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Preliminaries

Nonextensive statistical mechanics is based on the Sq entropy,
defined for a discrete probability distribution p = (p1, p2, . . .) by

Sq(p) = kB

∑
i

pi lnq
1

pi
, q ∈ R , (1)

where lnq x denotes the q-logarithm, defined for x > 0 by

lnq x =

∫ x

1

dy

yq
=


x1−q − 1

1− q
if q 6= 1

ln x if q = 1.
(2)

The inverse of the q-logarithm is the q-exponential, defined by

exq =

{
[1 + (1− q)x ]1/(1−q) if q 6= 1

ex if q = 1.
(3)
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The q-Gaussian distribution with parameters q < 3 and β > 0 is
defined by

gq,β(x) dx =


√
β

Nq
e−βx

2

q dx if 1− (1− q)βx2 > 0

0 if 1− (1− q)βx2 ≤ 0,

(4)

where Nq is a normalization constant.

• q-Gaussian distributions have compact support if q < 1,
namely the interval[

− 1√
(1− q)β

,
1√

(1− q)β

]
; (5)

otherwise their support is R.

• q-Gaussian distributions appear in many natural, social and
artificial systems.
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q-generalisation of the central limit theorem

The escort distribution of order q of a discrete random variable
(r.v.) X with distribution pi = P[X = xi ] is defined by

p
(q)
i =

pqi∑
j p

q
j

. (6)

[Beck and Schlögl, Thermodynamics of chaotic systems, Cambridge
University Press, 1993]

The q-expectation and (2q − 1)-variance of X are defined by

〈X 〉q =
∑
i

xip
(q)
i and Var2q−1 X = 〈X − 〈X 〉q〉2q−1 . (7)

The q-Fourier transform of X is defined by

ϕq[X ](t) =
∑
i

pi expq(itxpq−1
i ) , 1 ≤ q < 2 . (8)
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Two r.v.’s X1 and Y1 are q-independent (of the first type) if

ϕq[X + Y ] = ϕq[X ]⊗q ϕq[Y ] , 1 ≤ q < 2 , (9)

where X = X − 〈X1〉q, Y = Y1 − 〈Y1〉q and ⊗q denotes the
q-product, defined by

a⊗q b =

{
(a1−q + b1−q − 1)1/(1−q) if q 6= 1

ab if q = 1.
(10)

[Borges, Physica A 340, 95 (2004)]
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q-generalisation of the central limit theorem

Let X1,X2, . . . be discrete q-independent r.v.’s with a common
distribution pi = P[X1 = xi ]. If 0 < Var2q−1 X1 <∞, then there
exists a r.v. Z having a q′-Gaussian distribution with parameters

q′ =
3q − 1

1 + q
e β =

 3− q′

4qN
2(q′−1)
q′

1/(2−q′)

, (11)

such that ϕq[Zn]→ ϕq′ [Z ], where

Zn =

∑n
i=1 Xi − n〈X1〉q√

nVar2q−1 X1
∑

j p
2q−1
j

. (12)

[Umarov, Tsallis and Steinberg, Milan J. Math. 76, 307 (2008)]



• The intended proof given by Umarov et al. was based on the
hypothesis of the invertibility of the q-Fourier transform.

• Hilhorst proved that the q-Fourier transform is not invertible
for q 6= 1.

[Hilhorst, J. Stat. Mech. P10023 (2010)]

• The following articles give sufficient conditions for the
invertibility of the q-Fourier transform, and their results may
be used in the elaboration of a correct proof for the
q-generalised central limit theorem.

[MJ and Tsallis, J. Phys. A 375, 2085 (2011)]
[MJ, Tsallis and Curado, J. Stat. Mech. P10016 (2011)]

[Plastino and Rocca, Physica A 391, 4740 (2012)]
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Probabilistic model with q-Gaussian attractors

We consider the following triangular array of r.v.’s taking values in
{0, 1}:

Xq,1,1

Xq,2,1 Xq,2,2
...

...
. . .

Xq,n,1 Xq,n,2 · · · Xq,n,n
...

...
...

. . .

(13)

The r.v.’s in each line are exchangeable, i.e.

P[Xq,n,1 = x1, . . . ,Xq,n,n = xn] =

P[Xq,n,1 = xπ(1), . . . ,Xq,n,n = xπ(n)] (14)

for any permutation π of {1, . . . , n}.



Probabilistic model with q-Gaussian attractors

We consider the following triangular array of r.v.’s taking values in
{0, 1}:

Xq,1,1

Xq,2,1 Xq,2,2
...

...
. . .

Xq,n,1 Xq,n,2 · · · Xq,n,n
...

...
...

. . .

(13)

The r.v.’s in each line are exchangeable, i.e.

P[Xq,n,1 = x1, . . . ,Xq,n,n = xn] =

P[Xq,n,1 = xπ(1), . . . ,Xq,n,n = xπ(n)] (14)

for any permutation π of {1, . . . , n}.



The distribution of Sq,n := Xn,1 + · · ·+ Xn,n is defined by

P[Sq,n = k] =
1

Zq,n
expq(−x2

q,n,k) , q ≤ 2 , k = 0, 1, . . . , n ,

(15)
where

xq,n,k =


√
n + 1

(
k + 1

n + 2
− 1

2

)
if 1 ≤ q ≤ 2

1√
1− q

[
1− 2

(
k + 1

n + 2

)]
if q < 1

(16)

and

Zq,n =
n∑

k=0

expq(−x2
q,n,k) . (17)

[Rodŕıguez, Schwämmle and Tsallis, J. Stat. Mech P09006 (2008)]



Some properties of the model

• P[Xq,n,i = 1] = P[Xq,n,i = 0] = 1/2.

• For q < 1, we have (analitically)

n

2

√
1− qP[Sq,n = k] ∼ gq,1(xq,n,k) , k = 0, 1, . . . , n . (18)

• If 1 ≤ q ≤ 2, we have (numerically)

√
nP[Sq,n = k] ≈ gq,1(xq,n,k) , k = 0, 1, . . . , n . (19)

• The r.v.’s Xq,n,1, . . . ,Xq,n,n are strongly correlated.
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Case q < 1: Analogy to a quantum spin chain

We are going to study the asymptotic behaviour of the joint
distribution of m < n r.v.’s of the set {Xq,n,1, . . . ,Xq,n,n}. For
simplicity, we will be only interested in the probabilities

pq,n,m = P[Xq,n,1 = 1, . . . ,Xq,n,m = 1] . (20)

It can be verified that

pq,n,m =
1

Zq,n

n−m∑
k=0

(
m∏
i=1

k + i

n − i + 1

)
expq(−x2

q,n,k+m) . (21)

If q < 1, we obtain, for instance, that

pq,n,2 6→
1

22
, n→∞ . (22)
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Case q ≥ 1: A paradoxical result

If q ≥ 1, we obtain that

pq,n,2 →
1

22
, n→∞ , (23)
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Any two r.v.’s of the set {Xq,n,1, . . . ,Xq,n,n} become independent
when n→∞.
It can be verified that, for a fixed m < n,

Var(Xn,1+· · ·+Xn,m) = m

(
1

2
− pq,n,2

)
+m2

(
pq,n,2 −

1

4

)
. (24)

We see that, since pq,n,2 → 1/4,

Var(Xn,1 + · · ·+ Xn,m)→ m

4
, n→∞ . (25)

This suggests that any fixed number of r.v.’s of the set
{Xq,n,1, . . . ,Xq,n,n} become independent when n→∞.
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Conclusions

• We have studied the behaviour of marginal joint distributions
in a probabilistic model involving strongly correlated r.v.’s
which presents q-Gaussian distributions as limiting
distributions.

• We conclude that, for q < 1 (compact support), the
correlations are preserved in any subset of r.v.’s.

• For q ≥ 1 (unbounded support), we have seen that the
correlations in any finite subset of r.v.’s become negligible as
the system grows. However, if the “size” of the subset of
r.v.’s rapidly grows as the system grows, then the correlations
are preserved in the subsystem.

[MJ and Tsallis, Phys. Lett. A 379, 1816 (2015)]
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• We conclude that, for q < 1 (compact support), the
correlations are preserved in any subset of r.v.’s.

• For q ≥ 1 (unbounded support), we have seen that the
correlations in any finite subset of r.v.’s become negligible as
the system grows. However, if the “size” of the subset of
r.v.’s rapidly grows as the system grows, then the correlations
are preserved in the subsystem.

[MJ and Tsallis, Phys. Lett. A 379, 1816 (2015)]
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