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What's the Kapteyn process?

[The log-Normal distribution] is one of the most important

classes occurring in Nature.’
JC Kapteyn in “Skew Frequency Curves in Biology and Statistics” (1903)

K Pearson (1895)
p’(-.r)_l_ a+x— A _0
p(x) bz =A)24+b(x—=A)+by

The distributions can be interpreted as limiting forms of the Hyperbolic distribution.
Complete disinterest in possible natural causes.

The origin of the log-normal :
Pearson vs Galton and McAlister

Pearson vs Kapteyn



Theory of proporcionate effect

Let x be a positive random variable that is the outcome of discrete random process.

H Cramér (1923):

If our random variable is the size of some specified organ that we are
observing, the actual size of this organ in a particular individual may often
be regarded as the joint effect of a large number of mutually independent
causes, acting in an ordered sequence during the time of growth of the
individual.
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Kapteyn's analogue machine




Extending Kapteyn via g-algebra £ Nivanen (2003) EP Borges (2004)
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q-properties and graphical representation

Lz®iy=ay;

2. T®y=y®,;
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From modifying the multiplicand in the proportionate law the distribution reads,
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Some probabilistic properties

. (Ing = — p)* ¥
g>1: lim exp [ g = exp Y
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The vanishing for large x is guaranteed by the factor x? in the distribution




Some statistical properties

q<1
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Usefulness

Dynamical mechanism leading to the truncated Gaussian

G (y) = \/%El‘fc I:agn( ) \/1_5( - b)]_lexp [(;;2;)2]

Picking the distribution I've introduced in the talk and assuming,

y=In,z

It’s possible to establish a relation between both distributions and define,

But what about something ACTUALLY useful ?




Flux networks in metabolic graphs
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Basic and applied uses of genome-scale metabolic
network reconstructions of Escherichia coli
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translation into computational models that can be used to
calculate metabolic phenotypes (Palsson, 2009; Pfau et al, 2011;
Lewis et al, 2012). In addition, other omics data types that have
been generated can be interpreted in the context of a
reconstruction and computational model to analyze cellular
functions under specific conditions. Taken together, this
information becomes a de facto knowledge base. Genome-
scale models (GEMs) are a structured format of such a
knowledge base that can be used to perform computational
and quantitative queries to answer various questions about the



Metabolic network; Set of chemical reactions and metabolites that relate one another by means of a
system of equations:

de;
i = ESIEI.'-I'LI-SI'

C; concentration of metabolite ;
Vv, flux in reaction o
Sia stecheometric matrix,

This system quickly attains a stationary state.



A metabolic network can be represented by a bi-partite graph as well,

Consumes the end-points of metabilism e.g. amino-acids,
nucleotides, lipids and co-factors.

Internal reactions representing bio-
chemical changes and transport processes
throught the membrane.

Non-balanced reactions introduced
within the context of constraint-
based modelling.



Linear programming approach

In this problem the main variable is the set of the chemical reactions fluxes v , which maximise
the growth rate .

As any linear programming problem one can have a dual approach. Here, I'll focus on the primal

Objective function
Lagrange  multiplier  associated — Ua

with the stationary state condition.

In blending the reaction fluxes with the properties of the metabolites we can interpret
the edges as fluxes, J;, ,that are conserved at every node (either reaction or metabolite).

o’

MOREOVER,
from the dual approach we proved that T, is the chemical potential of the metabolite .



Organism Model Substrate Molar yield Mw Mass vield
E. coli IAF1260 D-glucose 96.3 gDW /mol 180 g /mol 0.535 gDW /g
— o — — — D-malate 42.6 132 0.323

— o — — o — succinate 49.0 116 0.423

— o — — o — acetate 25.0 59 0.423

— o — — o — D-glucose (anaerobic) 31.1 180 0.173

— — 1JR904 D-glucose 95.7 180 0.532

S. cerevisiae IND750 D-glucose 97.3 180 0.541

M. barkeri iAFG692 Hs 4.45 2 2.23

2.7. Statistical analysis

We undertook statistical analysis of the shadow price
distributions for selected conditions and organisms although
the results are somewhat inconclusive. We attempted to fit the
observed distributions, using maximum likelihood estimators,
to a log-Normal, a x distribution, an inverted y distribution
and a general distribution ~ exp [—[ f’l + mﬁ) / wm] which
has tunable exponential asymptotic behaviour for large and
small m; (@ and f are parameters). However, none of these
distributions could be said to fit the observed distributions, as
judged by the Kolmogorov—Smimov test [30]. Aside from

[ PB Warren, SMDQ, JL Jones (2009) |

Why not check the 7 distribution with the extended log-Normal?
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FIG. 4: Cumulative density funetion of the shadow prices vs shadow price of the metabolic network FIG. 5: Cumulative density funetion of the shadow priees vs shadow price of the metabolic network

of the E. eoli (iJR 904) growing on a D-glucose substrate. The symbols are obtained from the data of the M. barkeri (iAF 692 model) growing in Hydrogen medinm (). The symbols are

and the lines the best fits with the q-log-Normal distribution and log-Normal. The values of the obtained from the data and the lines the best fits with the g-log-Normal distribution and log-

parameters and error are mentioned in the text. Normal. The values of the parameters and error are mentioned in the text.

[ SMDQ (2012) |

“bah... Of course the new fit is better, you're adding a parameter!!!”

Not quite like that.. ..



Better, but how much better? The AReike Information Criterion

RSS
AIC—QkJrnlnl ]?

n

The AIC for the extended log-Normal based on the g-product fits are
systematically smaller than the AIC for the log-Normal.

Interestingly,
Anaerobic environment =2 q < 1

Aerobic environment 2> q > 1



Take-home messages

® Assuming the g-product in the Kapteyn multiplicative process it’s possible to extend the log-
Normal distribution;

o This new distribution either favours small or large value asymptotics depending on the value of the
multiplicative parameter g;

o This new distribution describes the optimising distribution of chemical potentials of metabolites in
bacterial growth with statistical significance and does it efficiently;

 From the q value ( greater/less than 1) one is apparently capable of checking whether the growth is
aerobic or anaerobic.



