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Abstract

In 1985, ‘tHooft presented a statistical derivation of the Bekenstein-Hawking
entropy of a black hole (essentially interpreted as entanglement entropy), us-
ing a crude “brick-wall” cutoff to control divergences. This derivation seems
to encounter difficulties which have led many (including *tHooft himself} to
question its soundness. This contribution offers a review and reappraisal of
this and some other recent attempts to derive and interpret the Bekenstein-
Hawking entropy. '

6.1 Introduction
The Bekenstein-Hawking relation

1
SBH = ZA/f?pt (5.1)

was inferred by Hawking [1] from the formal resemblances between thermody-
namics and classical black hole mechanics [2], combined with his 1974 discovery
that a characteristic (Hawking) temperature

Th = ha/2r {5.2)

must be assigned to black holes in the quantum domain. This gave precise
form and a firm foundation to Bekenstein’s earlier heuristic arguments [3] for
a proportionality between black hole entropy and area.

Much work and discussion have since been devoted to the problem of un-
derstanding the Bekenstein-Hawking entropy in a more direct and fundamental
way. Here, I shall report briefly on work (done in collaboration with Shinji
Mukohyama, [4] at the Yukawa Institute, and with Frans Preforius and Dan
Vollick [5] at the University of Victoria, which I believe casts some useful
sidelights on this issue.

In 1977 Gibbons and Hawking [6] gave a statistical derivation of (1), using
analytic continuation to the Euclidean sector and imposing a Matsubara pe-
riod T on Euclidean time—i.e., they considered a black hole in thermal equi-
librium with its own radiation at the Hawking temperature (Hartle-Hawking
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state). In this approach, Spy appears already at zero-loop order, as a con-
tribution to the partition function from the boundary terms accompanying
the Einstein-Hilbert action. This affords no clue to the dynamical origins of
Spn; rather, it seems to 1mply that the entropy is in some sense topological
in origin.

Interesting and suggestive, but still short of completely satisfying, are in-
terpretations of Spy which refer to the hole’s past or future history or ensem-
bles of histories; for example, “Sgy is the logarithm of the number of ways
the hole could have been made” [7], or those which attempt to relate Spg to
thermal entropy of the evaporation products [8].

Ideally, it ought to be possible to regard Spy as a state function, defined
at each moment of time in terms of the dynamical degrees of freedom existing
at that moment. One also wants to understand how it comes to have the
simple universal form (1), independent of the hole’s internal structure and all
details of the microphysics.

Perhaps the most promising view is that Spy is entanglement entropy,
associated with modes and correlations hidden fram outside observers by the
horizon [9]. (If the black hole originates from a pure state, there is perfect cor-
relation between internal and external modes, and the entanglement entropy
can be found by tracing over either set of modes.) Remarkably, this yields
an entropy proportional to area. Naively, the coefficient of proportionality is
infinite, but reduces to the right order of magnitude when one allows for quan-
tum fluctuations, which will prevent events closer to the horizon than about
a Planck length £p, from being seen on the outside.

A 1985 calculation by *tHooft [10] seems to be based, at least implicitly, on
the idea of entanglement. This treats the statistical thermodynamics of quan-
tum fields in the Hartle-Hawking state, propagating on a fixed {(Schwarzschild)
black hole background of mass M. Divergences are controlled by a “brick
wall,” a reflecting spherical surface, a little cutside the gravitational radius.
"tHooft found—in addition to the expected volume-proportional terms de-
scribing hot fields inside a nearly flat, large cavity whose outer wall is at the
Hawking temperature—additional wall terms proportional to the area. These
latter terms diverge as a~2, where a is the proper altitude of the wall above
the gravitational radius. For a specific choice of a (which depends on the
number of fields, etc., but is generally of order £p¢), one is able to recover the
Bekenstein-Hawking result (1).

However, this calculation appears to run inte contradictions which have
led many (11}, including "tHooft himself to question its validity.

