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Abstract. We consider the Quantum Field Theory in Curved Spacetime
and application of its results to the early cosmology. After consideration of
classical wave equations in Riemannian spacetime the quantization procedure
and construction of the Fock space are presented. The special attention is
paid for the definition of the concept of particles, structure of infinities of the
vacuum stress-energy tensor and of different regularization and renormaliza-
tion procedures. The effects of particle creation from vacuum and vacuum
polarization are investigated detailly in homogeneous isotropic cosmological
models. The problem of back influence of vacuum quantum effects onto the
background spacetime is examined. It is shown that the vacuum stress-energy
tensor of quantized fields gives rise to inflationary cosmological solutions. The
probable mechanisms are analysed of smoth transition between inflationary
and Friedmann stages of the Universe evolution including reheating. For this
purpose the vacuum stress-energy tensor of nonconformal scalar field is cal-
culated and the problem of the proper choice of initial quantum state of the
Universe is discussed.

7.1 Introduction

The classical Newtonian gravity, as it is well known, leads to contradictions
in application to all the Universe. Scientific cosmology, which is the science,
describing all the Universe, appeared only after Einstein created the General
Relativity Theory [18}.

The solutions of Einstein equations

1
Ry — ‘2'R9ik + A gir = —87G Ty, (5.1)

where Ty is the stress-energy tensor (SET) of the matter, distributed in the
Universe, give us the spacetime structure of the Universe described by the
metrical tensor g;x. It is the so called “cosmological models”. Here and below
R;;, is the Ricci tensor, R is a scalar curvature, A and G are the cosmological
and gravitational constants, i =c=1.

There are different cosmological models depending on suppositions made
about the spacetime properties and matter distribution.
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The first cosmological models, proposed by Einstein himself, were static. In
1922 St.Petersburg scientist Alexander Friedmann discovered firstly the non-
gtationary cosmological models whose properties are time-dependent. Accord-
ing to these models the space distances between the galaxies should increase
with time. This was confirmed experimentally in thirties when Hubble dis-
covered the red shift in the spectra of galaxies: larger shift for more remote
galaxy. This means that the Universe is expanding. On the base of Friedmann
cosmological models Gamov elaborated the theory of hot Universe [25) accord-
ing to which expanding started from some initial moment when all the matter
was compressed into a singularity with infinite matter density and tempera-
ture. Near the singularity matter density, pressure and temperature are also
very high. The theory of hot Universe was confirmed experimentally by Pen-
zias and Wilson who discovered in 1965 the relict, or primordial, microwave
radiation, i.e. photons, remaining from the very early stage of the Universe
evolution. _

According to the Friedmann models, the first stage of the Universe evo-
lution is radiation dominated one with matter equation state P = ¢/3 and is
described by the scale factor of the metric

a(t) ~ V4, (5.2)

where ¢ is the proper synchronous time, € is the energy density and P is the
pressure of background matter.

When the temperature decreases the Universe evolution becomes dust-like
with matter equation state P = 0 and the scale factor changes for

a(t) ~ £33, (5.3)

With £ & 0 we have a(t) — 0 also, and background energy density € — oo.
So the moment ¢ = 0 is a real singularity which is anomalons, non-physical
state. The presence of singularities in the Friedmann cosmological solutions
forces us to conclude that these solutions do not describe correctly the very
early state of the Universe.

The other physical contradiction connected with the application of the
Friedmann cosmology to the very early Universe is the problem of causality,
or of a horizon.

The temperature of primordial radiation observed in different directions
is the same and equal approximately to 2.7K with relative error AT/T <
1075. This fact testifies that there was a thermal equilibrium between different
causally non-connected regions in the past which were tranferred into observed
in present time part of the Universe of the dimension ~ 10%® cm. Actually,
the age of the Universe is ~ 10! years. If to suppose that the Universe was
expanding according the Friedmann law (2), (3) a(t) ~ /2, t2/3, then it occurs
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by simple calculations that at Planck moment tp; ~ 1043 s the size of this
part of the Universe was ~ 1073 cm. At the same time the size of causally
connected region at Planck moment is 10733 cm. Therefore 109 causally non-
connected regions at tp; ought to be somehow correlated to settle a thermal
equilibrium between them.

It is impossible to imagine how such a preforeseen harmony could be es-
tablished physically. That is why Friedmann expansion law a(t) ~ v/ could
not be valid from the very beginning.

Aside of these phenomenological difficulties there are serious theoretical
expectations that the Friedmann cosmology is not applicable for the very early
times. Friedmann cosmological models were obtained by solving the classical
Einstein equations. But the General Relativity Theory, as the other physical
theories, has some application range. It may be applied when the gravitational
field is not so strong that the spacetime curvature is characterized by the
Planck length, Ip; = VG ~ 10733 cm. Also the processes under consideration
should occur at the distances much larger than [p;. This means that one
~ can not use Friedmann solution to Einstein equations for too early moments
't < tpp ~ 1075, For such moments not Einstein gravity but Quantum
- Theory of Gravitation should be used for the adequate description of the
Universe evolution.

From the other side, quantum effects of matter fields manifest themselves
at the scale of Compton length ic = m™! ~ 10~¥ cm (for the usual elemen-
tary particles). This means that actually one can not use the usual General
Relativity Theory even for ¢ < g ~ 10~ 3.

In the wide range of twenty orders of magnitude

10 8s~ip <t <ic~10"%g (5.4)

gravitational field itself may be considered as classical but the matter fields
should be considered as quantized. Then in this range some kind of semiclas-
sical Einstein equations should be considered instead of (1):

1 -~
Ry — -2-Rg,-k + A gk = —87G (¥|Tik|¥)rens (5.5)

where T}, is the operator of the stress-energy tensor of matter fields, |{¥) is
some quantum state, and index “ren” means that all the infinities are removed
from the matrix element.

Consideration of quantized matter fields on the classical gravitational back-
ground is the subject of Quantum Field Theory in Curved Spacetimes [2,9,10]
to which these lectures are devoted. QFT in Curved Spacetime has its own
application range which is expressed by the inequalities (4) in application to
cosmological evolution.
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Generally speaking, for the complete solution of the problems of the early
Friedmann cosmology both Quantum Gravify and its limiting case QFT in
Curved Spacetimes are desirable. Unfortunately, we have no consistent, renor-
malizable QG up to now, after the several decades of atiempts. In this situa-
tion QFT in Curved Spacetimes is the single reliable foundation for solution
of the problems of the Friedmann early cosmology.

In these lectures we discuss the main principles of QFT in Curved Space-
times, and consider the obtaining of inflation cosmological scenario on the
basis of this theory without introducing by hands so named “inflaton” field
with extremely small gelf-interaction. In the end we will discuss the diffi-
culties in choice of the initial vacuum state which were met by the QFT in
Curved Spacetimes and the prospectives of this theory in solving cosmological
problems.

7.2 Wave equations for classical fields in curved space-
times

Let us consider briefty scalar, vector and spinor fields in external gravitational
field. They describe in quantum theory three types of fundamental particles
with spin 0, 1 and 1/2.

The simplegt generalization of the scalar field equation for the case of
gravitational background is

(% Vi +m?) pla) =0,

where V; is the covariant derivative. It is the so called equation with minimal
coupling. This equation is not invariant, even in the massless limit, under
conformal transformations of the metric and of the field

gik = Gix = expl~20(z)1gix,
@ = ¢ = Flo(z)lp, (5.6)

where o(z) is an arbitrary smooth function of the coordinates.
The scalar wave equation with arbitrary coupling to gravitation

(ViVi+eR+ m?) p(z) =0 (5.7)

is more general one (£ is the arbitrary real constant). For

N-2

{=&= PI ey (5.8)
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it is conformally invariant (in N-dimensional spacetime} when m = 0 with

Flo(a)) = exp [ 20(2)]. (5.9)

Eq. (7) may be obtained from the Lagrangian
£0 = =g [¢* 8" B — (m* + £ R) 0] (5.10)

where ¢ = det g;;.. .
Varying the action with the Lagrangian (10) with respect to g** we obtain
the metric SET

T O(z) = O50" Bup + Bu” ip — gin(~9) ™20 —
- 2% [Ru+ ViV — 0 V) 00, (5.11)
which is covariantly conserved: |
v T® =0. (5.12)
Proca vector field ¢x(z) in curved spacetime may be described by the
Lagrangian
0 = =g [-3far* +mP e (5.13)

where fir = ;0 — Oxepi.
Lagrangian (13) leads to Proca equation
Vif*+m?ot =0 (5.14)

and (in m # 0 case) to the constraint Vyp* = 0.
Both together Eq. (14) and constraint give the possibility to get the second
order equation for each component of the vector field:

V; Vigr + Ry ' + m? o = 0. (5.15)
The covariantly conserved SET of vector field is
Tu®(z) = —¢™ (fir fis + 5 fut) +m? (4} ok + vk 03)
— gi(—g) 2L, (5.16)

The description of a spinor field in curved spacetimes is more complicated
because the requirement of Lorenz invariance of the Dirac equation may be
transferred to Riemannian geometry only locally. For this at every point of
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Riemannian space one introduces a tangent pseudo-Euclidean space with a
metric tensor #,s. As a basis vectors of the latter, four so-called vierbein {or
tetrad) 4-vectors h(,,) {z) may be chosen numbered by the mdexa =10, 1, 2, 3
and normalized according to

hay* Rty = Tas- (5.17)
For this vectors
h(®y hgyi = gin (5.18)

The covariant derivative of a spinor Vi4(x) must be a spinor for fixed
relatively to transformations of the vierbein. It must be a 4-vector relative to
general coordinate transformations. These requirements lead to:

Tb(@) = [0 + Cuc MO 7] (o), (5.19)
where Ricci rotational coefficients are:
Case = (Vi hiay*) By ey’ (5.20)
Then the Dirac equation in curved spacetimes takes the form
(7@ % —m| w2) =0, @) = h@y* )7 (5.21)
The corresponding Lagrangian and covariantly conserved SET are:
£0@) = v=5 {5 [B @)% - (%9) ()] ~m s},
T = & [By(@)%e + dnlo) ¥ (5.22)
— (%d) vitare — (Vi) wel2)¥]

7.3 Canonical quantization in curved spacetimes

Let #(x) be a charged quantized field of spin 0, 1/2 or 1. Let{ N (z); 11;.(;,_)(..«:)}
be a complete orthonormal set of solutions to the wave equations (7}, (15) or
{21) in terms of corresponding scalar product:

('/)1(:), 1b'(g+)) = :F‘saﬂ: (¢£!_)! 'f’,(g_)) = Jaﬁ ’
(v59, v57) =o. (5.23)



301

Here the upper indices {3) correspond to the positive- and negative-frequency
solutions the meaning of which in curved spacetimes is not trivial and is dis-
cussed below. The signs F hereafter are related to the boson and fermion
cases.
The specific definitions of scalar products in (23) are based on the exis-
tence of the global spacelike fypersurfaces £ in the curved spacetimes under
consideration. For example, for 3 = 0 case

(p1,p2) =1 f do* (i3 Bie2) (5.24)
z

where do is the square element of the hypersurface .
Then the field 3 can be represented as the expansion

¥(z) =Y [#5(2) 6l + 95D (@) ] (5.25)

4]

. where the expressions for antiparticle creation operator and particle annihila-
- tion operator follow from orthonormality conditions:

o =7 (¥H,9), o = (v5),9). (5.26)

; Quantization procedure consists in imposing commutation (anticommuta-
- tion) relations:

[:I &_),ag'-)]q: = [ag"),a ’(8+}]:F = dag,
[agi),agi)]; =[ag.é g*’L =0. (5.27)
The vacuum state may be defined by
sy =2y =0,  (0)0) =1 (5.28)

and the Fock space is constructed in an usual way.
Specifically, the operators of density number of particles and antiparticles
take the form:

Nﬂ =& gﬂ ag'), Nﬂ = af;-) :l ,(8_.)' (5.29]
The total numbers of particles and antiparticles turned out to be

N = Eﬂ:Nﬂ, N= ;Krp (5.30)
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The quantization procedure in terms of creation-annihilation operators
(27) i8 equivalent to canonical commutation (anticommutation) relations of
the form;

(e, 2), 9t @) = [, 2), 7(t, 2] = O,
[$(t,z), 7(t, &) = id(x — '), (5.31)

where « is the momentum, canonically conjugated to the feld operator .
The relations (31) may be rewritten in an invariant form for s = 0 and 1/2
correspondingly:

[ 1) @), a8 @) do*() = i fa),

E

[16@) [a@), (bapr9)”] dote) =83 5@ (532)
z

Here f(z) is a test function, 4, B = 1, 2, 3, 4 are the spinor indices and point
z belongs to £. The other commutators (and anticommutators) are equal to
Z€ero.

