 [x P(x,t)]$$

is solved (to a good approximation) by (see van Kampen)

$$P(x,t) = \frac{1}{t\sqrt{x}} \exp[-\frac{x+1}{t}] I_1(2\sqrt{x}/t)$$

for an initial delta peak at x=1

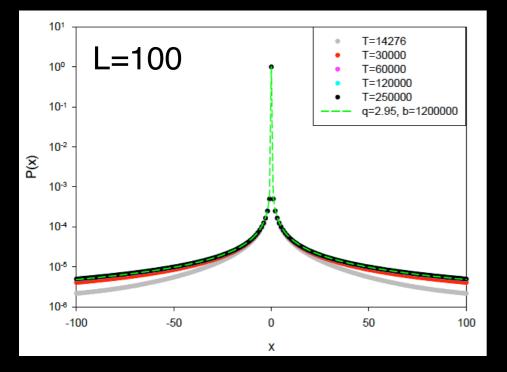
First return time

From current at the origin

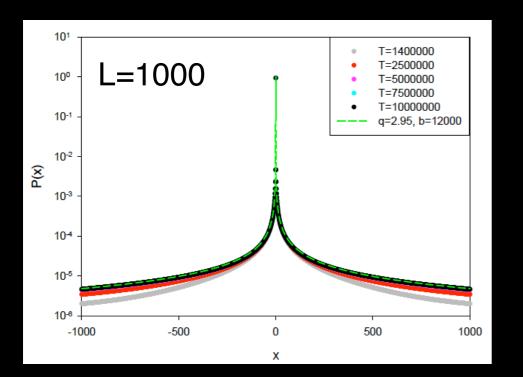
 $P(T) = \text{Prob}\{\text{first returnat } t = T\} = \partial_x P(x = 1, T)$ $\propto 1/T^2$

