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We explore some features of the recently pro-
posed Nobre-RegoMonteiro-Tsallis (NRT) non-
linear Schroedinger-like equation, inspired on
the nonextensive thermostatitical formalism,
that admits g-exponential (¢g-plane wave) an-
alytical exact solutions, and reduces to the
standard linear Schroedinger equation in a
limit case. We examine some symmetry prop-
erties exhibited by this equation and discuss
a more general family of exact, g-Gaussian
time dependent wave-packet solutions.



Tsallis Entropy
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e C. Tsallis, J. Stat. Phys. 52, 479 (1988).

e C. Tsallis, Introduction to Nonextensive
Statistical Mechanics (Springer, New York,
2009).

e M. Gell-Mann and C. Tsallis, Eds. Nonex-
tensive Entropy: Interdisciplinary appli-
cations, Oxford University Press, Oxford,
2004.



Tsallis MaxEnt Distributions
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qg-Exponential Function:
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q-Gaussians
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e ¢ > 1 — power-law decay z1-¢ (normal-

izable for 1 < g < 3).



Some Historical Examples of ¢g-Gaussians

o J.C. Maxwell, “On Boltzmann’s Theorem
on the Average Distribution of Energy in
a System of Material Points”, Eq. (49)
(Cambridge Phil. Soc. Trans., 12, 547
(1879)].

e J.H. Jeans, The Dynamical Theory of Gases
(2nd. ed., Cambridge U.P., 1916) eq.
(269), pag. 99, Chapter V.

e H.C. Plummer, Monthly Notices of the
Royal Astronomical Society, 71 (1911)
460.



Polytropic Models of Self-Gravitating Sys-
tems; Galactic Dark Matter Halos

V.F. Cardone, M.P. Leubner and A. Del Popolo,
Mon. Not. Roy. Astr. Soc. 414 (2011)
2265.

C. Vignat, A. Plastino and A.R. Plastino,
Physica A 390 (2011) 2491.

M.P. Leubner, Astroph. Journ. 632 (2005)
L1.



Exact Time-Dependent Solutions of Non-
Linear FP Equations and Related Reaction-
Diffusion Equations.

2
9 _ 0

_ 0
o @[PQ q] +%[VP]

A.R. Plastino and A. Plastino, Physica A 222
(1995) 347.

C. Tsallis and Buckman PRE 54 (1996) R2197.
Several works by the Mendes-Lenzi group (Maringa).

T.D. Frank, Nonlinear Fokker-Planck Equa-
tions: Fundamentals and Applications (Springer,
Berlin, 2005).

P. Troncoso, O. Fierro, S. Curilef, and A.R.
Plastino, Physica A 375 (2007) 457.



One More Example of ¢g-Gaussian

C. Vignat, A. Plastino, A.R. Plastino, and
J.S. Dehesa, Physica A 391 (2012) 1068.

The probability density in momentum space
associated with the ground state of the Coulomb
potential (in D dimensions) is a g-Gaussian.

