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The coupling of two nonidentical magnetic nanodisks, i.e., with different vortex gyrotropic

frequencies, is studied. From the analytical approach, the interactions between the nanodisks along

x and y directions (the coupling integrals) were obtained as a function of distance. From the

numerical solution of Thiele’s equation, we derived the eigenfrequencies of the vortex cores as a

function of distance. The motion of the two vortex cores and, consequently, the time dependence of

the total magnetization M(t) were derived both using Thiele’s equation and by micromagnetic

simulation. From M(t), a recently developed method, the magnetic vortex echoes, analogous to the

Nuclear Magnetic Resonance spin echoes, was used to compute the distance dependence of the

magnetic coupling strength. The results of the two approaches differ by approximately 10%; using

one single term, a dependence with distance found is broadly in agreement with studies employing

other techniques. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4878875]

I. INTRODUCTION

Magnetic objects of nano- and mesoscopic dimensions

of different shapes—squares, ellipses, or disks—may have,

as their ground state, a vortex structure.1–5 This state is char-

acterized by magnetization in the plane of the nanostructure,

tangential to concentric circles, and a small core where the

magnetization is perpendicular to the plane. One can define

the circulation c¼þ1 for counterclockwise (CCW) in-plane

magnetization direction, or c¼�1 for CW direction; the

polarity is p¼þ1 for magnetization of the vortex core along

the þz axis, and p¼�1 for the opposite direction (–z). The

physical description of the vortex properties is usually made

within two analytical models: rigid vortex model6 and the

two-vortex ansatz (TVA).7,8

Magnetic structures with vortices have many potential

applications, e.g., as spin-torque nano-oscillators

(STNO’s),9–13 magnetic random memories (MRAM’s),14,15

or logic gates.16 The applications usually require magnetic

elements arranged in a regular array17,18 where the character-

ization of the interaction between them is required: in some

cases, it is necessary for the functioning of the device; in

other cases, it has to be minimized. This interaction allows

the coupling of the nanoobjects19 and the loss-less transmis-

sion of energy.20

When a magnetic vortex structure—for example, a mag-

netic nanodisk—is in equilibrium, its vortex core rests at its

center, and the structure has magnetic flux-closure. In this

configuration, the coupling with nearby nanoelements is

minimum. Conversely, when the vortex structure is out of

equilibrium, with its core displaced, e.g., by an external

magnetic field or a spin-polarized current, magnetostatic

coupling with the neighbor elements results. The dependence

with distance of this coupling has been the subject of several

studies in recent years.20–23

Once the excitation of the vortex cores through an exter-

nal agent is over, they return to their equilibrium position,

performing a periodic spiral-like trajectory. This motion,

called gyrotropic motion, has been described analytically

through Thiele’s equation, that is derived from Landau-

Lifshitz equation,24 and has also been obtained from micro-

magnetic simulations. The angular frequency of this motion

depends on the saturation magnetization of the material and

on the aspect ratio of the disks. It is typically in the range of

hundreds of MHz. Also, several experiments using different

techniques have expanded our knowledge of this phenom-

enon, e.g., Ref. 25.

All these considerations justify why vortex core dynam-

ics, and vortex core interactions, have recently attracted the

interest of researchers in the area of Nanomagnetism. Recent

studies, both theoretical and experimental, explore the vortex

core interaction and vortex dynamics in identical disks

pairs.19–22,26

The simplest system where one can study interacting

nanodisks is, of course, a pair of such magnetic structures; it

is, therefore, the ideal system for the investigation of the

properties of the interaction, its dependence with distance,

etc.

Some devices were proposed using nanodisks with dif-

ferent diameters, e.g., in magnonic devices27 or in nano-

oscillators,28 although there are few studies of the interac-

tions in more complex structures, such as nonidentical disk

arrays in which each element interacts with all the others.23

In the present work, the problem of the interaction

between pairs of magnetic nanodisks with magnetic vortex

structures and different gyrotropic frequencies is analyzed

both analytically and through micromagnetic simulation.

The present discussion is applicable to pairs of magnetic

nanodisks that have different gyrotropic frequencies, arising

either from different radii, different materials, or different
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thicknesses. This may be relevant to the study of fabricated

pairs of magnetic nanodisks, where a distribution of frequen-

cies is inherent in the actual samples. We will choose as

illustration the difference in radii, as shown in Fig. 1.

