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Networks

Constantino Tsallis -
congratulations! ! !

&€ A privilege to be here amongst all these brilliant scientists celebrating a
bold and innovative friend

€ Whatever “g-statistics” turns out to be about, it has already proved to be a
source of great inspiration and motivated a concerted global effort to try
to figure out “what is going on” in strongly correlated statistical
mechanics.

A great teacher



Outline:

|. Motivation

2. Model

3. The g-Gaussian and its nature
4. Generality issues

5. Summary

6. Conclusion

Henrik Jeldtoft Jensen - Imperial College London



Henrik Jeldtoft Jensen - Imperial College London

The g-Gaussian

P(y) = { P(0) [1— B0 —q)y?] 7 for B(1—q)y? <1

B 0 otherwise

wide spread occurrence.

Frequently found to represent the probability density function of
(appropriately scaled and shifted) sums.
T
y =2
t=1

l.e. breaking of the CLT.

excellent fits or more ? ?
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Tirnakli, Tsallis and Beck studied the logistic map
at the edge of chaos

Tpi1 = 1 —ax? 3
éﬁ. )
® Focused on sums of the iterates
N
YN — Z(xn — <37>)
n=1

®  Found that the g-Gaussian fits well the
distribution of the sum near onset of chaos

vy P(0)

FIG. 2. (Color online) Data collapse of probability density func-

R f . tions for the cases N=22", where 2n is (a) odd and (b) even. As n

ererence. increases, a good fit using a g-Gaussian with (a) g=1.68 and B

. . . =6.2 and (b) g=1.70 and 8=6.2 is obtained for regions of increas-
Tirnakli, Tsallis and Beck, ;

ing size. Inset: the linear-linear plot of the data for a better visual-

PRE 79 056209 (2009) ization of the central part.




Scaling plots

a=1.4011644
n'fl.“:| Ii—‘- 6O

PP |

100

1+(g—1)Bly PO)]’

—— (1=t

S
Q. ;
L

a=1.4011 -—;'

a=1.40115945

P—— P——t

10 100

1+(g—1)B[y P(0))’

FIG. 3. (Color online) Probability density functions plotted
against 1+(g—1)B[yP(0)]* on a log-log plot for the cases N=2%",
where 2n is (a) odd and (b) even. A straight line is expected with a
slope 1/(1—g) if the curve is a g-Gaussian. It is clearly seen how
the straight line is surrounded by the log-periodically modulated

curves.
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Afsar and Tirnakli did similar study for the sine-circle map

K
Tyl = Ty + O — oy sin(2mx,,)

10 "
T M=510"

and studied again

N

YN = Z(xn — (7))

n=1

at the edge of chaos.

Found evidence of
g-Gaussian with

q<l

M=5.10"

[yP(O)]

FIG. 3: (a) Probabihty distnibutions of the cases where the critical point = approasched from |
the same data for the case (4 which s the closest to the cntical point that we can obtan numencally in our simulstions.

Reference:

Afsar and Tirnakli
arXiv:1001.2689
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Can we improve our understanding by
turning to simpler situations?

Preferably solvable models.

Use the Random Walker



Lt+1 =

h prol

Lt

Wit

the sum of the position

1 pro
N pro

Da
DA

Ha

D1

D1

bility /2

bility ~/2

ity 1 — .

T
Y = th
t=1

is Gaussian distributed - when shifted and scaled

We expect the g-Gaussian to be related to significant

correlations
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— L 0 L

ry +1 with probability g(x)/2

riy1 = x; — 1 with probability g(x)/2
T with probability 1 — g(x).

CE|* iz #£0

with  g(z) = <\ p if 2 =0

with p << 1

T The exponent a
. _ 2 : . . ) Since g-stat should essentially be
HOW IS Y Lt dIStrIbUted ‘ a matter of correlations would
t=1 expect applicability for a range of

a values
Henrik Jeldtoft Jensen - Imperial College London
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Anomalous statistics occur when W(N) # ,uN

The (effective) number of possible paths visited after T time
step may for the Restricted Random Walker very likely be

different from

W (T) # 2%

because of the position dependent transition probability.

