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The influence of the in-plane uniaxial anisotropy (IPUA) in the mutual energy transfer time (s)

between two identical coupled nanodisks was studied. Using an analytical dipolar model, we

obtained the interactions between the disks along x and y directions (the coupling integrals) as a func-

tion of the uniaxial anisotropy constant (Kr) and the distance. We find that the IPUA increases the

interaction between the disks allowing shorter energy transfer times. For our range of Kr values, we

get a drop in the values of s of up to about 70%. From the Lagrangian of the system, we obtained the

equations of motion and the coupling frequencies of the dynamic system as a function of distance

and Kr. The coupling frequencies were also obtained from micromagnetic simulations. Our results of

the simulations are in agreement with the analytical results. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971342]

I. INTRODUCTION

Depending on their geometries and sizes, magnetic

nanostructures can present a vortex configuration as their

ground states.1,2 This configuration is characterized by curl-

ing magnetization in the plane of the nanostructure, and a

core where the magnetization points out of the plane. The

curling direction defines the circulation C ¼ þ1 (counter-

clockwise (CCW)) and C¼�1 (clockwise (CW)). The core

has polarity p0 ¼ þ1 when it points in the þz direction and

p0 ¼ �1 in the �z direction. The magnetic vortices have

several potential applications for devices, such as media for

magnetic random access memories (MRAM), spin torque

induced magnetization processes, microdisks for targeted

cancer-cell destruction, etc.2–5

When vortices are excited from their equilibrium posi-

tion and allowed to relax, they perform a motion called gyro-

tropic, with an eigenfrequency (gyrotropic frequency) in the

sub-gigahertz range.1,2,6–8 This eigenfrequency depends on

the ratio of the thickness to the radius of the disk

(b ¼ L=R).2,7 The control of gyrotropic frequency values has

been reported in previous works using perpendicular mag-

netic fields and polarized spin current.9–11 Nevertheless,

problems such as the Joule heating and stray magnetic fields

are undesirable for device applications,12 therefore a new

mechanism for controlling the frequencies is needed. In this

sense the influence of perpendicular uniaxial anisotropy

(PUA) and in-plane uniaxial anisotropy (IPUA) in the mag-

netization process of magnetic vortices has gained interest in

recent years.13–19 In multilayer systems, a perpendicular uni-

axial anisotropy (PUA) can be induced varying the substrate

thickness,18 while IPUA can be induced through inverse

magnetostriction effect by voltage-induced strain via a PZT

piezoelectric transducer.14,20 The IPUA allows real-time

control of the eigenfrequency in an appreciable range.13 The

eigenfrequency can also be controlled using PUA, as has

already been demonstrated by Fior et al.,19 but the downside

is that this control cannot be made in real-time, and the range

of frequency variation is barely 3% before the vortex is

destabilized.

When magnetic disks are close to one another, there

arises a frequency splitting due to the magnetic interaction.21

Expressions for the magnetic vortex excitation frequencies

and coupling integrals in a pair of coupled circular disks of

equal radii were obtained by Shibata et al.21 and Sukhostavets

et al.22 These expressions were also obtained for the case of

coupled circular disks of different radii by Sinnecker et al.23

Coupling different disks with magnetic vortices allows

the possibility of lossless energy transfer between them,24

and the propagation of the information,25 which is relevant

for the flow of information in devices using magnetic vorti-

ces. The energy transfer time of one disk to the other is char-

acterized by the parameter s. This parameter is inversely

proportional to the splitting frequency (�x=2p).24 In this

sense, the control of the mutual energy transfer time s is very

important to characterize this transfer.

The goal of this work is to propose a novel method for

controlling s in a pair of identical nanodisks, using the

influence of the IPUA. To date there is only one method of

controlling the value of s, using perpendicular magnetic

fields.26 We used micromagnetic simulations and found a

correlation between the IPUA values and s. The coupling

integrals Ix and Iy between disks and the splitting frequency

are also affected by the presence of the IPUA. In order to

gain physical meaning and obtain the new values of the

coupling integral and splitting frequency, a simple analyti-

cal method considering the dipolar interaction was used.