Here, we generalized the analytical treatment of the for-

mulation of disk interaction, for any pair of disks. Our results

can be well described by interaction intensities that are a mul-

tipole expansion with terms of the form d�n, with n¼ 3, 5, 7

and 9, i.e., dipole-dipole, dipole-octupole, octupole-octupole

and dipole-triacontadipole interactions, respectively, as

recently demonstrated by Sukhostavets et al.18

Finally, we used the recently reported magnetic vortex

echo (MVE) method,23 in order to obtain information on the

interaction between the disks, using the magnetization M(t)
given by two different approaches, on the one hand using

Thiele’s equation, and on another using micromagnetic

simulation.

II. RESULTS AND DISCUSSION

A. Analytical description

The analytical description of the interaction between

two disks starts by considering both of them with vortex

magnetic configuration, and with diameters 2R1 and 2R2,

thickness L and with centers separated by a distance d along

the x axis, as shown in Fig. 1. The magnetostatic interaction

between the disks is due to the occurrence of magnetic

charges ri (i¼ 1,2) on their surfaces (top, bottom, and lat-

eral) induced by the shift of the vortex cores from the equi-

librium positions.7 These charges are given in the rigid

vortex model by7,19

ri ¼ �
ciMsðxi sin ui � yi cos uiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
i þ jXij2 � 2Riðxi cos ui þ yi sin uiÞ

q ; (1)

where ci¼61 is the ith disk circulation, Ms is saturation

magnetization, and Xi, /i, and Ri are defined according to

Fig. 1. The magnetostatic interaction energy Wint(X1, X2) of

the side surfaces of two disks is19,22

WintðX1;X2Þ ¼
1

2

ð
dS1

ð
dS2

r1r2

jr1 � r2j
: (2)

The integration is performed over the surfaces S1 and S2

of each disk,22 dSi ¼ Ridzidui, and r1¼ r, r2 ¼ r0 þ dx̂, as

defined by Ref. 22.

Inserting Eq. (1) into Eq. (2) and considering jXij=R � 0

(the vortex displacement is much smaller than the disk

radius), we have

WintðX1;X2Þ ¼ c1c2ðgxx1x2 þ gyy1y2Þ þ OðjXij3Þ; (3)

with

gx;y ¼
l0M2

s
�R

8p
Ix;y; (4)

where

Ix ¼
ð

T sin u1 sin u2du1du2d�z1d�z2; (5)

Iy ¼
ð

T cos u1 cos u2du1du2d�z1d�z2; (6)

with

T ¼ ½g2
1 þ g2

2 þ �d
2� 2g1g2 cosðu2 � u1Þ

þ 2 �dðg2cos u2 � g1 cos u1Þþ ð�z1 þ �z2Þ2��1=2:

Here we have considered the dimensionless variables: gi

¼ Ri= �R; �zi ¼ zi= �R; �d ¼ d= �R with �R ¼ ðR1 þ R2Þ=2 for

i¼ 1, 2.

The limits of integration are from 0 to 2p in /1; /2, and

from 0 to L= �R in z1, z2.

In Eqs. (5) and (6), Ix and Iy, the coupling integrals,

describe the interactions along x and y directions between

two disks and can be found by numerical integration.

Equations (5) and (6) are a generalization of similar results

obtained previously for a pair of coupled identical disks,19,22

considering now nonidentical disks. Although Wint (Eq. (2))

depends on the vortex core polarities,19 it is worth noting

that, in the present approach, the coupling integrals Ix and Iy

(Eqs. (5) and (6)) do not.

Fig. 2 shows Ix and Iy calculated for a separation d
between the disks in the range 340 nm< d< 500 nm.

According to Sukhostavets et al.,18 the interaction

between a pair of equal disks can be described using interac-

tion coefficients that depend on the center to center disk dis-

tance, as a multipole magnetostatic interaction expansion

where the only non-zero terms have odd exponents and the

most important interactions to be taken into account for

coupled disk dynamics are dipole-dipole, dipole-octupole

and octupole-octupole. The coefficients A, B, C, and D are

different for interactions along the x and y directions (see

Ref. 18, Eq. (16)).

In our results, the interactions in the x and y directions

are given by the coupling integrals Ix and Iy, respectively; the

difference between these integrals arises naturally, from the

symmetry of the problem. The interaction is a function of the

distance between the disks, as can be seen in Fig. 2. As the

distance increases, Ix and Iy decrease.

