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Abstract. Istart with a discussion of the no-hair principle. The hairy black
hole solutions of recent vintage do not deprive it of value because they are often
unstable. Generic properties of spherical static black holes with nonvacuum
exteriors are derived. These form the basis for the discussion of the new no
scalar hair theorems. I discuss the generic phenomenon of superradiance for its
own sake, as well as background for black hole superradiance. First I £o into
uniform linear motion superradiance with some examples. I then discuss Kerr
black hole superradiance in connection with a general rotational superradiance
theory with possible applications in the laboratory. Adiabatic invariants have
played a weighty role in theoretical physics. 1 explain why the horizon area of
a nearly stationary black hole can be regarded as an adiabatic invariant, and
support this by examples as well as a general discussion of perturbations of
the horizon. The horizon area’s adiabatic invariance suggests that its quan-
tum counterpart is quantized in multiples of a basic unit. Consideration of the
quantum analog of the Christodoulou reversible processes provides support for
this idea. Area quantization provides a definite discrete black hole mass spec-
trum. Black hole spectroscopy follows: the Hawking semiclassical spectrum is
replaced by a spectrum of nearly uniformly spaced lines whose envelope may
be roughly Planckian. I estimate the lines’ natural broadening. To check on
the possibility of line splitting, I present a simple algebra involving, among
other operators, the black hole observables. Under simple assumptions it also
leads to the uniformly spaced area spectrum.

In these lectures I take units for which ¢ = 1. Occasionally, where mentioned
explicitly, I also set G = 1, but always display %.



1.1 No scalar hair theorems

Almost thirty years ago Wheeler enunciated the Israel-Carter conjec-
ture, today colloquially known as “black holes have no hair” [88]. This
influential conjecture has long been regarded as a theorem by large sec-
tors of the gravity-particle physics community. But by the early 1990’s
solutions for stationary black holes with exterior nonabelian gauge or
skyrmion fields [105, 27, 39, 62, 44] had led many workers to regard the
conjecture as having fallen by the wayside. By now things have settled
down to a new paradigm not very different from Wheeler’s original one.

1.1.1 [Early days of ‘no-hair’

By 1965 the charged Kerr-Newman black hole metric was known. In-
spired by Israel’s uniqueness theorems for the Schwarzschild and Reissner-
Nordstrém black holes [52], and by Carter’s [33] and Wald’s [106] unique-
ness theorems for the Kerr black hole, Wheeler anticipated that “collapse
leads to a black hole endowed with mass and charge and angular mo-
mentum, but, so far as we can now judge, no other free parameters”
by which he meant that collapse ends with a Kerr-Newman black hole.
Wheeler stressed that other ‘quantum numbers’ such as baryon number
or strangeness can have no place in the external observer’s description of
a black hole.

What is s0 special about mass, electric charge and angular momentum
7 They are all conserved quantities subject to a Gauss type law. One
can thus determine these properties of a black hole by measurements
from afar. Obviously this reasoning has to be completed by including
magnetic (monopole) charge as a fourth parameter because it also is
conserved in Einstein-Maxwell theory, it also submits to a Gauss type
law, and duality of the theory permits Kerr-Newman like solutions with
magnetic charge alongside (or instead of) electric charge. In the updated
version of Wheeler’s conjecture, the forbidden “hair” is any field not of
gravitational or electromagnetic nature associated with a black hole.

" But why is the issue of hair interesting ? Black holes are in a real sense
gravitational solitons; they play in gravity theory the role atoms played
in the nescent quantum theory of matter and chemistry. Black hole mass
and charge are analogous to atomic mass and atomic number. Thus if
black holes could have other parameters, such ‘hairy’ black holes would



