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The g-Gaussian distribution with parameters g <3 and 5 >0 is

defined by
VB g :
X e P dx if1—(1—q)Bx*>>0
gas(x)dx = { Ny =)
0 if 1 —(1—-q)Bx%><0,

where Ng is a normalization constant.
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The g-Gaussian distribution with parameters g <3 and 5 > 0 is
defined by

f 0 ,
“dx if1—(1—q)Bx2>0
ga,p(x)dx = Ng (4)
0 if 1—(1—-q)Bx><0
where Ng is a normalization constant.
e g-Gaussian distributions have compact support if g < 1,
namely the interval
1 1
(5)
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otherwise their support is R.

e g-Gaussian distributions appear in many natural, social and
artificial systems.



g-generalisation of the central limit theorem

The escort distribution of order g of a discrete random variable
(r.v.) X with distribution p; = P[X = x;] is defined by
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Two r.v.'s Xq and Y are g-independent (of the first type) if

el X+ Y= ggX] g 0alY], 1<q<2,

where X = X — (X1)q, Y = Y1 — (Y1)q and ®, denotes the
g-product, defined by
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g-generalisation of the central limit theorem

Let X1, X3, ... be discrete g-independent r.v.'s with a common
distribution p; = P[X1 = x;]. If 0 < Varyg_1 X1 < 0o, then there
exists a r.v. Z having a q'-Gaussian distribution with parameters
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such that @q[Z,] = pq[Z], where
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[Umarov, Tsallis and Steinberg, Milan J. Math. 76, 307 (2008)]



e The intended proof given by Umarov et al. was based on the
hypothesis of the invertibility of the g-Fourier transform.
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hypothesis of the invertibility of the g-Fourier transform.

Hilhorst proved that the g-Fourier transform is not invertible
for g # 1.

[Hilhorst, J. Stat. Mech. P10023 (2010)]

The following articles give sufficient conditions for the
invertibility of the g-Fourier transform, and their results may
be used in the elaboration of a correct proof for the
g-generalised central limit theorem.

[MJ and Tsallis, J. Phys. A 375, 2085 (2011)]

[MJ, Tsallis and Curado, J. Stat. Mech. P10016 (2011)]
[Plastino and Rocca, Physica A 391, 4740 (2012)]



Probabilistic model with g-Gaussian attractors

We consider the following triangular array of r.v.'s taking values in
{0,1}:
Xg,1,1
Xg21 Xg22
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Probabilistic model with g-Gaussian attractors

We consider the following triangular array of r.v.'s taking values in

{0,1}:

Xq,1,1
Xg21 Xg2.2

5 L (13)
Xq,n71 Xq,n,Z Xq,n,n

The r.v.’s in each line are exchangeable, i.e.

P[Xq,n,l = X1y 7Xq,n,n = Xn] =
P[Xq,n,l = Xz(1)) - - - >Xq,n,n = XT('(H)] (14)

for any permutation 7 of {1,...,n}.



The distribution of Sq , := Xj, 1 + - - - 4+ X, is defined by

P[Sqn= k] = (=% nk)s 9<2,k=0,1,...,n,
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[Rodriguez, Schwdmmle and Tsallis, J. Stat. Mech P09006 (2008)]
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e For g < 1, we have (analitically)

n
E\/l — qP[Sqn = k| ~ gg1(Xgnk), k=0,1,...,n. (18)
e If 1 < g <2, we have (numerically)

ﬁP[Sq,,, = k] ~ gg1(Xqnk), k=0,1,...,n. (19)

e Therv.'s Xgn1,...,Xqgnn are strongly correlated.
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Case g < 1: Analogy to a quantum spin chain
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We are going to study the asymptotic behaviour of the joint
distribution of m < n r.v.'s of the set {Xqn1,...,Xgnn}. For
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B = 120G ma = 1y« ooy Namm = o (20)

It can be verified that

S (115 ) expy( i) . (21)
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If g < 1, we obtain, for instance, that

pqn2ﬁ22, n— 00o. (22)
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Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics
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The Boltzmann-Gibbs—von Neumann entropy of a large part (of linear size L) of some (much larger)
d-dimensional quantum systems follows the so-called area law (as for black holes), i.e., it is proportional to
L4, Here we show, for d=1,2, that the (nonadditive) entropy Sy satisfies, for a special value of g+ 1, the
classical thermodynamical prescription for the entropy to be extensive, i.e., quL". Therefore, we reconcile
with classical thermodynamics the area law widespread in quantum systems. Recently, a similar behavior was
exhibited in mathematical models with scale-invariant correlations [C. Tsallis, M. Gell-Mann, and Y. Sato,
Proc. Natl. Acad. Sci. U.S.A. 102 15377 (2005)]. Finally, we find that the system critical features are marked
by a maximum of the special entropic index g.

DOI: 10.1103/PhysRevE.78.021102 PACS number(s): 05.70.Jk, 05.30.—d
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Case g > 1: A paradoxical result

If g > 1, we obtain that

1
Pq,n,2 — 22 ) n— OO? (23)
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Any two r.v.'s of the set {Xg n1,...,Xq,nn} become independent
when n — oo.
It can be verified that, for a fixed m < n,

1 1

We see that, since pgn2 — 1/4,

Var(Xp1+ -+ Xom) > —, n—o0. (25)

&3

This suggests that any fixed number of r.v.'s of the set
{Xg.n1,--.,Xq,nn} become independent when n — oo.
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distributions.



Conclusions

e We have studied the behaviour of marginal joint distributions
in a probabilistic model involving strongly correlated r.v.’s
which presents g-Gaussian distributions as limiting
distributions.

e We conclude that, for ¢ < 1 (compact support), the
correlations are preserved in any subset of r.v.’s.



Conclusions

e We have studied the behaviour of marginal joint distributions
in a probabilistic model involving strongly correlated r.v.’s
which presents g-Gaussian distributions as limiting
distributions.

e We conclude that, for ¢ < 1 (compact support), the
correlations are preserved in any subset of r.v.’s.

e For g > 1 (unbounded support), we have seen that the
correlations in any finite subset of r.v.'s become negligible as
the system grows. However, if the “size” of the subset of
r.v.'s rapidly grows as the system grows, then the correlations
are preserved in the subsystem.
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[MJ and Tsallis, Phys. Lett. A 379, 1816 (2015)]
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