The coupling integrals Ix and Iy, when fitted to a single

term of the form �d
�n

, lead to values of n¼ 3.41 6 0.02 and

n¼ 4.08 6 0.07, for Ix and Iy, respectively. These values of n
are similar to those found by Sukhostavets et al.18 and

Garcia et al.23 for equivalent parameters.
FIG. 1. Coupled disks with vortex magnetic configuration and different radii

R1 and R2, separated by a center to center distance d.
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For a smaller distance d, between 340 and 370 nm, we

have n¼ 3.70 6 0.02 and n¼ 5.05 6 0.09 for Ix and Iy,

respectively. As the disk distance becomes smaller, the inter-

action increases and higher-order interaction terms such as

dipole-octupole, octupole-octupole terms have a higher con-

tribution, increasing the value of n, as recently obtained18 for

identical disks.

The dependence of Ix and Iy on �d in Fig. 2 can also be

described with a multipole expansion with odd terms of the

reduced distance �d between the disk centers as

Ix;y ¼ A �d
�3 þ B �d

�5 þ C �d
�7 þ D �d

�9
; (7)

where the terms of form �d
�n

, with n¼ 3, 5, 7, and 9 are again

the dipole-dipole, dipole-octupole, octupole-octupole and

dipole-triacontadipole interactions, respectively.18

A good fit can be found when considering all terms, as

can be observed in the red continuous line of Fig. 2. For this

case, we find values of A¼ 156.0 6 0.3, B¼ 99 6 3, C� 0,

D¼ (1.74 6 0.03)� 103 for Ix and A¼ 320 6 1, B¼ 286

6 10, C� 0, D¼ (1.6 6 0.3)� 103 for Iy. We can estimate

the relevance of each term in Eq. (7) by plotting the curves

obtained using the coefficients from the multipole expansion

best fit, but considering only the dipole-dipole interaction

term (dash-dot blue line in Fig. 2) or the dipole-dipole plus

dipole-octupole terms (dashed green line in Fig. 2). By con-

sidering only the dipole-dipole interaction ðA �d
�3Þ, especially

for close disks ðd � 350 nmÞ, the obtained curve does not

describe well the simulation points.

B. Numerical solution of Thiele’s equation

One interesting aspect of the coupled nanodisk pair

studies is the determination of the vortex gyrotropic eigen-

frequencies. These frequencies can be determined

analytically using the linearized Thiele’s equation, that can

be written, considering zero damping29

Gi �
dXi

dt
� @WðX1;X2Þ

@Xi
¼ 0; (8)

where Gi is the gyrovector, Gi ¼ �Gipiẑ; Gi ¼ 2pl0MsLi=c,

c is the gyromagnetic ratio and Ms is the saturation

magnetization.

The potential energy is

WðX1;X2Þ ¼W1ðX1Þ
þW2ðX2Þ
þWintðX1;X2Þ;

where W1(X1) and W2(X2) are the potential energies of each

isolated disk. WiðXiÞ ¼ Wið0Þ þ jiX
2
i =2, where W(0) is the

potential energy for Xi¼ (0,0) and ji ¼ 40pM2
s L2

i =9Ri is the

stiffness coefficient.7 WintðX1;X2Þ is the magnetostatic inter-

action between the disks.

The system of Thiele’s equation of motion (Eq. (8)) is

simplified using a solution XiðtÞ ¼ XiðxÞexpðixtÞ, where x
is the frequency, thereby obtaining a matrix equation of the

form B̂A ¼ ixA

0 �x1p1 0 �bx1p1

x1p1 0 ax1p1 0

0 �dx2p2 0 �x2p2

cx2p2 0 x2p2 0

2
66664

3
77775

x1

y1

x2

y2

2
66664

3
77775 ¼ ix

x1

y1

x2

y2

2
66664

3
77775;

(9)

where a ¼ c1c2gx=Gx1; b ¼ c1c2gy=Gx1; c ¼ c1c2gx=Gx2,

and d ¼ c1c2gy=Gx2 with the eigenfrequency of each iso-

lated disk xi ¼ ji=Gi (i¼ 1,2).

From Eq. (9), we get the coupling frequencies xi

ðxp
þ;�Þ2 ¼

x1
2 þ x2

2 þ 2bcpx1x26
ffiffiffiffiffi
�
p

2
; (10)

where

� ¼ðx1
2 � x2

2Þ2 þ 4x1
2x2

2ðcaþ bdÞ
þ 4px1x2bcðx1

2 þ x2
2Þ;

with p¼ p1p2; note that in this expression, the circulations c1

and c2 only appear squared, and, therefore, the frequencies

do not depend on the sign of the circulations ci.