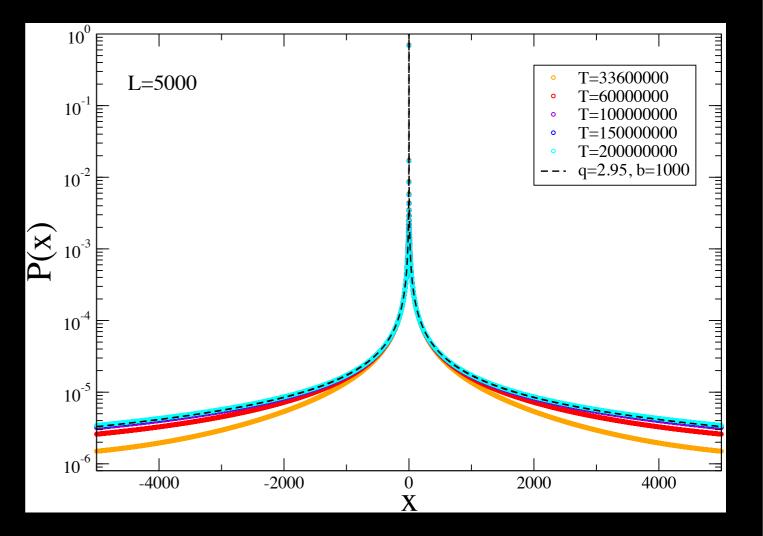
In agreement with Ugur's simulation

Solutions for P(x) fitted to q-Gaussian



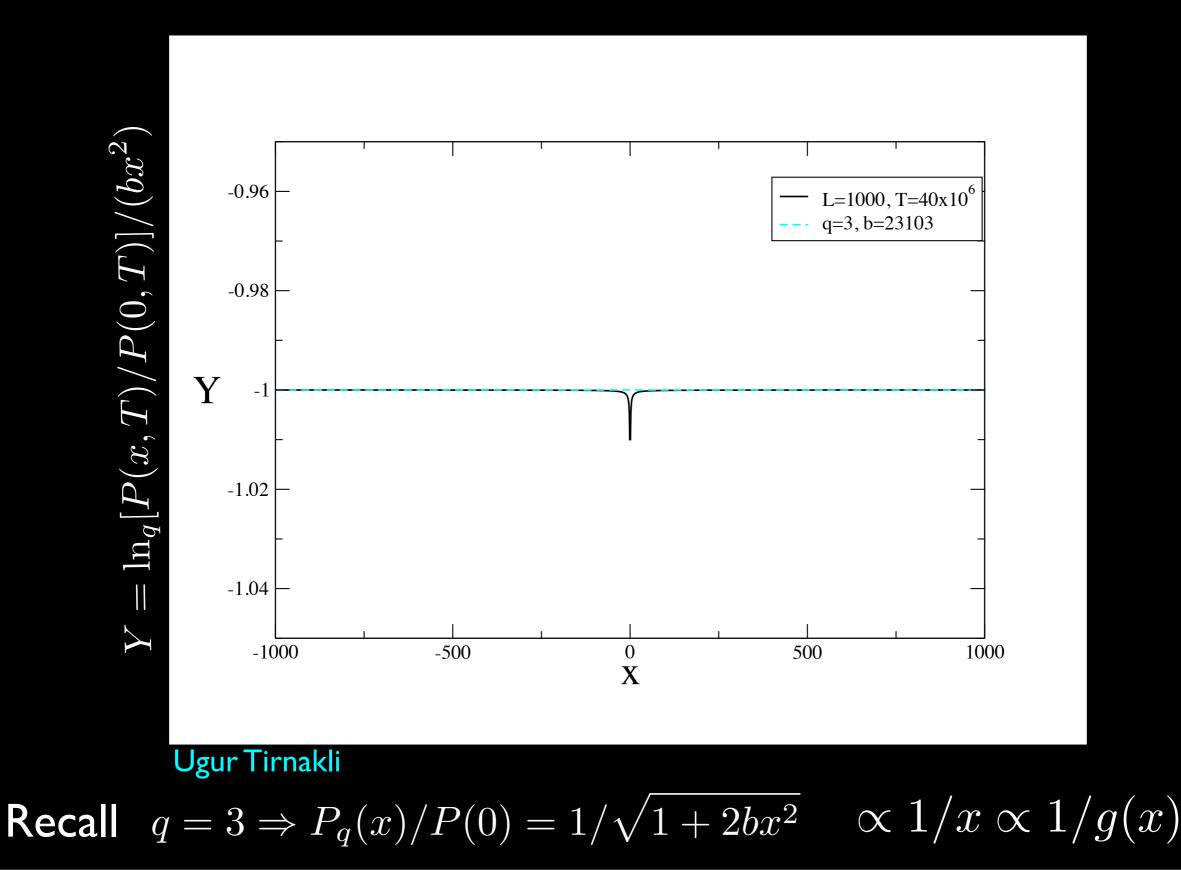
a = 1 hence g(x) = |x/L|





Ugur Tirnakli

and now the asymptotic fit behaviour



Situation $a \neq 1$

Continuum approximation then

$$\partial_t P(x,t) = \gamma \partial_x^2 [x^a P(x,t)]$$

Work in progress

Statistics - continued

Want to determine the the distributions

$$\mathsf{P}(\mathsf{y},\mathsf{T}) = \mathsf{prob}\{\sum_{t=1}^{T} x_t = y \text{ at time }\mathsf{T}\}\$$

note
$$\langle y \rangle = 0$$

so shift not needed - scaling included in fitting to q-Gaussian

Master Equation for P(y,x;t) $(x_t, y_t) \mapsto (x_{t+1}, y_{t+1})$ where $y_{t+1} = \sum_{i=1}^t x_i + x_{t+1} = y_t + x_{t+1}$

$$(x_t, y_t) \mapsto \begin{cases} (x_t + 1, y_t + x_t + 1) & \text{with probability } g(x_t)/2\\ (x_t - 1, y_t + x_t - 1) & \text{with probability } g(x_t)/2\\ (x_t, y_t + x_t) & \text{with probability } 1 - g(x_t). \end{cases}$$

$$\begin{split} P(y,x;t+1) &= P(y,x;t) + \sum_{\Delta \in \{-1,0,1\}} \\ [W(y,x;y-(x-\Delta),x-\Delta)P(y-(x-\Delta),x-\Delta;t)) \\ -W(y+x+\Delta,x+\Delta;y,x)P(y,x;t)]. \end{split}$$