Table 1
Forms of the potential function V,, (1) and corresponding values of the parameter g, as a function of the space
dimension D, for different half-integer values of the parameter v.
1 3 5 7
v 2 2 2 2
D D42 D+4 D+6
q D+ D+3 D+5 D+7 )
V., (r) 1 1 [ 1+D] 1| e+pe+n 1 | GHD(rF+3r43)
v r 2 L1+r 2| r243r+3 2 | r346r2415r+15
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The interstellar diffusion of galactic civilizations is reexamined by potential theory; both
numerical and analytical solutions are derived for the nonlinear partial differential and difference
equations which specify a range of relevant models, drawn from blast wave physics, soil science,
and, especially, population biclogy. An essential feature of these models is that, for all civiliza-
tions, population growth must be limited by the carrying capacity of the planetary environments.
Dispersal is fundamentally a diffusion process; a directed density-dependent diffusivity describes
interstellar emigration. We concentrate on two models, the first describing zero population growth
(ZPG) and the second which also includes local growth and saturation of a planetary population,
and for which we find an asymptotic travelling wave solution. For both models the colonization
wavefront expands slowly and uniformly, but only the frontier worlds are sources of further
expansion. For nonlinear diffusion with growth and saturation, the colonization wavefront from the
nearest independently arisen galactic civilization can have reached the Earth only if its lifetime
exceeds 2.6 x 10° years. If discretization can be neglected, the critical lifetime is 2.0 x 107 years.
For ZPG the corresponding number is 1.3 X 10" years. These numerical results depend on our
choices for the specific emigration rate, the distribution of colonizable worlds, and, in the second
model, the population growth rate; but the dependence on these parameters is entrancingly weak.
We conclude that the Earth is uncolonized not because interstellar spacefaring societies are rare,
but because there are too many worlds to be colonized in the plausible lifetime of the colonization
phase of nearby galactic civilizations. This phase is, we contend, eventually outgrown. We also
conclude that, except possibly early in the history of the Galaxy, there are no very old galactic
civilizations with a consistent policy of conquest of inhabited worlds; there is no Galactic Empire.
There may, however, be abundant groups of ~10° to 10° worlds linked by a common colonial
heritage. The radar and television announcement of an emerging technical society on Earth may
induce a rapid response by nearby civilizations, thus newly motivated to reach our system directly
rather than by diffusion.

Alexander wept when he heard from Anaxarchus that there was an infinite number of worlds,
and his friends asking him if any accident had befalien him, he returned this answer: **Do you not
think it a matier worthy of lamentation that when there is such a vast multitude of them, we have
not yet conquered one?’’ —Plutarch, On the Tranquility of the Mind.



GALACTIC CIVILIZATIONS

tion only of the radius (expressed as a
fraction of the thermal wavefront radius).
To illustrate, consider the one-dimensional
analogue of (24),

aT/dr = (d/dx) {aT*0T/dx)}. (25
From this equation, we see that the quan-
tity

0 = J"_: T(x, tydx (26)

is conserved (' is proportional to the total
thermal energy). There is only one dimen-

F&) = {NETAN + DIPMIL — (£/E)W,

=10

where

£o = [(N + 2NN [N ghEjiAN+D
x [I(d + L/N)/T(1/N e
and I' is the gamma function.

For the case N = 0 [i.e., Eq. (10) taking
D=al,

(30)

FIE) = (dm)tizegmet (31)
The normalization employed provides
G (32)

and, for N = 0, the position of the thermal
wavefront, using (27), is just

X = g laQVnHe, (33)

In Fig. 1, fi&) is shown for N = 0, 1, and 2.
From Eqgs. (29) and (31), we see that:

(a) if N = 0, the distribution is
unconfined;

(b)if 0 = N = 1, the distribution has a
finite cutoff, where the temperature gradi-
ent vanishes.

(c) it N = 1, the temperature distribu-
tion has a finite cutoff with a finite, nonvan-
ishing temperature gradient;
and

{d) if N = 1, the temperature distribu-
tion has a finite cutoff with an infinite
temperature gradient.

303

sionless combination of the coordinate x
and the time ¢ that can be obtained in terms
of @ and @ using (25) and (26):

f = Irj,-’[“g.'-'” |-'m'+zJ' (2-”

The quantity (Q%/af)V™"V*2' has the dimen-
sions of temperature, and a solution to (25)
which preserves its shape is

T(x, 1) = (Q%far"™*2f(E).  (28)

The solution for f{£) (see Zel'dovich and
Raizer, 1967, for details) is

1€ < &,

|€] > &, (29)

The particular curves given in Fig. 1
correspond to a Gaussian, a parabola, and
an ellipse, respectively. Apart from a differ-
ing normalization factor, the f(£) profiles for
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Fis. 1. Thermal wave profiles for diffusion

coefficients with & power law density dependence with
exponent &.