Let us now discuss the meaning of the frequency signs (1) in our set of
solutions {¢£.*’(z)}. In the absence of external field in Minkowski spacetime

the positive- and negative-frequency solutions are the eigenfunctions of the
translation in time operator:

%ﬁ&*](w) ~ Fiwe 9§ (2), (5.33)

which is the Poincaré group generator. In this case, e.g., the positive-frequency
solution at one moment preserves this property for any moment.

The vacuum state |0) defined in (28) is invariant under transformations
from Poincaré group. So, the procedure of constructing Fock space for a free
quantized field turns out to be highly unambiguous. Specifically, the definition
of particles and their number is defined in a unique way.

A different situation takes place in nonstationary curved spaces, which
are interesting for cosmological applications. In this case the translation in-
variance in time is absent, and it is impossible to introduce an operator of
time translations the eigenfunctions of which would be $5(z). Therefore
the interpretation of elements of the complete orthonormal set of solutions to
the wave equations as positive- and negative-frequency ones at an arbitrary
moment of time loses its sense.
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One may define the first complete orthonormal set of solutions by some
initial conditions of the form:

2 v a, t)] ~ Hiwa(t) ¥57 (2, 1), (5.34)
at =ty :
and the second complete orthonormal set of solutions by some other ones:

SeD@n| i) o 1) (5.35)
t=t2

In the absence of external field both effective frequencies w, and 2, turn into
the usual one-particle energy.

Strictly speaking, the solutions from the first (second) set are positive- and
negative-frequency ones for the moment #; (¢2) only. But from the mathemat-
ical point of view both these sets of solutions are complete and orthonormal
ones and may be used for any £. Then we can expand the functions from
the first set in terms of those belonging to the second set. It is some linear
transformation:

".bgi-) = % (¢aﬁ ‘P(;-) - ‘I’aﬁ ‘P(p_)) ’

- _ (5.36)
$s) = %:(%,w,%)ﬂ:;ﬁ .

The field operator, instead of (25), can be represented now in the form

p=3 [0 0 + kP ()8, (5.37)
[+
defining the new type of particles.
;From (25), (36), (37) the Bogoliubov transformation follows
o) = T (2 b5 + Wag b)Y,
g (5.38)

5&_) = % (Qaﬁ Eg_) + ‘I’aﬁ ;g+)) 3

which connects old and new definitions of particles.
;From the orthonormality of two sets of solutions we have
et IOt =1 09T =wd7, (5.39)

and also the commutation relations for the operators

B0 _= 0.8 D)=t (5.40)
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which are the same ag (27).
(From the reversiability of transformations (36), (38) the equalities may
be obtained

(e+e Vwr) =dep,  @TE =T (5.41)
and also
K = o (a2e) - 97,00,
) (g 20 T 80 (5.42)
b & = % (@ a + ‘I’ ﬁ ) .
To the new definition of particles the new vacuum corresponds:
bW =5 1) =0, (@18 =1. (5.43)
1t is connected with the one defined in (28) according to:
1 * -
0) = < {exp (E Dos 5§90 657 11 10). (5.44)
¥ 8.
Here the matrix D is defined by the equations
oD+¥=0, D3T+97T =0 (5.45)
The transition amplitude between two vacua
1 = (0j0) (5.46)
may be expressed in terms of eigenvalues of the matrix D D,
Operators of new particles and antiparticles densities are
- * + —_ = * f_
Np=b§"657,  Np=8§0 5§70 (5.47)

Using (42) it is very easy to calculate the density of new particles in the
old vacuum state:

(0|V510) = (0| N 4/0) = ng;, Wap = [0F U] 4. (5.48)

Thus the old vacuum is not the vacuum state for new particles and vice versa.
The concepts of particles and vacuum state become umbiguous in nonsta-
tionary curved spacetimes. More exactly, different concepts of particles may
be used by different observers, and the number of particles loses its invariant
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sense, Strictly speaking, the quantum particles in strong gravitational field (in
cosmology this corresponds to the time interval (4)) are not the well defined
fragments of physical reality any more. The better description of reality here
is given by the complete renormalized SET of quantized fields in some physical
state (see below). All this takes place if the quantity ¥,s in (36), (38) and
{42) is not equal to zero (which means the frequency mixing due to nonsta-
tionarity of the spacetime). If ¥,z is equal to zero (which is the case, e.g.,
for the static non-singular spacetimes) then the problems with corpuscular
interpretation of the theory do not arise. In such cases the use of two different
sets of solutions to the wave equations corresponds simply to the use of two
physically equivalent Fock representations (like the states numerated by the
definite 3-momentum or by the energy, orbital momentum and its prejection
in usual quantum mechanics).

7.4 The problem of divergencies

Let us consider now the vacuum expectation values of the SET-operator as
quantities characterizing the properties of vacuum in curved spacetimes. Using
the expansion of field operator in the creation-annihilation operators (25) we
get

OIT;5(2)10) = Y Ty {5 (2), w5 (2)} (5.49)

where T;;{f, g} is a bilinear form defined by the classical expressions (11), (16)
or (22). Here summation in a should be understood as integration in continu-
ous quantum numbers and summation in discrete ones. The divergence arises
even in flat spacetime. For instance, for the SET of a free charged scalar field
in Minkowski space the Eq. {49) takes the form

{0|T3; () [0} = . f &k k; kj, (5.50)

@) w

where w? = k2 = k% + m?. This expression diverges as k* when k — co.

The divergence of (50) is connected with the presence of zero vacuum oscil-
lations. In standard quantum field theory the operator of T}; is reduced to the
normal form in creation-annihilation operators in order to remove this diver-
gence. This corresponds to the subtraction of contributions of zerc oscillations
of the form (50). For the interacting fields and also in curved spacetimes there
are, generally speaking, other, more weak, divergencies in the vacuum expecta-
tion values. To remove all these divergencies, the renormalizations of physical
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constants should be used. Actually, one subtracts from a given infinite expres-
sion some other, also infinite, expression, which is selected according to two
demands. The first demand is that the difference should be finite. The second
one is that the subtraction can be obtained from the counter terms introduced
into the Lagrangian of the theory. To give sense to such formal manipula-
tions with infinities one makes infinite expressions temporarily finite with the
help of some regularization. At the end of calculations, when renormalization
constanis are fixed and finite values for physical observables are obtained, the
regularization is removed.

This procedure may be used also for interpretation of the SET normal
ordering in Minkowski space. Actually, let us apply to expression (50) a di-
mensional regularization. For this we calculate (50} in N = 4 — 2¢ dimensional
spacetime, where ¢ is complex. Retaining in the result expanded in powers of
¢ only terms nonvanishing when £ — 0, we obtain

m* {1 3 Cy?
O[T3510), = ~5zma (E +5—-C~— IHE) ;- (5.51)
Here v = m/M, M — parameter of the dimension of mass, C is the Euler’s
constant.

The fact that (51} is proportional to metrical temsor ny; allows one to
interpret its subtraction as a renormalization of a cosmological term A in
the initial action for the gravitational field. Setting (T};)..., equal to zero in
Minkowski space, we fix in this way A, = 0.

Except of dimensional regularization, there exist many other regularization
procedures: (-function method, covariant point splitting, adiabatic and n-
wave regularizations. They will be discussed in more details below.

7.5 Some specific features of QFT in Curved Space-
times

In standard quantum field theory, the nonlinearities are usually the quantum
corrections to the linear classical equations. But the gravitational field is
nonlinear by the origin. Additional difficulties which arise in QFT in Curved
Spacetimes are the following:

~— field equations in gravitational background may have variable coeffi-
cients by higher derivatives;

- — topology of space may be non-Euclidean;

— space may have event horizons;

— S-matrix picture is possible only in asymptotically flat spaces;

—- the construction of Fock space of quantized fields is nonunique;
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— the expectation values of local physical observables have more compli-
cated structure of infinities;

- the renormalizable theory of quantized gravitational field is absent.

We will start our discussion with the specific nature of particle creation
from vacuum by strong gravitational field and then continue with vacuum
polarization.

Let the invariant of the curvature tensor have in the neighbourhood of
some spacetime point M the value of order

Ryjig RO ~ p4, (5.52)

where p is the characteristic curvature radius. Then one can introduce at
the point M a coordinate system that is locally Galilean up to distances of
the order p from M. One can construct in this system a complete set of
solutions 5, which for the frequencies wy 3> p~! will be, approximately,
positive- and negative-frequency. However, for the frequencies wy < p~! the
difference between positive- and negative-frequency functions disappears, that
corresponds to the unity order uncertainty for the number of the particles in
the mode o.

By the anology with electrodynamics, one can qualitatively describe parti-
cle creation as a “breakdown of vacuum loops” by external gravitational field.
Since there are only the positive masses, gravitation acts in the similar way
on particles and antiparticles. By this reason, the breakdown of virtual pairs
is explained by the action of tidal forces.

A characteristic distance between particles of virtual pair is Lo = m~1. To
define a tidal force breaking this pair, consider the geodesic deviation equation

L]
% = R‘.jkl uj nk u‘, (553)
where u* is 4-velocity of one particle of a pair, n* is a spacelike vector connect-
ing it with the second particle, n;n' ~ —i%.

To “break” the virtual pair it is necessary that, in the center of mass
system, the work of tidal forces at the distance ~ I¢ would exceed 2m. Setting
ug =1, 4® =0, n® = 0, |n*| ~ lc we obtain:

|R®op0] > 152 = m2. (5.54)

Thus to get an essential particle creation, the curvature of spacetime must be
at least of the order of the inverse Compton length.

As it was told before the concept of particle in curved spacetimes is not
unique. By this reason, a number of different definitions of particles were used
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in literature. There were formulated several definitions of adiabatic parti-
cles; particles defined by some special symmetry group of spacetime; particles,
diagonalizing the instantaneons Hamiltonian of quantized field and so on.

Some definitions depend on the choice of time-like vector field £* which is
orthogonal to a set of space-like hypersurfaces . Integral curves of the field
£ may be considered as the world lines of the system of observers. Thus, the
definition of particle also turns out to be dependent on the system of reference.
That is quite patural in the absence of Poincaré-invariance.