We considered a disk pair with radii R1¼ 150 nm,

R2¼ 170 nm, and thickness 20 nm separated by a minimum

distance d¼ 340 nm, for combined polarities, p¼ p1 p2¼þ1

and p¼�1. The eigenfrequencies of these disks are

x0=2p ¼ 0:56 GHz for R¼ 150 nm and x0=2p ¼ 0:49 GHz

for R¼ 170 nm and were obtained using the two-vortex

model.7,8 These values are in good agreement with those

obtained from micromagnetic simulation, respectively,

x0=2p ¼ 0:58 GHz and x0=2p ¼ 0:52 GHz. However, the

eigenfrequencies spread Dx obtained analytically is larger

than the one obtained by the micromagnetic simulation. The

FIG. 2. Coupling integrals Ix and jIyj as a function of the reduced distance
�d ¼ d= �R for disks with L¼ 20 nm and R1¼ 150 nm and R2¼ 170 nm calcu-

lated for 340 nm< d< 500 nm; the red continuous line is the best fit to a

multipole expansion with terms up to n¼ 9; the green dashed line represents

the result of a multipole expansion, but considering only the dipolar-dipolar

and dipolar-octupolar contributions; the blue dash-dot line is the result of a

multipole expansion, considering only the dipolar-dipolar term.
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eigenfrequencies of the interacting pair as a function of dis-

tance are shown in Fig. 3. It is apparent that for increasing d,

the frequencies tend to the values xi of the isolated disks.

Note also how the frequencies are dependent on the relative

polarities of the disks. These results are in a quantitative

agreement with micromagnetic simulations of the eigenfre-

quencies, showing that this method is consistent; for exam-

ple, for d¼ 340 nm, from Eq. (10), we find x1
þ=2p

¼ 0:57 GHz; x1
�=2p ¼ 0:48 GHz and from the simulation

x1
þ=2p ¼ 0:57 GHz; x1

�=2p ¼ 0:51 GHz.

C. Thiele’s equation and the magnetic vortex echo

An alternative way of studying the time dependent mag-

netization and interaction between two magnetic nanodisks

with different diameters is to use a new phenomenon, the

MVE, described recently.23 MVE is an effect of the vortex

gyrotropic motion around an equilibrium position, and arises

from the refocusing of the overall magnetization of the

ensemble containing many nanoelements. MVE can be used

as a tool to characterize nanostructures that exhibit a vortex

ground state as regards the homogeneity and intensity of the

interaction between its elements, properties that are relevant

for device applications, as explained by Garcia et al.23 In the

previous work, the system studied was a matrix of nanodisks,

here, we have applied the method to pairs of nanodisks.

In order to observe the MVE, one needs an ensemble of

nanoelements with a distribution of gyrotropic frequencies (or

distribution of diameters). In our case, we used an ensemble of

50 pairs of Permalloy nanodisks of different diameters, with

constant center to center distance. We used disks with 20 nm

thickness, and an approximately Gaussian distribution of

diameters (average diameter of D¼ 250 nm, and r¼ 10 nm);

the 50 pairs were formed with disks of the same ensemble

chosen in Garcia et al.23

To obtain an echo, an external magnetic field, with

25 mT intensity in the y direction, was applied to each pair

of disks, displacing the vortex cores in the x direction; with-

drawing the field, the cores start to process, performing a

gyrotropic motion. The defocusing of the motion of the

disks, due to the distribution of diameters (consequently, dis-

tribution of frequencies of width Dx) leads to a decay of the

total magnetization M(t). After a time s, a magnetic pulse,

with 300 mT intensity in the z direction and duration of 100

ps, inverts the polarity of the disks; after the pulse, the refo-

cusing produces the MVE, as shown in Fig. 4. The decay of

the total initial magnetization due to this defocusing, as well

as, the decay of the echoes are characterized by a relaxation

time T�2 , which depends on the standard deviation Dx, on the

Gilbert damping constant a and on the interaction between

the neighbor disks as23

1

T�2
¼ Dxþ 1

T2

¼ Dxþ 1

T
0
2

þ 1

2Ta
; (11)

where 2Ta is the relaxation time related to the damping

constant a, and 1=T
0
2 accounts for the interaction between the

disks.

Therefore, for an ensemble of disks with the same a,

1=T�2 varies linearly with the strength of the interaction

between them.

To obtain the vortex echo, we have used Thiele’s equa-

tion to compute the coupling frequencies of the pairs of mag-

netic nanodisks with different diameters. The individual

eigenfrequencies were computed within the two-vortex

model, which is known to give more accurate results.30 For

each separation between the two disks, we computed the

variation of the magnetization as a function of time; the con-

tributions of all the 50 pairs of disks were then added. The

result, after the application of the external pulse and the for-

mation of the echo, is shown in Fig. 4(a).