From real ¢-Gaussians to Complex ¢g-Gaussians

evol. eq. linear non-linear
real diff. coeff. | standard diff. pMm eq.
imaginary coeff. Schr. eq. Fals

real Gaussians real g-Gaussians
complex Gaussian wp Fel4

Three of the four possibilities in the above
Tables are known to be mathematically in-
teresting and physically relevant. This con-
stitutes a motivation to explore the fourth
possibility.



The NRT Non-Linear Schroedinger Equation

F.D. Nobre, M.A. Rego-Monteiro and C. Tsal-
lis, Phys. Rev. Lett. 106, 140601 (2011).

p.ye [¢(:E’,t)] — 1 R - [dD(a?,t)

ot | Pg —q 2m

Related to:

e Nonlinear Diffusion EQ.: % = DV?2 [pQ—q}
e Linear Diffusion Eq: % = DV?p

2
e Free Particle Schr. Eq.: ih%#f — —Qh—mVQCD



Possible Motivations for Introducing Non-
Linear Schroedinger Equations

(1) Formulate effective, single-particle wave-
function descriptions of interacting many-body
quantum systems (Example: the Gross-Pitaievskii
equation).

(2) Use non-linear Schroedinger equarions as
classical field equations to describe diverse
non-linear phenomena (such as water waves).



At a more fundamental (and speculative) level:

(3) Explore the possibility of formulating a
non-linear version of quantum mechanics. There
are scenarios that seem to lead to non-linear
extensions of quantum mechanics, for instance,
composite quantum systems in the presence

of closed time-like curves (CTC).

D. Deutsch, Phys. Rev. D 44 (1991) 3197.

C. Zander and A.R. Plastino, in A Century of
Relativity Physics;, AIP Conference Proceed-
ings 841 (2006) 570.

(4) Implications of an eventual non-linear quan-
tum mechanics for quantum information pro-
cessing. Information-theoretical answer to
the question: why is Q.M. linear 727



qg-Plane Wave Solutions

The NRT equation admits the g-plane wave

solutions

D =Pg[l —i(1—q)(wt— kaz)]ﬁ,

provided that the “wave number" k£ and the
“frequency" w comply with,

hk

2m

Therefore, this family of solutions are com-
patible with the de Broglie relations,

w =

E = hw,

p = hk,

leading to the correct energy-momentum re-
lation,

p=

2m
NRT also considered relativistic versions of
the nonlinear wave equation (Klein-Gordon
and Dirac) and obtained ¢-plane wave solu-
tions compatible with the relativistic energy-

momentum relation.



g-plane wave: W(z,t) = Wg exp, [i(kx — wt)].

g-exponential function exp,(iu), v € R is de-
fined as the principal value of

expy(in) = [1 4 (1 — @)iu]T1; expy(in) = exp(iu).

The above function satisfies,

expy(E£iu) = cosg(u) ising(u) ,

1 1arctan[(q - l)u]} :

cosq(u) = pg(u) cos{

1

sing(u) = pqg(u) Sin{ 1arCtan[(q— 1)“]} )

}1/[2(1—(1)]

Pq(u)

14 (1-q)%? :
expy (i) expy(—iu) = [pg(u)]®=expy(—(g — 1)u?),
expq(iug) expg(iug) # expq[i(uy +u2)], (¢ # 1)
A g-exponential with a pure imaginary argu-
ment, exp,(iu), presents an oscillatory be-
havior with a u-dependent amplitude pq(u).

The function exp,(iu) is square integrable for

1 < g < 3, whereas the concomitant integral
diverges in both limits ¢ — 1 and ¢ — 3 and

also for g < 1.



