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Constantino Tsallis -     
        congratulations! ! !

  A privilege to be here amongst all these brilliant scientists celebrating a 
    bold and innovative friend

  Whatever “q-statistics” turns out to be about, it has already proved to be a
    source of great inspiration and motivated a concerted global effort to try 
    to figure out “what is going on” in strongly correlated statistical   
    mechanics.

To Constan
tino

 from Henrik

A great teacher
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P (y) =

(
P (0)

⇥
1� �(1� q)y2

⇤ 1
1�q

for �(1� q)y2 < 1

0 otherwise

The q-Gaussian 

wide spread occurrence.

Frequently found to represent the probability density function of 
(appropriately scaled and shifted) sums.

I.e. breaking of the CLT.

Question: when does this occur ? ?

                  why q-expo or q-Gaussians  ? ?

                  excellent fits or more ? ?

y =
TX

t=1

xt

Henrik Jeldtoft Jensen - Imperial College London



Tirnakli, Tsallis and Beck studied the logistic map 
at the edge of chaos  

  Focused on sums of the iterates

 Found that the q-Gaussian fits well the 
     distribution of the sum near onset of chaos

Reference:
Tirnakli, Tsallis and Beck, 
PRE 79 056209 (2009)

For example

xn+1 = 1� ax

2
n

yN =
NX

n=1

(xn � hxi)
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Scaling plots
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Afsar and Tirnakli did similar study for the sine-circle map 

xn+1 = xn + ⌦� K

2⇡

sin(2⇡xn)

yN =
NX

n=1

(xn � hxi)

and studied again

at the edge of chaos.

Found evidence of 
q-Gaussian with

             q<1

Reference:
Afsar and Tirnakli
arXiv:1001.2689
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Why is this?

Can we improve our understanding by 
turning to simpler situations?

Preferably solvable models.

Use the Random Walker
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The random walker - the workhorse of stat mech

xt+1 =

8
<

:

xt + 1 with probability �/2

xt � 1 with probability �/2

xt with probability 1� �.

y =
TX

t=1

xtthe sum of the position

is Gaussian distributed - when shifted and scaled

We expect the q-Gaussian to be related to significant 
correlations
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xt+1 =

8
<

:

xt + 1 with probability g(x)/2

xt � 1 with probability g(x)/2

xt with probability 1� g(x).

Consider Restricted Random Walker

with

How is y =
TX

t=1

xt distributed?

with  p << 1 

The exponent a
Since q-stat should essentially be 
a matter of correlations would 
expect applicability for a range of 
a values

x

L�L 0

g(x) =
⇢

| x

L

|a if x 6= 0
p if x = 0
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According to e.g.  Tsallis and Thurner & Hanel  

Anomalous statistics occur when W (N) 6= µN

The (effective) number of possible paths visited after T time 
step may for the Restricted Random Walker very likely be 
different from 

W (T ) 6= 2T

because of the position dependent transition probability.

But this should happen for all values of the exponent a (?)
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The Restricted Random Walk
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Return time distribution - q-exponentials

P (Tr) ⇠ T�⌧
r

with ⌧ = 2

rather than the 
usual

⌧ = 3/2

a = 1

Ugur Tirnakli - 30.10.13
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Return time distribution

⌧ = 1.82

P (Tr) ⇠ T�⌧
r

with 

rather than the 
usual

⌧ = 3/2
Ugur Tirnakli - 30.10.13

a = 0.75
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⌧ = 2.17

Return time distribution

P (Tr) ⇠ T�⌧
r

with 

rather than the 
usual

⌧ = 3/2Ugur Tirnakli - 30.10.13

a = 1.25

Summary a

q

⌧

10.75 1.25

1.51.55 1.46
21.82 2.17
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xt+1 =

8
<

:

xt + 1 with probability g(x)/2

xt � 1 with probability g(x)/2

xt with probability 1� g(x).