(i) Does *tHooft’s one-loop entropy, due to thermal excitations, have to be
added to the Gibbons-Hawking zero-loop geometrical entropy? Each by itself
already accounts for the fuil value of Spy.
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(ii) The quantum fields were supposed to be in the Hartle-Hawking state.
Accordingly, their stress-energies should be bounded {of order M~* in Planck
units) near the gravitational radius, and negligible for astrophysical masses M.
Yet, *tHooft’s calculation assigns enormous (Planck-level) energy densities to
them near the wall. '

(iii) The integrated field energy yields a wall contribution

AM = gM (5.3)

to the gravitational mass. This suggests that the gravitational back-reaction is
substantial and the underlying assumption of a fixed geometrical background
inconsistent.

However, these difficulties have a simple resolution [4]. In the next two
sections I shall review the basic elements of the brick wall model, and then show
that inconsistencies disappear once the ground state of this model is correctly
identified. (It is really the Boulware state, not the Hartle-Hawking state.) In
the following sections, 1 shall sketch a thermodynamical armchair experiment
[8], involving the quasi static reversible compression of a massive thin shell to
its gravitational radius, which yields the Bekenstein-Hawking entropy without
resort to ad hoc cutoffs. Finally, I shall comment briefly on the implications of
these results for the meaning of Sy, and for the exceptional case of extremal
black holes.

6.2 Hartle-Hawking and Boulware States

Let us begin by recalling the essential properties of the quantum states that
will enter our discussion.

In any static spacetime with Killing time £, the Boulware state is the
one annulled by the annihilation operators associated with “Killing modes”
(positive-frequency in ¢). In the spacetime of a stationary eternal black hole,
the Hartle-Hawking state is correspondingly associated with “Kruskal modes”
(positive-frequency in Kruskal co-ordinates) [12]. This state appears empty
of “particles” to free-falling observers at the horizon, and its stress-energy is
bounded there (ot quite zero, because of polarization effects).

To illustrate these definitions, consider a (1+1)-dimensional geometry with
metric

dr?

=?(—r)'-'f(")dt2, (5.4)

d32
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and write x(r) = § f(r) for the red shifted gravitational force, i.e., the upward
acceleration a(r) of a static test-particle reduced by the redshift factor £3(r).
At a horizon r = ry we have f(rg) = 0 and the surface gravity is xp = #(ro).

For quantum fields propagating on this background, there is an effective
stress-energy T,s, completely specified by an energy density p(r) = —77 and
pressure P(r) = T7 in a stationary, flux-free state (thus excluding the Unruh
state). Their radial dependence is determined by the conservation law and the
trace anomaly, which for a massless scalar field is

h
Tt? = mRy (5.5)

with B = — f"(r} for the geometry (4). Integrating the conservation law gives
ho, o
f{r)P(r) = —ﬂ-‘;(ﬁ: (r) + const.). (5.6)

Different choices of the constant of integration correspond to different bound-
ary conditions, i.e., different quantum states.

For the Hartle-Hawking state, P and p are required to stay bounded at
the horizon r == ry, giving

_ h ng — 2(r) _ B,
Pyp = Sar ~ F) pun = Pgg + Y™ fi(r). (5.7)
At large radii (setting f(r) = 1),
Pug=pan=g=Th  Tu=he/om, (5.8)

which corresponds to one-dimensional scalar radiation at the Hawking tem-
perature Ty

For the Boulware state, the boundary condition is P = p = 0 when r = o0,
The integration constant in (6) must vanish, and we find

& Rr)

Fo =34 Ty

pp = Pa+ 5= (7). (5.9)
This is the zero-temperature ground state for the space outside a static star.
Stationary observers perceive it as empty of “particles,” but vacuum polat-
ization at small radii where curvature is appreciable induces non vanishing
(negative) stress-energies. If a horizon were present, Pg and pg would diverge
there to —cc.
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The difference between the stress-energies (7) and (9) has the exactly ther-
mal form

— 2
AP=Ap= o T 7 (r) (5.10)
where, in accordance with Tolman’s law
T'+v/~goo = const. (5.11)

for thermal equilibrium in a static field, T(r) = Tx//f(r) is the local tem-
perature in the Hartle-Hawking state.