be analogous to excited atoms and radicals, the stuff of exotic chemistry.
By contrast, the absence of a large number of hair parameters would
support the conception of simple black hole exteriors, a situation which
is natural for the formulation of black hole entropy as the measure of
the vast number of hidden degrees of freedom of a black hole. Indeed,
historically, the no-hair conjecture inspired the formulation of black hole
thermodynamics (for the early history see review [17]), which has in the
intertm become a pillar of gravity theory.
Originally “no-hair theorems” meant theorems like Israel’s or Carter’s [52,
33] on the uniqueness of the Kerr-Newman family within the Einstein-
Maxwell theory or like Chase’s [34] on its uniqueness within the Einstein-
massless scalar field theory. Wheeler's conjecture that baryon and like
numbers cannot be specified for a black hole set off a longstanding trend
in the search for mew no-hair theorems. Thus Hartle [45) as well as
Teitelboim [98] proved that the nonelectromagnetic force between two
“baryons” or “leptons” resulting from exchange of various force carriers
would vanish if one of the particles was allowed to approach a black hole
horizon. I developed an alternative and very simple approach [11] to
show that classical massive scalar or vector fields cannot be supported at
all by a stationary black hole exterior, making it impossible to infer any
information about their sources in the black hole interior.
In modernized form this goes as follows. Start with the action

1

Sp === (ot + V)l(-9)/  d's (L1)
for a static real scalar field 1. From it follows the field equation

V' —YV'([§’) =0 (1.2)

Assume that the configuration is asymptotically flat and stationary:
A/8z° = 0, where z° is a timelike variable in the black hole exterior.
Muitiply Eq. (1.2) by % and integrate over the black hole exterior at a
given z° (space V). Integration by parts leads to

- [[5bats + VAN s+ § gpodEa=0  (13)

where dX, is the element of the boundary hypersurface V. The indices
a and b run over the space coordinates only, so that the restricted metric
g° is positive definite in the black hole exterior.



Now suppose the boundary JV is taken as a large sphere at infin-
ity over all time (topology 5% X R) together with a surface close to the
horizon H, also with topology S? x R. Then so long as ¢ decays as 1/r
or faster at large distances (r is the usual Euclidean distance), which
will be true for static solutions of Eq. (1.2), infinity’s contribution to the
boundary vanishes. At the inner boundary we can use Schwarz’s inequal-
ity to state that at every point |pp2dS,| < (V2 92y, dEP dSs)Y/%. As
the boundary is pushed to the horizon (a null surface), dZ? dZg must
necessarily tend to zero. Thus the inner boundary term will also van-
ish unless ¥? 4y, blows up at H. But this last eventuality is usually
unacceptable for a black hole. Finiteness of the physical scalars T,gT*#
and (7,%)? at M tells us that ¥*¢, and V are both bounded at #.
Then if V diverges for large arguments, 1 has to remain bounded, and so
Y2 P24 4 is bounded on H. But even if V (oo} # oo so that 3 is allowed
to diverge, this will almost certainly cause ¥"“9, to diverge. In either
case the boundary term vanishes.

Thus for a generic V we conciude that the 4-D integral in Eq. (1.3)
must itself vanish. In the case that V'(3?) is everywhere nonnegative and
vanishes only at some discrete values 9;, then it is clear that the field
must be constant everywhere outside the black hole, taking on one of the
values {0,%;}. The scalar field is thus trivial, either vanishing or taking
a constant value as dictated by spontaneous symmetry breaking without
the black hole ! In particular, the theorem works for the Kiein-Gordon
field for which V’(3y?) = u? where u is the field’s mass. In that case 1 =0
outside the black hole [11]. Obviously the theorem supports Wheeler’s
original conjecture by ruling out black hole parameters having to do with
a scalar field.

One advantage of this type of theorem, in contrast with, say, Chase’s,
is that it makes no use of the gravitational field equations. The inference
that there are no black holes with scalar hair is thus just as true in other
metric theories of gravity. Another plus is that the theorem is easily
generalizable to exclude massive vector (Proca) field hair [11]. Because
of both features this type of theorem was the state of the art for many
years (see for instance Heusler’s monograph [51]). But this should not
blind us to its shortcomings. For example, it does not rule out hair in
the form of a Higgs field with a ‘Mexican hat’ potential, a darling of
particle physicists. For the Higgs field V’(¢/?) is negative in some regime



of ¢, and the theorem fails. This gap in the no-hair theorems remained
until fairly late in the subject, as certified by Gibbons’ relatively recent
review [41]).