Now let us discuss some necessary requirements to the renormalized vac-
uum SET of quantized fields {T};) which describes not only the effect of particle
creation but also the vacuum polarization. These requirements are:

— (T} should be a causal functional of the metric, i.e. it should depend
only on the geometry of the spacetime point under consideration and on its
causal past;

— the energy conservation condition should be valid:

Vi(TF) = 6; (5.55)

— {Tix) should not turn to infinity when go back to initial moment 5 =
at which the vacuum state [0) was defined.

Due to the following theorem the creation of classical matter by gravita-
tional field is impossible,
Theorem: If, in a closed region of space, ai some moment Ty, = 0 and the flow
of matter over the region boundary is absent, then Ty, = 0 at all the following
moments.

The proof of this theorem uses the energy dominance conditions according
to which in any local orthogonal coordinate basis the components of the SET
obey the inequality

Too > |Tixl - (5.56)

These conditions are used also in the formulation of the Hawking-Penrose
theorems about the inavitability of singularities in the nonstationary cosmo-
logical solutions to Einstein equations. For the quantum particles and vacuum
polarization SET, the conditions (56) are not valid. This gives the possibility
to expect that in QFT in Curved Spacetimes not only particle creation from
vacuum takes place but also nonsingular cosmological solutions are possible.

7.6 The character of divergencies

To investigate divergencies of the vacuum SET, it is convenient to suppose
that the spacetime is asymptotically static, so that it is possible to intro-
duce vacuum states {0;,) and [Qpy). If the metric is regular everywhere (gix
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are sufficiently smooth function of coordinates) then divergencies have purely
local character, and the divergent part of the SET does not depend on the
assumption about agsymptotic staticity.

The divergencies of the quantity {0i|Tix|0i) are the same as of

(Tl = %—;;—fl‘;}g;i (5.57)

In its own turn

2 W
k)M ‘/— ag,k'.l

where the effective action W is connected with the effective Lagrangian by:

(T (5.58)

W = [d‘imﬁ.ﬂe‘”. | (5.59)

Thus, the problem is reduced to studying divergencies of W or L.s;. But the
divergencies of L¢s; are determined by the behavior of the Green function

G(z, ') under rapprochement of arguments. For example, in spin zero case it
is valid:

2 .
En%i =iG(z,z). (5.60)
The investigation of the infinities which are contained in the quantity (60)
may be performed by the Schwinger-De Witt technique {7] based on the Fock
method of proper time. The result of long calculations may be presented in
the form (spin zero case}:

—~2Ao + R ; 1
Laiw = V=G Lain = V5 | a2 o (R* Rt = 12 + oo B2 (5.)
167G 3
where
Aco m? _m? 1
871G~ 32m3 7 Geo E ( _-E) J2
1 2
e, el (1)
o0
Tz [ e (5.62)
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Then, the divergent part of the vacuum SET is:

-2 ¢ e B 1 A
(Titkdgin = v/~ 3k /d‘m Laww = 167G o gie + 167G 5 G
+ 0o Ot + (oo — gaco) Pl (5.63)

where the quadratic in curvature tensors are defined as

Dy, = _;f,_ f &'z /=5 ™ Ry, (5.64)

1
= Vi%iR - V'ViRi — 5 (V'ViR + B'™ Rim) ek + 2R"™ Rtim.

For the spinor and vector fields one obtains the similar results.

Therefore, to remove the devergencies from the vacuum SET in curved
spacetimes by the renormalization procedure we should assume that the initial
gravitational Lagrangian has the form:

Loro=v"g %&;R + ap (R"‘R,-k - %R") + 5o R2] , (5.65)
where Ag, G, ap and B are the initial (bare) values of, respectively, cosmolog-
ical constant, gravitational constant, and coefficients before quadratic terms.
The values of renormalized constants Ayen, Gren, Qren and Gpen ought to be
determined from the experiment.

To get the finite results after the subtraction of infinities, as it was dis-
cussed above, one should use some regularization method. Let us discuss
briefly the main such methods known from the literature. One of the most
effective methods is the n-wave regularization [26], which is equivalent to the
adiabatic regularization [23). The main idea of n-wave regularization is the
foliowing. If to denote the continuous momentum quantum number by ), the
Eq. (49) for the vacuum SET may be rewritten as some divergent integral of
the form:

(OTul0) = [ aAra(r,m). (5.66)
One can set a “n-mode” n~Y2¢{%) to each mode ¥{*, so that

'rl-(:)()«, m) = %T,‘k(ﬂA, nm). (5.67)
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The regularization of the expressions (49), (66) is carried out by the reg-
ularization of the contribution of each mode according to:

1-'_{;.;9)0 m) = lim {'r,k()\ m) — Ell 6( ) M ,m)}

(Ta) = OITalO)n = [ AATED (A m). (5.68)

One can show that subtraction of the terms in (68) with ! = 0,1 and 2 is
equivalent to the removal of divergencies proportional, respectively, to g,
G and (VH, @H,, from (64).

If the spectrum is discrete (e.g., when 3-space is closed) the Eq. {(68) should
_be changed for:

(Ty) = {Zmﬂm)f&zhm(aﬁwkm} (5.69)

- The reagon is that divergencies are determined by the local properties of space-
| time and do not depend on its global, in particular, topological characteristics.
" In adiabatic regularization the subtraction from (66) is used of the first
' terme of its asymptotic expansion in inverse powers of parameter of metric
" variation adiabacity.

Another regularization method is based on the splitting of arguments of
field operators in the bilinear form (49) of the vacuum SET [5}. In four-
dimensional spacetime this method is rather complicated. The results obtained
by it may depend on splitting direction.

_ Dimensional regularization [4] is the example of covariant renormalization
. method. The essence of this method is explained in Sec. 5. We will use it
. below, together with the n-wave procedure in the case of isotropic metrics.

: The other covariant regularization procedure is the method of generalized
* ¢-function [8]. In this method the Green’s function is reproduced as the matrix
element of some operator G:

G(z, ') = (IGlz')- (5.70)
The operator F' reciprocal to G is defined as:
FG=1I (5.71)

Let An, |in) be eigenvalues and eigenfunctions of F. Then the spectral
expansion of the operator G can be formally written as:

G =F =370 lon)onl- (5.72)
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Then the trace of G is equal to:
tr (6¥) = Im / dtz /=5(zlG"|e') = T A = (). (5.73)

This quantuty is called a generalized (-function of the operator F'. In complex
v-plane ((¥} may be analytically continued in such a way that it is regular
at v = 0 (whilst the series (73) with v = 0 is divergent). As a result, the
regularized effective Lagrangian is expressed in terms of the vatues ¢(0) and
¢'(0).

With the use of all regularization methods, mentioned above, it is possi-
ble to calculate the trace of renormalized vacuum SET (77} for the massless
quantized fields in arbitrary curved spacetime. Unexpectedely, it turned out
to be nonzero even for conformally invariant fields for which T} = 0 in classical
theory. By this reason it was called anomalous. The expression for anomalous
trace obtained by different methods and different authors may be presented
in the following form (see, e.g., [6])

= (1) e () (503
2
(e () #) e

5/2

Here the results, correspondingly, for the arbitrary coupled scalar, spinor and
vector fields are presented. Scalar and vector fields assumed to be real. Cyip
is the Weyl conformal tensor (see, e.g., {12]) and

CH™ Citn = R™™ Riptn — 2 R™ Ry + —;-Rz. (5.75)

The expression (74) is known also as the conformal anomaly.

It 13 impossible to restore the conformal invariance in the quantum theory
by introducing some local counter term into the gravitational Lagrangian,

Since for conformal fields the Lagrangian of the considered theory is con-
formally invariant, the nonzero trace of the vacuum SET iu this case means a
spontaneous breaking of conformal symmetry in curved spacetime (analogous
anomaly arises in flat spacetime in the gauge theories for the axial current,
see, e.g., [13]).
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7.7 Vacuum quantum effects in isotropic space

Let us now consider the particle creation from vacuum and vacuum polar-
ization in homogeneous isotropic cosmological models. A high symmetry of
space allows one, in this case, to carry out total quantitative investigation of
quantum effects and to obtain results of much significance for cosmology.

‘The metric of homogeneous isotropic spacetime in co-moving coordinates
has the form

ds? = gi do* da* = dt? — a®(t) di?, (5.76)

where ¢ is the synchronous proper time of co-moving cbservers; di? is the
- metric of 3-space of constant curvature x = -1, 0, +1:

dI? = yapdz® dzf = dx* + F2(x) (d82 + gin® Mp?) : | (5.77)

f(x) = sinhy, x and siny for k = ~1, 0 and +1 respectively. Coordinates
- x, 8 and ¢ are dimensionless and function a(t) called the scale factor has the
. dimensionality of a length.
It is convenient to use, instead of synchronous time ¢, the dimensionless
“conformal” time n:

n=[a O, (5.78)
In terms of ) the metric (76) has conformally static form

! ds® = a*(n) d&® = a*(n) (dn® —di?), (5.79)
i.e., it differs from static metric d5? by a conformal multiplier a(7) only.

The complete set of solutions to Eq. (7) in metric (79) may be found in
the form

@, (z) =67 (n) g, (n) B, (). (5.80)

._ Here ®, () are the eigenfunctions of the Laplace-Belirami operator on 3-space,
- J={)1,m} and the time function is the solution to oscillator equation

g'(n) + Q(n) g, (n) =0, (5.81)

where

2%(n) = *(n) — gln); (5.82)
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Note that for conformal coupling in (7) (£ = ¢, = 1/6 in four-ditensional
spacetime) one has g{n) = 0.

In the conformal case (£ = 1/6) it is natural to understand the quantity w
in (82) as a dimensionless one-particle energy; the physical one-particle energy
is kg = w/a = (k* + m?)}/2. In the nonconformal case the role of one-particle
energy is played by f2. In this Section we perform all calculations (except
of investigation of the structure of infinities in vacuum SET) for conformal
case only. In the separate Sections the isotropic self-consistent models will be
considered determined by the vacuum quantum effects of conformal fields and
the nonconformal case.

Since the frequency @ in (81) is determined by the momentum quantum
number A only, we will write hereafter g) instead of g,. Let us normalize g,
by the condition on the Wronskian '

Dot — o' g = —2i {5.83)

Initial conditions on the functions g, (n) set at some initial moment 5 = 1y

ga(mo) = w2 () 9x"(mo) = iw(no) g{10) (5.84)
determine a complete set of classical solutions to Eq. (7):

1 >
o = a8y o= (4Y), (5.85)
orthonormalized according to (23) in the sense of scalar product (24). One
may consider (p}'” and ¢}/ as positive- and negative-frequency at the moment
1 = np functions.

Let us turn now to the case of spinor field. The general form of the Dirac
equation and of dynamic quantities for spinor field in an external gravitational
field have been represented in Sec. 2. In a homogeneous spacetime with the
metric (79) it is natural to choose vierbein vectors hyg; defined by the equalities
(17}, {18) to be orthogonal to coordinate lines

hyo = —hay = a(n); hay = —a(n) F(x); (5.86)
ha = —a(n) f(x) sind; Ay =0, a#l

Separation of variables in Eq. (21) is carried out in the following way

% (z) = a 32 [fr ()] & HLr-()I] N, (x, 6, ), (5.87)
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where bispinors N, may be expressed in terms of the spherical spinors, asso-
ciated Legendre functions and gamma-functions, J = {}, 7,1, M} {10].

The bispinors (87) would satisfy the Dirac equation (21) if the time func-
tions fy1 obey the system of equations

fie +idAfrz tima foy =0. (5-88)
Solutions to the system (88) obey the second order equations
v (m) + Q4 (n) Hre(m) = (5.89)

i(ﬂ) = wi(n) £ime (ﬂ),

which describe an oscillator with a variable complex frequency.
Let us fix the positive- and pegative-frequency at the moment n = 7o
golutions to the system (88) by the initial conditions corresponding to (84):

== (222 Qe = ()] o)
(=) W= ()
One can easy check that in this case
B =-(Pw), LPwm=(Pm), (5.91)

which allow one to exclude from the furthcoming formulae the negative-frequency
sojutions.