But this should happen for all values of the exponent a (?)
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The Restricted Random Walk
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Fig. 1: (Colour on-line) Six representative trajectories for L =
120. Main panel: The restricted RW model (p=5-10"°). Lower
Inset: The standard RW model (p=1). Non-ergodic behavior
of the restricted RW model can easily be seen. Upper Inset: The
time evolution of P(z,t) at three different ¢ values (¢= 1000,
5000 and 10000 from bottom to top).
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L=1000
— - g-exp; b=0.001, g=1.5

asymptotically 1/(1-q)=—7 W|th T — 2

|

g=1.5 — 1=2

rather than the
usual o 3/2

Ugur Tirnakli - 30.10.13
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L=1000
— - g-exp; b=0.0061, g=1.55

P(T,) ~T-7

asymptotically Ml_qu_T Wlth T — 1 82

q=1.55 —> 1=1.82

rather than the
usual o 3/2

Ugur Tirnakli - 30.10.13



asymptotically 1/(1-q)=-tau

|

g=1.46 ——> tau=2.17

Ugur Tirnakli - 30.10.13

Summary

— — g-exp; b=0.00017, g=1.46

P(T,)~T"T
with 7 =2.17

rather than the

usual o 3/2
0.75 1 1.25
1.55 1.5 1.46
1.82 2 2.17
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P(x,t) = prob{walker is at position x at time t}

Obviously a Gaussian for the ordinary Random Walker

The Restricted Random Walker

ry +1 with probability g(x)/2
riy1 =< x; —1 with probability g(x)/2
Ty with probability 1 — g(x).

CE|* iz #£0

with () = <\ p if x =0

with p << 1
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Master Equation for P(x,t)

Px(z,t+1) = Px(z,1)

+ ggle— DPx(e —10)+ sgla+ )Py (e +1.1) — g(x) Px (a1

from
ry +1 with probability g(x)/2
ri11 =< xy— 1 with probability g(x)/2
T with probability 1 — g(x).



Continuum approximation for P(x,t)

O P(z,t) = k07[g(x)P(x,t)]

constant

g(x)

P(z) =

which is in very good agreement with the numerical solution of
the discrete Master Equation

For @ = 1 hence 9(37) — ‘37/[/| the continuum equation becomes
O P(z,t) = v02[zP(x,t)]

Henrik Jeldtoft Jensen - Imperial College London
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O P(z,t) = yO2[xP(x,t)]
is solved (to a good approximation) b)’ (see van Kampen)

1 1
P(a,t) = —= exp[~"—

avEL

|1 (2vx/t) del pesk ac 5=

First return time

From current at the origin
P(T) = Prob{first returnat t =T} = 0, P(x = 1,T)

x 1/T7



Ugur Tirnakli

T=14276
T=30000

T=60000
T=120000
T=250000

q=2.95, b=1200000

T=1400000
T=2500000
T=5000000
T=7500000
T=10000000
q=2.95, b=12000
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a = 1 hence g(x) = |x/L]

I
I
|
|
|
|
|
|
|
|
|
|
|
L}
Ll
L)

T=33600000
T=60000000
T=100000000
T=150000000
T=200000000

- =2.95,b=1000
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and now the asymptotic fit behaviour

— L=1000, T=40x10°
q=3,b=23103

Ugur Tirnakli
Recall ¢ =3= P,(z)/P(0)=1/v/1+2bz2 < 1/xx1/g(z)




Situation a #1

Continuum approximation then

O P(x,t) = v02 [z P(z, )]

Work in progress ....

Henrik Jeldtoft Jensen - Imperial College London



Want to determine the the distributions

T
P(y,T) = prob{ ) 'z, =y attimeT}
t=1

note (y) =20

so shift not needed - scaling included in fitting to
q-Gaussian

Henrik Jeldtoft Jensen - Imperial College London
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Master Equation for P(y,x;t)

t

(Tt,yt) — (Te41,Yt+1) where yip1 = Z% T Ti41 = Yt + T4l
1=1

N Pro
N Prol

(v, + 1,y +, +1)  wit:
(Te,yt) (ze =1,y + o — 1) wit
(xt , Yt T+ ZEt) wit

Hal
hal

h prol

ba

D1
D1

D1

ity g(z
ity g(xy

~ —
T~—
N\

ity 1 — g(a).

P(y,z;t+1) = P(y,a;t) + )
Ae{—-1,0,1}

[W(yax3y_ (x_A)vx_A)P(y_ (x_A)vx_Aﬂf))

~W(y +x+ A2+ Ay, x)P(y, x;t)).