Our analytical results are in accordance with the micromag-

netic simulations.

The micromagnetic simulations were made using the

open source software Mumax.27 The magnetoelastic energy

was included in the micromagnetic simulation as a uniaxial

anisotropy energy, as proposed in reference 13. We used cells

of 2� 2� 7 nm3. The magnetostrictive material used was

Galfenol (FeGa), which is of great interest and exhibits high

magnetostriction.20 The material parameters of Galfenol
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used here were:13,28,29 saturation magnetization Ms ¼ 1:360

�106 A/m2 and exchange stiffness A ¼ 14� 10�12 J/m. We

used the gyromagnetic ratio c ¼ 2.21 �105 m/As, damping

constant a ¼ 0:01, and IPUA ranging from 0 to 58500 J/m3.

For larger values of the anisotropy, the magnetic vortex con-

figuration is not stable. We used two identical disks, located

along the x-axis, with diameters 256 nm, thickness L ¼ 7 nm,

and separation distance D between the disks (Fig. 1). All our

simulations were made considering a uniaxial anisotropy in

the direction of the x axis.

II. RESULTS AND DISCUSSION

A. Micromagnetic simulations

The gyrotropic frequency variation depending on the

induced uniaxial anisotropy constant Kr for an isolated

disk has already been studied in detail by Roy13 for the same

geometry that we used, however, we will make a brief

description of this case.

The vortex core is initially at the equilibrium position,

at the center of the disk. In order to induce the gyrotropic

movement, we first apply a static field of 20 mT in the þx

direction for a few nanoseconds using a large damping a¼ 1

for faster convergence, then this field is turned off and a

typical damping a¼ 0.01 was used, allowing the vortex

core to perform the gyrotropic motion. The eigenfrequency

(f0¼x0=2p) is obtained by a fast Fourier transform (FFT)

from the time evolution of the magnetization. The frequency

decreases with increasing anisotropy, as shown in Fig. 2.

The gyrotropic frequencies can also be determined

analytically using the linearized Thiele’s equation.30

Considering a small damping, this equation can be written as

G� dX

dt
� @W Xð Þ

@X
¼ 0; (1)

where G is the gyrovector G ¼ �Gp0ẑ; G ¼ 2pl0MsL=c is

the gyrotropic constant (it is assumed that the magnetization

does not vary along the thickness of the disk, an assumption

valid for b¼L/R � 1), c is the gyromagnetic ratio, and Ms

is the saturation magnetization; WðXÞ ¼ Wð0Þ þ 1
2
jX2 is

the potential energy and j ¼ 40pM2
s L2=9R is the stiffness

coefficient calculated within the side-charge-free model at

b � 1,1 and R is the disk radius. The gyrotropic frequency

is given by the expression f0 ¼ jð2pGÞ�1
. The stiffness

coefficient and the gyrotropic constant were obtained from

micromagnetic simulations following the methodology of

some previous works.13,26,31 Thus, the gyrotropic constant

was obtained using the expression31

G ¼ L

cM2
s

ð
S

M:
@M

@x

� �
� @M

@y

� �" #
dS (2)

and the stiffness coefficient was obtained from the slope of the

linear fits of WðXÞ versus X2.9,13 The values of the gyrotropic

constant and stiffness coefficient obtained from the analytical

expressions are G¼ 3.401� 10�13 kg/s and j¼ 9.86 N/m for

Kr¼ 0 kJ/m3 while the values obtained from micromagnetic

simulations are 3.375� 10�13 kg/s and j¼ 9.16 N/m. There is

a good agreement between the results obtained from the ana-

lytical expressions and those obtained from micromagnetic

simulation. With the presence of the IPUA, the value of the

gyrotropic constant remains unchanged, as shown in Fig. 3,

FIG. 1. Coupled disks with magnetic vortex configuration separated by a

center-to-center distance D.

FIG. 2. Gyrotropic frequency variation with respect to Kr for an isolated

disk of diameter 2R¼ 256 nm and thickness L¼ 7 nm. Blue diamonds and

orange dots represent the values obtained from micromagnetic simulations,

and Thiele’s equation (jð2pGÞ�1
), respectively.