NRT Equation and Galilean Transformation

Original inertial frame (2/,t/),
V(2 t') = wq expg [z(kx/ — wt’)} :

Let us consider now a Galilean transforma-
tion to the new inertial frame (x,1t),

t=1t) x =2 —ot

Just re-expressing the "old" solution in terms
of the new variables (z,t)),

V(z' ) — d(x, t)=W(x + vt,t)
= W expg [i(k(z + vt) —wt)]

does not lead to a solution of the NRT equa-
tion in the new frame. In order to obtain a
valid solution it is necessary to add an extra
term to the argument of the g-exponential.

Indeed,
1

Dg [1 —i(1 —q) {wt — k(x+vd)+ %(m”x+%mv2t)ﬂl—q

does satisfy the nonlinear Schroedinger equa-
tion.



Galilean transformed solution,

Do [1 — (1 —gq) {wt — k(@x+vt)+ %(mvx+%m02t)ﬂﬁ

The extra term %(mvw—l—%vat) appearing in
the argument of the power-law admits a clear
physical interpretation. Recasting the new,
transformed solution under the guise,

O [1—i(1—q){<w—kv+2%2>t—(k—%)mﬂl_q

IS plain that it has the form of a ¢g-plane wave
with frequency & and wave number k respec-
tively given by

2
o =w—kv+ 2 F=k-
2h h
de Broglie relations we obtain
mv2

E=FE—pv+

, and p =p— mv,

which are the correct Galilean transforma-
tions for the kinetic energy and momentum
of a particle of mass m obeying the (non-
relativistic) energy-momentum relation E =
p?/2m.



Taking the limit ¢ — 1 of the transformed
solution,

Pg [1 —i(1—gq) {wt — k(@x+vt)+ %(mvx+%mv2t)ﬂﬁ

on sees that the relation between the origi-
nal solution W(z',¢') and the transformed one
d(x,t) becomes,

V(' t) — d(x,t)

i (o2
= exp l_ﬁ< 5 t -+ mv:c)]llf(a: + vt, t),

thus recovering the transformation rule cor-
responding to the linear Schroedinger equa-
tion.



Let us now consider a uniformly accelerated
reference frame. The corresponding spatio-
temporal coordinates (x,t) are

t:t/; xza:/—latQ:a:/—EEtQ,
2m

where (2/,t') are the variables associated with
an inertial frame, a is the constant accelera-
tion of reference frame (z,t), and a = £. As
in the previous discussion, we assume that
the nonlinear Schroedinger equation holds in
the inertial frame (2/,t), and also that in this
frame our system is described by the g-plane

wave solution.

Again, simply re-writting the g¢-plane wave
solution in terms of the new variables (x,1t)
does not vield a solution of the nonlinear
Schroedinger equation. As in the above Galilean
transformation case, new terms are needed in
the argument of the g-exponential to obtain

a valid solution.



““Accelerated” ¢-Plane Waves

Let us consider the ansatz,

b Ft2\ F
1

goz [1 —i(1 —q) {wt—k(w—l—% + —

It satisfies the nonlinear equation,

(@)

ih— | —
ot 2 — q2mIz2

o [ b 1 h2 92
Py

where V(xz) = F.

(CEt -+

+V(z) <—

P
0

q
<D>’



The nonlinear equation,

Pg

e (o

2 — q2moxz? |\ Pg
can be interpreted as describing the motion
of a particle of mass m under a constant force
—F (with the associated potential function
V = Fz). This is consistent with the well-
known fact that the behavior of a free par-
ticle with respect to a uniformly accelerated
reference frame is equivalent to the the be-
havior of a particle in an inertial reference
frame moving under the effect of a constant
force.

> q

An interesting feature of the nonlinear equa-
tion is that the potential V couples to &9,
instead of coupling to &, as happens in the
standard linear case (¢ = 1).