In summary, the Hartle-Hawking state is thermally excited above the zero-
temperature Boulware ground state to a local temperature T'(r) which grows
without bound near the horizon. It is nonetheless the Hartle-Hawking state
which best conforms to what a gravitational theorist would call a vacuum at
the horizon. (Throughout I shall reserve the word “vacuum” for a condition of
zero stress-energy; in a curved space there is no corresponding quantum state
in general.)

- This relationship between the two states was proved above for (1 + 1)-

dimensions, but remains at least qualitatively valid generally, with obvious
changes arising from the dimensionality. In particular, the (3 + 1)-dimensional
analogue of (19),

3AP = Ap = —— T(r) (5.12)

3Oh3
holds to a very good approximation, both far from the hole and very near the
horizon. Deviations occur in the intermediate region [13], but they remain
bounded and will be irrelevant to our considerations.

6.3 Brick Wall Model

I can now proceed to sketch the bare bones of "tHooft’s brick wall model [10,
4].

We consider the thermodynamics of hot quantum fields propagating out-
side a spherical star with a perfectly reflecting surface and radius r, a little
larger than its gravitational radius ry. To keep the total field energy bounded,
suppose the system enclosed in a spherical container of radius L > r;.

For the space outside the star, assume a metric of the form

az—?rj+2aﬁ—f&mﬁ. (5.13)
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This is general enough to include the Schwarzschild, Reissner-Nordstrém and
de Sitter geometries (or any superposition of these) as special cases.

Into this space we introduce a collection of quantum fields, raised to some
temperature T, at large distances, and in thermal equilibrium. The local
temperature is then '

T(r) = Toof (5.14)

and becomes very large when r — r; = ro + Ar. We shall presently identify
Ty with the Hawking temperature Ty of the horizon that would appear if
1 — To.

Characteristic wavelengths of this radiation are small compared to other
relevant scales (curvature, size of container) in the regions of interest to us
here. For instance, very near the star’s surface,

A~ BT = F30/To < 1o | (5.15)
Elsewhere in the large container, at large distances from the star,
f=1, AnbfTo ~1p £ L. (5.16)

Therefore a particle description should be a good approximation to the sta-
tistical thermodynamics of the fields. (Equivalently, one can arrive at this
conclusion by considering the WKB solution of the wave equation [10, 4].)

The extengive thermodyunamical parameters then each receive two principal
contributions for large I and small Ar = r; —ry:

(a) A volume term, proportional to §1rL3, representing the entropy and
mass-energy of a homogenous quantum gas in a flat space (since f = 1 almost
everywhere in the container if L/rs — 00) at a uniform temperature T,,. This
is the conventionally expected result, and there is no need to consider it in
detail.

{b) Of more interest is the contribution of gas near the inner wall r = vy,
which we now proceed to study further. We shall find that it i8 proportional
to the wall area and at the same time diverging like (Ar)~! when Ar — 0.

Because of the high local temperatures T near the wall for small Ar, we
may use the ultra relativistic formulae

3N 4N
p= ;Q—T“, = }-2-1*3 (5.17)
for' the energy and entropy densities of this gas. The numerical factor A
takes care of helicities, the number of particle species and the factor § which
differentiates fermionic from bosonic contributions.
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The total entropy of the thermal excitation is given by the integral

S= f © s(r)amrtdr /T, (5.18)

1

where we have taken account of the proper volume element for the metric (13).
On the other hand the integral for their gravitational mass does not contain
VT, as is well-known:

L
AMperm = f plr)dnr? dr. (5.19)
1

Substituting (17) and (14) into (18) gives for the wall contribution to the
thermal entropy,

144 '
Swanl = 4'.'nf']T3 /: }—-%, . (5.20)

where § is an arbitrary small length subject to Ar € § « r1. It will be
instructive to re-express this result in terms of the altitude

1 1
a= / Fidr (5.21)
o

of the inner wal} above the horizon r = rq of the analytically extended exterior
geometry (13). {Really, of course, the physical space contains no horizon, since
(13) is valid only for r > r.)