FIG. 3. (a) Gyrotropic constant G and (b) stiffness coefficient j obtained

from micromagnetic simulations, vs. Kr.
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which means that the IPUA does not alter the profile of the

vortex core,13 whereas the stiffness coefficient shows a falling

value with increasing anisotropy constant Kr. This fall is due

to the competition between exchange and demagnetizing

energy versus magnetoelastic energy.13 Decreasing kappa val-

ues are reflected in the values of the eigenfrequencies, as

shown in Fig. 2. Our results obtained for isolated disks are

consistent with those obtained by Roy.13

In order to study the dependence of s with the IPUA, we

considered a system of two coupled disks, located along the

x-axis, separated by a center to center distance D, as shown in

Fig. 1. Initially, both vortex cores are in the equilibrium posi-

tion at the center of their respective disks. In order to induce

the gyrotropic movement, we have applied a static field in the

þx direction for a few nanoseconds only on disk 1, then this

field was turned off, allowing the vortex core to perform the

gyrotropic motion with decreasing amplitude, while the vortex

core of disk 2 begins to perform the gyrotropic movement with

increasing amplitude, due to transfer of energy from disk 1.

The splitting frequency is affected by the presence of the

IPUA, increasing with the increase of Kr from 19.35 MHz (Kr

¼ 0 kJ/m3) to 55.9 MHz (Kr¼ 58.5 kJ/m3) for the case p¼ p1p2

¼þ1. For p¼�1, the splitting frequency increases from

48.25 MHz (Kr¼ 0 kJ/m3) to 66.8 MHz (Kr¼ 58.5 kJ/m3).

This dependence is shown in Fig. 4. As expected, the splitting

frequency is larger for the case p¼�1 than for p¼þ1 because

the dipolar interaction is stronger in the former case.25

Since the splitting frequency (�x/2p) is inversely

related to the energy transfer time (s),24 it is expected that s
also depends on Kr. This dependence is shown in Fig. 4 for

p¼þ1 and p¼�1. These values were extracted from the

micromagnetic simulations considering the s definition: s is

defined as the time required by the energy of disk 1 to reach

its minimum value for the first time.24 Additionally, we have

calculated s using the expression s¼ 0.5/�f,24 where �f

¼�x=2p. These results are also shown in Fig. 4. Another

way to find the s values is to observe the time required for

envelopes of X1 or M1(t) reach their minimum values for the

first time. In all cases, the results are almost the same. For a

reduced distance d¼D/R¼ 2.27, we found a drop in the

value of s of almost 69%, from s¼ 25.4 ns (Kr¼ 0) to

s¼ 8.6 ns (Kr¼ 58.5 kJ/m3) for p¼þ1 and a drop of 27%

from s¼ 10.13 ns (Kr¼ 0), to s¼ 7.36 ns (Kr¼ 58.5 kJ/m3)

for p¼�1. For larger d, the decrease in the value of s with

respect to the increase of Kr remains significant (approxi-

mately 60%) for p¼þ1, while for the case p¼�1, the drops

are reduced to 20%. Despite getting lower values of s with

high values of Kr, it is important to note that energy transfer

times remain shorter when p¼�1. This is because the cou-

pling between the two disks is stronger in comparison with

p¼þ1.26 Up to this point we have shown that it is possible

to control the energy transfer time using the influence of the

IPUA, thus becoming a new and effective method for con-

trolling s. Next, we will explain the reason why s decreases

with increasing Kr.

B. Analytical dipolar model

Although the magnetic interaction between magnetic

vortices depends on several multipole terms,32 we used a

FIG. 4. Splitting frequency and s vari-

ation with respect to Kr for (a,c)

p¼þ1, and (b,d) p¼�1 with reduced

distance d¼D/R¼ 2.27, both obtained

from micromagnetic simulations.
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simple dipolar model to understand the effect of IPUA on

the coupling integrals. This model has been used in the other

work for the study of magnetic interaction among three cou-

pled disks system.33 The magnetic dipolar energy (Edip) is

given by

Edip ¼
l0

4pD3
ij

li:lj � 3 D̂ij:li

� �
: D̂ij:lj

� �� �
; (3)

where D̂ij is a unit vector along the axis connecting the cen-

ters of the disks i and j.