The Restricted Random Walker

with with  p << 1 

How about P(x,t)

P(x,t) = prob{walker is at position x at time t}

Obviously a Gaussian for the ordinary Random Walker

g(x) =
⇢

| x

L

|a if x 6= 0
p if x = 0
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PX(x, t + 1) = PX(x, t)

+
1
2
g(x� 1)PX(x� 1, t) +

1
2
g(x + 1)PX(x + 1, t)� g(x)PX(x, t)

Master Equation for P(x,t)

xt+1 =

8
<

:

xt + 1 with probability g(x)/2

xt � 1 with probability g(x)/2

xt with probability 1� g(x).

from

g(x) =
⇢

| x

L

|a if x 6= 0
p if x = 0
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Continuum approximation  for P(x,t)

Stationary solution is

which is in very good agreement with the numerical solution of 
the discrete Master Equation 

@

t

P (x, t) = @

2
x

[g(x)P (x, t)]

For a = 1 hence g(x) = |x/L| the continuum equation becomes  

P (x) =

constant

g(x)

@

t

P (x, t) = �@

2
x

[xP (x, t)]
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@

t

P (x, t) = �@

2
x

[xP (x, t)]

is solved (to a good approximation)  by (see van Kampen)

P (x, t) =

1

t

p
x

exp[�x + 1

t

]I1(2
p

x/t)

for an initial 
delta peak at x=1

First return time

From current at the origin 

P (T ) = Prob{first returnat t = T } = @

x

P (x = 1, T )

/ 1/T 2

In agreement with Ugur’s simulation
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Solutions for P(x) fitted to q-Gaussian
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Ugur Tirnakli 

a = 1 hence g(x) = |x/L|
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Ugur Tirnakli 

Recall q = 3) Pq(x)/P (0) = 1/

p
1 + 2bx

2

Y

=
ln

q
[P

(x
,

T

)/
P

(0
,

T

)]
/

(b
x

2
)

/ 1/x / 1/g(x)
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Situation 

@

t

P (x, t) = �@

2
x

[xa

P (x, t)]

a 6= 1

Continuum approximation then

Work in progress . . . .
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Want to determine the the distributions

P(y,T) = prob{                at time T}

note 

so shift not needed - scaling included in fitting to 
q-Gaussian
  

Statistics - continued

TX

t=1

xt = y

hyi = 0
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P (y, x; t + 1) = P (y, x; t) +
X

�2{�1,0,1}

[W (y, x; y � (x��), x��)P (y � (x��), x��; t))
�W (y + x + �, x + �; y, x)P (y, x; t)].

Master Equation for P(y,x;t)

(xt, yt) 7!

8
<

:

(xt + 1 , yt + xt + 1) with probability g(xt)/2

(xt � 1 , yt + xt � 1) with probability g(xt)/2

(xt , yt + xt) with probability 1� g(xt).

(xt, yt) 7! (xt+1, yt+1) where yt+1 =
tX

i=1

xi + xt+1 = yt + xt+1
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W (y, x; y � (x��), x��) = w(x��,�)

W (y + x + �, x + �; y, x) = w(x,�)

w(z,�) =
⇢

g(z)/2 if � = ±1
1� g(z) if � = 0

Where

The transition probabilities simplify
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P (y, x;T + 1) =
1
2
[g(x + 1)P (y � (x + 1), x + 1; T )

+g(x� 1)P (y � (x� 1), x� 1;T )]
+(1� g(x))P (y � x, x;T )

Not found analytic solution
Solve by numerical iteration

and obtain 

P (y, T ) =
LX

x=�L

P (y, x;T )

Master Equation for P(y,x;t) reduces to
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The probability density of 

P (y, T ) with y =
TX

t=1
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Scaling behaviour
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Quality of the fit to 
q-Gaussian
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Scaling of q with systems size L
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Different values of a

g(x) = min
��� x

L

��a + p, 1
 

and xt+1 =

8
<

:

xt + 1 with probability g(x)/2

xt � 1 with probability g(x)/2

xt with probability 1� g(x).
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Correlated versus uncorrelated

Does the peculiar shape of P(x) produce the 
q-Gaussian like behaviour?

Correlated Uncorrelated
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Summary  

The convergence towards q-Gaussian appears 
fragile

 L and T needs to scale: 

q and L scale with: 

why does only a = 1 lead to q-Gaussian ?

T = L2

q1 = 2.351� 0.015 exp[�(L/308.7)

3
]

g(x) =
⇢

| x

L

|a if x 6= 0
p if x = 0

Henrik Jeldtoft Jensen - Imperial College London



Conclusion

The simplicity of the (restricted) random walker was helpful:

    Allows derivation of exact Master Equations

    q-Gaussian does describe one asymptotic limit (for a = 1)

    But deeper analytic understanding is needed to  
    discover the significance of the appearance of the 
    q-Gaussian in the case when 

    
    If q-Gaussians are not the analytic attractors
    why are they so efficient ? ? ? 

T ⇠ L2
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Collaborators: 
Ugur Tirnakli and Constantino Tsallis

Thank You
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