1.1.2 Hairy black holes ?

When one removes the massive vector field’s mass, gauge invariance sets
_in and the fundamental field, basically the covariant time component of
A, (the electromagnetic 4-potential), cannot be required to be bounded
at the horizon because it is not gauge invariant. No no-hair theorem can
be proved: a black hole can have an electromagnetic field as witness the
Kerr-Newman family. By the same logic I concluded [9) that the gauge
_ invariance of the nonabelian gauge theories should likewise allow one or
- more of the gauge field components generated by sources in a black hole to
* “egcape” from it. Thus gauge fields around a black hole may be possible
in every gauge theory. Early on Yasskin [108] exhibited some trivial hairy
black holes in nonabelian gauge theories. Volkov and Gal’tsov discovery
in 1989 of more interesting black hole solutions with nonabelian gauge
~ field [105, 27] took everybody by surprise. But it abviously should not
- have done so !
Actually an hairy black hole was known well before. It is a solution
- of the action for a scalar nonminimally coupled to gravity:

S=Sa+Su—1 f [a™ +ERY + V()] =gz, (14)

Here S, stands for the Einstein-Hilbert action, Sy for the Maxwell one, R
is the Ricci curvature scalar and £ measures the strength of the coupling
to the curvature. One derives the energy-momentum tensor

1 o 1
T = Yutho— 300" Q€ Yt OO Gt E VG-V 9+ TEN(L5)
* Substituting G = 8nGT,, turns this into

v Vu? ~ 3Pa¥C 8 — EYP,Y + YRS — LV, 4+ T
A= 1— 8rGeEy? (1.6)

For the conformally invariant coupling £ = 1/6 with V = 0, Bocharova,
Bronnikov and Melnikov (BBEM) {28] and independently I {I14] found a




black hole solution:
ds* = —(1—GM/r)dt* + (1 — GM/r)*dr® + r*(d§* + sin’ 9 d¢”)
Fo = Q@0 -6y Q<J/GM (1.7)

% = £(BYG/Am)(M* - GT'QH (r —GM)™!

M and Q are free parameters corresponding to the mass and charge of
the solution. Note that the metric is an extreme Reissner-Nordstrém
metric and that the scalar field blows up at r = GM, the location of the
geometry’s horizon.

I interpreted this solution as genuine black hole [16] because the ap-
parent singularity of ¢ at the horizon has no deleterious consequences.
The invariants T,s7%° and (7,*)? are bounded even at # and a par-
ticle, even one coupled to 1, encounters no infinite tidal forces upon
approaching the horizon. Because M and @ are the only independent
parameters, with the scalar field introducing merely a sign choice, 1 was
not alarmed by the threat posed to no-hair by this solution. Indeed in
one of his last papers before his tragic death, B. Xanthopoulos in cooper-
ation with Zannias [107], and then Zannias alone [109] proved that there
is no nonextremal extension of the BBM black hole which might have
introduced a scalar charge as an extra parameter. The situation is not
qualitatively changed by the addition of magnetic charge {103).

Sudarsky and Zannias {97] have lately claimed that Eqs. (1.7) are not
really a solution of the action (1.4). Their point is that (for @ = 0)
although 7.7 is finite at #, if one “regularizes” 1 so that it becomes ac-
tually bounded on #, the resulting finite T,# does not generate, through
Einstein’s equations the metric (1.7a). The argument is rather odd as
it creates a problem (regularizes ¢ when T,? is perfectly finite anyway)
in order to solve it. However, the BBM solution has been shown to be
unstable in linearized theory by Bronnikov {one of its discoverers) and
Kireyev [30]. A poor man’s way of understanding why can be had by
contemplating Eq. (1.6) for the energy momentum tensor. Addition of a
bit of matter at the point where the denominator vanishes (which must
be outside the horizon since 12 blows up at the horizon) would obviously
lead to a drastic perturbation in the geometry. So the solution (1.7) is
unstable. Only to a purist would an unstable solution require further dis-
cussion, and there hardly seems to be any need to criticize it on another
account.



In fact almost all known hairy black holes in 3 -+ 1 general relativity
are known to be unstable [95, 29, 72]. The only one which is certified to
be stable [50], at least in lirearized theory, is the Skyrmion hair black
hole {39]. It differs from the Schwarzschild one in that it involves a
parameter with properties of a topological winding number. This is not
an additive gquantity among several black holes, so that the Skyrmion
black hole may not represents a true exception to Wheeler’s principle;
however, I shall not iry to reach a veredict here.

