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Part I: Qubit noise spectroscopy with a 
continuous driving field

HSE = Sz λmIz,m
m
∑

HE = hij
i< j
∑

Consider the semi-classical approximation

Hsc(t) = f (t)Sz , where

Δ = λmIz,m
m
∑f (t) = TrE{e

− iHEtΔe+ iHEtρE} ,

Knowing the characteristics of the noise is key to designing optimal 
controls and quantum error correction protocols for a given system

pure dephasing



We treat         as a random variable with 

characterized by a noise power spectral density

f (t) f (t) = 0

S(ω )

Apply an arbitrary sequence of pi pulses: 

χ(T ) = π
2

dωS(ω ) F(ω ,T ) 2
−∞

∞

∫Sx (t) = Sx (0) e
−χ (T ) where

(Das Sarma 2008, Suter 2011, 
Biercuk 2011, etc)

F(ω ,T ) is the ‘filter function’ of the sequence

One can think of this as a matrix equation, e.g. vectorized data 
from a real experiment: 

 χ

= F ⋅S




Determining          is therefore equivalent to inverting    : S(ω )

 S

= F−1 ⋅ χ


F

However,    is singular since F(ω ,0) = 0F

A dataset     does not in general correspond to a unique    !  χ


 S


Solution: a sufficient number of decoupling cycles produces a 
filter function = sum of delta-like functions
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fundamental only
(neglecting harmonics):

Bylander et al 2011, 
Meriles et al 2010, etc

including harmonics:

Alvarez and Suter, 2011



What about continuous decoupling (à la spin-locking)?  

pulsed CW

 
H (t) = e− iω rf tSx f (t)Sz( )e+ iω rf tSx = f (t) cos(ω rf t)Sz + sin(ω rf t)Sy⎡⎣ ⎤⎦

possible advantages: 

- limited RF power

- simpler analysis (?)

- better robustness to 
control error (?)



With the fictitious filter function, one would obtain: 

χ(ω rf ,T ) ≈
π

2 2
S(ω rf )T when n =

ω rfT
2π

>>1 (# Rabi cycles)

However this is only a guide for our intuition, not a correct 
calculation....

Rigorous methods: 

1) Generalized Bloch equations (Geva, Kosloff, Skinner 1995)

2) Average Hamiltonian formalism (D. Park, JB 2013)



GBE assumptions: 

1) system weakly coupled to bath, initial state is a product state

2)                                      (Markov approximation, many cycles)

3) bath-induced coherent dynamics are negligible

T1,2
sys >> {Tcorr

bath ,2π ω rf }

Relaxation tensor                   is a function of the field 
amplitude, frequency

Γ̂(ω rf ,Δω )

In our case, pure dephasing,              , on-resonance field 
along    ,                   ,

ρ0 = Sx
 
x  kT >> ω rf

 

dSx
dt

= − 1
2
CΔΔ (ω rf )Sx CΔΔ (τ ) = TrE{Δ(τ )Δ(0)ρE}

bath correlation function



We find that                                       , hence the GBE predicts

a signal decay:  
 
S(ω rf ) =

1
2π
CΔΔ (ω rf )

Sx (t) = Sx (0) exp − π
2
S(ω rf )t

⎛

⎝⎜
⎞

⎠⎟

Twice the rate of the fictitious filter function result (but same form). 

The GBE gives a result, but it’s not very intuitive. 

What does it say about conditions for reliable extraction of          ? 

Can it be verified by an independent method?