For a non-extremal horizon we can write f(r) = 2xg(r — 7o) in (21), ob-
taining

Ar = %noaz, (5.22)
and (20} can be written
N (T 1
Swall = 90nel (m) ZA (5.23)

in Planck units, where A = 47r? is the wall area.
From (19) and (17) we find similarly that thermal excitations near the wall
contribute

N Too
A Minerm, wail = A80m? (50/21
to the gravitational mass of the system.

)SATOO (5.24)
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Following ’tHooft [10, 4], let us introduce a crude cutoff to allow for
quantum-gravity fluctuations by adjusting o so that we obtain the Bekenstein-
Hawking entropy from (23):

Swan = Sy when Ty = Ty, (5.25)

where Spy and Ty were introduced in (1) and (2); notice that they are purely
geomeirical quantities, determined by the metric (13). From (23) and (25)
(momentarily restoring conventional units)

a= quh\(' /907, (5.26)

so that the cutoff o is indeed of the order of the Planck length. It is significant
and crucial that « turns out to be universal, independent of the mass and other
characteristics of the system, depending only on the number of physical fields
in nature. :

This universality allows a clean separation between geometrical and ther-
modynamical variables in the free energy

Foy—-L (Tw)sAT (5.27)
wall — 16 TH [«"1} .

s0 that the entropy can be derived from it either via the Gibbs relation § =
—0Fya11/0T bolding the geometrical variables fixed (“off-shell,” i.e., breaking
the equality 7o, = Ty), or via the Gibbs-Duhem relation F = AM — T..S
(equivalent to § = —Tr{p Inp)). Thus, there is no need in this formulation to
maintain a distinction between “thermodynamical” and “statistical” entropy
[14].

The wall’s thermal mass-energy is given “on-shell” (T, = TH) by

3
AMiperm, wall = EATH, (5.28)

which reduces to 'tHooft’s result (3) in the special case where {13) is the
Schwarzschild metric.

6.4 The Brick Wall Model: Inconsistent?

As mentioned in the Introduction, 'tHooft’s model seems to encounter serious
difficulties [11]. The result (28) suggests that it is inconsistent to neglect the
back-reaction of the thermal excitations on the background geometry (13);
their energy density, given by (17), becomes huge near the wall, a behaviour
quite unlike the Hartle-Hawking stress-energy; and it is unclear whether the
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thermal entropy (23) needs to be supplemented by the Gibbons-Hawking ge-
ometrical contribution.

All these problems have a remarkably simple resolution. The key remark
is that the brick wall model correctly interpreted does not represent a black
hole. It represents the exterior of a starlike object with a perfectly reflecting
surface, compressed to nearly {but not quite) its gravitational radius. As noted
in Sec. 2, the ground state for such an object is not the Hartle-Hawking state
but the Boulware state, corresponding to zero outside temperature and with
a quite different behaviour near the gravitational radius. It has a negative
energy density, growing to Planck levels near the wall. Thus, the thermal
energy density p given by (17) is not the only source of the wall's mass; it has
to be supplemented by the ground-state energy.

As in (12), we have for the total stress energy (ground state + thermal
excitations) near the wall,

(T2} + (T herm = (TS, (5.29)

i.e., effectively the Hartle-Hawking stress-energy, which is bounded and small
for large masses. The total gravitational mass of the inner wall is accordingly
negligible. We are entirely justified in neglecting back-reaction.

Further, since there is no horizon in this model—it is replaced by the
brick wall, an inner boundary with the quite different topology $! x §2 in the
Euclidean sector (a horizon would be a regular point)—the Gibbons-Hawking
“instanton” does not contribute. All of the entropy derives from the thermal
contribution (23).

It thus emerges that we have two mutually exclusive and (in the Bohr
sense) complementary ways of understanding Sgy. In the brick wall model
(which is not a black hole but is externally indistinguishable from one), Spy
appears as entropy of thermal excitations above a zero-temperature ground
state. In a real black hole, thermal energies near the horizon are negligible
and Spy has a purely geometrical origin. The deeper implications of this
duality would be worth exploring [4].