Because gauge fields seem to produce unstable hairy black holes, one
should look for possible violations of no-hair in the only other direction
left: scalar hair. Thus I proposed [21] to shift emphasis to the “no scalar
hair” conjecture which | will state as: there are no asymptotically flat,
stationary and stable black hole solutions in 3+ 1 general relativity which
are endowed with scalar fields. The asymptotic flatness requirement is
introduced to rule out the black holes in de Sitter background [31] as
well as the Achucarro-Gregory-Kuijken black hole [1], a charged black
hole transfixed by a Higgs local cosmic string. The stability restriction
is to exclude the BBM black hole. This shift has also been urged by
Niifiez, Quevedo and Sudarsky [81] on the grounds that there are ‘hairy’
solutions (mever mind that they are unstable) and that the hair they
sport is never ‘short’ and ignorable.

Consider the case of a theory governed by action (1.4). How to prove
that scalar hair is excluded even when the assumption V' > 0 of Sec. 1.1.1
is not made 7 By 1995 new techniques to overcome this problem had been
introduced by Heusler [49], Sudarsky [96] and myself [18]. These led to
various no scalar hair theorems for spherical black holes and minimally
coupled fields. As background for these and their natural extension, I will
now go into the generic properties of spherically symmetric stationary
black holes with nonvacuum exteriors.

1.1.3 Properties of stationary spherical black holes

For a spherically symmetric and stationary black hole with any kind of
matter and fields in its exterior, the metric may be taken as

ds® = —e”di® + e*dr® + r¥(d6® + sin’ 9 d¢?) (1.8}

Here v = »(r) and A = A(r) with both behaving as 1/r for r — oo
(asymptotic flatness). The event horizon is at r = ry with r3 being the
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outermost zero of e™*. To see why define a family of hypersurfaces with
5% x R topology by the conditions {Vt;r = const.}. Each value of the
constant labels a different surface. The normal to each such hypersurface
is Ny = T'a = 8,7, 50 that 7,9* = e~ which vanishes at r = r4, but never
outside it. This must thus be location of the horizon which is defined as
a null surface {(hence null normal).

Now in order for the black hole solution to be physical, invariants such
as T,* and T,g T* must be bounded throughout its exterior r > r3. In
the coordinates of the metric (1.8) Toa T°% = (Ti%)2 + (T7)? + (T%)* +
(T,%)? so that T," and T; must be finite for r > ry.

Let me now introduce two of Einstein’s equations:

eAMr2—r W) ~r? = 81GT, (1.9)
e 24 W)-r? = 8xGT/ . (1.10)

It follows from the second that e” also has its outermost zero at r4
{(Vishveshwara’s theorem [102]). For assume that e” vanishes at some
point . Then v - —oo and v/ — o0 as r — 7 from the right. It is then
obvious from Eq. (1.10) that e~* must vanish as r — 7 since 7," must
be bounded. But since as we move in from infinity, e * first vanishes
at r = ry, we see that ¥ = ry. The converse is also true: the horizon
r = ry must always be an infinite redshift surface with ¥ = 0. For
if ¢ were positive at r = ry, then according to the metric (1.8) the ¢
direction would be timelike there, while the & and ¢ directions would be,
as always, spacelike. But since the horizon is a null surface, it must have
a null tangent direction, and by time symmetry this must obviously be
the ¢ direction. Thus it is inconsistent to assume that e” # 0 at r = ry.
Eq. {1.9) may be integrated to get

er=1-—=+-—{f Ttrldr (1.11)

The constant of integration has been adjusted so that e=* vanishes at ry.
Obviously T;* must vanish asymptotically faster than 1 /7% in order for ¢*
not to diverge at infinity. Since 7}* must be bounded on the horizon, we
may write the first approximation (in Taylor's sense) near the horizon

e = Lir—ry)+0((r—r#)%); L= ry ' +87G ry Tt {r)(1.12)



11

or
A = const. — In{r — ry) + O(r — %) (1.13)

Since e~* must be nonnegative outside the horizon, we learn that L > 0,
or

—(8xGru®) ! < Ti(ry) (1.14)

80 that at every stationary spherically symmetric event horizon, the en-
ergy density, if positive, is limited by the very condition of regularity.
The inequality is saturated for the extremal black hole.