For small displacements, the magnetic dipolar moment

for a magnetic vortex is defined by33

li;j ¼ �kCi;jMsLRðẑ � Xi;jÞ; (4)

with

ki;j ¼
pR

Ms

kMi;jk
kXi;jk

(5)

where k (in our case, ki¼ kj because the two disks have the

same dimensions) is a parameter that depends on the position

and the magnetization of the vortex core which can be

extracted from micromagnetic simulations, Ci;j is the circula-

tion of the disks i and j, Xi;j ¼ ðxi;j; yi;jÞ is the vector position

of the core vortex of the disks. After some algebra and con-

sidering i, j¼ 1, 2, we obtain the following expression for

the magnetic dipolar energy

Edip ¼ C1C2ðg�x1x2 � 2g�y1y2Þ; (6)

where g� ¼ l0k
2M2

s L2R2=4pD3
12; D12 ¼ D is the center-to-

center distance between 2 disks. Eq. (6) is similar to the ana-

lytical expression obtained for the magnetic interaction

energy (Wint) given by21,22

Wint ¼ C1C2ðgxx1x2 þ gyy1y2Þ: (7)

Comparing Eq. (6) with Eq. (7), we obtain

gx ¼ g� gy ¼ �2g� (8)

Therefore, the new coupling integrals are given by

Ix;y ¼
8p

l0RM2
s

gx;y (9)

The expressions of the coupling integral obtained in pre-

vious works are limited to the case when the magnetic vortex

configuration is not disturbed by some external agent (e.g.,

perpendicular magnetic field, perpendicular uniaxial anisot-

ropy, IPUA). In contrast, our expressions for the coupling

integrals (Eq. (9)) can be used when the magnetic vortex

configuration is disturbed, as they depend on the k parame-

ter, that is unique for each level of disturbance. In order to

obtain the k parameter, we follow the methodology used by

Asmat et al.33 In an isolated disk, the vortex core is displaced

from the center of the disk for the X position by application

of an in-plane magnetic field and considering a large damp-

ing (a¼ 1) for faster convergence; in this position we

measured the magnetization M. Knowing these two quanti-

ties, we can now make use of Eq. (5). We repeat the same

procedure for each value of Kr. In the linear regime,

the magnetization M and X are proportional,22 therefore the

k parameter is independent of time, and it has an unique

value for each Kr.

Accordingly, we find the values of the coupling inte-

grals; these results are shown in Fig. 5. For d¼ 2.27 and

Kr¼ 0 kJ/m3 the ratio Ix/kIyk is approximately 0.38 using

expressions obtained by Shibata et al.,21 whereas if we use

Eq. (9) the ratio is 0.5. This difference is expected because

our model only considers the dipolar term in the interaction

energy (Eq. (3)), however for larger d, the ratio Ix/kIyk
begins to approach 0.5.

Considering our expressions for the coupling integrals

(Eq. (9)), we will determine the expression for the eigenfre-

quencies (or coupling frequencies) of the two disks coupled

system.

The Lagrangian expression for a pair of coupled disks

based on the constant of the Thiele’s equation is defined

by33,34

L ¼ � 1

2

Xj

i

fGpi xi _yi � yi _xið Þ � jjXij2g �
X
i<j

Eij
dip: (10)

From the first variation of the Lagrangian (Eq. (10)), we

obtained the equations of motion

_x1

_x2

_y1

_y2

2
664

3
775 ¼ 1

G

0 0 p1j �2p1g�

0 0 �2p2g� p2j

�p1j �p1g� 0 0

�p2g� �p2j 0 0

2
6664

3
7775

x1

x2

y1

y2

2
664

3
775

(11)

The coupling frequencies (or eigenfrequencies) are

obtained from Eq. (11)

x1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 � 2p
g�

G

� �2

6
g�

G
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 4p

ps
(12)

FIG. 5. Coupling integral Ix as a function of the reduced distance d¼D/R

for disks with L¼ 7 nm and diameter 256 nm. These results were obtained

from Eq. (9).
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and the splitting frequency

jx2 � x1j ¼
ffiffiffi
2
p

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2pu2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u4 � 5u2 þ 1

pq
(13)

where x0 is an eigenfrequency of an isolated disk and

u¼ g�=Gx0.