Now let us turn back to the scalar case. The solutions to (81) defined
by (84), (85) are positive- and negative-frequency ones at the initial moment
no only. To account explicitly frequency mixing, it is worth while to search

solutions to the Eq. (81) in the form

1 . . )
90 = == [l () exp () + Arln) exp (-iom)),
ox'() = iyf(n) [0 () exp (O(n)) - Br(n) exp (~iOM))], (5.92)

where
n

o) = [ wir')dn, (599)
no
of (n) and Bx(n) are the complex functions to be determined and obeying the
initial conditions

a(m)=1,  Bm)=0. (5.94)
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The conditions on g’ in (92) are prompted by the Lagrange method; they
remove arbitrariness in the definition of two functions o, and 8 by one func-
tion gx. The condition on the Wronskian (83) ensures the fulfillment of the

equality

o, (DI = 1B () = 1 (5.95)
for all 5.
The quantities o, and 8y obey the system of first order equations
o = —i "a"‘ ( (0)"15) Pre %8,
* 1 . q
B = 5 (w(o) + l;) o, %0 4 1"2"‘; B (5.96)
where ¢ was defined in (82) and
}
% a7
w® = 2 (5.97)

. Analogous representation of solutions 1o the system {88) for spinor field
has the form

faz(n) = £Nz o exp(i®) — Ni B exp(~iB), (5.98)
where

(5.99)

1/2
Ny = (w:l:ma) -

The quantities o, and £ obey the condition
fo (M + (Br(m)* =1 (5.100)

and satisfy the system of equations

! __ w2 g, exp(—-2i8), B, = —--—wuﬂ)aA exp(2i0), (5.101)
where
!
oL/ i%“_ (5.102)

and obey initial conditions (94).
The analogical formalism may be presented for the case of vector field also
[10].
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It is convenient to express local observables bilinear in a field through real
bilinear combinations of ¢, and 8 defined by the equalities

sx=|8%  ux—ivy==22q, 4 exp(—2i0) (5.103)

(upper and lower signs correspond to bosons and fermions).
The functions sy uy, v, for the scalar field are connected with g5 by the
relations

_ 1 n2 o a2y 1

n =1 (I +o* o) -3, (5.104)
—_ 1 N2 __, .2 2 _li 2

m=—g- (I -o*10f), w=3zlol

and satisfy the system of equations

1
T () .
8 2 w u) s

uy' = w(® (14 2sy) — (2&) - f’—) ), {5.105)
vy = _2_(1 +28)) + (2w - S_) Uy,
w w

which is obtained directly from (96). Further we will consider mainly scalar
field with conformal coupling (£ = 1/6, g(n) = 0) and spinor field. For these
cases the system of equations for sy, uy and vy have the similar form

1
sy = 3 w® uy, vy =2wuy,

wy = w1 £28) - 2w, (5.106)

Here the upper (lower) sign in the second line corresponds to bosons (fermions),
and the quantities w(®) are defined in (97), (102) for s = 0, 1/2 respectively.
The initial conditions on sy, uy, vy follow from (103} and (94):

sx(no) = ur(mo) = valno) = 0. (5.107)

Now let us start with consideration of field quantization in the homoge-
neous isotropic spaces. This is carried out in the correspondence with general
principles given in Sec. 3. One can represent the quantized field operator in
the form of decomposition in basis functions of corresponding classical wave
equation:

w(z) = f du(J) [tpj_) (z) ol + P (2) a}"')] (5.108)



(here the unique symbols are used for field operators and for basis function
of different spins). If basis functions satisfy initial conditions of the form (84)
or (90) given at the moment 5 = 7y then the expansion (108) determines the
corpuscular interpretation at that moment. The corresponding vacuum state
10} is defined by the equalities a}‘)IO) = 0 for all J. It is easy to check that
the Hamiltonian of the field being expressed through the operators a§i1 is
diagonal at the moment 5 = 5. In [2] a vacuum state defined in this way was
called the “adiabatic vacuum” because it coincides with a stable vacuum of
static space-time in the limit of infinitely slow variation of scale factor. For
simplicity let us discuss the scalar case. Substituting the first equation of (92)
into (108} and combining the terms with one sign of frequency one may rewrite
(108) in an equivalent form

1 rdu(J)
olz) = [ =
where new creation-annihilation operators depend on time and are connected
with the old ones by the canonical Bogoliubov transformation:

a7 = a3 () (m) - (1™ B, () 8P (n),

87— ami - 0" mi ), (5.110)

o, P18 =1, J={\},-m}.

By chance, for the conformal scalar field the Hamiltonian of quantized
field, being expressed in terms of b-operators, turns out to be diagonal at any
moment. By this reason the instantaneous vacuum state |0,,) annihilated by
bj‘)(n) is the vacuum of the Hamiltonian. The same is true for the spinor
field.

One can carry out the transition to the Heisenberg representation by in-
troducing Heisenberg quasiparticle operators

) = 5 (n) exp (£iO(n)), (5.111)

where ©(7) was defined in (93). The field operator comes out by the use of
(109). For example, for a scalar field it is

1 du(J) - .
p(z) = EG?_)- f -—-\/;m-j—q" [¢I>_, (x) c_s Yn) + ®; (a:)c}*J (n)] ) (5.112)

It ig easy to see with the help of the equations for the coefficients o, (1) and
B (n) that operators c¢(*) satisfy Heisenberg equations of motion:

d®(y)
==

[ (@) @8 n) + 8} (2) 2B PM)],  (5.109)

£20 & o) +i [BO), )] (5.113)
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where H®)(n) is the Hamiltonian diagonal in ¢(*); the quantities w'®) are
defined in (97), (102) for s = 0, 1/2 respectively. The upper sing by the
first term rightwards corresponds to boson fields (the lower one — to fermion
fields).

These equations show that evolution of the operators c(*) is determined
by two factors. First, it is the ordinary dependence on tnne of Heisenberg
operators due to the exponential factor in (111) (in Eq. (113) it is described
by the last term). Secondly, the dependence on time is connected with the fact
that, at every moment, redefinition of the particle notion occurs; it corresponds
to the first term in the right-hand side of Eq. (113).

In the Heisenberg picture the state |0), that is a vacuum state at the
morent i = 1y, is not a vacuum state for » > ny. In every mode J it contains

) = O () Ym0y = OIS MES () 10)
= [BM) = saln) = n{(n) (5.114)

| pairs of quasiparticles with quantum numbers J and J. Due to isotropy, the
spectrum of created pairs depends only on the momentum quantum number

A
: The amount of quasiparticle pairs of the spin s per unit space volume is

W) = gy [ O (), (5.115)

where n{*)(n) is defined in (114) and

o0
JarA(A2-ks?), k=-1,0

du®) =4 9, 5.116
/ e ,\2 (A2 — &%), K=41, (5116)

here A\; = 1 + s and summation is carried out with the step A\ = 1.
In the case of asymptotically static metric (79) one has

a(n) = ax. (6.117)

n—):boo

Then the quantity

nQ) = lim 180 =8 (5.118)

describes the real particles created from vacuum by gravitational field during
all time of its existence.
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Now let us consider renormalization of the vacuum SET (0|T%(0) in isatropic
case. The main problem here is to remove the divergencies and to interpret
this procedure in terms of renormalization of constants in the action for the
gravitational field. As a vacuum |0) either the in-vacuum at # =& —oo may be
chosen or a vacuum defined at some moment 7. In the letter case we suppose
that a'(7) and a sufficient number of higher derivatives at 5 = 7 vanish.

Here we consider a method of removing divergencies which gives the jus-
tification of the subtractive procedure in terms of renormalization and, at the
same time, is effective when doing specific calculations. It is based on the
combination of n-wave subtractive procedure and of dimensional regulariza-
tion discussed in Sec. 6.

The main idea of the dimensional regularization method in coordinate
representation is the following. All the formulae of the theory are written for
a spacetime of the dimensionality N, after what a formal analytic continuation
onto a complex plane of N is carried out in such a way that N = 1 + (3 — 2¢),
i.e., to consider that the continuation is carried out in the dimensionality
of the space part of the metric. For complex ¢ the integrals divergent for
N = 4 become convergent in the sense of distributions boundary values. The
divergencies arise in the form of poles of corresponding expressions for £ =
0. As it will be shown below, their geometric structure is unambiguously
identified in this case, and they can be consequently removed with the help of
renormalization.

Consider at first a scalar field with arbitrary coupling coefficient £, and
besides, for simplicity let us confine ourselves to the case of quasi-Euclidean
metric (77), (79) (x = 0) and let us use Cartesian coordinates.

To carry out the dimensional regularization, we need the following formulae
for geometric quantities in N-dimensional spacetime with the metric (79) of
quasi-Euclidean type:

g = detgax = (-1)V-1 a2V,
Bo=(N=-1)¢;  Raa=-[¢+(N-2)c];
R=a2(N-1) [2c' +(N-2)¢; (5.119)

Gop = ~(N - 1)(N — 2)%-2; Gaa = (N —~2) [C’+ (N - 3)5'22%] ,
wl_lere a=1,2,..., N-1 and the following notation was introduced

c(n) = -Z:((—;’)l (5.120)
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1t is convenient to take a complete system of solutions to the Klein-Fock
equation (7) in the form

1

o (z) = T 5 @),

o)) = (¢9), (5.121)
where

J={\,..., An1}, —0<Aa <00, A=Al

3, (x) = (5.122)

W exp(=i Ao z%),

g (n) obey the equation (81) and the initial conditions (84). Note that in the
N-dimensional case the quantity ¢(n) defined in (82) is equal to
N-2
= — 2 I e— .
a) = -0 R L= g (5.123)
Expressions for the vacuum expectation values of the SET operator come
out according to Eq. (49). Using the notations sy, t, va for bilinear combi-
nations of g, and g/ introduced in Egs. (104), one can represent the results in
the following form

o0
OTulo) = %5 [ DIV2 T, (5.124)
0
where
N—3 — (N -1\1!
By = |2V -3 /gN-1T (—2- ] , (5.125)
and the components of T;, are equal to
& 1 1
Too =2 +uss+ (O - DN ~ (e~ O3 (33 + yn + 3)
+ (N = 1){(§e — E)eva, (5.126)
1 [x2 1 2 g2
o = {m s(or3) - “-\] 2o~ D

+Ee—8) [—26 @R+ (N - 1)(N - 2)%] L(sa+gm+s)

+ (N - 1)({&— 6)0".\} Yop (6.127)
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and 7oq = Tao = 0. Zero values of nondiagonal components of the SET
expectation values are obvious from symmetry of the problem.

1t is easy to see that the expressions {124) diverge as AN at the upper limit.
As the analysis of the behavior of the solutions 3y, u,, vy to the system (105)
shows for A — oo in general case (124) contains, besides this higher divergence,
more weak divergencies proportional to AV=2,... A2 and In) {for even N).

Let us continue analytically the expressions (124)--(127) in spacetime di-
mensionality onto the complex plane by setting ¥ = 4 — 2z, where ¢ is a
complex parameter. It is worth while to introduce into the integrals a con-
stant M of mass dimensionality in a certain power in order that, for any &,
our expressions would have the same dimensionality which they have in four-
dimensional space. Therefore we obtain the regularized expectation values

2 oo
OIT:[0), = -Br?E(ETM_‘L / AT, (5.128)

0

where T;;,. comes from {126), (127} for N = 4 — 2. {Note that one should
make this replacement also in the expressions for {; and R entering 7;.) For
Ime # 0 the integrals in (128) are convergent in the sense of distributions
limiting values.