Eqs. (1.9-1.10} combine to the equation

e MV + X) = -8aG(Ty* — T,")r. (1.15)
with integral
Y+ A=82G / “ (T — T e (1.16)

We have built in the asymptotic requirement # + A — 0 by appropriate
choice of the limits of integration. Obviously in addition to the asymp-
totic condition on Tif, T," must decrease at least as fast as 1/r% so that
the integral converges and v + X is well defined. By following the method
leading to Fq. {1.12) and using that expression for e~* we can get from
Eq. (1.16)

Tt(r ) — Tr'(f )
2 4t \VH N B B
14 SﬂGﬂ‘{rﬂ)t 2 ln(r r’!'t)"'o(" 1‘1;) (1.17)

which in view of Eq. (1.13) gives

v+A = const.—87Gry

1+ BWGT,"(rH)rﬂz
1+ 8rGT¥{rvy)rs?

The value of 8 is restricted by the requirement that the scalar curva-
ture

e 1 2 oy -ty 22 2
R=e (u”+2u'2+r(l_/ X) 2u’)\+r2) 2 (1.19)

v = const.+0 In(r—ry)+O(r—ry); pg= (1.18)
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be bounded on the horizon (this is the same as boundedness of T,%). If
we substitute here Eqs. (1.13) and (1.18) we get

-1 2 Bt 2)(1.20)

2fr =) ru(r—ru) il

2
R= _EiE+L (r—ry) X (
For a nonextremal black hole L > 0, so we are left with the condition

BB—-1)=0 (1.21)

The alternative g = 0 is excluded by the requirement that e = 0 at the
horizon. Thus necessarily § = 1. It follows from Eq. (1.18) that

T'=T," at r=ry (1.22)
e’ = N(r —ry) +O((r — r5)?) - (1.23)

where N denotes a positive constant. Equality (1.22), which has been
derived by several groups (1, 81, 73], can also be proved for extremal
black holes; the factors in (r — ry) in Bqs. (1.12) and (1.23) are then
replaced by (v — ry)? [73].

1.1.4 No minimally coupled scalar hair

Consider a black hole solution of the theory whose action is

S=8s— [E@OVTId's  I=gPpaty (1.24)

where £ is some function. 1 have dropped the Maxwell action (so that I
only consider electrically neutral black holes), but for later convenience
have generalized the scalar action. The scalar's energy momentum tensor
turns out to be

T,* = 20€ 0T 14" ~ £6," (1.25)

Of course not every function £ leads to a physical theory. It is reasonable
to restrict attention to fields that bear locally positive energy density as
seen by any physical observer. Unless £ > 0 and 9€£/0Z > 0 for any
¥ and T > 0, some observer (represented by its 4-velocity u*) will see
negative energy density T, u”u” somewbhere in a stationary scalar field
configuration. Thus we assume £ > 0 and @£/0Z > 0. The action
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(1.4) with £ = 0 is just {1.24) with £ = 1 [T + V(¢?)] and satisfies both
conditions provided V is positive definite. In fact, any potential bounded
from below will do becaunse one can add a suitable constant to it to make
it nonnegative.

Are there spherically symmetric stationary black hole solutions of the
action (1.24) [18} ? The r component of the energy-momentum conser-
~ation law T,”,, = 0 takes the form [58]

[(=9)'*T71 = 2(~9)/* (gag) T =0, (1.26)

where ' = 3/0r. Because of the stationarity and spherical symmetry, T,”
must be diagonal and T3? = 7,,¥. These conditions allow us to rewrite
Eq. (1.26) in the form

(LY ~ ~e™* e [T + NI+ 4T 1] = . (1.27)
The terms containing A’ cancel out so that
(€22T7) = 3 V122 [V:g;t +4T4%/ ] . (1.28)

Eq. (1.25) and the symmetries show that T}* = Ty® = —£. Substituting
this in the r.h.s. of Eq. (1.28) and rearranging the derivatives we get our
key expression

(e"2r?T,7) = —(e"?r¥)'E. (1.29)
Let us now integrate Eq. (1.29) from r = ry to a generic r. The boundary

term at the horizon vanishes because ¢¥ = 0 and T,7 is finite there. We
get

e—vf?