The transition probabilities simplify

$$W(y, x; y - (x - \Delta), x - \Delta) = w(x - \Delta, \Delta)$$

$$W(y + x + \Delta, x + \Delta; y, x) = w(x, \Delta)$$

Where

$$w(z, \Delta) = \begin{cases} g(z)/2 & \text{if } \Delta = \pm 1\\ 1 - g(z) & \text{if } \Delta = 0 \end{cases}$$

Master Equation for P(y,x;t) reduces to

$$P(y, x; T+1) = \frac{1}{2} [g(x+1)P(y - (x+1), x+1; T) + g(x-1)P(y - (x-1), x-1; T)] + (1 - g(x))P(y - x, x; T)$$

Not found analytic solution Solve by numerical iteration

and obtain

$$P(y,T) = \sum_{x=-L}^{L} P(y,x;T)$$

The probability density of

t =

$$P(y,T)$$
 with $y = \sum_{T}^{T}$

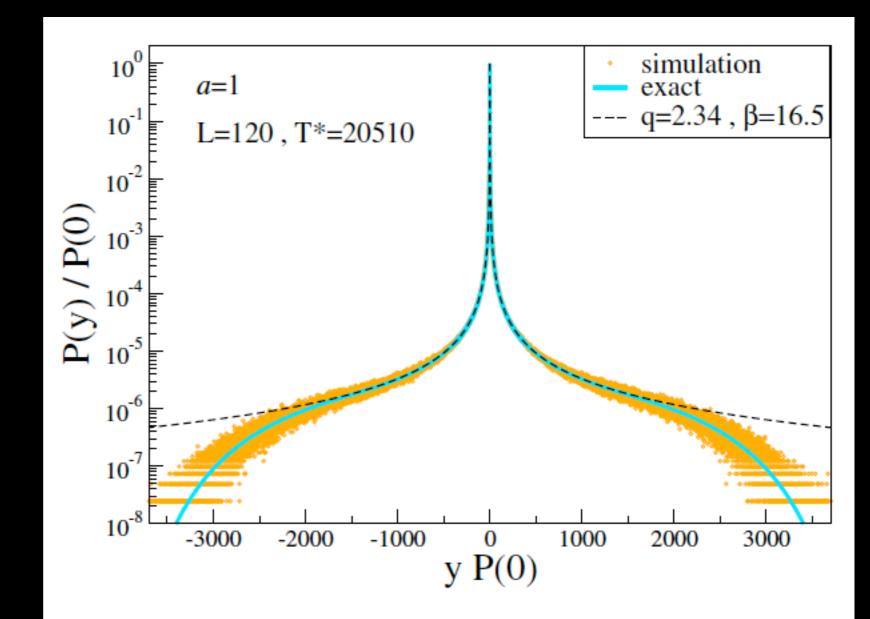


Fig. 2: (Colour on-line) Exact and simulation results of the case a = 1, L = 120 and $p = 5 \cdot 10^{-6}$. It is clearly seen that the probability function $P(y, T^*)$ obtained from simulations is completely in accordance with the exact results. The number of experiments used in our simulations are $2 \cdot 10^8$.