6.5 Operational approach

Even if its self-consistency is no longer in question, the brick wall model still
labours under the handicap that the wall altitude has to be adjusted by hand
to reproduce Sgy with the correct coefficient.

I shall now outline an approach that gives Sy without cutoffs or ad hoc
adjustments. In thermodynamics, the entropy of any state can be found by
devising an idealized reversible process which arrives at that state, starting
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from a state of known entropy; we then employ the first law to compitte the
change of entropy. Here, we consider the reversible quasi-static contraction
of a massive thin spherical shell toward its gravitational radius [5]. (In the
final stages of contraction, the shell violates the dominant energy condition
and develops other “unphysical” features. This is irrelevant, since the shell is
nothing more than an idealized working substance designed to reversibly reach
the final black hole state, which is independent of its mode of formation.)

The ground state for the space outside the shell is the Boulware state,
whose stress-energy diverges to large negative values in the limit. To neutral-
ize the resulting back-reaction, let us fill the exterior with thermal radiation
to produce a “topped-up” Boulware state (TUB) whose local temperature
equals the acceleration temperature 7" = ha(R) /27 at the shell’s radius B. To
maintain thermal equilibrium (and hence applicability of the first law), the
shell jtself must be raised to the same temperature T'. This gives it a definite
equation of state

T = T(M, R), (5.30)

whose specific form can be found once the exterior spherical geometry is spec-
ified.

This equation of state relates an intensive variable to two extensive vari-
ables, the shell’s area A = 47 R* and proper mass M = ¢ A as measured by
a local observer. Since the shell is uniform and we require it to be a ther-
modynamical system, it must be possible to rewrite (30) in a purely intensive
form

T = T(o,n). (5.31)

How we interpret the second intensive parameter n = N/4wR? is quite im-
material; for convenience I shall refer to it as “particle density.” Unlike (30),
there is a certain amount of freedom in the functional form (31) (i.e., our
choice of n), but it is strongly constrained by the requirement of compatibility
with both (30) and the Gibbs-Duhem relations [5]. One possible choice, n*
(“canonical equation of state,” distinguished by an asterisk) makes

p'n* =0 = u'N‘'=M (5.32)

where 4 is the chemical potential associated with N.
The shell’s entropy at any stage of the slow contraction is given by

TS = M+ PA—uN, (5.33)



287

where P is surface pressure. In the limit of approach to the gravitational
radius rp, P and T both diverge in the non-extremal case, while M remains
bounded. The key result is [5]

Jom (P/T) = 2570 (s £0). (5.34)

This result is general and independent of thermodynamics—it follows solely
from the condition of mechanical equilibrium.

From (32)—(34) it now follows easily that for a shell made of canonical
material,

Alm 5= 7 A/i"l (10 # 0}, (5.35)
which is the Bekenstein-Hawking result.
- Of course, one would expect the entropy of the final black hole to be
independent of the material we choose for the shell, and, indeed, the limit
~(35) is very robust. The term PA in (33) dominates M in this limit, so that
we recover (35) also for non canonical material, provided only that

lim == =0. (5.36)

(Note that some restriction is obviously required, since the black hole limit
represents a singular state for the shell {P — o), and there would otherwise
be nothing to prevent the equation of state (31} from becoming “singularly
eccentric” in this limit.)

This suggests an operational definition of the Bekenstein-Hawking entropy
as the maximum thermodynamical entropy that could be stored in the material
that forms the black hole when this material is gathered into a thin shell near
the horizon. This idealized process bears no resemblance to actual black hole
formation, but is not too dissimilar from the time-reverse of the evaporation
process.

It is helpful to look at a concrete example. For a spherical shell of proper
mass M and charge Q, the exterior metric (13) is Reissner-Nordstrém, with

2m  Q°

fr)=1-—+p (5.37)
and the explicit formula.s are
L 1M 1 M-
m=M-5—% > P lmmE-m (5-38)
_h1 SR
T=5> iR (5.39)
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It is then easy to check that (35) follows in the non-extremal case (Q? < m?).

This situation is quite different for an extremally charged shell (Q2 =
m? = Q? = M?), because P is no longer dominant in the limit R — ry but
actually vanishes, while 7' now remains finite. From (32) and (33) we now
find S = 0 for a shell made of canonical material, so that a black hole formed
out of this material would satisfy the third law in its strongest (Planck) form.
However, it is clear from (34) that the limiting entropy now depends sensitively
on the choice of shell material.

Thus it would appear that an extremal black hole differs from a generic
one in that its entropy is not a thermodynamical state function, i.e., not
independent of its mode of formation and past history. This may account for
a current cleavage of opinion on this issue. Arguments based on black hole
instanton topology and black hole pair creation suggest that the entropy of
extremal black holes is zero. On the other hand, the uncannily successful
indirect derivations of Spy by counting states of strings on D-branes recover
the traditional value 7A/A for extremal black holes.

The shell model attributes the universality of the Bekenstein-Hawking for-
mula for non-extremal black holes essentially to the circumstance that material
equations of state tend to a simple universal form at high temperatures. This
suggests that one should consider the difference between the extremal and
non-extremal cases, not as a difference between zero and nonzero redshifted
(i-e., Hawking) temperatures but rather as a difference between the finite and
infinite temperatures measured by local observers in the two cases.

6.6 Concluding Remarks

It is widely thought that the entropy contributed by thermal excitations or
entanglement is a one-loop correction to the zero-loop {or "classical”} Gibbons-
Hawking contribution. The viewpoint suggested here is (at least superficially)
quite different. One may consider these two entropy sources—(a) brick wall,
no horizon, strong thermal excitations near the wall, Boulware ground state;
and (b) black hole, horizon, weak (Hartle-Hawking) stress-energy near the
horizon, Hartle-Hawking ground state—as equivalent but mutually exclusive
(complementary in the sense of Bohr) descriptions of what is externally virtu-
ally the same physical situation. The near-vacuum experienced by free-falling
observers near the horizon is eccentrically but defensibly explainable, in terms
of description (a), as a delicate cancellation between a large thermal energy
and an equally large and negative ground-state energy—just as the Minkowski
vacuum is explainable to a uniformly accelerated observer as a thermal exci-
tation above his negative-energy (Rindler) ground state. (This corresponds to
setting f(r) = r in (9).) The artificiality of such a description is underlined
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by the fact that this delicate balance must extend to fluctuations: fluctua-
tions of the Boulware ground state would have to be exactly correlated with
the enormous thermal fluctuations near a horizon to reproduce the relatively
small fluctuations of the Hartle-Hawking state.

The brick wall model {(as well as numerous other attempts to derive Spg
statistically by focusing on the neighbourhood of the horizon} presents us with
a feature which is logically possible but strange and counterintuitive from a
gravitational theorist’s point of view. Although the wall is insubstantial (just
like a horizon)—i.e., space there is practically a vacuum and the local curvature
low—it is nevertheless the repository of all of the Bekenstein-Hawking entropy
in the model.

Frolov and Novikov [9] and others have argued that this is just what may
be expected of black hole entropy in the entanglement picture. Entanglement
will arise from virtual pair-creation in which one partner is “invisible” and
the other “visible” (although only temporarily—nearly all get reflected off the
external potential barrier). Thus, on this picture, the entanglement entropy
arises almost entirely from the strong correlations between nearby field vari-
ables on the two sides of the partition, an effect already present in fiat space
[9].

This in turn suggests that Spy is {in the literal sense) a superficial prop-
erty, that is should be considered as an effective entropy of a black hole, in
the same sense that 6000K is an effective temperature for the sun. As far
as their interactions with the environment are concerned, both objects are
indistinguishable from shells (of the same size and mass) whose entropy or
temperature have the effective values. This point of view provides a rationale
for horizon-oriented derivations of Sgy, but at the same time offers little en-
couragement for the hope that such efforts will lead to insights into the deeper
properties of black holes.
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