I(r)=-

r2

[ " (r2e*1?Y Edr. (1.30)
by 3

Now, since €” vanishes at r = ry and must be positive outside it,
r2e¥/2 must grow with r sufficiently near the horizon. It is then imme-
diately obvious from Eq. (1.30) and the positivity of £ that sufficiently
near the horizon, 7,” < 0 (see Fig. 1).

Further, carry out the differentiation in Eq. (1.29) and rearrange
terms to get

(T,7) = —ePr 2 (Pe?Y (E+ T,7). (1.31)
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From Eq. (1.25) we obtain
£+ T," =220 /OT)y2 (1.32)

This is positive by our assumptions. It then follows from Eq. (1.31) and
our previous conclusion about r2e*/? that sufficiently near the horizon
(T,7) < 0 as weli.

Since asymptotically e*/2 — 1, Eq. (1.31) also tells us that (7;")' < 0
asymptotically. We mentioned already in connection with Eq. (1.11)
that 7;* = —£ must decrease asymptotically faster than r~3 to guaran-
tee asymptotic flatness of the solution. Thus the integral in Eq. (1.30)
converges and |77} decreases asymptotically as r=2. But since (T,7) < 0
asymptotically, we deduce that T,” must be positive and decreasing with
increasing r as r — 00, as depicted in Fig. 1. Now we found that near
the horizon T,” < 0 and (7,7) < 0. All these facts together tell us that
in some intermediate interval [r,, ], (7,7)’ > 0 and also that T, itself
changes sign at some r., with r, < r, < rp, being positive in [re, ry] (see
Fig. 1; there may be several such intervals [ra, rp)). Well, it turns out that
this concluston is incompatible with the Einstein equations, to which we
now turn.

First we note from Eq. (1.11) that ¢* > 1 throughout the black hole
exterior {recall Ty = —€ < 0). Next we recast Eq. (1.10) in the form

e 272 (12" 1?Y = [dxrGT, +(1/2r))e*+3/2r > 4nrGT, e*+2/r,(1.33)

where the inequality results because €*/2 + 3/2 > 2. We found that
in fre,m], T.7 > 0. Thus e */2r-2(r2¢¥/?)' > 0 there. According to
Eq. (1.31) this means that (7,7} < 0 throughout {r.,r,]. However, we
determined that (T,7Y > 0 throughout the encompassing interval [r,, v},
Thus there is a contradiction: the solution as we have been imagining it
does not exist.

To escape the contradiction we must bave T,." = 0 identically in the
black hole exterior. According to Eq. {1.29) this implies that £ = 0
identically. It then follows from Eq. {1.32) that 1 must be constant
throughout the black hole exterior, taking on a value which makes T}, =
0. Such a values must exist in order that a trivial solution of the scalar
equation be possible in Minkowski spacetime. It is precisely this solution
which served as an asymptotic boundary condition in our argument. By
Birkhoff’s theorem the spherical stationary black hole solution of action



Figure 1.1: Energy momentum conservation reveals the shape of 7,"
vs. r near the horizon H and asymptotically; continuity requires us to
complete the curve so that it rises as well as crosses the r axis.

(1.24) must be identically Schwarzschild. This rules out hair in the form
of a neutral minimally coupled scalar field. This result can be generalized
to many scalar fields [18).

The advantage of this theorem [18] and those of Heusler [49] and
Sudarsky [96] over the older one of Sec. 1.1.1 is that now we can rule
neutral Higgs hair provided only V' > 0, without need to invoke V' > 0
which is often violated in field theoretic models. A disadvantage is that
the present theorems work only for spherical symmetry, and do make use
of Einstein’s equations. However, the theorem just described has been
extended to the Brans-Dicke theory (18] (see also Ayon's work [6]), as
well as to electrically charged black holes [73]. Removal of the static and
spherical symmetry assumptions is a thing for the future; some headway
has been reported by Ayon [5].