Scaling behaviour

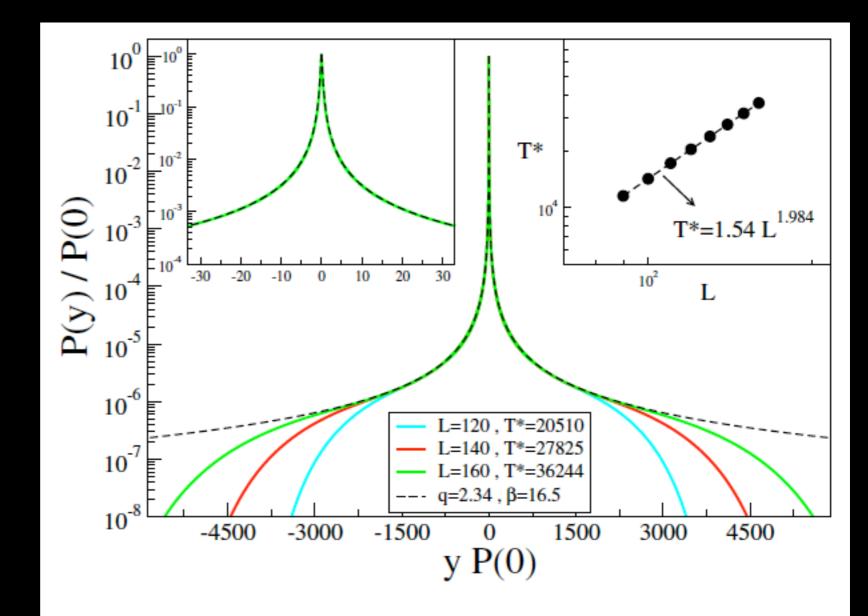


Fig. 3: (Colour on-line) The case a = 1 for L = 120, 140 and 160 with $p = 5 \cdot 10^{-6}$. The main panel shows the probability function $P(y, T^*)$. The center of the function is shown in detail in the left inset. The time T^* is chosen to optimize the fit to the *q*-Gaussian. The scaling of T^* is given in the right inset.

Quality of the fit to q-Gaussian

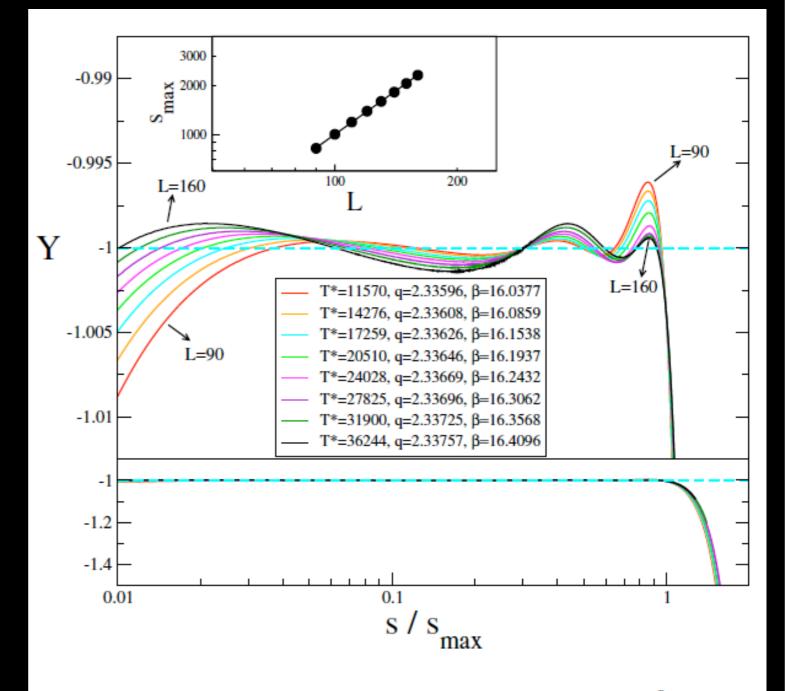


Fig. 4: (Colour on-line) The case a = 1 and $p = 5 \cdot 10^{-6}$ with L values between L = 90 to 160. The lower panel shows the data collapse when the *x*-axis is appropriately scaled. The upper panel shows a zoomed region around the Y = -1 line. In the inset the scaling of s_{max} with L is given. The straight line is $s_{max} = AL^C$ with A = 0.2726 and C = 1.7828.