Now let us apply the subfractive n-wave procedure described in Sec. 6
to the regularized vacuum expectation values. The rule (68) reduces to sub-
tracting from the integrands of (128) three first nonvanishing terms of their
asymptotic expansions in powers of w™! for w — 0o correspondingly to three
types of divergencies (A%, A2 and In)), which are present in four-dimensional
space:

2
ren(O'Ttkw)s = {OIT!k'O)s - ZT&,e(I), (5‘129)
=0

where the index { has the same sense as in Eq. (68).

To calculate Ty () in explicit form, let us act in the following way. Let
us make a replacement in the expressions (126), (127) determining Ty . for
N=4-2&

A - nA, m — nm, W — Nw (5.130)

and let us search their expansion in inverse powers of n, after what let us
set n = 1. To carry out this procedure, one needs to have corresponding
expansions for s, 4y, v) entering 75, The required expansions are, in fact,
generalized WKB-solutions to the system (105) for sy, u), vy with the initial
conditions (107).
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One can construct generalized WKB-solutions to (105) in the following
way [26]. Let us make the replacement (130) in (105) and let us search s,, ua
and v, in the form of asymptotic series in powers on n~! (the index X is omited
in the coefficients of these series):

o o0 = +]
8) = Z n~k g, uy = E n~* u, Uy = Z n %y, (5.131)
k=1 k=1 k=1

Substituting (131) into (105) and equating terms with the same powers of n,
we obtain a getting caught system of equations for sk, ug, vi.

Since further we will consider fields with other spins, let us represent at
first generalized WKB-solutions to the system (106) having the uniform form
for conformal scalar, spinor and vector fields. First nonzero terms in (131)
are:

1 1 - 1 2
= W == {s) = W
vz = —épzw(‘) + TIEW(')", (5.132)
1 3 2
= () 4 Zwis (2
Uy 16D3W :I:32W DWY,
1 1 2 3 4
= ——W® p2prle) 4 — {s) W,
84 =~z W D'W +64[DW ] W
‘Here the following notations are introduced

1d
b= w dn’ w
For scalar field with arbitrary coupling (see Eqs. (105)) the quantities v;

and s; have the same form as in (132), and one needs to add the following
terms dependent on (¢, — £) to the remaining terms of the expansions:

=2 =_Yp(L

Aug—zwz, Avs 4D( 3), {5.133)
-1 4\, 9 wo?, 9 ppo?, T

Auyg = 81){.0.[)(“}3)-!-15 =W +83DW +I"
_2 1y q g ©

As‘l_i——f‘"—ﬁw wD(J)“I'i——EzDW .

Now one should substitute expansions (131) into the integrands of (128),
in which the replacement (130) has been done, and to group terms having the
same order in n~1. By setting n = 1 in the result, we obtain three terms
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Ti (1), which are to be subtracted according to (129). Let us write them
explicitly:

Byg (Ma)* T
Ty = 22000 [y 50275, ), (5.134)
0

where for { = 0 (in the first subtrahend)

2

v Tape(0) = WBoe 1 (5.135)

To0,£(0) =

NI E

for I =1 (in the second subtrahend)
Tooel) =wen + (6= ) [0 2001~ )55 + B 2)em].
1 A2 2.2
Tap (1) = {5:—2; (‘J 52— oo m) (5.136)

FEe—8) [—zwug 2 (—caﬂa +E(3-20)01 - e))

+ (3—2¢) cvl] } YaB>
and, at last, for [ = 2 (in the third subtrahend)
To0,6(2) = wsa + {§c — £)(3 — 2¢) {(1 - 5)'::; (82 + %ﬂz) + cvs] ,
2 2,2
Toae®) = {525 (F 0= T )
\ 1 1
+Heo— ) [-2wun+ (2PR+ G- 2000 - &) £ (324 3)

+ (3—-2¢) c”3] } Yaf (5.137)

One can split the integrals in (134) on account of {135)-(137) in elementary
terms of the form

7 d 226~
i

N RS
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where B(p,q) is the beta-function. Analytic continuation of the right-hand
side determines the values of the integral even for such parameters k and m for
which it diverges in the classical sense as soon as Ime # 0. The divergencies
when the regularization is taken off manifest themselves as poles of beta-
function at the point € = 0.

Let us expand the results of calculation of the values of Ty (I} in series
in powers of ¢, and besides, let us write down only those terms, which are
nonzero for € —+ 0. In this way we obtain

mt (1 1
Te(0) = —557 (E +b- -2') ik (5.138)

m? 1 m? (1
Tuoe) = ~ g G~ (5-¢) g (G +4-1) G

1 1 1 '
Tixe(?) = T3 [g Oty - O +10 (5 - €) VB
2
+ 90 (%— ) (é +b-—2) (‘)H,-,,] ,

m2

47 M2

C is the Euler constant, (VH is defined in Eq. (64), and ®Hy is quadratic
in curvature tensor

Oy, = R B — 3R Rus — 5 (R™ B = 27) g (5.139)

where

b=—In

+2-C,

Note that, despite that (3, has a covariant geometric character, the con-
servativity condition for it Vi GYH* = 0 is valid only in conformaily flat space
and hence, unlike (DHg, it could not be obtained by variation of the action
determined by a geometric quantity.

The obtained results allow one unambiguously to solve the problem about
the interpretation of the n-wave procedure subtractions (129) in terms of renor-
malizations of the initial constants in the effective Lagrangian of gravitational
field (65). It is obvious from (138} that the first subtraction (I = 0) is equiv-
alent to infinite (for € = 0) renormalization of cosmological constant and the
second subtraction (I = 1) — to renormalization of gravitational constant,
which is infinite for nonconformal scalar field but becomes finite in the con-
formal case. Much more complicated situation is for the third subtraction
(I = 2). Subtraction of those terms in Tix -(2) that are proportional to WA,
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is equivalent to rencrmalization of the constant B by the term R? in Eq. (65).
The term with the constant « in this case is absent in the effective Lagrangian
because our metric (79) is conformally flat and

E:kad‘::: Ne=r (R""R,-,, - -31-32) =0

in it. At the same time finite terms ~ G)H,; are presented in T; .(2) which
could not be obtained by variation of local polynomial action with respect to
g**, so that their subtraction does not correspond to any renormalization.

For spinor and vector fields by analogous way the geometric structure of
divergencies is established and the renormalization is carried out. For example,
for the spinor case

T(lﬂ) = w(—1+ 28,), (5.140)

1/2 a2 ma
7;(5’ ) = _(-ﬁT)w [-—1 + 23), - "X— ﬂr,\] Yap-

The subtrahends T‘%{ ? () under renormalization (129) are found as in the

scalar case. We use the asymptotic series (131} with terms (132}, in which for
s = 1/2 the lower sign is taken. The results have the form

4
1 9 1 1

2
/2 1 _1) :
(1) = 43 2( +b-3) Ga, (5.141)
T4 (2) = < 11'2 (1(1)H _%(3)3*)

Note that in this case one needs only finite renormalization of the constant 8.
Using the obtained results, we may calculate now the total vacunm SET
of quantized fields in isotropic space. Here the results for conformal scalar and
spinor fields are presented.
In order to find finite renormalized expectation values, which will be de-
noted by {Tj), one needs to take off the regularization (129) when the pole
terms have been cancelled:

(T} = [(OlT.kIO)e ZTM(‘)] (5.142)

Thus one obtains expressions that obey by construction the conservativity
condition and contain both local terms describing vacuum polarization by
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gravitational field and nonlocal (in time) terms connected with particle cre-
ation.

When doing explicit calculations, it is convenient to use no dimensional reg-
ularization but to make subtractions ordered by the n-wave procedure mode-
by-mode (in the integral).

For hyperbolic and quasi-Euclidean space {k = —1, () one can represent
total renormalized vacuum expectation values of the SET in the form

8) = s [0 {7 ) [0~ T ]
Li]
~X T (84,0}, (5.143)

where 8), u, are exact solutions to the system (106) with the initial condi-
tions (107), sk, ui are first nonvanishing terms in WKB-asymptotics of these

solutions written down in (132). The functions 7,)(s,u) come out from the
expressions (126), (127) for £ = £, (140) for N = 4, if to delete in them
first terms independent of s and u (those having been removed by subtracting
Ti(0) ). In particular, for a scalar conformal field:

Tao) (52, 12) = w8y, (5.144)

0 1 {2 m? g2
7:,(5)(8,\,“}\) =3 (:; 8y — 2% Uy | YaBs

and for a spinor field:

T8 (83, u3) = 2w s, (5.145)
o 2 Az a\ma
TP (35, u0) = 3 (; Y ﬂx) Yap-

The expressions {143) in spherical space is modified in the following way.
First, the integral of the first term containing sy, u, is replaced by the sum
over discrete values of A (whilst in the terms with s2 4 and uy4 the integrals
are remained). Secondly, “topological” additions, which arise due to difference
between the sum and the integral when doing first subtraction in (129) (with
[ = 0} appear here. They have the following form:

1(;)_ 23+1
AT =+ e

i —fd,\) (32 - 5?) Au (5.146)

A= h
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with

1 12
A = 3 [W$ ‘3';705] )

where Ay = 1+ s and the upper (lower) sign corresponds to bosons (fermions}).
The quantities (146) represent the Casimir contribution to the total vac-
uum SET of quantized fields in curved spacetime (the detailed calculations of
the Casimir SET in spacetimes with different non-Euclidean topology may be
found in [20]).
Therefore total vacuum expectation value of the SET in the case of a
spherical space are given by the expressions

o
— fd,\ )F - 32) 9 (5, u2) + A2 7‘?)(34,114)]} +ATY.

0

In general case total renormalized vacuum expectation values {Ti;) are
complicated nonlocal functionals of the metric. The important exception is
massless conformally invariant fields in conformally flat spaces, in particular
homogeneous isotropic spaces with the metric (79). In this case, as we just
show, (Tix}m=0 = {Tix}o always have a purely local character and can be found
by analytical way for any dependencies of a(n).

For massless scalar and spinor fields the expressions for (Tj;z}, come out
from general formulae (143), (147) by going to the limit m — 0 that ought to
be completed after integrating in .

As it seen from (106), the contributions from the terms dependent on
8), t) in this case vanish (there is one important exception: the metric with
a{n) ~ exp(n); it will be considered below). For hyperbolic and quasi-Eucli-
dean space {k = —1, 0) using the expansions (132) for sj, uj after long but
elementary calculations we find for a scalar field

Ty, = 480“2 7 [2¢" e c’2—2c] (5.148)
Ay = ooy 2" +2c = & 4 8¢ =261 g,

and for a spinor field
<Tg;f2>>_.,= 0«2 : [6(:" -3c’2——c +5uc3]
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(T = m [-6¢" +6 -3¢ (5.149)

+14d 2 - gc" - 10k + 5502] Yo

In the spherical case one should add to (148), (149) the topological terms
(146), which for a massless field are equal to

AT = Jiks (5.150)

where dg = 1, dyj2 = 17/4 and Ji is a tensor, which has, in the coordinates
(77), (79), the components

1 1
Jig = pe] (1 & 3 ']!ap) . _ (5.151)

One can write the results (148)—-(150) in terms of introduced above tensors
(UH;, and OH

1
144072
where the coefficients are 4y = 1, By = —1/6, Co = —6, Ajpp = 11/2,
By = —1/2, Cypp = —51/2, and the multiplier §x,—1 shows that the term
with C, is present only in the case of hyperbolic space.