The coupling frequencies do not depend on the sign of

the circulations C1 and C2, they depend only on the combina-

tion of polarities (p¼þ1 or p¼�1).

The dependence of the coupling integrals on Kr and the

reduced separation distance d is shown in Fig. 5. The pres-

ence of IPUA favors the alignment of magnetic charges on

the x direction, increasing the interaction on the x axis and

consequently decreasing the interaction on the y axis (Eq.

(8)). On the other hand, the value of s is inversely propor-

tional to the absolute value of the difference between gx and

gy (or Ix and Iy),25,35 therefore, when gx increases, the abso-

lute value of the difference between the interactions also

increases, thus s decreases. This result is very important

because as the coupling integrals increase (Ix and kIyk), the

splitting frequency also increases (see Eq. (13)), therefore s
must decrease (Sec. II A). This explains why s decreases

with increasing Kr, as already discussed in the previous sec-

tion. The effects caused by the IPUA strongly contrast to

those produced by perpendicular magnetic fields. While it is

true that in the case of an isolated disk, both the IPUA and

the application of a perpendicular magnetic field antiparallel

to the polarity of the vortex produce the same effect of

decreasing frequency, it is not the same in the case of cou-

pled disks. s increases with the increase of the applied per-

pendicular magnetic field, while it decreases with increasing

Kr. The reason for this is that the perpendicular magnetic

field deforms the core profile of the vortex, making the

coupling integrals weak26 while the presence of IPUA does

not alter the core profile of the vortex.13 As expected, the

values of the coupling integrals decrease with the increase of

the center-to-center distance of the disks.

In order to test Eq. (12), we compared the coupling fre-

quencies of the two-coupled disk system obtained from

micromagnetic simulations with the results obtained using

Eq. (12). These results are shown in Fig. 6 for Kr¼ 58.5 kJ/

m3 and for the combination of polarities p¼þ1 and p¼�1.

As our model considers purely the dipolar interaction, which

is far-reaching, it is expected that this is well-behaved when

the separation distance between the disks is larger, as shown

in Fig. 6. Although it is necessary to make some adjustments

to our model to improve the efficiency for small separation

distances where high-order magnetic interactions, such as

dipole-octupole, octupole-octupole, dipole-triacontadipole

are appreciable,32 it is sufficient to explain the influence of

the IPUA in the interaction between two disks.

III. CONCLUSION

In this work, we have studied the influence of the IPUA

on an isolated disk and on a system of coupled identical disks,

both with a magnetic vortex configuration. In the isolated disk

system, we have obtained the gyrotropic frequency, gyro-

tropic constant, and stiffness constant from micromagnetic

simulations. In the two-coupled disks system, using micro-

magnetic simulations, we demonstrated that it is possible

to control the mutual energy transfer time using the IPUA,

introducing a new method for controlling s. Using a simple

analytical dipolar model, we have obtained the coupling inte-

grals (interactions in the x and y directions) depending on the

reduced separation distance d and Kr. Also, we were able to

explain why s decreases with increasing Kr, and clarify the

difference in using perpendicular magnetic fields and IPUA.

We have also analytically found the coupling frequencies and

compared this with the coupling frequencies obtained from

micromagnetic simulations. For larger separation distance D,

the agreement for the case p¼�1 is quite good, however, the

agreement is only fair for the case p¼þ1. This difference

can be attributed to the fact of considering only dipolar inter-

action or to the absence of a term that takes into account the

ellipticity of the vortex core trajectories in the analytical

model, or both. More detailed studies are needed on the

importance of taking into account both factors.
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