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Part I: Qubit noise spectroscopy with a
continuous driving field

Knowing the characteristics of the noise is key to designing optimal
controls and quantum error correction protocols for a given system
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pure dephasing

Consider the semi-classical approximation

H (t)=f({)S, ,where

f(t) Tr {e zHEtAeHHEt Z




We treat f(t) as a random variable with (f())=0

characterized by a noise power spectral density S(®)

Apply an arbitrary sequence of pi pulses:

(S.())=(S,0))e*  where )((T):\/f | dws()|F(@.T)

F(w,T) is the filter function’ of the sequence

(Das Sarma 2008, Suter 2011,
Biercuk 2011, etc)

One can think of this as a matrix equation, e.g. vectorized data
from a real experiment:
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Determining S(w) is therefore equivalent to inverting F':
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S=F"'.y

However, F is singular since F(®w,0)=0

A dataset )—5 does not in general correspond to a unique S|

Solution: a sufficient number of decoupling cycles produces a
filter function = sum of delta-like functions

|F(w,r,n)|* (kHz %)
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What about continuous decoupling (a la spin-locking)?

pulsed
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possible advantages:
- limited RF power
- simpler analysis (?)

- better robustness to
control error (?)

+sin(w,1)S, |




With the fictitious filter function, one would obtain:

w T
)((a),,f,T)~2\/_S(a),,f)T when n= 2”f (# Rabi cycles)
"

However this is only a guide for our intuition, not a correct
calculation....

Rigorous methods:

1) Generalized Bloch equations (Geva, Kosloff, Skinner 1995)

2) Average Hamiltonian formalism (D. Park, JB 2013)

On the relaxation of a two-level system driven by a strong
electromagnetic field
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GBE assumptions:

1) system weakly coupled to bath, initial state is a product state
2) T3 >>{T." 2n/w,.} (Markov approximation, many cycles)

3) bath-induced coherent dynamics are negligible

Relaxation tensor lA”(a)rf,Aa)) is a function of the field

amplitude, frequency

In our case, pure dephasing, p, =S, , on-resonance field
along x, kT >>ho,,

c;Stx " _%@M (@,)S, C o (1) =Tr {A(T)A0)p, }

bath correlation function




1 -
We find that S(w,,)=—=—C,,(®,,) , hence the GBE predicts

NpY

a signal decay:

(SH@=S (O)>exp(—\/§S(a)rf )r]

Twice the rate of the fictitious filter function result (but same form).

The GBE gives a result, but it's not very intuitive.
What does it say about conditions for reliable extraction of S(@)?

Can it be verified by an independent method?




Average Hamiltonian theory
H(t)= f(1)| cos(w,1)S, +sin(w,,1)S, |

T
—iJ.H(t)dz
0]

U(t) =Tl e , T is the Dyson time-ordering operator
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Utilize the Magnus expansion:
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Consider a particular realization of the noise function, sampled for
time T and its Fourier transform:

i

L .
fia =1 O N J e ds

0, otherwise

D. Park, JB (2013) http://lanl.arxiv.org/abs/1308.6310




Rewrite the zeroth-order average Hamiltonian as

H, T= J ()| (o +i0,)S, + (o, +ier, ) S, |dew

70)p/2n =1kHz
70)p/2n =2 kHz

where

2nnlw,,
o (w,0,,n)= J cos(wt)cos(m, .1 )dt
0]
2nn/o,;
my= | cos(wr)sin(w, 1)t
0

o, (0,0,

7mp/27t =1kHz
Znn/wrf 7mp/27t =2 kHz

oy (.0,.n)= | sin(or)cos(,
0
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o, (w.0,.m= | sin(@t)sin(,
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when n>>1

H, T~ \/g (Re(F, (@, )S, - Im(F, ; (®,,))S, )

this produces a signal

A
< el )> = cos(\/g sgn(Re(F; ;. (w,, )))‘sz (a)rf)]

(S.(0))

ensemble averaging over noise realizations gives:

(Saes ( z s \F
.0y —<\FJ.,T(wrf) >j7r/4)—exp ~\5 5@, )T

The zeroth-order AHT result agrees with the GBE!




Here, we get an intuition for how good the approximation is based on
the shape of the ¢, functions (a bit like the filter function analysis)

We can go a step further and consider higher order terms:

o T tl
i —1 - -
HT = ?Jdtljdtz[H(tl),H(tz)]
0 0

S
= | | Fr(@)F,  (@,)&,.0,.T)Xodo, =0
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The second-order term is more complicated, we numerically estimate
it and get a final result:

(S \ﬁ
<Sx(0)> = exp| — ES(a)rf)T




signal decay, GBE / zeroth-order AHT

signal decay, 2nd-order AHT




Combining the conditions S(®,. )T ~1 and n>>1 implies

@,

>> S(w
. (@)

and since

(HORE ﬁ T S(w)dw

we can say that reliable noise spectroscopy is guaranteed if

min
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Experiment: solid-state NMR (malonic acid crystal)
qubit: carboxylic 13C, natural abundance
-'3' environment: 'H spins (weak decoupling on)
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CPMG — S(@) < ® 7" CW = S(®) o< @ %!




Experiment: solid-state NMR (malonic acid crystal)

- system is only roughly described by the
semiclassical Hamiltonian H (1)= f(¢)S,

- ‘bath’ is certainly not Markovian!




Conclusions

- CW noise spectroscopy is equivalent to the pulsed method
(practical advantages for CW method, perhaps)

- Oth-order AHT equivalent to the GBE result

- 2nd-order AHT correction adds Gaussian decay component

- Criteria can be shown for reliable CW noise spectroscopy

Future work:
can we generalize AHT method to noise along multiple axes?
non-Markovian bath?
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