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We explore some features of the recently pro-

posed Nobre-RegoMonteiro-Tsallis (NRT) non-

linear Schroedinger-like equation, inspired on

the nonextensive thermostatitical formalism,

that admits q-exponential (q-plane wave) an-

alytical exact solutions, and reduces to the

standard linear Schroedinger equation in a

limit case. We examine some symmetry prop-

erties exhibited by this equation and discuss

a more general family of exact, q-Gaussian

time dependent wave-packet solutions.
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• C. Tsallis, J. Stat. Phys. 52, 479 (1988).

• C. Tsallis, Introduction to Nonextensive

Statistical Mechanics (Springer, New York,

2009).

• M. Gell-Mann and C. Tsallis, Eds. Nonex-

tensive Entropy: Interdisciplinary appli-

cations, Oxford University Press, Oxford,

2004.



Tsallis MaxEnt Distributions
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q-Gaussians

f(x) =
1

Zq

[
1− β(1− q)x2

] 1
1−q

• q < 1 −→ cut-o�: xc = ±
√

1
(1−q)β

• q = 1 −→ p1 = 1
Z exp

[
−bx2

]

• q > 1 −→ power-law decay x
2

1−q (normal-

izable for 1 < q < 3).



Some Historical Examples of q-Gaussians

• J.C. Maxwell, �On Boltzmann's Theorem

on the Average Distribution of Energy in

a System of Material Points�, Eq. (49)

(Cambridge Phil. Soc. Trans., 12, 547

(1879)].

• J.H. Jeans, The Dynamical Theory of Gases

(2nd. ed., Cambridge U.P., 1916) eq.

(269), pag. 99, Chapter V.

• H.C. Plummer, Monthly Notices of the

Royal Astronomical Society, 71 (1911)

460.



Polytropic Models of Self-Gravitating Sys-

tems; Galactic Dark Matter Halos

V.F. Cardone, M.P. Leubner and A. Del Popolo,

Mon. Not. Roy. Astr. Soc. 414 (2011)

2265.

C. Vignat, A. Plastino and A.R. Plastino,

Physica A 390 (2011) 2491.

M.P. Leubner, Astroph. Journ. 632 (2005)

L1.



Exact Time-Dependent Solutions of Non-

Linear FP Equations and Related Reaction-

Di�usion Equations.

∂ρ

∂t
= D

∂2

∂x2

[
ρ2−q

]
+

∂

∂x
[V ρ]

A.R. Plastino and A. Plastino, Physica A 222

(1995) 347.

C. Tsallis and Buckman PRE 54 (1996) R2197.

Several works by the Mendes-Lenzi group (Maringa).

T.D. Frank, Nonlinear Fokker-Planck Equa-

tions: Fundamentals and Applications (Springer,

Berlin, 2005).

P. Troncoso, O. Fierro, S. Curilef, and A.R.

Plastino, Physica A 375 (2007) 457.



One More Example of q-Gaussian

C. Vignat, A. Plastino, A.R. Plastino, and

J.S. Dehesa, Physica A 391 (2012) 1068.

The probability density in momentum space

associated with the ground state of the Coulomb

potential (in D dimensions) is a q-Gaussian.







From real q-Gaussians to Complex q-Gaussians

evol. eq. linear non-linear

real di�. coe�. standard di�. pm eq.

imaginary coe�. Schr. eq. ??

real Gaussians real q-Gaussians
complex Gaussian wp ??

Three of the four possibilities in the above

Tables are known to be mathematically in-

teresting and physically relevant. This con-

stitutes a motivation to explore the fourth

possibility.



The NRT Non-Linear Schroedinger Equation

F.D. Nobre, M.A. Rego-Monteiro and C. Tsal-

lis, Phys. Rev. Lett. 106, 140601 (2011).

ih̄
∂

∂t

[
Φ(~x, t)

Φ0

]
= −

1

2− q

h̄2

2m
∇2

[
Φ(~x, t)

Φ0

]2−q

(q ≥ 1)

Related to:

• Nonlinear Di�usion Eq.: ∂ρ
∂t = D∇2

[
ρ2−q

]

• Linear Di�usion Eq: ∂ρ
∂t = D∇2ρ

• Free Particle Schr. Eq.: ih̄∂Φ
∂t = − h̄2

2m∇
2Φ



Possible Motivations for Introducing Non-

Linear Schroedinger Equations

(1) Formulate e�ective, single-particle wave-

function descriptions of interacting many-body

quantum systems (Example: the Gross-Pitaievskii

equation).

(2) Use non-linear Schroedinger equarions as

classical �eld equations to describe diverse

non-linear phenomena (such as water waves).



At a more fundamental (and speculative) level:

(3) Explore the possibility of formulating a

non-linear version of quantum mechanics. There

are scenarios that seem to lead to non-linear

extensions of quantum mechanics, for instance,

composite quantum systems in the presence

of closed time-like curves (CTC).

D. Deutsch, Phys. Rev. D 44 (1991) 3197.

C. Zander and A.R. Plastino, in A Century of

Relativity Physics; AIP Conference Proceed-

ings 841 (2006) 570.

(4) Implications of an eventual non-linear quan-

tum mechanics for quantum information pro-

cessing. Information-theoretical answer to

the question: why is Q.M. linear ??



q-Plane Wave Solutions

The NRT equation admits the q-plane wave

solutions

Φ = Φ0 [1− i(1− q)(ωt− kx)]
1

1−q ,

provided that the �wave number" k and the

�frequency" ω comply with,

ω =
h̄k

2m
.

Therefore, this family of solutions are com-

patible with the de Broglie relations,

E = h̄ω,

p = h̄k,

leading to the correct energy-momentum re-

lation,

E =
p2

2m
.

NRT also considered relativistic versions of

the nonlinear wave equation (Klein-Gordon

and Dirac) and obtained q-plane wave solu-

tions compatible with the relativistic energy-

momentum relation.



q-plane wave: Ψ(x, t) = Ψ0 expq [i(kx− ωt)] .

q-exponential function expq(iu), u ∈ R is de-

�ned as the principal value of

expq(iu) = [1 + (1− q)iu ]
1

1−q ; exp1(iu) ≡ exp(iu).

The above function satis�es,

expq(±iu) = cosq(u)± i sinq(u) ,

cosq(u) = ρq(u) cos

{
1

q − 1
arctan[(q − 1)u]

}
,

sinq(u) = ρq(u) sin

{
1

q − 1
arctan[(q − 1)u]

}
,

ρq(u) =
[
1 + (1− q)2u2

]1/[2(1−q)]
,

expq(iu) expq(−iu) = [ρq(u)]2=expq(−(q − 1)u2),

expq(iu1) expq(iu2) 6= expq [i(u1 + u2)] , (q 6= 1)

A q-exponential with a pure imaginary argu-

ment, expq(iu), presents an oscillatory be-

havior with a u-dependent amplitude ρq(u).
The function expq(iu) is square integrable for
1 < q < 3, whereas the concomitant integral

diverges in both limits q → 1 and q → 3 and

also for q < 1.



NRT Equation and Galilean Transformation

Original inertial frame (x′, t′),

Ψ(x′, t′) = Ψ0 expq

[
i(kx′ − ωt′)

]
.

Let us consider now a Galilean transforma-

tion to the new inertial frame (x, t),

t = t′; x = x′ − vt′

Just re-expressing the "old" solution in terms

of the new variables (x, t)),

Ψ(x′, t′) → Φ(x, t)=Ψ(x + vt, t)

= Ψ0 expq [i(k(x + vt)−ωt)]

does not lead to a solution of the NRT equa-

tion in the new frame. In order to obtain a

valid solution it is necessary to add an extra

term to the argument of the q-exponential.

Indeed,

Φ0

[
1− i(1− q)

{
ωt− k(x+vt)+

1

h̄

(
mvx+

1

2
mv2t

)}] 1
1−q

.

does satisfy the nonlinear Schroedinger equa-

tion.



Galilean transformed solution,

Φ0

[
1− i(1− q)

{
ωt− k(x+vt)+

1

h̄

(
mvx+

1

2
mv2t

)}] 1
1−q

.

The extra term 1
h̄

(
mvx+1

2mv2t
)
appearing in

the argument of the power-law admits a clear

physical interpretation. Recasting the new,

transformed solution under the guise,

Φ0

[
1− i(1− q)

{(
ω − kv +

mv2

2 h̄

)
t−

(
k −

mv

h̄

)
x

}] 1
1−q

,

is plain that it has the form of a q-plane wave

with frequency ω̃ and wave number k̃ respec-

tively given by

ω̃ = ω − kv +
mv2

2 h̄
; k̃ = k −

mv

h̄
.

de Broglie relations we obtain

Ẽ = E − pv +
mv2

2
, and p̃ = p−mv,

which are the correct Galilean transforma-

tions for the kinetic energy and momentum

of a particle of mass m obeying the (non-

relativistic) energy-momentum relation E =
p2/2m.



Taking the limit q → 1 of the transformed

solution,

Φ0

[
1− i(1− q)

{
ωt− k(x+vt)+

1

h̄

(
mvx+

1

2
mv2t

)}] 1
1−q

.

on sees that the relation between the origi-

nal solution Ψ(x′, t′) and the transformed one

Φ(x, t) becomes,

Ψ(x′, t′) → Φ(x, t)

= exp

[
−

i

h̄

(
mv2

2
t + mvx

)]
Ψ(x + vt, t),

thus recovering the transformation rule cor-

responding to the linear Schroedinger equa-

tion.



Let us now consider a uniformly accelerated

reference frame. The corresponding spatio-

temporal coordinates (x, t) are

t = t′; x = x′ −
1

2
at′2 = x′ −

1

2

F

m
t′2 ,

where (x′, t′) are the variables associated with
an inertial frame, a is the constant accelera-

tion of reference frame (x, t), and a = F
m. As

in the previous discussion, we assume that

the nonlinear Schroedinger equation holds in

the inertial frame (x′, t′), and also that in this
frame our system is described by the q-plane

wave solution.

Again, simply re-writting the q-plane wave

solution in terms of the new variables (x, t)

does not yield a solution of the nonlinear

Schroedinger equation. As in the above Galilean

transformation case, new terms are needed in

the argument of the q-exponential to obtain

a valid solution.



�Accelerated" q-Plane Waves

Let us consider the ansatz,

Φ

Φ0
=

[
1− i(1− q)

{
ωt− k

(
x+

Ft2

2m

)
+

F

h̄

(
xt+

Ft3

6m

)}] 1
1−q

.

It satis�es the nonlinear equation,

ih̄
∂

∂t

(
Φ

Φ0

)
=−

1

2− q

h̄2

2m

∂2

∂x2

( Φ

Φ0

)2−q
+V (x)

(
Φ

Φ0

)q

,

where V (x) = Fx.



The nonlinear equation,

ih̄
∂

∂t

(
Φ

Φ0

)
=−

1

2− q

h̄2

2m

∂2

∂x2

( Φ

Φ0

)2−q
+V (x)

(
Φ

Φ0

)q

,

can be interpreted as describing the motion

of a particle of mass m under a constant force

−F (with the associated potential function

V = Fx). This is consistent with the well-

known fact that the behavior of a free par-

ticle with respect to a uniformly accelerated

reference frame is equivalent to the the be-

havior of a particle in an inertial reference

frame moving under the e�ect of a constant

force.

An interesting feature of the nonlinear equa-

tion is that the potential V couples to Φq,

instead of coupling to Φ, as happens in the

standard linear case (q = 1).



Consistently with the equation

ih̄
∂

∂t

(
Φ

Φ0

)
=−

1

2− q

h̄2

2m

∂2

∂x2

( Φ

Φ0

)2−q
+V (x)

(
Φ

Φ0

)q

,

the q-plane wave Φ(x, t) = Φ0 expq [i(kx− ωt)]
is not only a solution of the free-particle non-

linear Schroedinger equation (when h̄ω = h̄2k2

2m ),

but also of the nonlinear equation

ih̄
∂

∂t

(
Φ

Φ0

)
=−

1

2− q

h̄2

2m

∂2

∂x2

( Φ

Φ0

)2−q
+V0

(
Φ

Φ0

)q

,

with a constant potential V0, provided that

h̄ω =
h̄2k2

2m
+ V0,

which, using the Planck and de Broglie rela-

tions, becomes E = p2

2m + V0, as expected.