Let us calculate the trace of (152). From (64) and (139} we have

Ty, = (A, Oy + B, OH + 86,1 Cs Jir] » (5.152)

Because the trace Jf = 0, in all three cases x = 0, +1 there is:

5)i 1 R2 3
Ty, = G [A, (R‘"‘ Ry — —3-) —6B, V‘V.-R] : (5.153)
This is the conformal anomaly that we have told about in Sec. 6. The result
(153) is consistent with (74) because in conformally flat space the Weyl tensor
Citim = 0, and here we consider a complex scalar field.

Note that if we consider from the beginning a field as a massless one, then
just after the first (with { = 0) subtraction in (129) the expectation values of
the SET would vanish because in this case g5, uy = 0, and there is no need in
further renormalization. This property, however, is not preserved for arbitrary
small deviation from the field comformal invariance or from the space isotropy,
when for a massless field sy, u; # 0 and there are all the types of divergencies.
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Thus, one may consider both a nonzero value of (Tj;), and the conformal
anomaly as a phenomenon of spontaneous conformal symmetry breaking,

Coming back to the general expression (152), let us note that because the
tensor (VH;; comes out by varying the integral of R2, the second term with
this tensor can be removed by the additional renormalization of the constant
B in the initial Lagrangian (65). The rest terms in (152} represent genuine
vacuum polarization of massless fields in gravitational field. When the above
renormalization has been done the vacuum SET of massless field takes the
form

1
144072

Consider now massive fields. The vacuum expectation values of the SET
(143) in this case can be represented in the form of the sum

(Ti)e = [40 OHa + 5,1 C, Ju] (5.154)

(TL) = Ty + T s (5.155)

where the first terms are local expressions (152) independent on the mass, and
(T‘-(: )) are, in general case, nonlocal causal functionals of the scale factor a(n).

To calculate (T}f))m let us start from the consideration of “Big-Bang”
cosmological models, which form a base of modern cosmology.

As an important particular case, we consider cosmological Friedmann mod-
els which are the solutions to Einstein equations in the right-hand side of which
the SET of classical matter stands with the state equation

Py=(y—1)e. (5.156)

The spatial curvature « is determined by the sign of the difference £, —¢£,. where
€er = 3h%/(87 Q) is the critical density corresponding to quasi-Euclidean
model, and k = a'/a® is the Hubble parameter.

Friedmann models possess a singularity in classical theory: when t —+ 0
the scale factor vanishes by the power law

a(t) = bo 84, (5.157)

where ¢ = 2/(3v). We suppose that 1/3 < ¢ < 1; the value ¢ = 1/3 corre-
sponds to the most rigid state equation P, = g, and ¢ = 1 corresponds to
so-called Miln metric, which will be considered below. The considered interval
includes the case of both radiation dominated {y = 4/3, g = 1/2) background
and the dust-type (7 = 1, ¢ = 2/3) background. In terms of “conformal” time

N
a(n) = by ", (5.158)
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where

by = [(1 ~ g% 0] ™ , P=1—E-;I-, 0<p<oo.

Expressions (156), (157) are exact in the quasi-Euclidean mode}; in hyper-
bolic and spherical cases they are valid only for n < 1. However for realistic
models of the Universe (where €; does not much differ from ) in the epoch
t ~ m~! when nonlocal quantum effects were essential, the curvature of 3-space
does not yet influence on the expansion law because the condition ma; > 118
fulfilled with great supply. Therefore, for the models with < = 1, one may
consider % 3> 1 and use the power laws (157) and (158).

Let us turn now to calculation of renormalized expectation values of the

SET

(T8 =8, (i) = PO,

We represent details of calculations only for the energy density £(8); the pres-
sure P{* can be easy obtained from the conservativity condition which reduces
to the equality

)
r— 3%
g€==-3 " {e+ P).
Let us represent £(#, similarly to (155), in the form of sum
el = gl 4 &), (5.159)

where 55,1’ is the term dependent on the field mass; sg") is the polarization
term nonvanishing for m — 0. The latter is determined by expression (154)
(we suppose that the term with R? is absent in the renormalized effective
Lagrangian). Using explicit expressions for 9Hgg and Joo we find
__ 1L 2 G

For the power law {157), accounting that for n < 1 one can neglect the spatial
curvature, we have

9

4
g A, (s),.,(i_) (8)
S RV=(5-1) (5.161)

The term b in Eq. (159) is determined by two first terms of the integrand
of (143). To calculate it one needs to know s,, besides the quantity s; defined
in (132). To find s, one should either directly solve the system (106) or search
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solutions to the systems (96), (101) for o, and 3 (remind that s = |& (7)/?).
It is possible to carry out the calculations in analytical way for two important
limiting cases: t < m~T and t 3> m~1 (we suppose that ¢ = 0O corresponds to
n=0).

Let us consider at first the early epoch ¢ « m~!. Here the gravitational
field is strong because in this case [RF| >» m?. One can find asymptotics of sy
for A « ! and for A > ma, and besides, these regions overlap each other
because

7
ma{n)n ~mfa[n’) df =mt<« .
0

In the region A < ! the following estimation is valid for © from Eq. (93):
7
o= /w(n"Jdﬂ' <M+mt<l,
o

and the systems (96), (101) can be solved by the method of sudden perturba-
tions. For a scalar field we obtain

_(w—=2)?
n=13 (5.162)

and for a spinor field
=22 (5.163)

2w
In the region A *» ma it is convenient to use Volterra equations equivalent
to (106), {107) and besides, one may consider that w = A, €& = An. In the
scalar case the first iteration gives

da®(m)

n 2
dy; — exp(2i X
0[ = P(2i Am)

, (5.164)

and in the spinor case, after integrating the result of the first iteration by
parts, on account of smoothness of a(n) at zero:

m4

]
8 =82~ 77 1 24'(n) f dm a"(m) cos2A(n —m) (5.165)
a

2

E
f dm 6" () exp(2i Am)
1]
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It is easy to check smooth joining of represented asymptotics in the region
ma <€ ALy L. (5.166)

The quantity {8} comes out by integrating in A two terms of (143) dependent
on s, and s;. Choosing the transitional momentum Ap by proceeding from
the condition (166), we can use in the interval (0, Xo) the asymptotics (162),
(163), and in the interval {Ap, 00) — (164}, (165). Moreover, the quantity A
is absent from the result.

Therefore for a scalar field we find [10]

2 I 2 4
(o)=__”L(“) m ol a1
T + g7y b—~C~7 (5.167)

i
- f dﬂl f dﬂz 111|ﬂ1 },
0

and for a spinor field [10]

(1/2) m?_fa” !
Em' " = T g [-2-— ( lnm -C- ") —d ®1(n) + ‘I’2(’7)] (5.168)

Here the notations are used
n n
@(n) = [ dma"(m) lnln—m),  @aln) = [ am &"(m) Br(m).
h) ] '

For power laws of expansion we obtain from (167), (168):

2 a2
o _gm | m [m +D(°)(q)]

4811'2 t2 1672
= L [l 4 D), (5.169)
where
DO(g) = (1 * q) + In(l - g} + 1—;;-3 (5.170)
I'(2)

Pz) = @)
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For the epoch ¢ >» m™! the approximative calculation uses expansion in
small parameter (mt)~1. The obtained results

t
) ‘%ﬂ P« 9 (5.171)

describe particles of a nonrelativistic gas. The contribution from the polariza-
tion terms (160) at that epoch is small,

Let us turn now to the study of particle creation effect itself in Friedmann
models (157). The deusity of quasiparticle pairs n)E‘}(t) as a function of time is
defined by the formula (115) where n)f‘) () = 3x{n). When t € m~! we have

3 2
I (L 22 — @ m

preg g1t (6.172)
The ratio n{1/2) /n(® ~ (mt)~1 3 1, such a difference in creation of scalar and
spinor quasiparticles is explained by action of the Pauli principle for spinor
guasiparticles.

Let us turn to the epoch ¢ 3> m™!. It is natural to split the quantity n{®)
in two components

n®)(¢) = n{V(t) +n{(2) . (5.173)
where

() . _28+1 / 2, (s)

W0 = 5wy | AN RO (5.174)

represents the pair density of real created particles. The component ni (£)
determined by ss is equal to

n$7 (1) = K, mh2(y), (5.175)

where Ky = 1/512, K, J2 = 3/256. This formula describes the virtual pairs
with the characteristic correlation length r ~ m™1,

It is obvious that the term n{*) corresponding to real particles dominates
for 1/3 < ¢ < 2/3, i.e. in the range of realistic equations of the background
state (156). The corresponding amount of particles in the Lagrange volume
N©@ ~ nle}(t)a®(t) =const. This means that particie creation have been
ceased for ¢ > m™1.

Let us turn now to the particular case of isotropic metric with s = —1 and

a(t) =t=¢e" (5.176)
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Its main feature is that it describes usual flat space in some noninertial coor-
dinates. Therefore it may be a test for examining the validity of the procedure
of finding (Ti): if the state |0) is chosen in such a way that it coincides with
the usual vacuum of Minkowski space |05s) then the exact equality (Tix) =0
must take place. Moreover, in spite of the nonstationarity of a(t) here no
particle creation must take place.

The vacuum state |0as) is characterized by the requirement of positive
frequency of solutions to the Eq. (81) for t — oo (for shortness let us consider
here a scalar field only). Such solutions have the form

a(t) = —iJ?;K.‘,\(—imt). (5.177)

One can exactly find the values of sy in (143) with the help of (104). The
contribution from “polarization” terms (152) into (T} in this case is equal to

1
{Tit)o = — 553 Jie- (5.178)
Therefore the zero value of the total SET (155) is ensured by the condition

ftL\ A2 [8a(t) — s2(2)] = -;E (5.179)
0

It guarantees (Too) = 0. The equality (7og) = 0 comes out automatically from
the conservativity condition.

One may check that the equality (179} is actually correct by substitution
of explicit expressions for s, and s;. Thus, all three subtractions should be
made in (142) to get the correct result, even if after, e.g., first subtraction the
obtained expression is already finite.

7.8 Self-consistent cosmological models

One of the main problems in modern gravitational theory is the problem of
cosmological singularity. As it is known, singularities are general properties of
classical gravitational theory. At the same time, quantum gravitational effects
inevitably cause violation of energy dominance conditions for the SET (see
Sec. 5) leading to singularities arising in the solutions to the Einstein equations.
Thus the hopes were uttered repeatedly that the account of quantum effects
might lead to removal of gravitational singularities and therefore might point
the way how to solve the problem of initial conditions in cosmology.
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To construct the self-consistent cosmological models we shouid look for the
solutions of semiclassical Einstein equations with a vacuum SET of quantized
fields as a source:

Gt = -87G I {TEh. (5.180)

Here G i8 a physical value of the gravitational constant and the cosmological
constant is supposed to be zero.

Vacuum expectation values (T‘-{,: ) ) entering into the right-hand side of (180)
can be represented according to (155) in the form of independent on the mass

local polarization terms (T (k o and of the terms (T,k) }m determined by the
masses of accounted fields which are nonlocal causal functionals of a(y).

Let us assume that proportional to the tensor (VHy;, terms in (T(’))o are
removed by the renormalization of the constant # by the term ~ R? in gravi-
tational Lagrangian so that S, = 0 (see Sec. 7). Thus (T,{,:))o are determined
by the equations (154).