The relaxation times T�2 , that also measure the interac-

tion strength, derived using two methods, based on the mag-

netic vortex echoes, are comparable, differing by about 10%

(Fig. 5).

FIG. 3. Variation of coupling frequencies xp
6=2p with the separation dis-

tance d between two disks, with radii R1¼ 150 nm and R2¼ 170 nm, thick-

ness 20 nm, and combined polarities p¼ p1 p2¼þ1 and �1. These values

were obtained from Eq. (10).

FIG. 4. Magnetization M(t) of an ensemble of disk pairs separated by

450 nm, versus time, showing the initial decay and the refocalization of the

rotating magnetic cores at t¼ 60 ns—the MVE. The red lines show the com-

puter fits to the echo, used to derive the values of T�2 . In (a) M(t) was

obtained by solving Thiele’s equation, and in (b), M(t) was obtained from a

micromagnetic simulation using the OOMMF code.
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D. Micromagnetic simulation and the magnetic vortex
echo

The micromagnetic simulations were made for

Permalloy nanodisks, cells of 5� 5� 20 nm3, a¼ 0, using

the OOMMF code.31 Each pair of disks was simulated indi-

vidually, and the overall magnetization of the 50 pairs was

obtained by simply summing up the contributions of all the

pairs. The echoes of the system, in which the distance

between the disks was varied in the range of 260–550 nm,

were then simulated.

The vortex echo obtained from the micromagnetic simu-

lation is illustrated in Fig. 4(b); note that the echo intensity

in this simulation is smaller than the magnetization at

t¼ 0 ns, whereas the echo generated from Thiele’s equation

(Fig. 4(a)) shows no reduction in the echo intensity. This dif-

ference is associated to the energy that is transferred to the

spin waves during the process of inversion of polarity in the

micromagnetic simulation.

The curves of T�2 versus disk separation were obtained

from the magnetic vortex echoes and the two methods:

Thiele’s equation and micromagnetic simulation (Fig. 5); the

results corresponding to infinite separation, were computed

applying the method to individual disks.

The vortex echo analytical results are sensitive to the

input eigenfrequencies. To obtain those frequencies, we used

the TVA, since the rigid vortex model overestimates them

with respect to the micromagnetic approach. Although the

T�2 curves obtained analytically and by micromagnetic simu-

lation (Fig. 5) show the same qualitative behavior, a quanti-

tative difference of about 10% is observed. This difference

reflects the difference in Dx observed in Sec. II B, when

comparing the eigenfrequencies spread obtained analytically

and from micromagnetic simulation. A larger Dx means a

smaller T�2 and vice-versa, as can be seen in Eq. (11). The an-

alytical Dx is larger than the one obtained using micromag-

netic simulation, and thus, the T�2 is smaller, as observed in

Fig. 5.

The difference in the values of n (of about 30%) is

apparently due to the fact that, although the higher order

terms of the multipolar expansion of the interaction are

present in the magnetic energy used in Thiele’s approach,

they appear to be more relevant in the micromagnetic sim-

ulation. Another source of difference between the two

results may arise from the fact that the rigid vortex model

only takes into account the surface charges, whereas on the

micromagnetic simulation the volume charges are also

computed.

III. CONCLUSIONS

In this paper, we have studied the interaction between

pairs of magnetic nanodisks of different diameters and vor-

tex ground state; from an ensemble of magnetic nanodisks

with a Gaussian distribution of diameters, we created fifty

pairs of nanodisks. In this study, we have (a) derived analyti-

cally the expressions of the coupling integrals Ix and Iy that

describe this interaction; (b) from the time dependent mag-

netizations derived from the numerical solution of Thiele’s

equation we applied the vortex echo method23 to derive the

dependence of the interaction with distance; (c) we made a

micromagnetic simulation to obtain M(t) and again applied

the echo method to evaluate the strength of the interaction

between the disks. We have also obtained the variation with

distance between the disks, of the coupling frequencies,

derived from Thiele’s equation.

The coupling integrals Ix and Iy vary depending on dis-

tance in a way comparable to the results obtained by other

authors. The relaxation times T�2 , that also measure the inter-

action strength, derived using two methods based on the

magnetic vortex echoes, are comparable, differing by about

10% (Fig. 5). The fitting to the T�2 curves obtained from these

two techniques show an approximate dependence of the

form / d�n, with values of n that vary between 5.2 6 0.2

(micromagnetic simulation) and 3.7 6 0.2 (Thiele’s equa-

tion), comparable to other results of coupling between mag-

netic vortex disks in the literature.
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