�Accelerated" q-Plane Waves

Considering now the limit q → 1 of the trans-

formed solution,

Φ

Φ0
=

[
1− i(1− q)

{
ωt− k

(
x+

Ft2

2m

)
+

F

h̄

(
xt+

Ft3

6m

)}] 1
1−q

,

we verify that the original (non-accelerated)

solution Ψ(x′, t′) and the transformed one Φ(x, t)

are linked through

Ψ(x′, t′) → Φ(x, t)

= exp

[
−

i

h̄

(
Fxt+

F2t3

6m

)]
Ψ

(
x+

Ft2

2m
, t

)
,

thus recovering the (non-relativistic) trans-

formation rule for accelerated corresponding

to the linear Schroedinger equation.



q-Gaussian Time dependent Wave-Packet Solutions

We now consider solutions to the NRT equa-

tion based upon the q-Gaussian wave packet

ansatz,

Φ(x, t) = Φ0

[
1− (1− q)(a(t)x2 + b(t)x + c(t))

] 1
1−q ,

where a, b, and c are appropriate (complex)

time dependent coe�cients.

The above ansatz constitutes a solution of

the NRT equation provided that the coef-

�cients a, b, and c comply with the set of

coupled ordinary di�erential equations,

iȧ(t) =
h̄

m
(3− q)a(t)2

iḃ(t) =
h̄

m
(3− q)a(t)b(t)

iċ(t) =
h̄

m

(
(1− q)a(t)c(t)− a(t) +

b(t)2

2

)
.



Harmonic Oscillator

The q-Gaussian ansatz also yields exact ana-

lytical time dependent solutions for the NRT

equation corresponding to a harmonic poten-

tial,

ih̄
∂

∂t

[
Φ

Φ0

]
= −

1

2− q

h̄2

2m
∇2

[
Φ

Φ0

]2−q

+V (x)

[
Φ

Φ0

]q
,

with V (x) = kx2/2.

Quasi-Stationary Solution: A particular q-

Gaussian solution of the above equation cor-

responds, in the q → 1 limit to the ground

state of the standard, linear harmonic oscilla-

tor. Other q-Gaussian solutions correspond,

in the same limit, to Schroedinger's time de-

pendent Gaussian wave packet solutions of

the h.o.

More on quasi-Stationary Solutions: I.V. Toranzo,

A.R. Plastino, J.S. Dehesa, A. Plastino, Phys-

ica A 392 (2013) 3945.



Summary:

• Behavior of q-plane wave solutions under

Galilean Transformations. Compatibility

with the de Broglie Relations.

• �Accelerated" q-plane wave solutions −→
Extension of the NRT equation to the

case of a particle moving in a potential

V (x).

• Time dependent q-Gaussian wave packet

solutions. Harmonic Oscillator.

• Quasi-Stationary Solutins of the NRT equa-

tion.



Some Open Questions that May Shed Light
on Possible Applications

(1) Is the NRT dynamics (or an appropriate

restriction of it) �conservative"?

The NRT can be derived from a variational

principle (NRT, EPL 97, 41001 (2012).)

The NRT admits a �time reversal symmetry":

Ψ(x, t) −→ Ψ∗(x,−t).

(2) Full characterization of the set of norm-

preserving solutions of the NRT equation.

The non-preservation of the norm is related

to the fact that the set of solutions to the

NRT eq. is not closed under global phase

changes (Ψ(x, t) −→ eiαΨ(x, t)). In the linear
case this symmetry leads, via Noether's The-

orem, to the continuity eq. for de prob. den-

sity and the preservation of the norm. The

NRT equation admits a �discrete" version of

this symmetry, given by (1− q)αn = 2πn.

(3) Information-related aspects of the NRT

eq.
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