In the class of sotropic metrics it is convenient to confine ourselves to the
00-component of the equations (180) which can be written in the form

K= §%§ (g0 +&m) 62, (5.181)
where

With the help of explicit expressions for ()H; and Ji; one can represent
the quantity £q in the form

1
€= go 2 o [ (c+ ) +§CJ,;,_1], (5.182)

where A = XN, A,, C = EN,C,, and N, is the number of fields of the spin 3.
The quantity &, 1s determined by the sum of expressions of the form (167),

(168).
1t is convenient now to fix temporarily the unit of the lengh by setting
G/(180mr) = 1.

Let us start from the case of massless fields for which, generally speaking,
em = 0. Eq. (181) reduces in this case to

E+x= -;iz [(c2 + n)2 + 32;-1- 6&_1] . (5.183)
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For a flat 3-space (when x = 0), besides the trivial solution ¢ =const which
corresponds to Minkowski space, Eq. (183) has a nontrivial solution

VA
o(n) = - - (5.184)
n
This solution descibes the de Sitter space in orispherical coordinates. Its
curvature (in usual units) is R = 2160n/(G A), i.e., the space has dimensions
of the Planck order. When x = +1 the solution to Eq. (183) is

VA
Such a metric describes the same de Sitter space but here spatial sections are
spherical.
In terms of the proper synchronous time ¢ the solutions (184}, (185) have
the form

a(t) = VA exp (%) ,  a(t) = VA cosh (%) . (5.186)

i.e. depend exponentially on time. (The self-consistent solutions (184), (185)
to Einstein equations (180) were firstly obtained in 1980 in the paper [17} and
a bit later independently in the paper [24].) Such a strong time dependence of
a on time during the very early stage of the Universe evolution helps to solve
the problem of causality, or of a horizon, discussed in the Introduction. A year
later expansion of the Universe according to (186} was called “inflation” and
the corresponding cosmological models — the “inflationary” ones {11}, But in
[11] inflation was caused by the especially invented classical “inflaton” field,
not the vacuum quantum effects of known fields and elementary particles. By
this reason obtaining inflation as the self-consistent solutions to semiclassical
Einstein equations (180) looks much more fundamental.

Note that found solutions satisfy Eq. (180} even if the term with the tensor
(A, is included into {Ti)o because the latter is equal to zero identically in
the de Sitter space.

It is known that the presence of the tensor (VH;; (dependent on the third
and fourth derivatives of g;; and originated from the terms ~ R? in the La-
grangian) in the equations leads to arising of scalar and tensor instabilities. In
particular, the de Sitter solution is unstable in this case relative to spatially
homogeneous massive scalar mode (scalarons).

On the basis of this instability, a cosmological model of inflationary type
has been constructed [24] in which initial nonsingular de Sitter Universe came
at radiative dominated Friedmann expansion regime due to generation of
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scalarons with very large masses and their decay into the usual particles. The
existence of so heavy particles is, however, under question.

Let us come back to Eq. (183) and turn to the case of hyperbolic space
(x = —1). There are two solutions here, just as in the case x = 0. One of
them, which disappears when A = {), is a spacetime evolving between two
singularities and having a minimal curvature of the Planck order. The second
solution does not disappear when A = 0. It turns out to be nonsingular on
fulfilhment of the condition || > 34. Introducing notations

f 2
é= }321—, z= - u=vVz?+1-gz,

248

one can represent this second solution in an unexplicit form as

1 1-48u
4n = tanhv/'1 - § 4 — Arctanhy/ —— 5.1
n = Arc “= i3 %3 (5.187)
P L e |
-1 V2 ¥ I—du

It has one branch symmetric relative to the replacement  — —5 and when
{7l = oo it behaves like

a(ﬂ)”\/' cosh (| — ), (5.188)

1
fio = '5—_—-1 (—2--arctan\/ ) ,_.__+6Arctanh T35
When 7 =0 a “rebound” from a singularity takes place according to the law
182-1 , . _{lIc]
a(n) am'ﬂ"ém—l-n with @y, = 3 — A,

This rebound takes its origin from the second term in Eq. (183), which plays
for C < 0 the role of background with a negative energy density ensuring
violation of energy dominrance conditions when [C] > 3A.

For |n| >> 1 the asymptotic (188) corresponds with exponential accuracy
to the Miln metric, i.e., the model during short time interval transfers into
empty Minkowski space (the curvature is R ~ i~® in terms of the proper time

t).

Let us fix our attention to corrections to the obtained results due to nonzero
field mass. These corrections are negligible for de Sitter self-consistent model
on condition GM? « 1 where M is the sum of masses of accounted fields.
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Consider now corrections to the solution (187). Calculation of &, accord-
ing to (167) on condition e(n = 0) = 0 gives in the region |t| < m~! for each
field

2.2
2. . f m*np® for ol <1,
@ &m { m* for 1< || <50.

At the same time local terms in Eq. (181), when a(1) is determined by the
equality (187), have the form

2 [ G for |nj <1,
@ co { t=2 for 1< |

It is obvious that here one can neglect the contribution from e, with respect
to gg. '

Whent > m~!, nonlocal terms e describe the contribution of real created
particles. There is in a given metric a(t)

Ky;m,

Eg) = 63 1

where K is a constant dependent on the field spin (see Sec. 7). Let us consider
for the sake of simplicity that all the massive particles are created at t ~ m; !
and from this moment they start to influence on metric evolution. Summing

contributions from all massive fields one can write Eq. (181} in the form
1 2, C 2
"2_1=Z;3 A -1) +3 +ud|, (5.189)

where 1 = 48072 3" K,N,m,, and N, is the number of fields of the mass m,
(let us remind that we consider the case x = —1 and suppose G/(1807) = 1).
It follows from the results of Sec. 7 that 480x2 K, ~ 1 for all the spins. Solving
Eq. (189) asymptotically, we find for ¢ 3 m;!

a{t) =t+a1 MG In(M1t), (5.190)

where a; ~ 1, M = Y Nym, is the total mass of all the fields and we came
back to the previous units. It is obvious that, when ¢t > (GM?)/M, the second
term in the right-hand side of Eq. (190) describing the deviation of the metric
from the Miln one is negligible.

Thus, taking inte account non-zero masses of the usual elementary par-
ticles, it is impossible to get the smooth transition between inflationary and
Friedmann stages of the Universe evolution due to the vacuum quantum ef-
fects. In inflationary scenaria with inflaton field the transition to the Fried-
mann stage occurs through the intermediate stage of periodical oscillations of
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inflaton field. During this stage the density number of created scalar particles
depends exponentially on the number of periods. The back reaction of these
particles onto the background metric leads to the Friedmann expansion law
[15]. This scenario, however, supposes very specific character of the inflaton
field potential introduced into the theory by hands.

In the end of this section let us suppose that there is some self-consistent
solution to Einstein equations (180) with oscillating asymptotic regime after
the finishing of inflationary stage (the possible situation in where such solutions
may arise is discussed in the next Section). Then, starting from some 1, the
self-congistent scale factor is periodic function with some period T

a(n +T) = a(n). (5.191)
As a result it follows also that
Qn+ 1) =Qn) (5.192)

and the oscillatory Eq. (81) describing the nonconformal scalar field belongs
to the Hill class equations.

As it was shown firstly in two independent papers {19,21], the density
number of scalar particles created from vacuum by periodic external field may
depend exponentially on the number of field periods. This takes place for some
values of quantum numbers corresponding to the instability zones of the field
equation.

Let us introduce even (u) and add (v} solutions to Eq. (81} obeying the
initial conditions

R (5.199)
{here we transfered the zero point of conformal time into the initial moment
of the oscillating regime).

As it was shown in the paper [19], the momentum density of scalar particles
created during n periods of a(n) oscillations is:

© _ smh“‘(nD} [Q2 »(T) + o' (T)]
T e D a2

Here the guantity D is defined by: cosh D = u(T), and £ is the value of Q
after n periods of oscillations.
For the Hill-type equations there exist three possibilities:

w(T)=+1, n®~n? (5.195)
W(T)>1, ol ~exple(\)n] with £(A) >0, (5.196)
[w(T) <1, nl®~sin®nD) (5.197)

(5.194)
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It is clearly seen that in the cases (195), (196) the density number of created
particles increases with the number of periods. This corresponds to the zones
of unstable solutions to Eq. (81). In the case (197) the solutions are stable
and the density of created particles depends periodically on the number of
periods. The resonance situation takes place when the characteristics of the
created particles (m, A) and of external field (amplitude, period) are in a cer-
tain relation. It is notable, that for any amplitude and period of ¢ oscillations
there exist such A which correspond to the instability zone,

The exponential creation of particles by the oscillations of the inflaton field
in inflationary cosmology gives the mechanism of reheating after inflation [15].
The oscillations of a scale factor a(n), as was shown above, may lead to the
same effect. By this reason the existence of self-consistent solutions to Einstein
equations describing both inflationary and oscillation stage is of much interest
for applications in cosmology.

7.9 Quantized scalar field with arbitrary coupling
in curved spacetime

In the previous Section we investigated the structure of infinities for the vac-
uum expectation values of the SET of nonconformal field in isotropic gravita-
tional background. At the same time the total vacuum SET of nonconformal
field was not calculated explicitly due to additional mathematical difficulties.
Here we show that it may be calculated under rather general suggestions and
gives much more possibilities for obtaining new self-consistent cosmological
models compairing the conformal case.

After the separation of variables one gets once more the Eq. (81) with os-
cillation frequency (82). In order to keep the discussion as general as possible,
we do not fix the values of the spacetime parameters a{n) and ¢(n) at the
initial moment ng:

a(mp)=a0, qlm) = q. (5.198)

In nonconformal case it is reasonable to consider the quantity Q as a natural
dimensionless one-particle energy. This definition correspends to the naive
concept of adiabatic particles (for more sophisticated concept of adiabatic
particles see below).

Instead of (84) we specify a complete orthonormal set of solutions to
Eq. (81) by the following initial conditions:

galm) = 27V%(m),  ghimo) = i02m) ga(m0)- (5.199)
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The field operator is given by Eq. (108) once more and the equations

- «(~}
aljoy =3, " oy =0 (5.200)

define the adiabatic vacuum state.
The solutions of (81) with initial conditions (199) may be equivalently
represented in the form (compare with (92})

1 . . .
921} =~z [ () exp (1O(0)) + Pr() exp (~iO()]
9x'(n) = iy/n) [ (n) exp (18(n)) - Ba(n) exp (—iO(m)] , (5.201)

where «,, B are the solutions to the first-order differential equations

i 7
L T

Q . Q . x
o =39 exp(-2i8) By, fBr= 20 exp (218) o) (5.202)
with the initial conditions

a(n) =1, PBlm)=0 (5.203)

n
o) = [ tm)dn. (520
L]

Equations {201} lead once more to a redefinition of a concept of parti-
cles according the Bogoliubov transformation (110). The spectral density of
created adiabatic particles is given by (114) and the density per unit space
volume — by (115) (with the new understanding of 3 (1)).