Scaling of q with systems size L

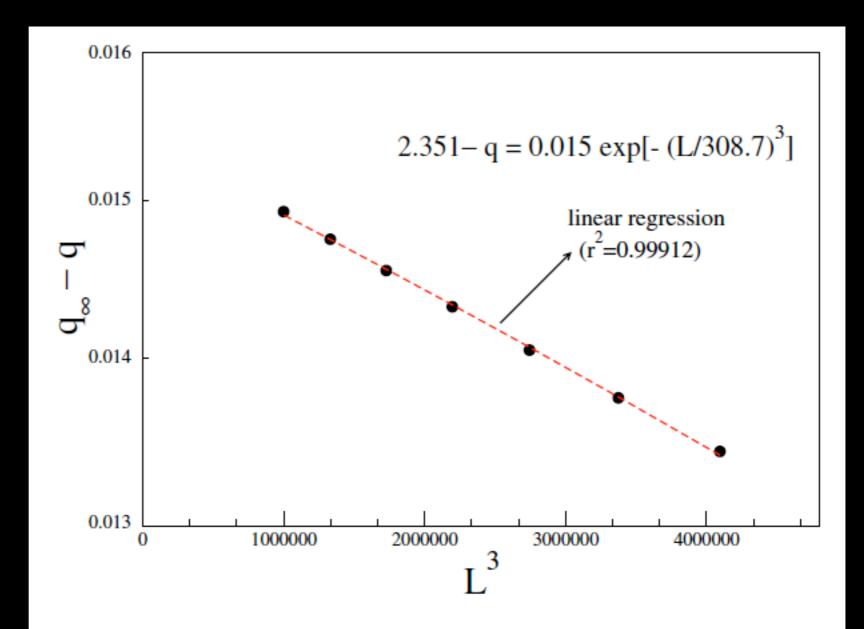


Fig. 5: (Colour on-line) Linear-log representation for the L dependence of q values. This exponential dependence suggests an asymptotic value around $q_{\infty} \simeq 2.351$.

Different values of a

 $g(x) = \min\left\{ \left| \frac{x}{L} \right|^a + p, 1 \right\} \text{ and } x_{t+1} = \begin{cases} x_t + 1 & \text{with probability } g(x)/2 \\ x_t - 1 & \text{with probability } g(x)/2 \\ x_t & \text{with probability } 1 - g(x). \end{cases}$

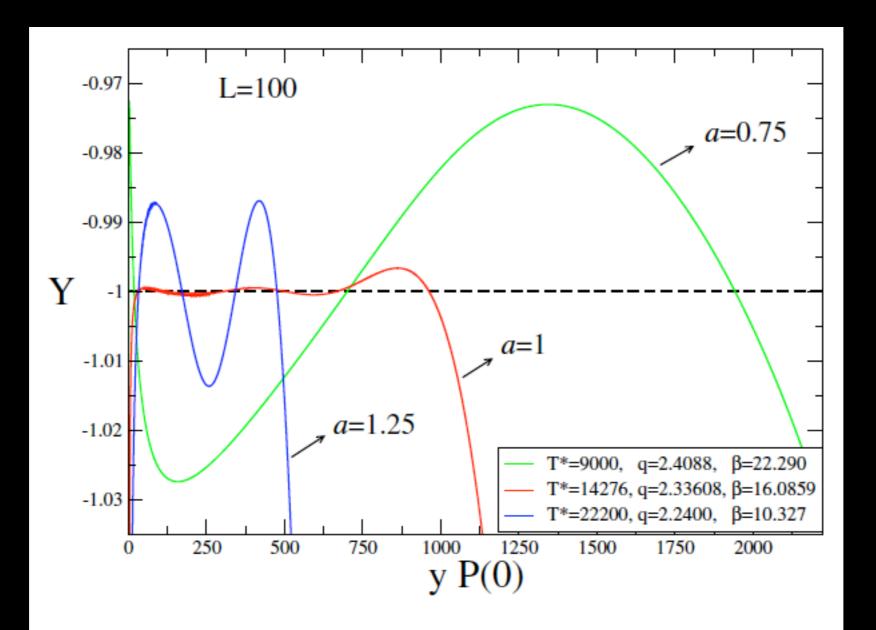


Fig. 6: (Colour on-line) Y plot of cases a = 0.75, a = 1 and a = 1.25 for a representative L value. Whenever $a \neq 1$, increasing order of deviation from -1 line is evident.