The transition probabilities simplify

Wy, z;y—(x —A),z — A) =w(x — A, A)

W(y+z+A+ Ay ) =w,A)

Where

w(z, A) = «

" g(2)/2

1 —g(2)

ifA::::l
it A =0

Henrik Jeldtoft Jensen - Imperial College London



Master Equation for P(y,x;t) reduces to

P(y,z;T+1) = %[g(:):—l—l)P(y— (x+1),x+ 1;T)
tg(e —1)P(y — (z = 1),z = 1;T)]
+(1 —g(@))Ply —z,2;T)

Not found analytic solution
Solve by numerical iteration

and obtain

P(y,T)= )  P(y,z;T)

Henrik Jeldtoft Jensen - Imperial College London
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The probability density of

simulation
a=1 exact
-—- q=2.34 ., B=16.5

L=120, T*=20510

-3000  -2000  -1000 2000

Fig. 2: (Colour on-line) Exact and simulation results of the
case a=1, L=120 and p=5-10"°. It is clearly seen that
the probability function P(y,T™) obtained from simulations is

completely in accordance with the exact results. The number
of experiments used in our simulations are 2-10°.
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Scaling behaviour

1.984

T#*=1.54 L

|

In
I
I\
I\

L=120, T*=20510
— L=140, T*=27825

L=160 , T*=36244
——- q=2.34 ,B=165

-4500 -3000 -1500 0 1500 3000 4500

y P(0)

Fig. 3: (Colour on-line) The case a=1 for L =120, 140 and
160 with p=5-10"°. The main panel shows the probability
function P(y,T™). The center of the function is shown in detail
in the left inset. The time T™ is chosen to optimize the fit to
the g-Gaussian. The scaling of T™ is given in the right inset.
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Quality of the fit to
q-Gaussian

-0.995

T*=11570, g=2.33596, B=16.0377
T*=14276, g=2.33608, B=16.0859

-1.005 - / T*=17259, q=2.33626, B=16.1538
" T#=20510, q=2.33646, B=16.1937

T*=24028, q=2.33669, B=16.2432

T*=27825, q=2.33696, B=16.3062

T*=31900, g=2.33725, B=16.3568

T*=36244, q=2.33757, B=16.4096

0.1

s/s
max

Fig. 4: (Colour on-line) The casea=1 and p=>5- 10~ % with L
values between L = 90 to 160. The lower panel shows the data
collapse when the z-axis is appropriately scaled. The upper
panel shows a zoomed region around the Y = —1 line. In the
inset the scaling of 8mar With L is given. The straight line is
Smaz = AL® with A=0.2726 and C = 1.7828.
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Scaling of g with systems size L

0.016

-~

2.351-q =0.015 expl- (L/308.7)]

linear regression
2

O (r'=0.99912)
..- - ~

0.014 .

0.013
0 1000000 2000000 3000000 4000000

3

L

Fig. 5: (Colour on-line) Linear-log representation for the L
dependence of g values. This exponential dependence suggests
an asymptotic value around .o ~ 2.351.
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Different values of a

2

ry +1 with probability g(x)/2

g(gj) — min {| ‘ D, 1} and Ty =< x; — 1 with probability g(x)/2
Ty with probability 1 — g(z).

T*=9000, q=2.4088, p=22.290
—— T*=14276. q=2.33608. p=16.0859
—— T*=22200, q=2.2400, B=10.327

250 500 750 1000 1250 1500 1750 2000

y P(0)

Fig. 6: (Colour on-line) Y plot of cases a=0.75, a=1 and a=
1.25 for a representative L value. Whenever a # 1, increasing
order of deviation from —1 line is evident.
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Correlated versus uncorrelated

Does the peculiar shape of P(x) produce the
g-Gaussian like behaviour?

Correlated Uncorrelated

T=750
T=1000
T=1250
T=1500
T=2500
T=4000
T=8000
T=14000
Gaussian

7500 1000 1500 2000 6 K 0

10 5000 -1500 -1000 -500

0
y P(0) y P(0)

Fig. 7: (Colour on-line) Comparison of the T" dependence for fixed values of L with p=75-10"° for the correlated (left panel)
and the uncorrelated (right panel) P(y,T') distribution (see text for the details)
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The convergence towards g-Gaussian appears
fragile

® [ and T needs to scale: T — [,2

® gand L scale with: Qoo = 2.301 — 0.015 eXp[—(L/308.7)3]

€ why does only @ = 1 lead to q-Gaussian ?

AN
¢ ifx#0
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The simplicity of the (restricted) random walker was helpful:
-3 Allows derivation of exact Master Equations
-3 q-Gaussian does describe asymptotic limit (for a=1)
-3 But deeper analytic understanding is needed to

discover the significance of the appearance of the
qg-Gaussian in the case when T T2

If g-Gaussians are not the analytic attractors
why are they so efficient ? ??
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