Consistently with the equation

(&)

the g-plane wave ®(z,t) = Pg exp, [¢(kx — wt)]
is not only a solution of the free-particle non-
linear Schroedinger equation (when hw = TLQQ—T’ff),
but also of the nonlinear equation

2—q q
P P
(30) T (;)

with a constant potential Vp, provided that

20 (@ 1 h2 92
th— | — |=—
ot \ o 2 — q2mOx2

q
1V () ( q‘j’o)

a<q>> 1 R2 92

ih—
ot 2 — g2mdz2

h2k2

2m

hw =

+ Vo,

which, using the Planck and de Broglie rela-
tions, becomes E = p — 1 Vp, as expected.



““Accelerated” ¢-Plane Waves

Considering now the limit ¢ — 1 of the trans-
formed solution,

2 3\ T
%z [1 — (1 —q) {wt — k(zc—l-g—tm) + %(xt—klg—tm)H q
we verify that the original (non-accelerated)
solution W(z',t') and the transformed one ®(z, t)
are linked through

V(' t) — d(x,t)

F2¢3 Ft?
= ool (e G oY

thus recovering the (non-relativistic) trans-
formation rule for accelerated corresponding
to the linear Schroedinger equation.



qg-Gaussian Time dependent Wave-Packet Solutions

We now consider solutions to the NRT equa-
tion based upon the g-Gaussian wave packet
ansatz,

®(z,t) = Do |1 - (1 - q)(a(®)z® + bz + c()| 17,

where a, b, and c are appropriate (complex)
time dependent coefficients.

The above ansatz constitutes a solution of
the NRT equation provided that the coef-
ficients a, b, and ¢ comply with the set of
coupled ordinary differential equations,

) = (3 - qa(®)?
BB = (3 - @a(Db®)

2
i) = (- e a0+ 7).



Harmonic Oscillator

The g-Gaussian ansatz also yields exact ana-
lytical time dependent solutions for the NRT
equation corresponding to a harmonic poten-
tial,

oo 1 R2_,[®]%¢ ® 11
"o o Lo e

with V(z) = kz?/2.

2—q 2m

Quasi-Stationary Solution: A particular g-
Gaussian solution of the above equation cor-
responds, in the ¢ — 1 limit to the ground
state of the standard, linear harmonic oscilla-
tor. Other g-Gaussian solutions correspond,
in the same limit, to Schroedinger’s time de-
pendent Gaussian wave packet solutions of
the h.o.

More on quasi-Stationary Solutions: I.V. Toranzo,
A.R. Plastino, J.S. Dehesa, A. Plastino, Phys-
ica A 392 (2013) 3945.



Summary:

Behavior of g-plane wave solutions under
Galilean Transformations. Compatibility
with the de Broglie Relations.

“Accelerated" g¢-plane wave solutions —
Extension of the NRT equation to the
case of a particle moving in a potential
Vi(x).

Time dependent g-Gaussian wave packet
solutions. Harmonic Oscillator.

Quasi-Stationary Solutins of the NRT equa-
tion.



Some Open Questions that May Shed Light
on Possible Applications

(1) Is the NRT dynamics (or an appropriate
restriction of it) “conservative"?

The NRT can be derived from a variational
principle (NRT, EPL 97, 41001 (2012).)

The NRT admits a “time reversal symmetry'":
V(x,t) — V*(xz, —1t).

(2) Full characterization of the set of norm-
preserving solutions of the NRT equation.

The non-preservation of the norm is related
to the fact that the set of solutions to the
NRT eq. is not closed under global phase
changes (W(x,t) — e @W(z,t)). In the linear
case this symmetry leads, via Noether’'s The-
orem, to the continuity eq. for de prob. den-
Ssity and the preservation of the norm. The
NRT equation admits a “discrete" version of
this symmetry, given by (1 — q)an = 27n.

(3) Information-related aspects of the NRT
eq.
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For more details:

A.R. Plastino and C. Tsallis, Journal of Math-
ematical Physics 54 (2013) 041505.

S. Curilef, A.R. Plastino, and A. Plastino,
Physica A, 392 (2013) 2631.

I.V. Toranzo, A.R. Plastino, J.S. Dehesa, A.
Plastino, Physica A 392 (2013) 3945.