S(ω )



Average Hamiltonian theory

 
H (t) = f (t) cos(ω rf t)Sz + sin(ω rf t)Sy⎡⎣ ⎤⎦

  

U(t) = T e
− i H (t )dt

0

T

∫⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟  T ,     is the Dyson time-ordering operator

Utilize the Magnus expansion: 

 
U(t) = e

− iT Hk
k=0

∞

∑

 
H0 =

1
T
H

0

T

∫ (t)dt,                                          , ...etc

Consider a particular realization of the noise function, sampled for 
time T and its Fourier transform: 

f j ,T (t) ={
f j (t), 0 ≤ t ≤ T

0, otherwise
Fj ,T (ω ) =

1
2π

f j ,T
−∞

∞

∫ (t)e− iωtdt

D. Park, JB (2013) http://lanl.arxiv.org/abs/1308.6310



H0, jT = 1
2π

Fj ,T (ω )
0

T =2πn/ω rf

∫ α1 + iα 3( )Sz + α 2 + iα 4( )Sy⎡⎣ ⎤⎦dω

Rewrite the zeroth-order average Hamiltonian as

where

α1(ω ,ω rf ,n) = cos(ωt)cos(ω rf t)
0

2πn/ω rf

∫ dt

α 2 (ω ,ω rf ,n) = cos(ωt)sin(ω rf t)
0

2πn/ω rf

∫ dt

α 3(ω ,ω rf ,n) = sin(ωt)cos(ω rf t)
0

2πn/ω rf

∫ dt

α 4 (ω ,ω rf ,n) = sin(ωt)sin(ω rf t)
0

2πn/ω rf

∫ dt
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H0, jT ≈ π
2
Re(Fj ,T (ω rf ))Sz − Im(Fj ,T (ω rf ))Sy( )

when n >>1

Sx, j (T )
Sx (0)

= cos π
2
sgn(Re(Fj ,T (ω rf ))) Fj ,T (ω rf )

⎛

⎝⎜
⎞

⎠⎟

this produces a signal

ensemble averaging over noise realizations gives: 

Sx (T )
Sx (0)

= exp − Fj ,T (ω rf )
2

j
π / 4⎛

⎝⎜
⎞
⎠⎟
= exp − π

2
S(ω rf )T

⎛

⎝⎜
⎞

⎠⎟

The zeroth-order AHT result agrees with the GBE!



Here, we get an intuition for how good the approximation is based on 
the shape of the      functions (a bit like the filter function analysis)  α k

We can go a step further and consider higher order terms: 

 
H1T = −i

2
dt1 dt2[

0

t1

∫ H
0

T

∫ (t1), H (t2 )]

= Sx
4π

Fj ,T (ω1)Fj ,T (ω 2 )ξ(ω1,ω 2,T )
−∞

∞

∫
−∞

∞

∫ dω1dω 2 ≈ 0

The second-order term is more complicated, we numerically estimate 
it and get a final result: 

Sx (T )
Sx (0)

≈ exp − π
2
S(ω rf )T − 0.056 S(ω rf )T( )2 − 0.005 S(ω rf )T( )3⎛

⎝⎜
⎞

⎠⎟
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signal decay, GBE / zeroth-order AHT

signal decay, 2nd-order AHT



Combining the conditions                        and               implies S(ω rf )T ~1 n >>1
ω rf

2π
>> S(ω rf )

and since
f (t) 2 = 1

2π
S(ω )dω

−∞

∞

∫

we can say that reliable noise spectroscopy is guaranteed if

f (t) 2 <<
ω rf

min

T 2π
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Experiment: solid-state NMR (malonic acid crystal)

qubit: carboxylic 13C, natural abundance

environment: 1H spins (weak decoupling on)

0.15kHz ≤
ω rf

2π
≤10kHz

CPMG→ S(ω )∝ω −0.9±0.1 CW → S(ω )∝ω −0.8±0.1



Experiment: solid-state NMR (malonic acid crystal)

- system is only roughly described by the 
semiclassical Hamiltonian Hsc(t) = f (t)Sz

- ‘bath’ is certainly not Markovian!



- CW noise spectroscopy is equivalent to the pulsed method 
(practical advantages for CW method, perhaps)

- 0th-order AHT equivalent to the GBE result

- 2nd-order AHT correction adds Gaussian decay component

- Criteria can be shown for reliable CW noise spectroscopy

Conclusions

Future work: 
can we generalize AHT method to noise along multiple axes? 
non-Markovian bath?



Acknowledgements

Daniel Park 
(PhD student)

Also thanks to Ray Laflamme for access to experimental hardware

Noise spectroscopy:


