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Homogeneity and Fractality
Luca Amendela

Abstract. I review the controversial issue of large scale inhomogeneity
in the galaxy distribution. The common statistical estimators of clustering,
like the power spectrum, assume that the surveys from which the estimation
is made are much larger than the scale of homogeneity. However, I argue
that the evidence that this is so is at best only igtgiirect, and depends on the
specific model of structure formation. If the current surveys are still below
the homogeneity scale, as a close examination of the main redshift surveys
indicates, the galaxy distribution can be approximated by a fractal. I review
the statistics of fractals and show that it is useful to understand the large scale
structure. In particular, the large variance of fractals forces to discard the use
of the clustering amplitude, e.g. the amplitude of the power spectrum, and to
focus the investigation on the trend of the clustering with scale.

In the last Chapter I present an inflationary model of structure forma-
tion that may produce large scale inhomogeneity without violating the cosmic
microwave constraints.

3.1 Introduction

3.1.1 Fractals and real world

The universe is certainly not homogeneous, and very likely is not a fractal.
Then, why should we bother with distributions which are homogeneous or frac-
tal? The reason is that to make any progress in studying raw data we need
models, and the two simplest models for distributing particles in space are
the homogeneous and the fractal one. In the first case, the average number of
particles in cells centered on particles, i.e. the number of neighbors, increases
as r%: in the fractal case, the increase is as . Any other distribution requires
more parameters to be characterized, and as such may be considered as “more
complicated”. Therefore, the properties of these simple distributions are in-
deed extreme, and their study is useful to investigate the limits within which
the real world is located.

Let me state from the very beginning that these lectures are not meant
to take a definite positions on the issue of what is the scale of homogeneity.
First, because it is not the task of theorists to take positions, and in any
case introductory lectures wounld not be the proper place to do so. Secondly,
because I believe the data are still insufficient to establish even the simplest
statistical estimator, the homogeneity scale, whatever its definition may be.

Rather than trying to draw conclusions, I have in mind two goals:

e to show that fractals are useful to investigate large scale siructure even
if the universe is homogeneous at some scale

e to show that the difference between the standard scenario of structure
formation, the Cold Dark Matter (CDM) theory and its variants, and

the fractals, is only quantitative, and not qualitative.



128

In other words, the task I proposed myself in writing these lectures was to
find an unifying language between the mathematics of fractal and the standard
cosmology. The main problem of doing so is that while the fractals are a
mathematical object, cosmology speaks of physical processes taking place in
space and time. Qur universe had a finite time to evolve, and its initia}
conditions may be inferred from observations of the microwave background and
of distant objects. The theory of fractals only knows distributions of particles,
produced with abstract algorithmns, static in time and possibly infinite in space.
‘The only reason why fractals are of interest to the real world is that we see
an inhomogeneous universe, with clusters and voids extending to tens or even
hundreds of megaparsecs, and that any inhomogeneous distribution can be
described, although only as a first approximation, as a fractal, or a finite
portion of it. Th:%in.k between real cosmology and abstract fractals is therefore
that a fractal approximates, for small intervals of time and space, the real
distribution of matter. How small the intervals are, can only be decided by
observations.

It is important at this point to remark that the matter in our universe
assumes many different forms. We can look at the luminous matter or at
the total gravitational field; and if we study only the luminous matter, we
can investigate infrared- or optically-selected galaxies, or bright galaxies, or
clusters, and each class of object may exhibit different properties, for instance
different level of inhomogeneities. As a consequence, the intervals in which
a fractal approximates the real distribution can be larger, for instance, for
clusiers than for the total matter.

The lectures are divided in four parts. In the second chapter, I introduce
most of the mathematics and statistics we need throughout. Particular em-
phasis will be put on the power spectrum, which I find the easiest way to speak
of fractals to cosmologists, and of cosmology to the people who works with
fractals in other areas. It is also the main product of most theories of struc-
ture formation and of observation campaigns, so that it embodies most of the
knowledge we currently have about how the matter is distributed. In the third
chapter I expose the predictions in terms of power spectrum of standard CDM
theories and of fractals. We will see then that the power spectra of CDM and
of (finite portion of) fractals look the same, except for the fact that the fractal
spectrum always increases with the sample size, while the CDM spectrum do
so only below the homogeneity scale. I will also show that the large variance
of fractal models does not allow to use the amplitude of the power spectrum,
or related quartities, as a test of fractality. Homogeneity and fractality can
only be tested through the trend of clustering with the scale. In the fourth
chapter I consider some observational data, from surveys as CfA, SSRS, Las
Campanas, and argue that we are not yet convincingly above the homo eity
scale, so that the g“a.cta.l properties of the CDM-like models can still bias our
results. In the fifth chapter I leave the raw data and their analysis, and expose
a model of structure generation that can produce large inhomogeneities at the
present without confficting with the main body of t%e standard cosmological
scenario. I present it here in order to give an example of how a modest ex-
tension of the inflationary model can give a very different geography of the
matter at the present time, more inhomogeneous and more non-gaussian.

In these lectures I focus on the information provided by the galaxy surveys.
There are of course other important sources of information on the matter dis-
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tribution in our universe, for instance from the cosmic microwave background
or the X background or the Lyman-a clouds, but the link between these sources
and the present large scale structure is certainly more indirect, and requires a
stronger appeal to theoretical models.

3.1.2 Historical background

Although today the homogeneous and the fractal vision of the world tend
to conflict head-on, it is interesting to note that their history began almost
simultaneously. Maybe the first model of the universe based on a physical the-
ory, Newton’s law, rather than on pure speculation, was proposed by Newton
himself in 1692 answering to some letters of Rev. Bentley on the cosmologi-
cal properties of the gravitation’s law. Newton proposed that the system of
stars resists the gravitational collapse by virtue of specially arranged initial
conditions: if all stars are equally spaced, by God intervention, then each
gtar feels the same attraction in all directions, and therefore remain stable.
In the following years, the model was made more precise: Newton proposed
that all stars have equal intrinsic brightness, and that those of first magni-
tude lie equally spaced on a shell at unit distance from us, those of second

itude lie similarly on a shell at double distance, and so on through the
faintest stars. This models is clearly homogeneous averaging over a few unit
distances, and also more or less accounts for the relative number of stars at
various magnitudes.

Around 1750 Johann Heinrich Lambert proposes the first strongly inho-
mogeneous model, a ring of stars rotating around a central obscure body,
perhaps part of a system of rings rotating around arother body, and so on.
Even Immanuel Kant, in the same years, proposed an inhomogeneous model:
a distribution radially decreasing of worlds, to be identified with galaxies. The
wave of evolution goes from inside to outside: while the worlds near the center
are already in an advanced stage of evolution, and will perish first, those near
the outer boundary are still in the primordial Chaos.

In 1820, Heinrich Olbers presents the famous Olbers’ paradox, already
formulated by Halley in 1721. Any homogeneous, static and infinite model
should be in equilibrium everywhere at the temperature of the star’s surfaces.
Since this is clearly not so (for instance, the night sky is dark), either the uni-
verse is not homogeneous, or is not static (or the light has different properties
than those we experiment on Earth, for instance its flux decreases faster than
the distance squared). Carl Charlier, in 1908, proposed to abandon the first
assumption, the homogeneity, and built a hierarchical model with the stars
arranged in such a way that their density seen from any star decreases with
distance. Since in Charlier’s model the density decreases radially from every
star (and not only, as in Kant’s model, from the center of the universe}, this
is in fact the first fractal model of the universe.

The first and, I must add, the last for sixty years. In fact, the powerful
action of Einstein’s equations, solved in a cosmological setting by Einbstein
himself and by Friedmann, de Sitter and Lemaitre, along with the discoveries
of Edwin Hubble in the 20’s , gave to the Cosmological Principle the status
of almost a dogma among cosmologists. According to this, the universe is
homogeneous and isotropic when averaged over some scale. This scale of
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homogeneity has evolved in tirne, from a few megaparsecs initially to a few tens
of megaparsecs today. It is almost superflucus to add that the cosmological
models based on the Cosmological Principle, that is, based on Friedmann’s
equations, had tremendous successes in explaining the observed facts and in
anticipating new discoveries. Two successes rise above all: the prediction of
the cosmic microwave background by Gamow, Alpher and Hermann, and the
explanation of the cosmic a.fl?ndanoe of light elements.

What is not superfluous to add is that the precise quantification of the ho-
mogeneity scale lacked (and still Jacks, in my opinion) for many years. Maybe
the first astronomer to object to the view of a nniverse homogeneous down to
“small” scales of a few megaparsecs has been Gerard de Vaucouleurs, when
be realized in the 50s that many galaxies lie on a sort of superplane more
than 30 Mpc/h by radius (see e.g. de Vaucouleurs 1970). However, the few
and sparse redshifts then available did not allow him to back this view with
clear evidences. Only when the redshift campaigns of the 80’s were completed
(Perseus-Pisces, CfA1), the strong inhomogeneity of our universe became clear,
and the scale at which Friedmann's equation are supposed to hold was pushed
to something like 30 Mpc/h or more.

In the mean time, the fractals of Benoit Mandelbrot entered the scene. Col-
lecting many disparate ideas on the mathematics of non-differentiable man-
ifolds and of chaotic processes, Mandelbrot (1982) realized that a common
structure underlies these concepts. The fractals were introduced as a mathe-
matical tool to investigate the properties of a vast class of phenomena, from
turbulence to crystal growth, that are characterized by chaotic behavior. The
general property is that in all these phenomena some quantity varies as a
power-law on a wide range of the independent variable, whatever this may be.
For instance, the number of earthquakes as a function of their intensity, or
the number of Moon craters versus their size, decreases as a power law. For
the fractal in space, this quantity is simply the number of particles within a
distance r from another particle.

Mandelbrot proposed in the 70’s that even the distribution of galaxies may
follow a fractal law, that is a density scaling with distance. Mandelbrot was
inspired by the power-law decrease of the correlation function with distance,
proposed in particular by Peebles. The idea was discussed at length in the
classic Peebles {1980) textbook, and finally rejected on the ground that the
small amplitude of the angular correlation function proved large scale homo-
geneity. This argument, however, appears now to be inconclusive, since the
reconstruction of the 3-dimensional structure from the projected ane requires
the knowledge of the galaxy luminosity function, which, on the other hand, is
estimated from catalogs assuming homogeneity. Moreover, many other factors
enter the reconstruction, like the galaxy evolution and the relativistic effects.
The simultaneous fit of the luminosity function and of the galaxy clusterin,
may well give acceptable results also for the fractal model. Finally, any fract
model has intrinsically a very large variance, so that it is very difficult to rule
out it on the basis ofy correlation amplitude alone. Rather, the full shape of
the correlation function is needed.

In the 80’'s the emphasis shifted to redshift surveys and to the compar-
ison with detailed and physically motivated models of structure formation.
The fractal hypothesis was revived by Pietronero and coworkers (Coleman &
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Pietronero 1992; Sylos-Labini, Montuori & Pietronerc 1998) basing on the
new surveys like CfAl and Perseus-Pisces, who showed the clear trace of den-
sity scaling and of strong inhomogeneities. However, in the same years, it
appeared clear that even the standard scenario of structure formation, that is
the inflationary primordial spectrum with CDM normalized to the microwave
background fluctuations, required a density scaling approximately power-law
up to, say, 20 or 30 Mpc/h. At the beginning of the 90's, then, the fractal
hypothesis and the standard scenarios agreed on fractality up to a few tens
of megaparsecs. The question then became: what’s beyond? That is, do
the redshift data proveqhomogeneity beyond this scale, or is this only a lower
limit? And also, can we infer from other data, like radio and X backgrounds,
or cosmic background, what the homogeneity scale is? While the advocates
of the fractal hypothesis consider the 30 Mpc/h a lower limit, and point to
the many assumptions often made in “proving” homogeneity beyond this, the
supporters of the standard model believe that this is really the frontier of the
inhomogeneous world, any residual trend being attributed to luminosity bias
or relativistic effects. Beyond this distance, modulo a factor not greater than
2, Friedmann’s equations are finally on safe ground.

In these lectures I try io present a balanced, albeit personal, view of the
issue. Although I see signs oip convergence on a common ground, the history
of the confrontation between homogeneous and fractal urniverse, or between
small-scale and large-scale homogeneity, will continue for quite a long time.

3.1.3 Notation

po average number density

n number density

N number of particles

N; counts in finite cells

n; count in a infinitesimal cell, equal to 0 or

& density contrast

s subscript denoting a quantity evaluated in a sample (e.g.,
R, sample size; &,, sample correlation)

c subscript denoting a conditional quantity

V volume
p mass density
M,, p-th central moment

In general, I write the dependence on the three spatial coordinates simply
as f(x) . When the functions are integrated in dV or d3z I mean the integrand

depends on all three coordinates. When the integration is written as r2dr, I
mean that the integrand depends only on the modulus 7. A similar convention
applies to the wavevector k.

3.2 Estimators

The general problem we want to deal with in this section is to characterize
a random distribution of points in space. The main goal is to find a small



132

number of estimators, able to express the properties of the distributions in a
compact way, and which can be efficiently compared to the theory.

3.2.1 Moments of the counts-in-cells

Among infinite possible ways to characterize a distributions of particles, the
n-point correlation functions, or their integral average, the moments, are often
selected because of their straightforward definition, and because of their easy
numerical computation. It is often necessary to think of a distribution of
particles as a finite and discrete sample drawn from an underlying field. We
need then to distinguish between the properties of the underlying field, that we
sometimes refer to as the *universe”, and the properties of the sample under
investigation: the sample gives only an estimate of the universe. If we want to
infer the properties of the universe from those of the sample, we need to take
into account both the finiteness and the discreteness. In particular, we need to
assume a model for the behavior of the field beyond the sample, and ” beneath
? the particles that sample the field. Two typical assumptions are that the
field outside the sample looks like the field inside (fair sample hypothesis),
and that the particles are a Poisson sampling of the continuous field (Poisson
sampling hypothesis). Both assumptions can be tested only when is possible
to obtain a larger and denser sample. Lacking this possibility, which is often
the case in cosmology, the assumptions need to be treated with great caution.

Let us begin with the moments. Suppose we partition a distribution of
particles into m cells, for instance spherical cells of radius r, randomly located,
and count the number of particles inside each cell. This gives the counts N;,
with = 1,..,m. Then we can form the number density contrasts

& = (N; — No)/No {5.1)
where N is the average count
No=)_N;/m (5.2)

and we can form the p-th order central moment
Mp = (6‘9) = m_l EJ{’ (5'3)
i

By definition, My = 1, M = 0. Suppose now that the probability to have a
density contrast between § and § + dd is P(4)dd, where P{6) is the probabil-
ity density function (PDF) of the counis. The moments M, of the particle
distribution are an estimate of the moments of the PDF. For instance, the sec-
ond order moment, M: is an estimate of the variance of the number density
contrasts. The third order moment is called skewness, while the combination

K = M, — 3M?2 (5.4)
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is the kurtosis. If the PDF is a gaussian
&
-1/2
P(8) = (2m0%) "/ * exp (— 202) (5.5)

then all its moments depend on ¢ and both the skewness and the kurtosis
vanish. These moments are therefore the simplest estimator of deviation from
gaussianity.

In practice we estimate the moments from a finite distribution of particles,
i.e. a discrete random sampling of a continuous underlying field, for instance
the dark matter field. The number of particles at any given point is then a
function of the continuous field. In cosmology, this function is established by
the physical processes that led to the formation of the discrete particles, the

ies, and can be in general extremely complicated. As already mentioned,
the simplest assumption we can make is that the galaxies are a i;oisson sam-
pling of the mass field, that is, the galaxies trace the mass. In this case, the
average density of galaxies in any given region is proportional to the average
density of the underlying field. A slightly more complicated assumption can
be that galaxies are a Poisson samp not everywhere, but only when the
underlying field is above a certain threshold. This is what is often referred to
as biased formation . It is clear that the true physical process can be much
more complicated than this, for instance the threshold may vary in space, or
the samphng function can be non-local, etc.. In most of what we will say here,
the simplest Poisson assumption is always understood.

Assuming Poisson sampling, we immediately encounter the problem of
Poisson noise. That is, the number of particles N at a point in which the
field is v, i8 a random variable distributed as a Poisson variable with mean
proportional to v, say equal to # = fv, that is

ey
N?
If the field v is distributed as f(v), then the PDF of N is

P(N) = [ f0)PW V)

The moments of N are then a function of the moments of f(v) and of P(N;»).

If we are interested in the properties of the underlying field, we need to estimate

the moments of v, and of the density contrast v /vy, from the moments of N.

ge};ils ecém be done easily exploiting the properties of the generating functions,
ned as

(%) = [ P(evar = S~ Me
G(9) = (e#) = [ e#Pla)ds zp:p,qw

P(N;n) = (5.6)

The moments can then be derived from the generating function (d, denotes
the p—th derivative} as

My = dpG(¢’)|¢=a
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The generating function is particularly useful because in the case of a Gaus-
sian distribution is simply G(¢) = exp(m¢ + 02¢?/2) and because one can
automatically take into account the moments of the Poisson noise by the sub-
stitution ¢ — ¢ — 1 . For instance, we have that the moments of the density
contrast of the continuous field (labelled with an asterisk) in terms of the
moments of the discrete realization of Ny particles is

M3 = My — N§! (5.7)

where the second term is the Poisson noise. Moreover, one can define the
cumulants by the relation

Kp = dplog G(¢)lg=0

The cumulants with p > 2 vanish for a Gaussian distribution; the third order
cumulant is the skewness and the fourth order is the kurtosis, defined above.

In conclusion, a simple way to describe a distribution of particles is to
estimate the lowest moments in cells of varying radius, that is to evaluate
Ma(r), M3(r), K(r) and so on. However, no finite amount of moments do
characterize completely the distribution, unless of conrse we know already that
the distribution depends on a finite amount of parameters, e.g. is Gaussian or
Poisson, etc.

3.2.2 Conditional density

So far we considered randomly centered cells. However, it is often useful
to consider instead cells centered around a particle. The counts inside cells
centered on particles have statistical properties different from the counts in
random cells. The cells centered on particles are in fact conditioned upon
the presence of a particle inside the cell itself. Their moments are therefore

conditional moments. .
us consider the first order moment, i.e. the average count or the

average density in a sample containing N particles in a volume V. If the cells
are random, then clearly the average density inside the cells of any size equals
the average density of the whole sample

{p) = N/V = py (5.8)

But if the cells are centered on particles, then the conditional density inside
the cells is in general different from the sample density

{pe) # po (5.9)

because the number of particles in a cell depends also on the presence of
the center particle, unless the particles are uncorrelated. Likewise, all the
higher order moments of the conditional density differ from the moments of
the random cells, as we will see in the next sections. Of course, when the cell
in which (p.) is estimated is as large as the sample itself, then {p.} = py.

The reason why it is necessary to introduce the conditional density is that
we observe the space around us from a particle, i.e. from our galaxy. Therefore,
the density we measure in a finite sample around us is a conditional density.
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3.2.3 Correlation functions

Other common statistical descriptors are the n—point correlation functions.
Let pgdV be the average number of particles in an infinitesimal volume dV
being pg the average number density. If dN,p = {ngnp) is the average number
of pairs in the volumes dV; and dVj(i.e., the product of the number of particles
in one volume with the number in the other volume), separated by rg, then
the 2-point correlation function £(r,;) is defined as

dNay = (nanp) = podVadVe(1 + £(ras)) (5.10)

If the distribution is Poissonian, then the average number of pairs is exactly
equal to the product of the average number of particles in the two volumes,
and the correlation £ vanishes; if there is correlation among the volumes, on
the other hand, then the correlation is different from zero. The correlation
function is also defined, equivalently, as the spatial average of the product of
the density contrast d(r,) = dN,/(ppdV) — 1 at two different points

dN,
g(rﬂb) = p%dv:;%

In practice it is easier to derive the correlation function as the average
density of particles at a distance r from another particle. This is a conditional
density, that is the density of Farticles at distance r given that there is a
particle at r = 0. The number of pairs is then the number of particles in both
voluanes divided by the number of particles dN, = ndV; in the volume 4V, at
r=0;:

dNp = dNyw/dN, = pjdVadVe(1 + £(rap))/dN, = podV3(1 + €(rp)) (5.12)
The correlation function can then be defined as

_ dN,(r) - (Pc) _

i.e. as the average number of particles at distance r from any given particle
(or number of neighbors), divided by the expected number of particles at the
same distance in a uniform distribution, minus 1, or conditional density con-
trast. If the correlation is positive, there are then more particles than in a
uniform distribution: the distribution is then said to be positively clustered.
This definition is purely radial, and does not distinguish between isotropic and
anisotropic distributions. One couid generalize this definition by introducing
the anisotropic correlation function as the number of pairs in volumes at dis-
tance r and a given longitude and latitude. This is useful whenever there is
some reason to suspect that the distribution is indeed anisotropic, as when
there is a significant distortion along the line-of-sight due to the redshift.

If the average density of particles is estimated from the sample itself, i.e.
po = N/V, it is clear that the integral of dN.(r) must converge to the number
of particies in the sample :

fRdN (r) =f (r)dV = N (5.14)
0o p '

= 1= {(8(ra)d(rs)) (5.11)
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In this case the correlation function is a sample quantity, and it is subject to
the integral constraint (Peebles 1980)

R
/D &(r)dV =N/pp -V =0 (5.15)
Assuming spatial isotropy this is
R
. f £,(r)r2dr = 0 (5.16)
o

If the sample density is different from the true density of the whole distribution,
we must expect that the £,(r) estimated in the sample differs from the true
correlation function. From Eq. (5.13), we see that g{r) = 1 + £(r) scales
as pp . Only if we can identify the sample density py with the true density
the estimate of £(r) is correct. In general, the density is estimated in a survey
centered on ourselves, so that what we obtain is in reality a conditional density.
The conditional density at distance r from a particle, averaged over the
particles in the survey, is often denoted in the statistical literature as I'(r); we
have therefore from Eq. (5.13)
I'(r) = {pc) = po(1 + &) (5.17)
The average in spherical cells of radius R and volume V' of this quantity is
denoted as

T*(R) = {pc)aph = po(L + £) (5:18)

where
F=v-1 f £dv (5.19)

To evaluate I'*(R) one finds the average of the number of neighbors inside a
distance R from any particle contained in the sample. _

The correlation function can be generalized to more than two points. The
3-point function is defined as

$(Tas Ty Te) = {3(ra)d(rs)d(rc)} (5.20}
In terms of the counts in infinitegimal cells we can write

S(rayrsre) = ((p;;% - 1) (p% B 1) (Pu’:;’c - ))

(nanpn.)
W—Ea—&c“&w—l (5.21)

so that we obtain the useful relation
{nanenic) = pyaVadVedVa(l + £ap + Eac + Eae + Sabe) (5.22)
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3.2.4 Scaling among moments

In some simple and interesting cases, the moments M, of the counts obey the
following relation for any boz size in a certain range of scales

= const

M,
Sp = M
Theoretical motivations for this scaling relation include the BBGKY equations
in the strongly non-linear gravitational regime {Peebles 1980) and the second-
order perturbative expansion of the gravitational evolution of the fluctuations
(Fry 1984; Juszkiewicz , Bouchet & Colombi 1993). Moreover, the scaling
relation is expected for a generic random variable, as the counts in cells, that
are a linear combination of n independent random variables (the k~modes of
the linear density field), expanding the PDF in powers of n~'/2 (Amendola
1994).

The scaling relation has been observed up to several tens of megaparsecs
in many surveys (e.g. Gaztanaga 1994). Since the moments are the volume
integrals of the correlation function (see e.g. Fxq. (5.54) below) we expect
that a similar scaling relation holds for the correlation functions themselves.
The n-point correlation function is then a linear combination of products of
{n — 1) two-points correlation functions. For instance, we can assume that

Sijk = Q€8x + &ijbik + Einj) (5.23)

where Q is independent of the spatial coordinates. We will often make use of
such scaling relations.

3.2.5 The angular correlation function

Because the angular position of the ia.la.xies is so much easier to determine
than their distance, the angular correlation function has been often employed
in astronomy. Here we write down the relation between the two correlations,
that is the Limber equation, in order to show some properties.

Let w(6) = {6{6+ a)é(a))a be the angular correlation function, where é{c)
is the density contrast at the angular position . Then the Limber equation
in the non-relativistic limit is (e.g. Peebles 1980)

w(f) = 2F 2 | z*¢?(x)E(r)dzdu (5.24)
where, for small angles,

F = [ 28(z)dz

P o= W2
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and where ®(z) is the selection function for the angular catalog, defined in
terms of the luminosity function ¢{M) as

B(z) = '/: jﬂw) H(M)dM (5.25)

for a catalog magnitude-limited at my. When the redshift of the galaxies in the
catalog increases, it is necessary to take into account the relativistic effects of
the expanding universe, the density and luminosity evolution of the galaxies,
the k—correction of the magnitude, etc.

For a power-law £ = Ar~7 we get

w(0) = 24F2 ] ch(u? + 226%) /2§ (z)dodu = BO™" (5.26)
where
B = 24FH, [ 2516 (z)dz

Hy = T(1/2)I((y - 1)/2)/T(~/2) (5.27)

Now, if the selection function is a step function, i.e. equals unity up to some
scale R and then vanishes, and A is a constant, we obtain

R 1
B =2R-%AH, ] 5~dr = 2R AH, f ydy ~ R
0

that is, the correlation function decreases with the depth R.

3.2.6 Power spectrum

One of the most employed statistical estimator for density fields is the power
spectrum. In recent years it has been used to quantify the clustering properties
in many galaxy surveys (see e.g. Peacock & Nicholson 1991, Fisher et al.
1993; Baugh & Efstathiou 1994; Feldman, Kaiser & Peacock 1994; Park et
al. 1994; Lin et al. 1996}, The main reason is that almost all theories of
structure formation predict a specific shape of the spectrum, because the plane
waves evolve independently in the linear approximation of the gravitational
equations,
Let 6{z) be the density contrast of a density field and

Ch=g [stzreteav (5.28)

its Fourier transform. The power spectrum is defined as

P(k) = V5.0, (5.29)
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Notice that the power spectrum has the dimension of a volume. It follows

P(k) = -‘1; / 5(2)b(y)e* =D dV,av, (5.30)
Now, putting r =z — g, since

£(r) = (6l + 7)) = 37 [ 8w+ S, (5.31)
then,

Pk = [e(e*av (532

Therefore, the power spectrum is the Fourier transform of the correlation
function (Wiener-Khintchin theorem). Finally, assuming spatial isotropy, i.e.
that the correlation function depends only on the modulus |r|, we obtain

P(k) = 4x / £(r) “::"”rzdr (5.33)

These definitions refer to infinite samples and to a continuous field. In real-
ity,we always have a finite sample and a discrete realization of the field, i.e.. a
finite number of particles. Therefore, we have to take into account the eflects

of both finiteness and discreteness. . .
To investigate the discreteness, we assume as field a collection of N parti-

cles of dimensionless masses m; expressed in units of the average mass my at
positions z;, in a volume V . In the following we will make use of the window
function W (z), a function which expresses the way in which the particles are
selected. A typical selection procedure is to take all particles within a given
region, and no particles elsewhere. In this case, the function will be a constant
inside the survey, and gzero outside. We will always consider such a kind of
window function in the following, and normalize it so that

/ W(z)dV =1 (5.34)

With this normalization, W (z) = 1/V inside the survey.
Let us now express the field as a sum of Dirac functions

z |4
J(a:) = p—f)al —-1= ﬁ ;m,-w,-é,-(x -z3—-1 (5,35)
where w; = VW (x;). The Fourier transform is

1 14 @ 1 ke
8 = ?/ (ﬁgm.-wgé‘-—l)e ”W=ﬁ;m,-wge T Wi (5.36)
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where we introduced the k—space window function
Wi = / W (z)e=dy (5.37)

normalized so that Wy = 1. In the limit of V' — o0, the window function
becomes a Dirac delta (k). Now, the expected value of the power spectrum
is

P(k) = V(67) (5.38)
that is
Pk) = 1-:% > mimjwiw;etE %) _ vy (5.39)

i
We used the relation
. 1 o
(§ L mewie=) = = i [ W(a)eav = w, (5.40)
£ §

Finally, if the positions z; and z; are uncorrelated, we can pick up only the
terms with ¢ = j, so that, neglecting the window function, which is important
only for k — 0 , we obtain the pure noise spectrum

Palk) = gz Lomdu = V/N (541

where the last equality holds only if m; = 1 for all particles. The noise
spectrum is negligible only for large densities, py = N/V — co. Since the
alaxy distributions are often sparse, the noise is not always neg]iiible and
to be subtracted from the estimate. In Fig. 2.1 we show the power
spectrum of a Poisson distribution, oscillating around the expected value. For
the power spectrum applies the same consideration expressed for the moments:
the power spectrum does not characterize completely a distribution, unless we
know the distribution has some specific property, e.g. is Gaussian, or Poisson,
etc. In Fig. 2.2 we show two distributions with the same spectrum (at least
in some range) but very different higher order properties. .

Eq. (5.39) holds both for the whole universe and for a finite sample.
Usually astronomers have a finite sample and wish to get information on the
whole universe. Here we find the relation between the two; for simplicity, we
work in the continuous limit. Let

@) =)= 22,

be the correlation function in the whole universe, where pp is the avera%e
density. A subscript s will denote as usual sample quantities. In a finite sample
the density contrast is subject to two corrections. First, the average density in
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a finite sample is the integral of the conditional density (it is conditional, let
us remark this point once again, because we observe from a particle) within
the sample

oy = / (@)W (@) Pz = po(L + f £(2)W(2)dz)
= pofl + (21)7° [ PR)W(z)e *Pzdk)] = po(1 +8)  (5.42)

where, as in Eq. (5.19), and assuming radial symmetry
s_ 1 9
E= o f PRW (K)k2dk (5.43)

It follows that there exists a relation between the universe correlation function
and the sample correlation function. In fact, from

— 2} = (P(-"’))c_ - {p(z))c _
€s(x) = (8 (2))c ""_'_ps 1 PO—_(I‘l‘E) 1 {(5.44}

we obtain the correlation function in the sample as

—

_§-¢

On the right-hand-side of this equation there are only universe quantities,
that cannot be completely known from within the survey. Eq. (5.45) has the
immediate consequence that the sample correlation function is coupled to the

sample geometry through ff In particular, its amplitude depends on £: then,

a variation of £ with the scale induces a variation of ,.
Further, the conditional density contrast is weighted by a window function
W(z)

Pk =V [ @)W @z = (1487 [ (6(e)-OW ()¢’ x(5.46)

By the convolution theorem, the Fourier transform of a product of functions
is the convolution of the individual Fourier transforms. Therefore we obtain

_ vV ' ! ' g,1_3“
(k) = m[[ P(R)W (k ~ K) — (2n)EW ()|

B (—2;)3%1_5 ./ P()W (k- K) — W (k)W (K)]d°K

- (2‘”)3‘(’”6 f P(KYW*(k, k') K’ (5.47)



142

where W* = W{(k — k') - W(k)W (&'} . Notice that, because of the integral
constraint on £(r) , Eq. (5.16), we have to verify the following condition on
any sample estimate of the power spectrum

Py(0) = 4 / &y(rirtdr =0 (5.48)

The expression (5.47) does indeed verify this condition, since W*(0, k') = 0.
The spectrum of the sample is therefore not only a convolution of the real
spectrum with the window function, as often stated, but includes also other
corrections due to the finiteness of the sample and to the use of the conditional
density. The kernel W*(k’, k) couples modes at different £. In Fig. 2.3 I show
W*(K',k)} for various k = 2x/); only for small X the kerne! peaks around
k'. For large A, closer to the sample size, the wavenumber k in the sample
spectrum corresponds to a larger wavenumber in the universe spectrum. This
introduces a strong distortion of the estimated spectrum. Notice that the
expression (5.47) applies to a spectrum calculated by Fourier transforming
the density field as a function of distance around each particle; that is, the
Fourier transform is purely radial. Often the power spectrum is estimated
by Fourier transforming the whole three-dimensional distribution, and then
averaging over k-shells. This method gives a kernel which involves W2(k — k'),
which implies a different coupling to the sample geometry. In practice, the
dlilﬂ'erence is small, and the effects on the universe spectrum are very closely
the same.

Of course, in the limit in which W(k} is a Dirac delta, that is if the sample
extends to the whole universe, then £ = 0 and the sample spectrum coincides
with the universe spectrum. QOtherwise, the spectrum normalization and its
shape depend on the sample size. In particular, in the important case in which

¢ decreases monotonically,

s the spectrum amplitude is always underestimated in finite samples, un-

less the size of the sample is big enough to give £(R) = 0 for all larger
scales,

e in the limit of kR, 3 1, i.e. for £ 3 1, the spectrum P,(k) becomes
independent of the amplitude ,

e the spectrum has a peak at a scale comparable to the sample depth,
because of the condition (5.48).

In Fi 2.4 we show some examples of power spectra in finite samples,
compared with the spectrum of the universe field. The underestimation and
the peak are evident.
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Figure 3.1: Power spectrum of a Poisson distribution. The dashed line
is the expected value V/N.

3.2.7 From the power spectrum to the moments

The power spectrum is often the basic outcome of the structure formation
theories, and it is convenient to express all the other quantities in terms of it
Here we find the rela.tlon between the power spectrum and the moments of

the ¢ounts in r%n om cells
onmder a finite cell. Divide it into infinitesimal cells with counts n; either

zero or unity. We have by definition of £
{ninj) = pgdVidV;[1 + &;5) (5.49)

The count in the cell is N = 3 n; . The variance is then My = ((N2)—NZ}/Ng
where

(N = Oomd_n) = (nd) + > (riny) =
No+ N [ avidv;wiw; (L + €] (5.50)

where Ny = poV is the count average, and &; = &(|r; — rj|). Let us simplify
the notation by putting

WidV; = dV;
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Window function for the sample spectrum for several
wavenumbers (A=50,10,6 Mpc, sample size 10 Mpc)
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Figure 3.3: The kernel
W*(k, k') for three values of k = 27/} and for a sample size 10 Mpc/h.
The thin line corresponds to A = 50 Mpc/h; the dotted line to A =10
Mpc/h; the dashed line to A = 6 Mpc/h. The vertical lines give
the location of the three wavelengths. For small )\ the kernel peaks
around k' = k; for larger ), the kernel peaks at a smaller ), distorting
the universe spectrum.
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Figure 3.4: Power spectrum estimated in finite samples. The universe
spectrum is a power-law spectrum

k=% with arbitrary normalization. In the top panel I show P,{k) in
three samples of 15, 30, 60, 120 Mpc/h at small scales. The riddles
are due to the kernel function W*; in practice, they are averaged out
because the spectrum is integrated in k—bins. The effect of smearing
is shown in the middle panel; here the amplitude increase from the
smallest to the largest sample is clear. In the bottom panel the
smoothed spectrum estimated in samples of 50, 100 and 200 Mpc/h
is compared to the universe spectrum. Both the amplitude increase
and the artificial turnover are evident.
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We define the integral ( by definition { WdV = [dV* = 1 for any window
function)

7= [aviavie, (5.51)
Inserting the power spectrum we have

o? = (2m)™3 / PR)e e o)W, WodkdPridPrs (5.52)
This becomes, for spherical cells,

o = (212)1 f P(k)W2(k)K2dk (5.53)

Finally we obtain the relation between the power spectrum (or the correlation
function) and the second-order moment of the counts:

M, = Ny 2((AN)?) = N 2((N}) - N§) = Ng* + o® (5.54)

where AN = N — Ny. The first term is the noise, the second term is the count

variance in the continuous limit. ) o .
For the third order moment we proceed in a similar fashion:

(N3 = Qi) nid my= )+ )Y ni+ ) (ninp)55)

No + 3N} + N / dV*dV}dVy (1 + & + &k + &k + sije]  (5-56)

where in the last equality we used the definition of the three point correlation
given in Eq. (5.22)

{ninjng) = png,-dV_,-de[l + &g + ik + €k + gl (5.57)
The third order moment is then
Ms = N3 {((ANY®) = Ny2% + f AV, dV; dVy i (5.58)

If we can assume the scaling relation Sijk = Q[Eijfjk + Eijeik + ‘fik&jk] then we
can express M3 in terms of P(k) and of the new parameter Q. In the limit of
large Ny, a Gaussian field (M3 =0) bas Q@ = 0.
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3.2.8 The variance of the conditional density
In view of the application to fractals, it is important to derive the variance of
the conditional density as a function of the power spectrum. Let N, = ¥ n;

be the count in a cell around a particle located in dV; (we can call it the
conditional count) and let

(Ne) = No(1 + &) (5.59)
be its average, where £ has been defined in Eq. (5.42) as

£= [ g = @n [ PoRW R
The correlation between the counts in the infinitesimal cells n, is
(ninj)e = (manjng) /() = p§dV;dV;[L + &5 + & + Ep + ] (5.60)
from which we have
(Ne = QomY nj)e=
= No(1+ de‘ﬁ) +N§ des'de‘[l + &ij + L + Eix +Gi6})

The dimensionless conditional density variance, again assuming the scaling
relation (5.23), is then

e (pe) — {pel” _ (NC) ;E(N")z = Ny (1+6)+0* 8+ Q(E%+2K3)(5.62)

The last term in the expression can be written as (Peebles 1980)
Ko = [V aveatir) (5.63)

In the important case in which £ is a power law, it can be shown that a very
good approximation is

Ky >~ o%f (5.64)

For instance, if £ ~ r~1 it turns out that K, = 1.0402¢. In the following, we
will always assume Eq. (5.64).

The first term in Eq. (5.62) is the Poisson noise, which vanishes in the limit
of large N. Notice that this expression implies a lower limit on the skewness
term @}, because the variance is a positive-definite quantity (see Peebles 1980).
When the Poisson noise can be neglected, the limit is

&g
Q2 Ty (5.65)
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This implies that the density field cannot be exactly Gaussian, as already
remarked. In the limit of strong correlation, i.e. at small scales, ? dominates

over a2 because the former is quadratic in the correlation. Then, since £ is
of the same order as o* for reasonable window functions, we obtain Q > 1/3.
Naotice also that all this holds only if the 3-point correlation function can be
expressed as in Eq. (5.22), a non-trivial condition indeed. However, as already
observed, many observations and the modeling of gravitational clustering seem
to support such a behavior.

In the opposite limit of small correlation, i.e. at scales larger than the

homogeneity scale, o? is the dominating term, and

o2 =o* (5.66)
To conclude this Section, consider the definition of '*(R) in Eq. (5.18)
I*(R) = (Pc)eph | (5.67)

In practice, ['*(R) is evaluated calculating the conditional density in cells
centered around each particle and averaging. Suppose this is done for m
particles. The variance for each cell is as in Eq. (5.62), but the variance of
the average I'*(R) tends to be m times smaller, in the limit in which the cells
are independent of each other. In practice, this is never the case, and a Monte
Carlo method should be employed. It is clear, however, that the variance of
T*(R) is expected to be much smaller than that of {p} for the whole sample.

3.3 Predictions

3.3.1 Introduction to CDM-like models

%n this Section we ugse the term CDM-like models to define all the various
uctuation models which share the following properties:

e The fluctuations have Gaussian initial conditions
e They grow only via gravitational instability
e They are normalized to the microwave background fluctuations

¢ The luminous matter traces the dark matter up to a bias factor of order
 unity

. The prototypical model is characterized by the linear CDM power spec-
Iim

P(k) = AKT*(T k) (5.68)
where the transfer function T(I', %) , which is somewhat author-dependent,
can be approximated by (Bond & Efstathiou 1984)

T(T, k) = 1 + (ak + (5B + (k2] (5.69)
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where
a=(64/T) Mpc/h, b=(3.0/T) Mpc/h, c=(1.7/T) Mpc/h,
v = 1.13(5.70)

ana 1 = azgn u 34 ~+ 0. This model can be easily generalized to include a
tilted primordial slope and a value of {2, not negligible:

P(k) = AK"T?(Te~ % (2h)**00/2 1y (5.71)

Other generalizations of the CDM paradigm can be embodied in the shape
parameters I'. The spectrum normalization and T' form the main product of
most large scale structure observations.

If we refer to the spectrum of the mass fluctuations, then we normalize
either by matching to the microwave background fluctuations or to some other
observations like the abundance of clusters or velocity fields. If we want io
describe the fluctuations of the luminous matter, be it galaxies, or clusters, or
a subclass of either, then we normalize to the observed variance of the class of
object at the present time. However, in the latter case, we have to include the
redshift correction. In fact, what we measure in redshift surveys is the sum of
the line-of-sight recession velocity and the line-of-sight peculiar velocity of the
galaxies, rather than their distance. Since the peculiar velocity field depends
on the gravitational field, there is a coupling between the matter fluctuations
and the redshift of the galaxies. Where the galaxies are virialized, e.g. in
the cluster cores, the galaxies in redshift space look less clustered than in real
space; where, on the contrary, the galaxies are still in the linear regime, the
redshift space clustering is larger than the real space one. As a consequence,
in redshift space, there is more power on the large scales and less on the small
ones, compared to the real space spectrum. Using the subscript sp to label
real space quantities, and r to label redshift space ones, we can summarize the
two effects by the semi-empirical law (Peacock & Dodds 1994; see also Tadros

& Efstathiou 1996):

Pr{k) = Pyp(k)}G(8,y)
wl/2 erf

c) = T Tiag v apy? + ) - ZE ) igra 4 ) s

where y = ko, Hy'' |, 0y is the cloud velocity dispersion along the line of sight,
B = 2%8/b and b is the dark matter bias factor, i.e. the ratio of the power
spectrum of the galaxies with the spectrum of the total matter field. On small
scales, the effect is to change the slope by a factor k~1; on large scales, the
effect is to raise the amplitude by the constant

F(8=03%/b) =1+28/3 + B2/5 (5.73)

When we use this correction, we adopt the value o, = 300 km/sec. We will
drop in the following the subscripts r and sp, and specify if we are adopti
the redshift correction when needed. In Fig. 3.1 the effect of the redshi
correction is shown. At small scales, the power spectrum is distorted from
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the theoretical predictions also by the non-linear growth of the structures.
The CDM linear power spectrum is therefore valid only at scales larger than
roughly 10 Mpc/h .

The variance in spherical top-hat cells of radius 8 Mpc/h in terms of the
spectrum is, from Eq. (5.53),

o2 = (2x2)"! f P(RYW2(K)k2dk (5.74)

where Wg(z = k-8Mpc/h) = 3z~ 3(sinz — z cos z). Let us consider some class
of objects:

o IRAS galaxies: og ~ 0.8 (Fisher 1993);
o CfA2 galaxies M < —19.7 , R < 101 Mpc/h: 05 = 1 (Park et al. 1994);
CfA2 galaxies M < —20.3 R < 130: Mpc/h o5 ~ 1.2 (Park et al. 1994);

SSRS2, galaxies from M < —18 to M < —21 and R < 48 Mpc/h to
R < 168Mpc/h: o3 increases from 0.6 to 1.7 (Benoist et al. 1996);

APM clusters (R < 400 Mpc/h): os ~ 2 {Gaztanaga, Croft, Dalton
1995);

Las Campanas galaxies, whole magnitude limited sample, og = 1 (Lin
et al. 1996).

In Fi% 3.2 the CDM spectrum is compared to the CfA2 data of Park et
al. (1996).

For as concerns the total matter, the cluster abundance gives a normaliza-
tion which depends on 3y {White, Efstathiou, & Frenk 1993)

og =~ 0.505%° (5.75)

The COBE normalization is instead given in terms of the constant A which
appears in Eq. {5.68). For small £ (when the Sachs-Wolfe effect is the domi-
nating one) we have in a flat universe (see. e.g. Padmanabhan 1993)

G = AHZPQLS T[3—n] TI[(20+n-1)/2]
16 T2[(4 — n)/2] T[(2¢ + 5 — n)/2]

where C, is the variance of the angular multipole £, Cy = ([af,[?). Sometimes
the quadrupole Qrms = (5C2/47) /2T, is used to normalize the spectrum, Ty =
2.735K being the radiation temperature. Most experiments produce likelihood
contours for Qyms and n. Assuming n = 1, values like Qppmys =~ 15 — 20uK
are often quoted {e.g. Bennett et al. 1996). For a CDM spectrum, this gives
roughly (Efstathiou, Bond, & White 1992)

gg = 2Q0h

(5.76)
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Finally, the velocity field normalization, obtained from IRAS galaxies in a
sample 60 Mpc/h deep gives (Zaroubi et al. 1997)

o8 = 090506

Although the CDM-like models contain fluctuations on all scales, and thus
are not, strictly speaking, homogeneous models, the amount of power on large
scales is very small. As we will see below, the most common CDM-like mode
predict a rapid approach to effective homogeneity (that is, to a distribution
indistinguishable form the homogeneous one) on scales around 50 Mpc/h. It
is important to realize, however, that the homogeneity scale depends on the
details of the spectrum, and in particular on its normalization. The clusters,
for instance, which are the objects with the highest variance, are more in-
homﬁgeous than the IRAS galaxies, or the total matter normalized to the

ab f clusters.
ne of the problem one encounters in discussing CDM models with respect

to fractals, is that the normalization of the CDM spectrum depends on the
class of objects, as we have seen. The possibility that this dependence is
systematic cannot be discarded. For instance, many observations scem to
require a strong increase of the spectrum amplitude with the luminosity of
the galaxy, or on the richness class of the clusters {e.g. Benoist et al. 1996).
Since usually deeper surveys select on average intrinsically brighter galaxies,
the dependence on luminosity becomes an apparent dependence on sample
size, to the effect that larger samples give higher spectrum normalization, and
consequently a larger homogeneity scale. As we will see below, this trend is

ualitatively the same for tie fractal model. Therefore, a fractal mimics o
%’DM spectrum with luminosity segregation. Breaking the degeneracy between
luminosity and fractality is one o{"’7 the biggest problem to face.

Another important point to realize, in view of the discussion below, is
that the normaﬂzation of the power spectrum through observations in finite
samples depends in general on the sample size, as we have seen in the Section
2.6. The normalization estimated in finite samples coincides with the true
normalization only if the sample is much larger than the homogeneity scale.
As we will argue below, it is not yet proved that the samples that have been
used in literature are that large. If this is so, the value of o given above may
depend on the sample size.
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3.3.2 Introduction to fractals

In the current usage, & fractal is any quantity that varies as a power-law. The
number of hurricanes or of earthquakes as a function of their energy, or the
length of a coastline as a function of the length of the rod employed to measure
it, are examples of fractals. In the distribution of galaxies, the fractal quantity
is the conditional density (Pietronero 1987; Coleman, Pietronero & Sanders
1988). Suppose we have a large spherical volume of radius R, containing Np
particles. This distribution is a fractal if the average number of particles in a
sphere of radius r < Rg around a particle scales as

(N(< 7)) = Br? (5.77)

where D is the fractal dimension and B is a constant which depends on the
sample density. In the following I sometimes omit the brackets {} to simplify
the notation, but always refer to the average conditional density, unless oth-
erwise stated. If our universe contains Ny = 4mpoR3/3 particles, pg being the

density, then N,(< Rp) = No = BRY, from which

4
B = -33,00}%_1)

The average density inside a spherical sample of radius R, embedded in a
larger box of size Ry is clearly

Pc= PO(RJ/RQ)D_a (5.78)

In other words, each particle sees around itself a density which decreases as
RD-3. Notice that this is the average behavior; some particles can see the
density increase locally, or experiment different dimensions. Also, nofice that
this is a conditional density: is the density around particles, that is, the density
in a sphere provided that there is a particle at the center.

As an extremely simple example of a fractal, consider particles distributed
on a thin plane with surface density p,q. Each particle sees around itself, in a
sphere of radius r, N, particles,

NA< 1) = pear” (5.79)

This is therefore a fractal with dimension D = 2, as expected since the plane
is 2-dimensional. If the plane is in a spherical box of radius Ry, the density
of particles inside a radius r is pg(R,/Ro) ™" where pp = 3p,aRy* /4, as in Eq.
(5.78). A similar case is shown in Fig. 3.3: the spectrum ofa D =1 fractal
in a plane. This planar distribution is a convenient image of a simple fractal,
and can be used to help the intuition. Naturally, is a completely deterministic
fractal, and certainly not a realistic description of the galaxy distribution.
However, a preference for a planar distribution can be seen for many galaxies,
for instance around large voids, and this can explain why D = 2 is indeed the
observed dimension, at least up some scale.
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From Eq. (5.78) we can derive the operative definition of fractal dimension
of a distribution of particle as

dlogp.  dlog N,
dlogr  dlogr

D=3+ (5.80)

For a homogeneous distribution, D = 3, and p, = pg. In all other cases,
Pc > po- Strictly speaking, D is a constant independent of ». However, for real
distributions this is never the case, because there are at least a lower and an
upper cutoff to fractality. Here we will not adhere to the pure mathematical
point of view, and will consider as fractal behavior any trend of N, for which
D(R,) is not equal to the homogeneous limit 3. The mathematical fractal
with D = const is therefore only a limiting case.

There are two important points which are of fundamental relevance to
what we will say in the following:

o Every estimate of the density we make in real observations are estimate
of the conditional density, because we observe from a "particle”

¢ The conditional density systematicolly decreases for larger and larger
samples, as it goes like RP 3

As a consequence of both remarks, the error one makes in identifying the
conditional density p, with the universe density py is systematic, as opposed
to random, and modifies all our statistics, as we will see in the next sections.
For instance, the number density conirast we derive in a fractal differs from
the true density contrast, and increases with the sample size:

plz)  p(=z) 3-D
— ~ —==(R 5.81
o " (Rs/Ro) (5.81)
All quantities based on the density contrast will scale in a similar way. As it
can be seen, Eq.(5.78) or (5.81) are a particular case of Eq. (5.42). That is, the
fractal distribution is just a particular case of a inhomogeneous distribution.

The correlation function of a fractal is readily evaluated. Consider a sam-
ple of radius H,. As we have seen, the dengity of particies in the sample
is the average conditional density in the spherical cell of radius R,, p, =
po(Rs/Ro)P~3.The scale Ry at which we define py is of no importance here
and will drop out in the following. The conditional density in a shell at dis-
tance r from a particle is

_ dNA< 1)
s = rZdr

The sample correlation function is the conditional density contrast, i.e. {Cole-
man & Pietronero 1992)

(5.82)

D-3
&(r) = %:— -1= %— (F%) -1 (5.83)

Let us notice some important properties of this expression:
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The correlation amplitude increases with the sample size R,

The function g(r) = 1 4 £(r),rather than £(r), is a pure power-law

The slope of g(r) gives the fractal dimension of the distribution minus
3 (or codimension)

The correlation function equals unity at

ro = B,(D/6)1/3-D) (5.84)

e The correlation function crosses zero at r, = R,(D/3)//¢-D)

From the fractal correlation we can immediately derive the quantities &
and £ introduced in Eq. (5.51) and Eq. (5.42). For a sphere of size r they are

£ = [emav=@/m-1 (5.85)
o2 = / £(riz)dVi dV; = i_’ (5;5)7 Jafy) -1 (5.86)

where ¥ = 3 — D and (Peebles 1980)

Ja(y) =72/ [3 — M4 —7)(6 - 7)27]

In the limit of large R, which shoulg always be understood when we refer to
theoretical fractals, we have simply £ ~ o2 ~ rP—3,

We end this section commenting on the definition of fractal dimension given
in the literature. There are different definitions of fractal dimension, which
depend on exactly which power-law quantity is investigated. The dimension we
defined is usually called the correlation dimension D)y, and other definitions,
like the Hausdorff dimension or the box-counting dimension can be given.
These dimension are completely equivalent in all practical cases. Also, it is
to be noticed that the dimension is usually defined in the limit of r — 0, ie.
for boxes vanishingly small. However, galaxy distribution being a distribution
of discrete particles, this limit cannot be taken, and the fractal dimension
will, in general, depend on the size r of the baxes. The fractal dimension,
however, cannot characterize completely a distribution of points, just as it
is not characterized completely by the two-point correlation function or the
power spectrum.

In the fractal literature, in place of the higher-order moments, the spectrum
of dimensions has been introduced {see. e.g. Paladin & Vulpiani 1987). Let N;
be the number of particles within distance r in the cell around the i-th particle,
and {IN), its average. Then we define the Minkowski-Bouligand dimensions as
(neglecting again the limit for small 7} the average of the power of conditional
counts

1 dlogNg1
D, a1 dlogr (5.87)
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If the dimensions D, are different, the distribution is called a multifractal. The
correlation dimension (5.80) is then Dg; the dimension Dy is in effect

_ Ldlog({N?)
373 dlogr
where (N7) is given in Eq. (5.62) (neglecting the Poisson term) as
(N2) = (N + NG [0 — 82+ Q(&2 + 2607
1t follows, for R, < R:, and if Q does not depend on r

D3 =Dy

In a similar way, it can be easily shown that D, = D, if the scaling relations
among the moments hold. A distribution with all identical dimensions is called
a monofractal. Therefore, the hierarchical scaling implies monofractality (see
e.g. Balian & Schaeffer 1988; Borgani 1995), at least for order ¢ > 1.

3.3.3 The power spectrum in fractal models

The power spectrum of a fractal within a spherical sample can be easily derived
from Eq. (5.83) :
sin

Pk) = j LW Er = tx [ 6w () k:"’r2dr
= 4—;’- [2 + cos(kR,)] R>Pk~P - 4x sin(kR,)k 3 (5.88)

where the second line applies only if D ~ 2 and the window is a top-hat
sphere. The general trend, as can be seen in Fig. 3.4, is that the fractal
spectrum rises at small scales as (87 /3)R3-Pk~D, reaches a peak at a scale
comparable with the sample size, k, = 27/{1.5R, )}, and then turns down as k2.
It is interesting to remark that a qualitatively similar behavior is predicted, for
totally different reasons, in the most popular theories of structure formation.
Also notice that, as for the correlation, the power spectrum scales with the
sample size, increasing linearly if D = 2.
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Figure 3.7: Top: linear distribution of particle, a particular case of a
D =1 fractal. Bottom: power spectrum of the distribution in
samples of increasing size (from bottom to top). At large k the
power comes from the random distribution inside the thickness
of the stripe.
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3.3.4 How can we test fractals?

Since the average conditional density estimated in a sample is so important
in the statistical measures of a fractal, we need now to derive its variance.
The variance of the conditional density is, by Eq. (5.62) and neglecting the
Poisson noise '

o5, = (2) — (pe)? = 4} [0 ~ & + QE + 257D)]

Neglecting o2 and £ with respect to £2 , i.e. in the limit of R, 3> r, we obtain
from Eqs. (5.86)

_ % 2DJLa (1) _
=25 =Q (1 + 220 (5.89)

For instance, for ¢ = 1 and D = 2, as some observations suggest, T = 8/5.
Therefore, the variance of the conditional density can be of the same order of
the conditional density itself. In Fig. 3.5 we show the dimensionless variance
versus r for some values of . In Fig. 3.6 the contour plot of the variance
Z(Q, D) in the limit R,/r 3> 1 is displayed. For the interesting values of Q
and D the variance is always of order unity. It is however also possible to
find special distributions for which the variance vanishes, namely those with
Q=(-)/(E2+ 202%¢). An example is the linear distribution in Fig. 2.2,
for which the variance is clearly very low: all particles see essentially the same
distribution everywhere. Notice also that o2 tends to zero when the cell size
approaches the universe size, that is when the sample is larger than the scale
of homogeneity.

The fact that the variance for a fractal is large is a crucial aspect of the
whole question of comparing fractals to the real world. All quantities, like
the correlation function and the power spectrum, which are normalized with
the conditional density, are subject to a variance in amplitude which can
be as large as 100% and more. Therefore, all tentative of rejecting fractals
on the ground of the amplitude, like comparing the fractal ro or og to the
observations, is deemed to be inconclusive. For instance, the expected value
of r¢ in a survey of depth R, = 100 Mpc/h for a D = 2 fractal is, according
to Eq. (5.84), ro = R, /3 =~ 33 Mpc/h; the observed value in several surveys,
however, is rg = 5510 Mpc/h . Because of the large variance, this discrepancy
does not rule out fractals; a low value of rp is compatible with the expectation
value R, /3.

Then, how can we confirm or reject fractals? There is only a way of
comparing significatively fractals to real distributions: using the ezponents
rather than the amplitudes, that is the slope of the correlation function, or
of the power spectra and related quantities. Naturally, the samples to be
employed must not be weighed according to some prescription which assumes
homogeneity, as when a weight is assigned in magnitude-limited samples by
using a luminosity function derived assuming homogeneity (see next Section
for an example of this).
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Let us consider some equivalent ways of testing fractals through slopes.

The behavior 52 of the power spectra is a clear and unambiguous signal of
fractality, as long as it is found at scales quite smaller than the depth of the
sample. The existence of a turnaround at these small scales, on the other
hand, would definitively prove the approach to homogeneity.

A related slope test is the behavior of the conditional density at distance
r averaged around each particle in the sample, or its integral in spherical cells

(see Eq. (5.18))

{pc) = T(r)~rP73
(Pc)sph = I* (r) ~ rD-3 (5.90)

Since these statistics are evaluated in spherical cells, and do not make use of
the sample conditional density, they are unambiguous estimator of fractality.
If I'*(r) flattens as r° at some scale, then homogeneity is reached. This test
has been extensively performed on many datasets, as we will show later on.
A similar behavior is expected for the conditional density within a distance
r from the observer alone (or radial density), without averaging over other
particles. This allows to reach the largest depth in the survey, but the signal
is much less stable due to the absence of the average over the observers.

An important comment is in order here. From Eq. (5.18), we see that

I*(r) = po(1 + ), where (see Eq. (5.42))
£= f )W (2)dz (5.91)

Suppose now the window function W (z) is a function of the spherical coordi-
nates r, i, & that can be separated as

W(z) = W(r)W(S) (5.92)

where {} is an arbitrary function of the angles. The usual normalization writes
now [ W{r)ridr = { W(Q)dQ2 = 1. Then we can write the integral in (5.91)
a8

£= f £(@)W (r)rPdr = 1% fo ™ e(ryr2dr (5.93)

which is independent of the angular part of the window function. Then, the
conditional density can be estimated also when the survey is not a complete
sphere, which is often the case. However, if the window function cannot be
separated, the value of £ will depend on the specific form of the window, and
the formulae based on radial integration, as Eq. (5.85), are no longer valid.
Whenener the sphere in which I'*(r) is calculated crosses the boundaries of the
survey, this situation is likely to occur. Therefore, when estimating I'*(r) , care
must be taken that the cells are all spherical, or, more generally, that they are
always in the separable form (5.92). Taking only spherical cells simplifies the
problem, but reduces the scale range, as we will see in the next Section. Notice
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that there is not such a problem for I'(r), because a thin shell is by definition
in the form (5.92) unless some non-trivial weighing scheme is assumed.

A similar comment concerns the estimation of o2 , often used to normalize
the power spectrum to real surveys. While the definition (5.52) is general,
the expression (5.53) 03 = (2n?)~! [ P(k)W2(k)k%dk holds only for complete
spherical cells. For cells that cover less than 47 of sphere, the effective window
function is wider, and the variance is larger, as expected. Since o2 enters in
the variance of the conditional density, we see that, while the expected value
of the conditional density remains the same in portions of spheres that cover
less than 4, its variance increases.

The fractal nature of a distribution can be confirmed or rejected also com-
paring the variation of the clustering amplitude, e.g. the value of o3 , with the
depth in samples around the same observer, i.e. ourselves. In fact, the high
variance we mentioned above i3 an ensemble variance, that is, is the variance
for independent samples around different observers. If we investigate samples
of increasing depth from the same observer, on the other hand, the variance
has to be much smaller (although an analytical determination is difficult and
it is easier to compare with simulations), because the samples are not inde-
pendent. In this way, the expectation for a fractal is that the amplitude of og
grows with sample size as R3~P. Another possibility, related to this one, is to

see whether the normalization-independent relation rg = 28/3=D)r_ holds for
various samples.

All these tests are of course mathematically related, and the only parame-
ter is the fractal dimension, and possibly its variation with scale. In the next
Chapter we will focus on tests based on slopes.

3.3.5 The fractal dimension of CDM models

We have remarked already that any inhomogeneous distribution can be de-
scribed as a fractal at least in some range of scales. Let us see then what kind
of fractal can approximate the CDM-like models.

The fractal dimension of a distribution characterized by a spectrum P{k)
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Figure 3.8: Power spectrum of fractals for D =1,1.5,2,2.5 top to
bottom.
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Figure 3.9: Percentual variance for some models of fractal with
cut-off and of CDM. In all cases, at scales small compared to the
homogeneity scale the variance is 100% or more of the expected
value of the conditional density. For a standard CDM, the
variance goes to zero (neglecting the Poisson noise) around 50

Mpc/h.
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Figure 3.10: Contour plot of the percentual variance in the (D, Q)
plane for a fractal in the limit of small scales. Reasonable values
of D,Q give a variance of 100% or larger.
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Figure 3.11: Normalization o3 for a fractal with cutoff at 300

Mpc/h. The ensemble variance is so large that a very wide
range of oy is allowed. ,
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" is, by Eq. (5.80)

DRy =34 3108AEE 5 JPERW'(kR,)Kdk

diog R, (272) + | P(k)W (kR,)K2dk

(5.94)

- where W/ = R,dW/dR,. We can immediately infer some properties of the
 function D(R,). First, if £(r) decreases with r, then D(R,) is smaller than
8. Secondly, in the limit of large spectrum amplitude, the fractal dimension
becomes independent of the amplitude itself.
. Tt is clear that an effective, scale-dependent fractal dimension can be de-
fired for any given power spectrum. In this sense, the single-law fractal is just
* an extreme model among a continuous class of inhomogeneous models. From
this point of view, the only one which is relevant to our discussion, the differ-
ence between CDM and fractals is purely quantitative. The same physics of
gravitational instability that explains CDM can explain a fractal behavior up
to some scale. In the standard cosmology, this scale will be set by the amount
of initial Auctnations and by the amount of time the structures are allowed to
grow. Different initial conditions can lead to a different scale of homogeneity.
Let us see now whether there is a range of scale in which D(R,) for a
CDM spectrum is approximately constant. In Fig. 3.8 we display the fractal
dimension versus sample size for some standard CDM models, with various
normalizations, corresponding to COBE (total matter), to average galaxies, to
bright galaxies, to clusters, with and without redshift correction. In general,

the CDM models with redshift correction have a fracial dimension between 2
and 2.5 up to 50 Mpc/h, and homogenize afterward. It is the fact that D(R,) .

is almost constant in this range that makes the fractal mathematics useful
also for standard models. In the same figure the behavior of the conditional
density in samples of size R, i.e. I'*(R), is also shown. The flattening of
I™(R) indicates homogeneity, i.e. the distance at which the sample density
approaches the universe density. Notice that even the standard model flattens
only beyond 50 Mpc/h.

The scale at which the dimension goes to 3 increases with the power spec-
trum normalization, as expected. If we define the scale of homogeneity as
the scale ), at which D(R,) = 2.9, then we can find a simple approximate
relation between A, and the normalization og assuming a shape parameter
T' = 0.2, without redshift correction (to include it, it is sufficient in a first

approximation to replace og with ogf (ﬁ)u 2)
Ap = 2563Mpc/h_ (5.95)

For instance, if f(8) = 2 and oz = 1.7, as observed for bright galaxies in
SSRS2 (Benoist et al 1996) the bomogeneity scale could be as large as 60
Mpc/h. For clusters, the scale can be larger than 70 Mpc/h. Because of the
small-scale non linearity, which increases the clustering level, these values can
even be pushed somewhat further.

Below the scale of homogeneity the distribution of galaxies behaves like
a fractal: that is, its power spectrum amplitude increases with the sample
size, has a large variance, and the spectrum turns around at the scale of
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the survey depth. In Figure 3.9 I show CDM spectra estimated in samples
smaller that the scale of homogeneity, where these effects are clearly shown.
The determination of the scale of homogeneity is therefore crucial. The first
consideration is that the scale of homogeneity cannot be determined from o3
estimated from a single finite survey. The og in {5.95) is the universe value,
not the sample value. From the power spectrum in a finite survey we have

o2 o8 (5.96)
2T+ '

where the approximate equality holds for R, 3> 8 Mpc/h. That is, once again,
the normalization in finite saglples is lower than the true normalization, unless
we are on scales such that £ = 0. Then, the values of o'g’, obtained from
galaxy surveys are only a lower limit to the true normalization. To constrain
the true value, we have first to verify that £ already approached unity by
detecting elther the turnaround in the spectrum or by detecting a trend toward
a constant of ors ; in various samples of larger and larger depth. I will argue
in the next Section that this is still to be found without ambiguity.

Notice that the value of o3 deduced from the microwave background ex-
periments is a universe value. In this case, the scale of homogeneity is really
small, of the order of 25 Mpc/h. However, we have to keep in mind how many
assumptions are implicit in this determination, for instance that gravitational
instability is the only mechanism for structure formation, and that the CDM
spectrum shape is accurate. Moreover, this value of gg applies to the total
matter; galaxies and clusters could be strongly biased tracer of mass.

Since a CDM-like distribution, as any other distribution, is a fractal when
it is seen in samples smaller that the homogeneity scale, from now on I will say
that a distribution is fractal when the sample is smaller than the homogeneity
scale, and is homogeneous when the sample is larger. Once we accept this point
of view, the property of fractality or of homogeneity can be seen as a property
of the sample geometry, rather than an intrinsic property of the distributions.
Once again, the only question that makes sense is: have we already reached
the homogeneity scale?
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Figure 3.12: Top: Effective fractal dimension for CDM models
with shape parameter I' = 0.2 and various normalizations. A
range of almost constant dimension is found at small scales
when the spectrum is redshift corrected. At scales below 10
Mpc/h the linear spectrum we are using should be corrected
for the non-linear growth. Bottom: I'*(r) for the same models.
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Figure 3.13: The CDM spectrum with a high normalization, og =
3 , estimated in finite samples of size 25, 50, 100, 200 Mpc/h.
Only the largest samples give an accurate estimate, both in
terms of amplitude and of shape.
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3.3.6 Other predictions

We briefly review here some other predictions of the fractal model, to be
compared with the homogeneous case: the number counts, both as a function
of distance and of magnitude, and the angular correlation function. Any of
these predictions can be tested, at least in principle, so as to derive bounds on
the homogeneity scale. However, we will focus in the following mostly on the
power spectrum and related quantities, because they give the highest quality
information on the real distribution of galaxies in space.

The most direct prediction of a fractal distribution is the density scaling
law Eq. (5.78). However, in a magnitude-limited survey, the density scaling
law is modified by the selection procedure. In a sample of depth R and volume
V that contains all galaxies with an apparent luminosity brighter than m; and
fainter than mg, the density of galaxies will be

(ma.r) _
a(R) = V-1 /0 ® pe(r)rldr f: " glaant (5.97)

where M(m,r) = m — 5logr — 25 and ¢(M)dM is the luminosity function
which, as usual, can be writien as the Schechter function

é(M) — ¢Oexp[_100.4{M'—M}]100.4(M‘ —M{a+1) (5.98)

Since the samples can extend fairly deep, it i8 necessary to take into account
the relativistic effects and the K-correction. If f (/) is the flux at the observer
in the wavelength -, and L the absolute Iwminosity of the source, we have

L

mi,r

= @+ o (5.99)
where oy is the spectral index of the source,
d}
op = Hog (5.100)

~ dlogr

The observed apparent magnitude is m = -2.5log f. The K-correction is
embodied in the factor (1 + z)!~®%. For optical galaxies, the usual term kz
in the distance modulo is approximated by ay = —1 — k/2.5. Values often
quoted in literature for the various spectral bands are: ay = —2.2 for optical
galaxies; o = —0.7 for radiogalaxies; and «ax = —0.5 for quasars and for r-
band selected galaxies (Lin et al. 1996). Then, the general expression can be
written as

M(mg,?'

Z(R)
n(z) = ppV-1R*P [o r(#)P-1f()d7 fM

where
M(m,z) = m — 5log[(1 + z)!"®*r] - 25 (5.102)

ng(M)dM (5.101)

(m1,2°)
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and, for §2p =1,
r(z) = 2Hy 'l — (1 + 2)7 /7 (5.103)

and finally f(z) = dr/dz. Denoting with N(> f) the number of galaxies with
flux larger than f, i.e.

N(> )= lim Viz)n(a)

we see that for small 2, i.e. large fiuxes f, one has r = z/Hj, and this gives the
Euclidean fractal result N(> f) ~ f~P/2, independently of ¢(M). At large 2,
on the contrary, we have N(> f) ~ f9, again independently of ¢(M). We can
say then that the apparent fractal dimension D, = —2{dlog N(> f}/dlog f]
declines from the real dimension D at large fuxes to 0 at small fluxes (more
exactly, Da(f — 0) = f1/21=2) [(ay —1)).

Eq. (5.101) can also be written as a function of the limiting magnitude of
the sample, i.e. as n{myuy). Then we have, in the limit of large fluxes

dlogN(m) _dlogN(> f=10"%m) D
dam - am 5

instead of the usual slope 0.6 valid for the homogeneous case in the Euclidean
D = 3 limit. A comparison of fractals to real data is in Sylos-Labini, Montuori,
Gabrielli & Pietronero (1996).

Finally, let us investigate the fractal behavior of the angular correlation
function. The predictions for the angular correlation function is contained in
Eq. (5.27) for small angles and for a power-law spatial correlation. Putting
£(r) = Ar” with A = (D/3)R] we obtain w(f) = B8'~7 , where, for a selection
function equal to unity up to the scale R, and zero afterwards

(5.104)

R 1
B = 2R;SAH, f +5dz = 2(D/3)H, /0 5~ Vdy ~ const

that is, the correlation function does not depend on the depth R, contrary o
the homogeneous case. The same happens for other selection functions with a
typical scale R;. The angular correlation function should then remain constant
also as a function of the limiting magnitude, at least in the Euclidean, small
angle iimit. The angular function of the APM catalog {Maddox et al. 1990),
on the contrary, decreases with the limiting magnitude, in agreement with
the homogeneous prediction. However, a direct comparison with real fractals,
including relativistic and evolutionary effects, is still to be done {the data are
not yet publicly available). Moreover, the usual practice in such analyses is
to remove large scale angular gradients, attributed to calibration errors; need-
less to say, this procedure would destroy intrinsic large scale inhomogeneities.
Finally, the angular correlation function is dominated by distant objects, so
that the scaling can prove at most that some large homogeneity scale do exist.
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3.4 Observations
3.4.1 Introductory remarks

This Section is devoted to the systematic comparison of some observations with
the alternative predictions of standard CDM models and of fractal behaviors.
I will mostly focus on the determination of the 3-dimensional power spectrum,
because the 3D catalogs give the maximum information on the real galaxy
distribution, and because the near future production of deep redshift surveys
will allow a more precise assessment of the effects I will mention here.

The first thing to make clear is that we will investigate mostly volume-
limited (VL), rather than magnitude-limited (ML) samples. The latter are
samples which selects all galaxies brighter than some apparent magnitude
limit, my,. Clearly, the larger the distance, the brighter a galaxy has to be
in order to be included. Therefore, in a ML sample, the density will show
an apparent decrease with depth because more and more galaxies will fall
below the threshold for detection. Only a precise knowledge of the luminosity
function allows one to weigh correctly this apparent decrease. The problem
is, that the LF itself is often estimated from ML samples assuming that the
sample is homogeneous, and therefore it cannot be used to test the real density
scaling that may be present in the data. For instance, as we will see below,
in the case of the Las Campanas redshift survey, the LF has been fitted to
the data assuming that the distribution is homogeneous (in Lin et al 1996a),
and then the same LF is used in, e.g., Lin et al. 1996b, and Tucker et al.
(1996) to weigh the distribution in order to determine the power spectrum or
the correlation function. As we will see, however, the initial assumption of
homogeneity is by no means justified by the data themselves, and a dimension
D = 2 is equally well consistent with the data.

The way to distinguish between an apparent decrease due to luminosity
and a real decrease due to density scaling is to analyze volume-limited samples.
A volume-limited sample selects only the galaxies within a distance R which
are intrinsically bright enough to be included in the sample even if were exactly
at distance R, i.e. at the boundary of the sample. In this way, any density
trend within the sample is to be attributed entirely to a real scaling, rather
than to the apparent magnitude effect.

A volume-limited sample has the drawback that it discards a large portion
of the data. However, one can study several VL samples, at different depths,
so most of the data can still be loited. On the other hand, the various
subsamples contain galaxies of different magnitude, so that any difference
between one and the other could be attributed to a luminosity segregation
rather than to a density effect (see Fig. 4.1 ). Since brighter galaxies are
expected in the model of biased formation to cluster more strongly than fainter
ones, the two effects have the same qualitative behavior.

This point is crucial to the interpretation of some of the data we are going
to present: any trend in VL samples can be interpreted both in terms of density
scaling {(fractal), or in terms of luminosity segregation. This is the main reason
why the same datasets have been interpreied sometimes as conﬁrm.in%both
the fractal and the homogeneous view. There is however the possibility of
disentangling the two effects.
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First, the fractal behavior depends only on D, so that the slope of the power
spectrum and the amplitude increase are related, and are not independent
as when the effect is due to the luminosity segregation. Secondly, we can
further cut the VL samples in subsamples with the same magnitude limits,
and different distances, or with the same distances and different magnitude
limits, and test the effects ately.

Some of these tests have been done in literature. However, as I will argue,
they have been inconclusive so far, both because there is no precise prediction
on what the luminosity segregation has to be, and because the data are not
rich enough to allow for further cuts. Also, the brighter galaxies could have
a different fractal dimension than fainter ones, so that the fractal trend can
become complicated.

3.4.2 A collection of old data

Many galaxy surveys produced a correlation function £,(r} which goes as 18
on scales less than 10 Mpc/h. This could imply a fractal dimension I ~ 1,2
on such scales, but the approximation of £,(r) with a pure power-law is not a
good way of testing for fractality, since is 1 4 £,(r) which is expected to be a
power-law, and not &,(r). Moreover, £,(r) is expected to become negative at
re = 2rg = 10 Mpc/h (see Sect. 3.2), so that £,(r) is rarely studied beyond
this distance; then, no information is provided about the scales on which the
CDM and the fractal predictions differ, that is well beyond 30 Mpc/A.

More useful is the statistics I'(r} introduced in Sect. 2.3, that is the average
conditional density seen from any galaxy. When it is estimated in spherical
shells, it does not introduce spurious conplings with the sample geometry, con-
trary to £(r) or P{k), so that its power-law trend as r?~3 is an unambiguous
probe of fractality. When the scale of homogeneity is reached, a plateau has
to be detected, I'(r) ~ const. The same holds for the integral in spherical
cells, I'*(r), with smaller variance. :

Pietronero and coworkers have analyzed in the past years essentially all
the datasets publicly available (Pietronero, Montuori & Sylos Labini 1997,
Sylos-Labini, Montuori & Pietronero 1998). Their results are summarized in
Fig. 4.2. Since I'*(r) has to be evaluated in full spheres centered on galaxies,
the largest scale one can reach is the radius of the largest sphere that fits
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in the survey, and at this scale the error is large because the average can be
done on few spheres. Actually, it is possible to perform this calculation also in
portions of spheres, as we will show below, 80 as to extend the range. We see
from Fig. 4.2 that the data show a D ~ 2 fractal behavior from 1 to 30 or 40
Mpc/h. This indicates that the scale of homogeneity is certainly larger than
this. In the same Fig. 4.2 the data that extends to 100 Mpc/h come from the
Leda redshift database (Paturel et al. 1994; Di Nella et al. 1996) . However,
the Leda database is incomplete at large distances, so that these results are

not entirely reliable,
Notice that here there is no question of luminosity effects: each VL sample

is analyzed on its own. This is certainly the simplest and less ambiguous test
for fractality one can make.

3.43 CfA

The redshift survey CfA2 includes ~11000 galaxies with m < 15.5, in roughly
one guarter of the sky. There are 6478 galaxies in the North hemisphere and
4283 in the South one. In Park et al. (1994) the power spectrum and the
correlation function has been calculated for the whole ML sample, and for
two VL samples, one cut to 130 Mpc/A, including 608 galaxies brighter that
—20.3, the other cut at 101 Mpc/h,with 1509 galaxies brighter than —19.7.
The resniting spectrum is reported in Fig. 3.2.
The spectrum shows several interesting features:

o The spectrum rises as k=2 for scales smaller than 30 Mpc/h, and flatiens
to k1 afterward.

¢ The spectrum of the deeper and brighter sample is 40% higher than the
shallower and fainter one.

o There is a tendency to peak around 100-150 Mpc/h, although the er-
rorbar is quite large at these scales.

All these features are consistent both with a CDM-like model, with lumi-
nosity biasing, and with a fractal spectrum with D ~ 2. In Figs. 4.3 we plot
the data along with some CDM and fractal spectra (Sylos-Labini & Amendola
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1996). In the standard CDM-like interpretation, the increase in amplitude is
due to the higher clustering of the brighter galaxies, and the spectrum peak,
although not statistically significant, is what is expected from the theory. In
the fractal interpretation, the amplitude shift is a consequence of the condi-
tional density scaling, and the spectrum peak is a consequence of the window
function. At the present status of the data, it is not possible to distinguish
between the two interpretations. In the original Park et al. (1994) paper, no
clear evidence of luminosity biasing was found, except for some part of the
lower luminosity spectrum (at 60 and 78 Mpc/h). We examined data taken
from the public Leda database, in the same region as the CfA2 data, contain-
ing roughly 70% of the galaxies in CfA2, and found evidence for true density
scaling, rather than luminosity biasing, from 60 to 130 Mpc/h (Amendola et
al. 1997). As already mentioned, however, the Leda database is incomplete,
so that it is difficult to draw convincing results from it.

3.44 SSRS

SSRS2 includes 3600 galaxies in 1.13 sr of the southern sky, down to an ap-
parent magnitude of 15.5. The power spectrum of SSRS2 {(Da Costa et al.
1995) is very similar to the one of CfA2, and shows the same scaling between
the volume-limited samples at 101 and 130 Mpc/h. The analysis presented for
CfA2 can be applied therefore to SSRS2 as well.

In another paper, Benoist et al (1996), the SSRS2 data were partitioned
in many volume-limited subsamples, in order to look for luminosity biasing.
The correlation function was calculated in 9 VL samples cut at various deptg,
from 30 to 168 Mpc/h. The function exhibits an amplitude scaling of roughly
a factor 3 or 4. The normalization 7o, defined in Eq. (5.84), increases from
3-4 Mpc/h, to 16 Mpc/h in the deepest sample, in rough agreement with the
linear scaling expected from Eq.(5.84). The results were interpreted as an evi-
dence of luminosity bias, because the smaller samples contain galaxies brighter
than —17, while the deepest sample galaxies are brighter than —21. However,
to distinguish between luminosity bias and density scaling it is necessary to
partition the same VL sample into smaller subsamples at various depth and
similar magnitude cuts. In this way, the samples become extremely poor (
the VL samples considered above contained as few as 67 or 105 galaxies in
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some cases, that is a mean separation of 15 Mpc/h). Due to the large error-
bars, then, the conclusions drawn in Benoist et al. (1996), therefore, are again
inconclusive, and are compatible both with fractals and standard scenarios.

In Cappi et al. (1998) the question of fractality has been considered in
greater detail, using the same SSRS2 data. The conditional density {o,) has
been evaluated in spherical cells and shells, in order to produce the statistics
I'(r}) and its integral average, I'*(r). The result is that the conditional density
decreases as r~! from 1 to 50 Mpc/# in all the VL samples considered, implying
fractality with D = 2 on these scales, with no indication of flattening. These
are the largest scales that can be probed via this method. The conditional
density from the observer alone, i.e. from the vertex of the sample, has also
been studied, in order to extend the range. The results are that the sample is
fractal up to 50-80 Mpc/h and tend to homogeneity above this scale. However,
the errors are quite large; within 20 the deepest samples include all values
between D = 2.7 and D = 4. The errors quoted, moreover, do not include
the ensemble variance that, for fractals, is very large, as already mentioned.
This can be estimated only by comparing with simulated fractals, because the
samples are not independent. My contgusion is that the SSRS2 data prove
fractality up to 50 Mpc/h, roughly, and have not enough data beyond this
scale. The values of oy s estimated in the sample are consistent with this
interpretation: they are larger than 1.3 for the largest samples, which implies
in redshift space A, > 50 Mpc/h.

3.4.5 Las Campanas

The Las Campanas redshift survey, LCRS, contains 23,697 galaxies with an
average redshift z = 0.1 , distributed over six 1.5?x80° slices in the north and
south galactic caps.

The survey contains fields which includes galaxies with magnitude between
16.0 and 17.3 , and fields with limits 15.0 and 17.7. Every field has associated
a filling factor 0 < f < 1 which is the fraction of the galaxies randomly chosen -
out of the total number in the field within the magnitude limits. The inverse
of f is therefore a weight to all galaxies in that field, and must be taken into
account in the statistics.

Lin et al. (1996) evaluated the power spectrum in the whole magnitude-
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limited sample adopting the Iuminositiw; function estimated by assumlt:% homo-
neity, so that this spectrum cannot be used to investigate the fractal model.
hey also evaluated the PS in volume-limited subsamples, but the existence
of two magnitude limits makes difficult to compare with a theoretical fractal.
In any case, they find again an increase of power with increasing depth and
magnitude, but the errors do not allow any conclusion to be drawn (see their
Fig. 10).

We performed a very preliminary study of the conditional density in LCRS,
using the only slice with fields of large magnitude range (slice at -129; Palladino
1997). We evaluated the conditional density integrated in cells with a shape
and orientation such as not to intersect the survey boundaries (see Fig. 4.6,
cells marked with R) . This avoids the effect of the window function in the
statistics and allows to include pretty large scales. We cut the sample into
four VL subsamples, delimited by a lower and an upper cut (this is necessary
because LCRS has two limiting magnitudes). The samples are denoted VL147-
997, VL 190-330, VL280-410, and VL224-437, where the numbers give the
lower and upper cutoff distance (see Fig. 4.1).

The result for the ['*(r) is shown in Fig. 4.7. It can be seen that there is
a clear D = 2 fractality on small scales, up to 20 or 30 Mpc/h, just as in the
SSRS?2 case, followed by a flattening of the slope. The scales we reach here
are the largest scales ever reached for the I'(r) statistics, more than two times
the SSRS2 depth. In the case of VL280-410, the behavior is power-law, albeit
with a change in slope, down to more than 100 Mpc/h, while for VL.224-437
(the most sparse sample) a very noisy flattening is reached at 40 Mpc/h. The
_ I™(r) erroneously calculated in non-radial cells (see Fig. 4.6, cells marked with
gﬁ) is systematically higher and reach an apparent homogeneity at shorter
es.

From these results we can conclude that there is a tendency to homoge-
nization around 50-100 Mpc/h, as expected from a CDM model (e.g. with
I' = 0.2, redshift correction, and og ~ 1.5). However, we remark that we
did not detect a clear homogeneous behavior, that is I'*(r) = const, not even
at more than 100 Mpc/h, except for the most sparse sample. This leaves
again space for a fractal behavior to larger scales, although with a dimension
closer to 3. The scale reached is critical: the CDM behavior is absolutely
flat (D =~ 3) beyond 100 Mpc/h. If we can go to a larger scale, either I'*(r)
stabilizes around homogeneity, or continues with the same slope, and a higher
value of og would be required. A more precise comparison with CDM and
fractal simulations is under way.
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Figure 3.19: The geometry of the cells used to estimate the con-
ditional density in LCRS. Radial cells are marked with R, non-
radial with VR,

3.4.6 The number density in Las Campanas

The density of galaxies in a shell between R; — A/2 and R; + A/2 of volume
VR, in a sample of average density py, is by Eq. (5.101) :

(ma,z)
nB) = Vil [ @@l [ gant

(m1.z)

oV 1RSD fv ()P f(2)dz /j:::”)) $(M)IM  (5.105)

For any given survey, characterized by m; and my, and any value of R, the
density depends on D, M, and «, once the other parameters {4 and the cos-
mological parameters) have been fixed. In almost all the published literature
the parameter D is fixed to the homogeneous value, D = 3, even when the
sample is markedly inhomogeneous, and only the luminosity function param-
eters are fitted to the data. Here we want to fit at the e time the three
parameters in the deepest redshift survey so far produced%,a%ge Las Campanas
Redshift Survey.
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To do this, we adopt the likelihood function procedure. Let us divide the
slice at -12° in m radial shells of equal thickness, and let n; be the density of
galaxies in the i-th shell. Then, if n(r;; D, M., a) is the theoretical prediction,
we can form the likelihood function

F=-2logL= i { [ni — n(ri; D, My, a)]2 Jo? + log[2-.-ra,-2]} (5.106)

and maximize it with respect to D, M,, a. We choose the cosmological param-
eters 2 = 1,A = 0 and ?or the k-correction we adopt ai = —0.5 , the same
values adopted in Lin et al. (1996) who derived the LF for Las Campanas
with the homogeneous assumption.

We take 25 slices of 25 Mpc/h each, down to 625 Mpc/h. Since visualizing
the probability contours of F(D, M,,a) is impractical, we display in Fig. 4.7
the contours in the plane D, M, for o = —0.25, ~0.7, —1. The value o = —0.7
is the one found in Lin et al. (1996) by assuming D = 3; the other values are
within the range often found in literature (for instance a = —0.3 is in Lin et
al. by considering only emitting galaxies). The contours in Fig. 4.7 are for
AF = 2,10,20 which roughly corresponds to the probability content of 1,2
and 3 sigma, respectively. We recover the best value M, = —20.3 for D = 3,
found in Lin et al. (1996), but we see that, depending on « , essentially all
values of D between 2 and 3 are allowed within two sigmas. For low a, a value
D = 2 is actually the maximum likelihood estimator.

In Fig. 4.8 we show two best fit curves of n(R), one with D = 2 and one
with D = 3, compared with the data: in both cases the agreement is rather
good (x* /d.of~ 1).

This is not to say that the data are fractal up to 625 Mpc/h. Rather, I
want to show how difficult is to rule out the possibility that the distribution
is fractal up to some large scale, and how the real fractal density scaling
can modify the results of rather standard analyses. In the example above, a
value of a much lower than the one commonly derived is consistent with the
data if we allow for the density scaling. A lower value of o implies a relative
abundance of bright galaxies. In other words, there is a degeneracy in the
number count prediction between small & and D less than 3, because galaxies
ggighte; on average compensate the decrease in density induce by a low fractal

irmension.

Clearly, allowing for a fractal trend to, say,only 100 or 200 Mpc/h would
require an even slighter modification of the value of a found for D = 3.
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.Fig'ure 3.21: Likelihood contours on the plane M* D assuming
a = —1.0,—0.7,—-0.25, top to bottom. The best fit dimension is
D =2,2.7,3.3, respectively.

3.4.7 Conclusions from the observations

The conclusions I can draw from the whole set of redshift catalogs are the
following,.

e Once we discard the tests based on amplitndes, because of the variance
problem, we are left with only a few observations that can constrain the
scale of homogeneity

¢ There is no doubt that a D = 2 fractal behavior up to 30 or 40 Mpc/h
hasdbﬁ:n detected in many surveys, as expected even in standard CDM
mode

o The power spectra of CfA2, SSRS2 and LCRS are compatible both with
fractals and with standard scenarios; the peak found in the spectra is not
incompaitible with the one a pure fractal would show in a finite sample

o The surveys CfA2 and SSRS2 are not deep enough to allow for the
unambiguous test of the I'*(r) to be performed, because the maximum
cell that fits in is of the order of 50 Mpc/h, that is the same scale of
fractality of CDM
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e Only LCRS is deep enough to prove the crucial scales beyond 50 Mpc/h.
In a preliminary analysis, we have found that the result is compatible
with a g = 1.5 CDM with T’ = 0.2. A clear deviation from D = 2
toward D = 3 is found around 50 Mpc/h, but the plateau predicted in
standard CDM around 100 Mpc/A is still not convincingly detected.

3.5 A model
3.5.1 Imtroduction to cosmological first order phase transi-
tions

All what we have been saying so far can be summarized in one sentence: the
level of inhomogeneities in our universe can be higher than usually assumed.
The ultimate reason, as we have seen, is that any finite survey tends to un-
derestimate the true inhomogeneities. Even a fractal extending to one or two
hundreds of Megaparsecs cannot be excluded by observations of large scale
structure alone. Now it is time to ask ourselves if such a high level of inho-
mogeneity can be produced in our universe without putting in jeopardy the
cornerstones of standard cosmology.

Here we consider as cornerstones the inflationary mechanism for generating
fluctuations and for solving the curvature and the horizon problems, and the
observations of anisotropies in the microwave background. In these last Sec-
tions we will present a model of structure generation which does not challenge
the cornerstones, but that produces strong inhomogeneities, in particular with
a tendency to give a D = 2 distribution.

One of the most interesting ideas introduced in inflationary cosmology in
recent years is the possibility of performing a phase transition during inflation.
In such scenarios, two fields act on stage: one, say w, slow rolls, driving enough
inflation to solve the standard problems; the second field, say 4, tunnels from
a false vacuum state to an energetically favored true vacuum state, produci:g
bubbles of the new phase embedded in the old one. Both processes are govern
by a two-field potential U(w, 1) shown in Fig. 5.1.To avoid the graceful exit
gvmblem, the true vacuum state has to allow for a period of inflation on its own.

e can then speak of a true vacuum channel over which the bubbles slow roll
until inflation ends, and reheating takes over. Depending on the potential,
three classes of first-order inflation models have been proposed so far. The
first is the classical extended inflation {La & Steinhardt 1989): the bubbles
are produced in a copious quantity, so that they eventually fill the space and
complete the transition. To avoid too large distortions on the CMB, this
scenario must produce very small bubbles (Liddle & Wands 1992}, so that
they are rapidly thermalized after inflation. No trace of the bubbles is left in
our Universe, and from this point of view such scenarios do not lead to new
predictions over inflation without bubble production. The second class is the
Q < 1 inflation (Bucher, Goldhaber & Turok 1995; Linde 1995; Amendola,
Baccigalupi & Occhionero 1996): here the transition is never completed, so
that each bubble resembles an open Universe to inside observers. Therefore, if
the bubbles inflate for less than the canonical Ny = 60 or so e-foldings, they
will approach an @ < 1 Universe. Here the effect of the nucleation process
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is observable, although it is indistinguishable from a slow roll inflation just
shorter than N7 e-foldings and with no first-order phase transition at all.
Finally, in Occhionero & Amendola (1994) a third class of models has been
proposed, following an early suggestion of La (1991). In such models, the phase
transition is completed before the end of inflation. Then, it has been shown
that the primordial bubbles can be large enough to drive structure formation,
and still be below the CMB level of detection. In such a scenario, the present
large scale structure is a direct outcome of the first order transition, which is

therefore gbservable and testable,
e\rer.'s\.l0 deer;aredﬁaﬁﬁt surveys detected large voids in the galaxy distribution

(see e.g. El-Ad, Piran & Da Costa 1996, 1997), although it is still not clear
if they are really empty of matter or just lack luminous galaxies. Standard
models of galaxy formation can account for these structure only at the price of
adjusting the parameters to get very large scale power. If the voids are really
empty of matter, as some observations suggest (Da Costa et al. 1996), and if
their size continue to grow as deeper surveys are completed, it would be diffi-
cult to reconcile them with standard theories (Piran et al. 1993)., Therefore,
just as we associate matter clumps to primordial fluctuations, it appears worth
trying to associate the present voids to primordial bubble-like fluctuations,
produced during a first-order phase transition. Within different contexts, the
idea of the voids as separate dynamical entities has been investigated several
times in earlier literature (Ostriker & Cowie 1981).

A crucial aspect of bubble inflation is the calculation of the bubble spec-
trum ng(L), defined as the number of bubbles per horizon with comoving size
larger than L. In Occhionero & Amendola (1994) we calculated ng in a spe-
cific model, built on fourth order gravity (Starobinsky 1979), which we found
to possess the requested features. We found that ng(L) can be approximated
by a power law,

ng = (Lm/L)?, (5.107)

and that L., can be as large as the observed voids in the Universe.
The central quantity needed to evaluate np is the nucleation rate in the
semiclassical limit (Coleman 1977)

where M is a constant with a dimension of mass, and B is the Euclidean
least action minus the action for the external deSitter s time solution.
This calculation allows us to reconstruct completely the inflationary two-field
potential from the determination of four observable quantities: the slope of
the bubble spectrum, its amplitude, the density contrast inside the bubbles,
and the amplitude of the ordinary slow-rolling fluctuations. We remark that
only in a model, like ours, in which the bubbles are directly observable, it is
possible to reconstruct the tunneling sector of the primordial potential.

We consider the scalar field theory described by the action (hereinafter,

h=c=1)

5= [dovg{-rz + ypur* - v} (5.100)
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where g is the metric determinant and R the curvature scalar. The potential
is a generic quartic function with non-degenerate minima which allows for
tunneling. We can write it very generally in the form

U(¥) = A + Va(¥) + Va(¥) (5.110)

where A is a cosmological constant, V] is a quartic with two equal-energy
minima and V; is a symmetry-breaking potential which brings the energy
of one minimum, the false vacuum (subscript F), to a value larger than the
other, the true vacuum (subscript T). In the two minima, the Einstein equation
reduces simply to

H? =38rGU/3 (5.111)

We will denote with Hp, Ur the Hubble constant and the potential energy of
the true vacuum, and with Hp, Up the same guantities for the false vacuum.
‘We wish to calculate the tunneling rate (5.108) where B = Sg(v¥) — Se(¥r),
and Sg(#) is the Euclidean least action, i.e. the Action of the “bounce”
solution. We perform the computation in the thin-wall limit, according to
which the O(4) bubbles nucleated have 4-radius R 3> A, where A is the wall
thickness. Further, we include the gravitational term in the action: as we
will show, this term is important when the parameter g = RHr (not to be
confused with the metric determinant) is much larger than unity. This limit
amounts in fact to a bubble approaching the space curvature radius 1/H. It
is convenient to write the potential {(5.110) in the form

3 2
U) = SW(ng

Then, the true vacuum state is t = —thy, and the false vacuum is 3 = ¥ (Fig.
5.2). The potential (5.112) is therefore defined by four physical parameters:

' g’ R! A'.l %‘
- The Euclidean action of the scalar theory (5.109) is

1 2 gz2, L 2
+ AT (* —3)° + RA("b + o) (5.112)

Sp= [ Poy=g{ - + phut® + U} (5.113)

Tn the Euclidean metric for a O(4) space ds? = dr? + a?(r)d2§ one has R =
—6(aa” + a' - 1)/a® and

Sg = 2n® f dr [%(aza” +ad? —a)+ as(%tb'z + U)] = —3—; jdr a(1—a*H?)(5.114)

where the prime denotes derivation with respect to the 4-radius r. The Eu-
clidean Klein-Gordon equation for ¢ is

o+ 3%'¢r = dU/dv (5.115)
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and the Euclidean Friedmann equation is

81G
3

In the zero-gravity limit, G — 0, the latter equation gives a’ = const, so that
(5.115) reduces to

1
a?=1+ a”(-iw’? -U) (5.116)

¥+ 2y = dU/dy (5.17)

In the thin-wall limit, in which R 3» A, one can assume that the second
term in (5.117) can be neglected, and that dU/dy = 2i(3? /1 — 1)/ A2, The
solution which interpolates between false and true vacuum is then

r —ARw)

#© = yy tanh ( (5.118)

where R, is an integration constant that will be determined later. To integrate
the action over the bounce solution, we consider that outside the bubble, i.e.
in the false vacunm, 1 = 1, so that By = Sp(i0) — Sg(¥) = 0. On the

wall, at distance R,,, we have By, = 2n°R3S; where

o 2
Sy = / ,, HRUW) - Up)Y/? = % (5.119)

Finally, inside the bubble, ) = —y, and since {from (5.116), and neglecting
¥') da = dr [1 — a®HZ)"/? we have

Ry
B, 3In

nt=—3r | oda [(1~ a?E2)V2 — (1~ o*H3)"?] (5.120)

The general expression is therefore

B(Ry) = 20 Ry S+ 5 {Hr* [(1 - RAERY? - 1] — B3 [(1 - R ER)Y? - 1] J(s.121)

Let us note that R = 35, /e, where ¢ = Up — Ur = 4y3/RA. Then we see
that B(R,) is minimized by (Parke 1983)

R, = R(1+¢ +4nGRS, + 120°G*R?5}) " (5.122)

Then, for G -+ 0, which implies ¢ = RH7 -+ 0, one has R,, = R. Notice that
the parameter R, Hy which appears in (5.121) equals g, since H2 = g2/R? for
the potential (5.112). This shows explicitly the role played by the constants R
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‘and g. Finally, we obtain the usual (zero-gravity, thin-wall) result {Coleman
1977)

st _wry
2237 3 A
In the general case, G # 0, and assuming (HZ — H3)/H} < 1, i.e. that

the vacuum energy difference is much smaller than the true vacuum energy,
we get B = By f(g) where By is the no-gravity action (5.123) and where

By = 27x* (5.123)

F(g) = 41 + g3 {1+ g71[2+ 3¢ — 201 + 91?1} (5.124)
For ¢ — 0, f(g) = 1, as expected. To the lowest non-trivial order in g,
B = By(l1-g¢% : (5.125)

Gravitational effects, then, increase the nucleation rate I' ( Callan & Coleman
1977).

Finally, we can express the tunneling rate in the post-thin-wall approxi-
mation (Amendola et al. 1996). The Euclidean action turns out to be

B = By(1 —9A/2R) (5.126)

The post-thin-wall correction term again incresses the tunneling rate. Com-
bining Eq. (5.123), Eq. (5.126) and Eq. (5.125), we obtain

272 R3¢ 9A
B=— A""“ (1 — ﬁ) (1-4% (5.127)

To get a tunneling rate which depends on the nucleation time, we now
assume that R and g depends on the nucleation e-folding time N as a simple
power-law

g~ R~ N® (5.128)

with a > 0. This behavior is motivated by the simple physical model investi-
gated in Amendola et al. (1996), based on fourth order gravity, but is general
enough to cover a variety of cases. Then the bounce action is

N 3a N\~ N 20
= {2 1—-(— -|= 129
- () -G -(] w
where the constants Ni, Na, N3 are defined in terms of the potential param-
eters A,y and of the normalization of R(N) and g(N). The approxima-
tions we have made are then valid if N > N, (post-thin-wall limit) and

N < Nj (gravitational correction). If these conditions are fulfilled, we can
write B(N) = B(N/N;)%*, with 8 a slowly varying function of N of order




unity. We also impose the condition that N > N; in order that the semiclas-
sical approximations are valid.

We can now calculate explicitly the bubble spectrum in our model. The
number of bubbles nucleated in the interval dt ig '

. t Jdr 3
B8 — Ta¥Viexp(-1), IE{_i; / ‘W) @) ( / Z(i?)) },(5.130)

where Vjy, is the horizon volume at N = Ny, V;, = 4n/3H3 , and where the
exponential factor accounts for the fraction of space which remains in the
false vacuum. To get a manageable expression, we first change variable in Eq.
(5.130) from the nucleation epoch £ to the scale L in horizon-crossing at ¢, by

use of the relation dL/dt ~ —H, Ly, /a valid during slow roll. This gives

dng

= = —3LIL'Q(N)e . (5.131)
where the dimensionless tunneling rate ¢ can be written as
4xT
Q= E;'I?T}T = exp[B(No) — B(N)] (5.132)

Here, the constant Ny denotes the instant at which @ = 1. After this stage, the
nucleation can be considered over, because more than one bubble per horizon
volume per horizon time is nucleated. Approximating Q(N} around N = N
as Q = exp{s(Np — N)], we obtain

s = {dB/dN), = 30B8(Ns/N1)’® /Ny (5.133)

Making use of the relation between the e-folding time N and the bubble co-
moving size L, HL(N) = HinLy exp(N ~ N7). It follows Q = e *4N(L, /L)*,
where AN = Ny — Nj corresponds to the duration of the transition. For
I « 1, ie. far from the end of the transition, we obtain, as anticipated, a
power-law spectrum of bubbles

ng = (Lm/L)p, p=3+8 (5‘134)
where
Ly = Lye®-PAN/p(3 /)1 /p (5.135)

The precise value of a depends on the specific model. For instance, in Oc-
chionero & Amendola (1994) we considered a model with s of order unity.
The slope p and the amplitude L,, are therefore the observable guantities
that. depend on the potential parameters mainly through Ny and N;.

When I appr es unity, the nucleation process reaches a peak, and then
declines rapidly, due to the fast decrease in the false vacuum space available, In
Occhionero & Amendola (1994) we showed that the peak occurs, as expected,
just after Ny, which we therefore consider the end of the nucleation.
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Figure 3.23: Two-dimensional potential with tunneling (along 1)
and slow-rolling (along w).

3.5.2 Constraints on the bubble spectrum

The bubbles so produced have a distribution of 6p/p which reflects the initial
energy contrast between the false and true vacuum. They expand comovingly
at first, then reenter the horizon, and in the matter dominated era expand
slightly overcomovingly (Occhionero et al. 1997). Depending on the initial
density contrast they can be either empty by today or contain some matter
density. They can also reach shell-crossing during the evolution and form
structure on the shells, again depending on the initial density contrast and
density profile (Occhionero et al. 1997).

In Fig. 5.2 we show that a distribution of voids that can be fitted by the
power law (5.134) does indeed provide large scale power (Fiorentino 1997).
Roughly speaking, a distribution filling a major fraction of space with bubbles
extending to radius R give fractality with 1) ~ 2 up to A, = 2R. Since the
bubbles grow by an overcomoving factor of 2 from decoupling to now, bubbles
of size }%r at decoupling give fractality up to 4R by the present time. As a
consequence, if bubbles of radius e.g. 25 Mpc/h are acceptable for as concerns
their signal on the microwave background, they can produce fractality up to
100 Mpc/h. This is what will be shown below.
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To evaluate the constraints on the microwave background we can work in
two limits: empty, non-linear bubbles, and linear bubbles. The first case has
been solved so far only considering the Sachs-Wolfe effect {Baccigalupi et al.
1997). Here we focus on the linear case ( Amendola, Baccigalupi & Occhionero
1998) in which the full calculation is possible.

We consider for simplicity a class of interesting bubble model which are
likely not to give too strong anisotropies, but still produce relevant inhomo-
geneities by today. We assume then that the voids are today from 20 to 60
Mpc/h by radius, as suggested by some observations. Because the voids had a
slight overcomoving growth, they were around 10 to 30 Mpc/h at decoupling
(Occhionero et al. 1997). To further simplify the matter, we consider voids of
constant radius, either of R =10, 20 or 30 Mpc/h at decoupling. The number
of voids is deduced by the requirement that foday they £ill a fraction X of
the space; we take X = 50%, consistently with, e.g., EI-Ad et al. (1996) and
explore also values from 10 to 70 %. The central density contrast at decou-
pling § is a free parameter in our model, and we consider values in the range
4 € (.001 — .1), so that the linear approximation can be employed to evaluate
the radiation anisotropy (4 < 0.1), and the voids become empty by the present
time (4 > 0.001). Each of our distributions is therefore parametrized by three
numbers, the radius R, the filling fraction X, and the central density contrast
. It is important to remark that each set of parameters we adopt in this
~ paper can be obtained in the primordial potentials seen above. The features
we are going to describe on the CMB maps put therefore direct constraints on
the inflationary model.

To create the maps, we distribute the voids randomly near the last scat-
tering surface, i.e. in a shell of size 2R centered on the surface. Voids much
farther than this from the scattering surface give a negligible contribute. As
explained next, we calculate for each void the radiation anisotropy field A7T/T,
taking into account the Sachs-Wolfe effect (the integrated Sachs-Wolfe effect
being negligible}, the Doppler mechanism, the adiabatic coupling. Once we
have the AT/T(@) for any void, where ¢ is the angular distance from the void
center, we build maps of standard CDM fluctuations plus voids. The voids
are distributed randomly because their filling factor at nucleation is small
enough to consider each nucleation independently of the other nucleations.
The %MB anisotropy field induced by linear bubbles has been computed in
detail in Baccigalupi (1998). Since our bubbles are linear, we can use the stan-
dard procedure of solution of the photon-baryon-dark matter fluid. Briefly, a
bubbly perturbation at reheating is modelled analytically and Fourier trans-
formed. By using the theory of linear perturbations (we employed the formu-
lation proposed by Hu & Sugiyama 1995) in a standard cosmological scenario
(@ = 1,9, = 0.06,~ = 0.5,A = 0, COBE normalization Q53, = 18uK), the
corresponding perturbation modes in the photon-baryon plasma are evolved
until decoupling, when they generates CMB anisotropies. For an isolated
bubble, the anisotropy pattern is composed of a central (adiabatic and Sachs-
Wolfe) spot and a series of acoustic waves which give rise to concentric isother-
mal rings of alternate sign of AT /T ( Doppler rings) on the scale of the sound
horizon at decoupling ,< 1° in the sky. The mean amplitude of the central
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spot follows the expected trend for linear perturbations, AT/T ~ §(R/H -2,
As noticed above, the AT/T scales roughly as R4, so that we expect the total
effect of a single bubble on the radiation anisotropy field to depend, to a good
approximation, on this product alone.

The void size corresponds on the decoupling surface to a spot of R/Ly
radians, where L, = 6000Mpc/h is the horizon radius; this angular size is
therefore from 6 to 18 arcmin, We expand, as customary, the map AT/T'(8, ©)
in spherical harmonics AT/T(6,¢) = Ty aemY,5(6,¢), and calculate the an-
gular power spectrum

Ce=Y laeml[*/(2¢ +1).

As an angular size of ~10 arcmin corresponds to £ = 1000, we expect an
increase in power at this multipole order for R = 10 — 20A~"'Mpc, and at
smaller £ for larger R,

We show in Fig. 5.3 three 6° x 6° maps of the CMB for various values of
R, X and 4. For each set of parameters we plot in Fig. 5.4 the Cy spectrum.
For R = 10 and 20 A~ *Mpc, a clear feature of the angular power spectra is
that the first Doppler peak of the CDM distribution is left almost unperturbed
by the primordial voids, while for large § a second prominent peak appears at

2~ 1000 as expected (Fig. 5.4). For R = 10h~*Mpc the peak structure
shows a broad top (£ € (800, 1500)), with a secondary peak at larger £. For
R = 20h~'Mpc the peak becomes sharper, and it moves at £ ~ 700. Finally,
for R = 30h—'Mpc the peak is at £ = 400, so that it overlaps with the CDM
first peak. The peak is a clear diagnostics of the void model, being strongly
dependent on R, X and é.

For each value of B there is a value of § below which the voids power
is dominated by the CDM power; for instance, § =~ 2% if R = 10 Mpc/h.
This means that a power spectrum analysis cannot detect these shallow bub-
bles, although they might be detected by their non-Gaussian features. The
most important consequence is that there are models of primordial voids (plus
CDM) ihat, although indistinguishable from pure CDM for as concerns the
CMB angular spectrum, do contribute very significantly to structure forma-
tion. In fact, the voids considered here fill, as mentioned, 50% of the space
today, and are underdense enough (§ > .001) to develop completely empty
void by the present time. In other words, finding a CDM spectrum on the
microwave background does not rule out the possibility that today’s galaxy
distribution is shaped to a large extent by the primordial voids.

We are now in position to predict the angular spectrum in our voids-plus-
CDM model, to compare with the next generation experiments on the CMB.
The simplest prediction is the height of the second peak in the spectrum. Since
the bubbles induce an eztra power in Cy, we found easier to model not the peak
height itself, but rather the difference in power between the CDM+bubbles
mode! , Ciot, and the CDM alone Cein, at the location peqx of the peak.
This quantity expresses directly the extra power induced by the bubbles. Let
us denote this quantity as the bubble peak power Cpeat = Ciot — Ceam- We



198

found an empirical relation between Cpear = [£(€+ 1)Cpear /(27)]/2 and R (in
Mpc/h) and § at constant X:

Cpear =~ Co(R/10h~*Mpc)®44 (5.136)

where Cp = 1.1m K . For R = 10 — 20h~'Mpc, the total power at Leak i8
roughly Cpeax + 50uK. For instance, a peak Cpegr = 100pK implies § = 0.1
at decoupling if we require the voids to be 20 Mpec/h today by radius, and
therefore R = 10 Mpc/h at decoupling. We also found that the dependence
on X is linear in the range X = 10 — 70%. Finally, the location of the peak
is , as expected, #pcqr & 1200(10h~'Mpc/R), although, as we have seen, for
small R the peak structure is not simple, due to the large number of bubbles
to get X = 50%.

In a panel of Fig. 5.4 we also show the variance for different realization of
the CMB sky, corresponding to different random distributions of voids; this
variance is due to the voids alone, the CDM realization being fixed. This effect
i therefore to be added to the cosmic variance. In the same panel, we also
show the effect on the peak of assuming different values for X.

Current observations focused so far on the first Doppler peak around £ =
200. The data at higher £ are very uncertain. If we take the results by Scott
et al. (1996) from the CAT experiment, Cy—spo = (48722)uK, then we can

“exclude” at the 1o confidence level the values § > .002 for R = 30A~Mpc,
4 > .01 for R =20 Mpc/h , and § > .1 for R = 10 Mpc/h. As a consequence,
voids larger that 30k~ Mpc at decoupling with X = 50% can hardly be empty
by today. We abserve in passing that voids of size 40 A~ 1Mpc produce power on
the same scale of the CDM first peak, so that they could be invoked to explain
some experiments at £ = 200 showing more power than predicted by standard
CDM. Other published data are either at much higher multipole order than
our peaks, or are less stringent than the CAT data (see e.g. the compilation in
Tegmark 1998). The resolution requested for voids larger than 10 A~Mpc is at
least £ = 1000; also, a map of several square degrees is necessary to distinguish
the non-Gaussian features of the void temperature profile. In the near future,
experiments as Boomerang and CAT will be able to produce maps with this
resolution, and with adequate sensitivity; also OVRO, WD and SuZIE can put
interesting constraints on our model (updated references in Tegmark 1997).
The proposed Planck satellite will be of course particularly suitable, while
MAP is favorable only for R > 25A~1Mpc.

Of course, the CMB maps can be investigated through phase-independent
statistics, like the angular power spectrum, or by methods which are sensitive
to the phases, like wavelet transform and other non-Gaussian techniques (see
e.g. Amendola 1996; Ferreira & Maguejo 1997). Here we confined ourselves
Eoelig;e angular power spectrum, by far the most popular statistics in the CMB.

Consider now Eq. (5.136). Let us assume a distribution of voids of 25
Mpc/h by radius, which give fractality up to 100 Mpc/h by today. If they
have § = 0.001 at decoupling, so that they are empty by today by linear
growth, produce an extra peak of 25 uK at £ ~ 500, to be added to the
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Gaussian fluctuations. This is perfectly compatible with current constraints
on the microwave background. If ¢ is assumed smaller, so that the voids are
not completely empty by today, then even larger voids can be produced. It is
clear that these considerations are very rough, and that a more accurate study
of the parameter space is necessary in order to put precise constraints on the
maximum scale of homogeneity from bubbles. Nevertheless, this shows that a
simple extension of the standard scenario of structure formation can produce
much stronger inhomogeneity than usually assumed.

To summarize, the results of this section are a), the voids induce a well-
defined second peak around £ = 1000 in the C; spectrum for R < 20h~!Mpc;
b), there is a direct relation between the height of the second peak in the C,
gpectrum and the void parameters R, X and §; ¢), there are distribution of
voids that, although indistinguishable from standard CDM regarding the CMB

spectrum, still produce significant large scale structure, as required by
current redshift surveys; and d}, an homogeneity scale of order 100 Mpc/h at
the present can be obtained without breaking the CMB constraints. Our pre-
dictions can be compared to the results of the next generation high-resolution
experiments on the CMB. -
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Figure 3.24: Conditional density I'*(r) for a distribution of voids
with maximum radius R = 50 Mpc/h. There is D ~ 2 fractality
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Figure 3.25: Maps of CMB, 6 degrees by side, resolution 5 ar-
cmin. Top: Standard CDM plus voids with R = 10 Mpc/h,
X = 50%, and § = 0.07%. Center: as above, with § = 0.05. Bot-
tom: as above, with § = 0.01%. The C, spectra are reported in
the next figure.



202

[10+1)c,/2n]2 [uK]

[1(1+1)C, /2n])172 [uK)

80

ao

60

40

20

-

'fl’l—l_l_l
|

RN R N R

LI | I LI ¥

R=10 h-! Mpc
6=0.07

] .t I_l_lllI[ ] 1 Illlll’
A I

§=0.05 (voids only)

Illtll_l'

Il'llll_l'

L RS LA B
“

IIITII

| 1 + 1o 3l . ¥ vyl

-
1™t

II_I_IIIIIIII

1000 1000

Figure 3.26: Angt}lar ower specira of CMB ﬂuctuazions in
models of voids plus (gDM with the parameters indicated and
X = 50%. In all the panel, the thin line shows the thearetical
CDM spectrum. While the first peak is left almost unper-
turbed, the voids induce a second peak at large {. The larger
R,X and §, the higher the peak. The crosses are the CAT re-
sults by Scott et al. {1996). In the top right panel we piot also
C¢ for X = 30% (lower dotted line) and X = 70% (top dotted
line) (see text). In the same panel we put the errorbars, as
explained in the text. In the hottom right panel we plot the
6pure void contribution {dashed line) with R = 10 Mpc/k and
= .05.



3.6 Acknowledgments

Many thanks to Prof. Mario Novello for the invitation to the IX Brasilian
School of Cosmology and Gravitation, that provided me the opportunity to
review the topics collected here. I also acknowledge many insightful discussions
with C. Baccigalupi, H. Di Nella, M. Fiorentino, M. Joyce, M. Montuori, E.
Palladino, L. Pietronero, F. Occhionero, F. Sylos-Labini.

3.7 References

Amendola L., 1994, Ap. J., 430, L9
Amendola L. 1996, MNRAS, 283, 983
Amendola L. 1997, MNRAS, 290, 59
Amendola L. & Occhionero F., 1993 Ap. J. 413, 39
Amendola L., Baccigalupi C., & Occhionero F., 1996, Phys. Rev. D, 54,

4760
Amendola L., Baccigalupi C., & Occhionero F., 1998, Ap. J., 492, L5

Amendola L., Baccigalupi C., Konoplich R., Occhionero F., Rubin S., 1996,
Phys. Rev. D54, 7199

Amendola L. & S. Borgani, 1994, MNRAS. 266, 191
635 Amendola L, Di Nella H., Montuori M., Sylos-Labini F., 1997, Fractals, 5,

Baccigalupi C., 1997, Ap. J., 496, 615

Baccigalupi C., Amendola L. & Occhionero F. 1997, MNRAS 288, 387

Baccigalupi C., Amendola L. , Fortini P. & Occhionero F., 1997, Phys.
Rev. D56, 4610

Balian R. & Schaeffer R., Ap. J., 335, L43 (1988)

Baryshev, Y., Sylos Labini, F., Mentuori, M., Pietronero, L. Vistas in
Astron. 1994, 38, 419

Baugh CM. and Efstathiou G. MNRAS,, 267 (1994) 323

Bennett C.L. et al., Ap.J., 436 (1994), 423

Benoist C., Maurogordato S., Da Costa L.N., Cappi A., and Schaeffer R.,
1996, Ap. J.,472, 452

Bond, J.R. & Efstathiou, G., MNRAS , 226, 655

Borgani S., 1995, Phys. Rep., 251, 1

Bucher M. , A.S. Goldhaber, & N. Turok, Phys. Rev. D 52 3314 (1995);

Callan C. and S. Coleman, Phys. Rev. D, 16 1762 (1977);

Cappi A., Benoist C., Da Costa L.N., Maurogordato S., 1998, astro-
ph/9804085

Coleman, S., Phys. Rev. D, 2929 (1977);

Coleman S. and F. De Luccia, 1980 , Phys. Rev. D, 21, 3305 .
( Cc;)leman, P.H. Pietronero, L.,& Sanders,R.H., Astron. Ap. Lett. 245,
1988), 1 )

Coleman, P.H. & Pietronero, L., Phys.Rep. 231, (1992) 311

Da Costa, L. N. et al. Ap. J., 327, (1988) 544



Da Costa L.N., Frendling W., Wegner G., Giovanelli R., Haynes M. &
Salzer J.J, 1996, Ap. J., 468, L5
Da Costa, L. N. et al. Ap. J. 424, (1994) L1
437%{. Costa L.N., Vogeley, M., Geller, M.J., Huchra, I., Park, C., 1994, ApJ
de Vaucouleurs G., 1970, Science 167, 1203
Di Nella, H., Montuori M., Paturel, G., Sylos Labini, F., & Pietronero L.
1996, A& A Letter, 308, L33.
El-Ad H., Piran T. & Da Costa L.N., 1996 Ap. J. 462, L13
El-Ad H., Piran T. & Da Costa L.N., 1997, MNRAS 287, 790
Feldman H. A., Kaiser, N., & Peacock, J.A. 1994, Ap. J., 426, 23
Ferreira P. , Maguejo J., 1997, Phys. Rev. D55, 3358
Fiorentino M. 1997, Thesis, Univ. of Rome, unpublished
402F4i:52her K.B., Davis, M., Strauss, M., Yahil, A., & Huchra, J.P., 1993, ApJ
Gaztanaga E., 1994, MNRAS, 268, 913
Gaztanaga E., Croft R. A. & Dalton G. B., 1995, MNRAS, 276, 336
Guth A. and E.J. Weinberg, Nucl. Phys. B212, 321 (1983)
Hu W. & Sugiyama N. 1995 Ap. J. 444, 489
Juszkiewicz R., Bouchet F. & Colombi S., 1993, Ap. J., 412, L9
Kirshner R.P., Oemler A., Schechter P.L., Shectman S.A., 1981, ApJ 248,

7
Kosowsky A. & Turner M. S, 1993 Phys. Rev. DAT7, 4372
La D. 1991, Phys. Lett. B265, 232
La D. & Steinhardt P. 1989 Phys. Rev. Lett. 62, 376
Landy S. D. , 5.A. Schectman, H. Lin, R.P. Kirshner, Oemler A.A., & D.
Tucker, Ap. J., 456, L1 (1996)
Liddle A.R. and D. Wands, MNRAS 253, 637 (1991).
Lin H., et al. 1996a, ApJ , 464, 60
Lin H. et al. 1996b, Ap. J., 471, 617
Linde A. , Phys. Lett. B351 99 (1995);
Loveday J.et al. 1995 Ap. J., 442, 457
Maddox et ol., 1990, MNRAS, 242, 43
Mandelbrot B., (1982) The Fractal Geometry of Nature, Freeman, New

York
Occhionero F. & Amendola L., 1994, Phys. Rev. D50, 4846

Occhionero F. , Baccigalupi C., Amendola L. & Monastra S., 1997, Phys.
Rev. D, 56, 7588

Ostriker J.P. and L.N. Cowie, Ap. J. 243, L127 {1981);

Padmanabhban T., Structure Formation in the Universe, 1993, Cambridge

Univ. Press
Paladin G. & Vulpiani A., 1987, Phys. Rep. 156, 147

Palladino E., 1997, Thesis, Univ. of Rome, unpublished

Park, C., Vogeley, M.S., Geller, M., Huchra, J. Ap. J., 431, (1994) 569
Parke,S. Phys. Lett. 121B, 313 (1983)

Paturel, G., Bottinelli, L., Gougnenheim, L., 1994 , Astron. Ap., 286, 768
Peacock J. A. & Dodds S. J., 1994, MNRAS 267, 1020 :
Peacock, J.A., Nicholson, D. MNRAS 235, (1991) 307

L5



205

Peebles, P. J. E. Large Scale Structure of the Universe , 1980, Princeton

Uniyv. Press

Peebles P. J. E.,Principles of Physical Cosmology, 1993, Princeton Univ.

Press

Pietronero L., Physica A, 144, (1987) 257
Pietronero L., Montuori M., Sylos Labini F., in the Proc of the Conference

" Critical Dialogues in Cosmology” N. Turok Ed. (1997) World Scientific

Piran T., Lecar M., Goldwirth D., Da Costa L.,Blumenthal G.,1993 MN-

RAS,265,681

Schechter, P., (1976) Ap.J. 203,297

Scott P. F. et al., 1996, Ap. J. 461, L1

Starobinsky A.A. , Sov. Phys. JETP Letters, 30, 682 (1979).
Starobinsky A.A. , Sov. Astron. Lett. 9(5), 302 (1983).

Stocke J. et al. Ap. J. 451, 24 (1995);

Strauss M.A., et al., Ap.J.Suppl. 83, (1992) 29

Sylos Labini, F. Amendola, L. Ap.J., 468, (1996) L1

Sylos Labini F., Montuori M., Pietronero L., 1996, Physica A, 230, 336
Sylos Labini F., Montuori M., Pietronero L., 1998, Physics Report, 293,

61
Sylos Labini F. & Pietronero L., 1996, Ap.J., 469 , 26
A 282ylos Labini F., Gabrielli A., Montuori M., Pietronero L., 1996, Physica
, 226, 195

Szomoru A. et al. AJ 108, 491 (1994)

Yoshioka S. and S. Ikeuchi, Ap.J. 341, 16 (1989);

Tadros H., & Efstathiou G., 1996, MNRAS , 276, L45

Tegmark M. , 1998, data collected in www.sns.ias.edu/~max/cmb/
'experiments.html

Tucker D.L. et al., 1997, MNRAS 285, 5

Van de Weygaert R. and V. Icke, Astron. & Astroph. 213, 1 (1989).
White S.D., Efstathiou G. & Frenk C.S., 1993, MNRAS 262, 1023
Zaroubi S. et al. 1997, Ap.J., 486, 21