Correlated versus uncorrelated

Does the peculiar shape of P(x) produce the q-Gaussian like behaviour?

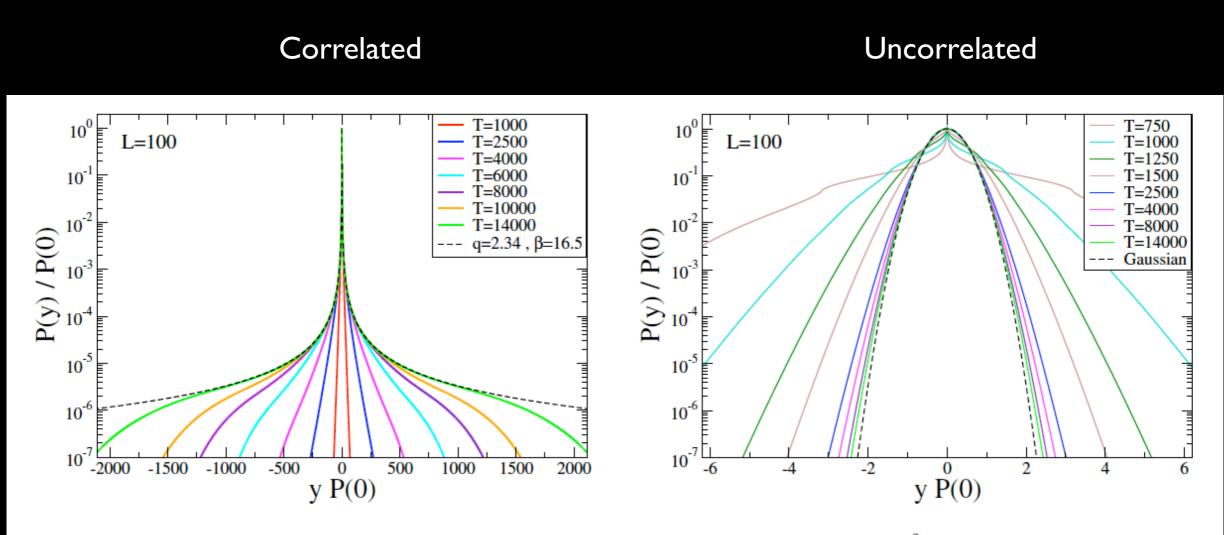


Fig. 7: (Colour on-line) Comparison of the T dependence for fixed values of L with $p = 5 \cdot 10^{-6}$ for the correlated (left panel) and the uncorrelated (right panel) P(y,T) distribution (see text for the details).

Summary

The convergence towards q-Gaussian appears fragile

- $\$ L and T needs to scale: $T=L^2$
- q and L scale with: $q_{\infty} = 2.351 0.015 \exp[-(L/308.7)^3]$
- why does only a = 1 lead to q-Gaussian ?

$$g(x) = \begin{cases} \left|\frac{x}{L}\right|^a & \text{if } x \neq 0\\ p & \text{if } x = 0 \end{cases}$$

Conclusion

The simplicity of the (restricted) random walker was helpful:

Allows derivation of exact Master Equations

 \rightarrow q-Gaussian does describe one asymptotic limit (for a = 1)

But deeper analytic understanding is needed to discover the significance of the appearance of the q-Gaussian in the case when $T \sim L^2$

If q-Gaussians are not the analytic attractors why are they so efficient ? ? ?

Collaborators: Ugur Tirnakli and Constantino Tsallis