For the non-renormalized vacuum SET we get the following expressions by
the use of (11), {108) and (200):

{0{Tol0) = ,rzlaz _/ du(X) »? [QSA + %Q + 3A¢ cV)y, (5.205)
1 1 1
+ 3A¢ (C’+2cz) a (31+ §V1+ i)] .
: _ Yag 2 | A% 1y 02-2)2
(0/Tas10) = 22 [ du(3) [gﬁ (5+1)-2=2y,

1 1
—Af (30'+2n) % (SA+§‘UA+ :‘—,) -2A8QU, +3A§cV,\] .
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Here the quantities S, Uy, V3 are defined once more by the Eqgs. (104) with
the change of w for 2,

_1
AE - 6 - 61
and Eqs. (106) are valid for them (with the change of w® for w = Q'/Q).
Renormalization of the matrix elements (205) is performed once more ac-
cording to (142), where the terms to be subtracted are the same as in Sec. 7.
However, they have a bit different form being expressed in terms of expansions

of Sx, Ux, V) in powers of w™1. For the brevity we present here 00-components
only:

Tuo(0) = 555 [ AN Rw,
0
Too(1) = #/dp(;\)z\z [w32+3cA£V1 +—2::3;A£ (:.-2 —n)] ,
: 1]

Too(2) = { (34-1- g; + 4:;2 Ug) (5.206)

saeoe =) (e )]}

Here the local expansion coefficients are:
1 1 1

-2 I - w2
V1—2W, Uy 2DW, 52 IGW‘
Vi = fléwa L prw EJD (i) (5.207)
_1 3 1 1 g
U_32DW D3W SD( D ) S‘ﬂpw
R 2 2_ W ( )
So= 5 W 32WD W+ — (DW) WD :
where
_uw _1d
W=F, D=wdn.

The subtraction of the terms (206) is equivalent to renormalization as it
was shown in Sec. 7.



Performing all three subtractions we get the finite result (and analogical
for aff-components)

(Too) = ;j? f ar N {n (% + S,\) (5.208)

ofl_9 _ & __a
2 4l 16f 2w
1 /1

+3(c’+2cz)A§[$ (%+SA+%UA)—;(§+Sg+%U2+$)]}.

Here we omit topological terms which appear in the case s = 1.

Notice that the expression (208) is much more complicated than in confor-
mal case because the integrals containing Sy, Uy, V5 and the integrals of local
geometrical quantities S;, U;, V; are infinite separately.

As it is shown in [3] by exploiting the early time approximation which
reduces to two inequalities

t
mt < 1, f dty/IAER()] < 1 (5.209)
t

one may obtain the asymptotic representations for g in two overlaping mo-
mentum regions (0, Ag) and (Ap,00). This, in its turn, gives the possibility
to calculate all the momentum integrals in the vacuum SET and to get the
explicit cancellation of all the infinities. The first of the inequalities (209) sim-
ply means one of the conditions of applicability of semiclassical theory with
Eq.(180). The second inequality of (209) restricts the value of the time ¢ to
which the obtained results may be applied for a given A¢.

With inequalities (209) the total renormalized vacuum SET was calculated
for the arbitrary a(n). The result can be displayed as [3]

232+Sz+34)+3cA€ (VA —V1 ~Va)

5
<Tu>=Y <>, (5.210)

a=1
where every contribution is covariantly conserved:
d
(:1;;_ + c) <Té§) > +ey°f <TCE;) >=0. (5.211)
The explicit form of different contributions to (210) is as follows. The first of
them is:

4 2
SPOLN TEAN :"_[ _ ( E)]
<T; 602 (C+ 4)g,k+144ﬂ_2 1-36A{C + 3 || Gul5-212)

At Wy, 1 ( oy, o 3 )
+144“2[ 1+18A{(C+1)) 15!’.;,.+14401r2 5 Hy + “Hy ).
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This addend to (210) consists of generally covariant tensors only.
The second contribution to the total vacuum SET is given by

1 4 1
<T>= gz |- oo - A + (87 O] 1a(ma),

1 m? 1
<T($) >=13 [—Tgaﬁ ~ AEm2Gop + E(Af)z (I)Haﬂ] In(ma)

4

1
- o [“ng"“ ~ Agm*Goo + 3(AL)* “’Hoo] (5.213)

and contains logarithmic terms describing the dependence of the vacuum SET
on the remormalization point. The logarithm in this term can identically be
transformed according to

In(ma) = ln-::l + In(pa)

with ¢ being an arbitrary mass scale. Then, the term proportional to In(m/u),

2 |~ g~ Alm G + 5 (A4)" THix ln-‘;

represents a local, geometrical tensor that is solely made up of gy, Gix and
(DH,,. Hence, the removal of this term from the vacuum SET can be inter-
preted as a finite renormalization of the respective constants. The remaining
dependence of (51}(,?)) on In{ua) is the renormalization scale dependence of the
vacuum SET in nonconformal case.

The third contribution contains geometrical terms connected with non-zero
value of x:

2 2
3y _ 3Im°s 3k K 2, 1
T’ >= 13422 ~ Taon2a2 T IS [_3’"‘ +53(€ = %)

- E1;"’.‘,;—“5u.\g)“‘f,-*‘(c' +& +K),

2
<T§?>= 'yaﬂ{ ™K L2 k AL [1rr32+§i—2(--2c'+c2 - rr.)]

“18dn?  T0n2a2 T i

+ —2,; =2 (Ag)? [c”c +20% +d + (E +K)(2¢ — c“)] } (5.214)



The fourth contribution to (210} describes dependence on initial condi-
tions:

@w._ Qb Q3 1
<Tgy >=— 52 + Torta? (o+ 5+ an.,)

X {2.’1r112¢;:2 + 12A¢(c? — &) ~ Qﬁ] ,
<TH >= %.p{— 9%, @ (C+ + ano)

19272q2 = 4872a2
x [—-2m2a2 +12A¢(-2¢ + 2 — k) — Qg] } (5.215)

where Q = v/m%a? — ¢, Qo = Q{m)-

The last, ifth contribution consists of nonlocal integral terms and may be
associated with the SET of particles created from vacuum by the gravitational
field:

n n
1
<Igp >= - T6n2a? f dm Q%' (m) f dn Q% (n2) nim — nal
™ L
3 n
t "
+ A [CQ% In|n — +C/dfh Q* (m) laly —m)
o
n
- (¢ +2¢%) /dm @ (m) Inln - ml] ,
Tad >= o3 [4m2 * fam @ ) (5.216)

n
- f dm Q% (m) f dnz Q% () Inlm —ml] yo) zAE l&ﬂ Injn — 1o}
T

74
e

Q3" lain - | - fdm02 (m) Inin — |

]
+ 3"f dm Q%" (m) Il — m| + (¢ - 2¢%) f dm Q%' (m) ln!n—fhl] .
0 w

Expressions (210)—(216) contain the conformal anomaly. Direct calculation
leads to the result

@Y = (T (m - 0) — (Ti(m = 0)) (5.217)
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_ 1 ioap _lp ey ok 2 p2
= o [R Ry — R + (306 - 6)V v,,R+90(A§)R],

which is in agreement with (74).
The density of created particles is

nln) = gz [(@2+ @) F (-5, 3:1%) ~2G8F (5. 331) | (6219

where F'(a, B;7; z) is the hypergeometric function, and a notation is used

2
0
@-
¥or example, for k = ap = go = 0 we have

z=1-

() = 53 [m? - 8¢ R(m)] " (5:219)

and for the conformal case £ = 1/6 the known result

ms

= 24x?

is reproduced.

Let us calculate the vacuum energy density from {210)-(216) for the power-
law scale factors of the Friedmann cosmology (157), (158). The initial moment
1o is suggested to be larger than the Planck time. The result is:

1= 253 (1 3) o s o)

mao
m2
_%g_Ag [ln————c'—*%—cl(n)-DJL(T)] (5.220)
27 1-2 1 1- 2 1
-fIZ(2154 Q)(AEF[ H___12£+§_C_Ea—c;'z(.';)—1)2(51“)].

Here T = (t/t)'7 and (Tp°), is the corresponding quantity for the case
of conformal field. The dominating contributions here come from the terms
Dy o(T) because for t > tp we have T > 1 (the explicit expressions for these
terms may be found in [3]).

The quantity (220) changes drastically when £ relaxes from its conformal
value 1/86.



For the specific case g = 1/2, ¢) — 0 we have

1 m2 mi 1 3
0 — - —_— — —
(T‘_’ en = 7680m2 4 192x2 £2 * T6a7 ( by~ 20+ 2)

3m? 1 26t (66 — 1)k
_—-_wﬂztzAf(lnmt—lnz C-1+% h’mzbgt)

- o (A&)*bq’.% (1+ ':’Egi) (1- m%f—bg%’f). (5.221)

If we additionally put x = 0 in (221}, we obtain the energy density for the
quasi-Euclidean, radiation dominated Universe, in agreement with the known
result {1].

The calculation of the total vacuum SET (210)—(216) in the non-singular
cosmological model with the scale factor @ = ag coshy is presented in the
paper [22].

As it was shown above, the vacuum SET of nonconformal scalar field is
much more rich in content than of conformal one. It contains new (and large)
contributions depending on coupling coefficient £. In addition it depends on
the value of renormalization scale . These free parameters may be fixed in
order to obtain the appropriate solutions to Einstein equations with a vacuum
SET of nonconformal field as a source. Hopefully, the inflation-type solutions
with oscillatory asymptotics may be contained among them.

But there is also one disadvantage in the expressions (210)-(216) for vac-
uum SET. As it is seen from (216), both the energy density and pressure
contain terms which do not turn into zero and even turn into infinity when
n = o and £ # 1/6. This means that the vacuum SET of nonconformal field
calculated in the naive adiabatic vacuum state developes an initial singularity
and should not be considered physically reasonable. Specifically, it can not be
substituted into the right-hand side of Einstein equations. This means that we
should look for the more appropriate initial state to calculate the expectation
values of the SET of nonconformal field.

With this aim let us discuss several latest results concerning the more
rigorous understanding of adiabatic vacua.

Let us look for the solution of Eq. (81) in the WKB form:

1 n
o = ——— g} —3 W g d ! s 5_222
9,(1?) f_"""'z ) D[ lf AU ’?] ( )

where W, is some unknown frequency (not coinciding with the effective oscil-
lator frequency ).
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Substituting (222) to (81), we get the equation for the determination of
W,

1 w* 3 i2
2 __02__ A2
WE= 07— (w; > lwlf : (5.223)

This equation may be solved by iteration:

n 2
1 [W/A(N} 31,;3(1\0: ] ’

(N41)2 _ 2 _ = _ 9
fo Q W(N) 2 M(N)z

2 | (5.224)

where (V) means the iteration order. One may put W% = Q.
By the definition, an adiabatic vacuum state of iteration order N is deter-
mined by a complete set of solutions (g, g}) satisfying initial conditions:

Gm0) =5 (), g mo) = & (). (5.25)
;From (222) it follows:
1

gi(m) = m,

g3 (m) = — [i W™ (o) +

(5.226)

WM (no)

m gz(ﬂo)-

According to the theorem proved in [14] all adiabatic vacuum states are
Hadamard states, i.e., the corresponding two-point functions possess the stan-
dard Hadamard singularity structure which allow the usual renormalization
procedure in quantum field theory. Recently it was proved also that an adia-
batic vacuum state must be at least of iteration order one for the renormalized
vacuum SET to be finite on the initial Cauchy surface [16]. This important
result shows that there is a set of physically acceptable vacua which are adia-
batic vacuum states in the rigorous sense |0y} of iterationorder N =1, 2, 3,...
The problem to be solved is the calculation of the total renormalized SET of
nonconformal scalar field in vacua jOx) for homogeneous isotropic models of
the Universe with arbitrary scale factor a(n). The results should be used for
obtaining of new self-consistent solutions to Einstein equations depending on
three parameters: £, 4 and N. It is hoped that in such a way it will be pos-
sible to construct the complete cosmological scenario describing inflationary,
reheating and Friedmann stages of the Universe evolution and based on the
first principles of QFT in curved spacetime.
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