1.1.5 No curvature coupled scalar hair

Consider now a hairy spherically symmetric stationary black hole solution
of the action (1.4} with £ # 0 (curvature coupled), and with V > 0 but
no electric charge. The curvature coupled field’s energy density is not
necessarily positive definite. Thus | drop the requirement of positive
energy density, but I shall look only at positive V so that a suitable
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limit can be taken to the minimally coupled theory discussed earlier. In
addition, I shall assume the physical black hole configurations are such
that the dominant energy condition [47] is satisfied everywhere. This
means the absolute value of the energy density bounds all the other
components of the energy-momentum tensor.

Both Saa [89, 90] and Mayo and I [73] realized that this problem can
be mapped onto the one solved in Sec. 1.1.4 by a conformal transforma-
tion of the geometry.

v = G = gl Q=1 81GEY? (1.34)
Under this map the action (1.4) is transformed into

1 . _
$ = = / Av=Fd'z — i [ [+ H3*Pbats + V] vV=Fd'c
f = 48zGE%*(1 - 8xGEy?) 2

V = V(@)1 - 8rG&y?) 2 (1.35)
The transformed action is of the form (1.24), and the field 1 obviously
bears positive energy with respect to gy, not least because of the assumed
positivity of V(¢/?). Further, the map leaves the mixed components T}
unaffected so that the boundedness of these can be assumed also in the
new geometry. Applying the previous theorem would seem to allow us to
rule out hair coupled to curvature. Saa [89] came to just such a conclusion
by a very similar approach.

But in fact, things are not so straightforward. Suppose that in the
proposed black hole solution (metric g,.) % is such that Q can become
negative in some domain outside the horizon, or vanish or blow up at
some exterior point. Then the new metric g, is just not physical (it has
wrong signature, or is degenerate). One cannot then use the theorem in
Sec. 1.1.4 because it refers to physical configurations. In his first paper
Saa [89] did not address this issue; in his second one [90] he formulated the
no-hair theorem to apply only if [1| in the proposed solution is bounded
everywhere for £ < 0 or is bounded by a number depending on & for
§ > 0. But these are not reasonable expectations: nature may decide
to have a solution with very large |¢/] somewhere, and it is not clear
outright that divergence of |1| is unphysical. It is thus best to prove the
no scalar hair theorem by breaking it up into cases and showing for each
that, under natural assumptions, 2 is well behaved for any physically



17

reasonable hairy solution, thus allowing use of the theorem in Sec. 1.1.4
to exclude it. This is done in Mayo and Bekenstein {73]; what follows is
a simplified version.

Suppose first £ < 0; then {2 cannot be negative or vanish by definition.
We prove it cannot blow up in a physical black hole’s exterior as follows.
€ can blow up only where || blows up. In a physical solution || should
not blow up asymptotically because its value there has to correspond to
the one in a flat spacetime solution. So suppose J¢| blows up at some
finite point r = r, > ry. Then as r — 1.+ €, Y./9p — —00 and
Y e/t = +00. Now from Eq. (1.6) calculate

(3 (2= D — €+ N ps + 2

-1, = T~ 8rGeg? (1.36)
However; by means of Eq. (1.15) we may rewrite Eq. (1.36) as
nt Y g e—A[(2£ — 1) (w,r/'l»b)? + 26"’,"/1»&] (137)

1/4? — 8rGE — 8rGEr (v /9)

In light of the mentioned divergences we see that 7\ — T," — 400 as
r = 1. + ¢ because the quantities in the numerator are of like sign for
£ < 0. But, as mentioned in Sec. 1.1.3, divergence of any diagonal
component 7,,” in a spherically symmetric situation is incompatible with
a physical solution. We conclude that || cannot blow up at any r. > ry.

But could |y} blow up at the horizon itself in a physical solution ?
According to Eq. (1.22) the r.h.s. of (1.37) must vanish at r. Were 3 to
have a pole or a branch point there, this vanishing would be impossible
in view of the behavior of e=* in Eq. (1.12). We conclude that |¢| cannot
blow up even at ry.

Therefore, for £ < 0 a physical black hole solution of action (1.4)
defines an everywhere positive and bounded }. The mapping and use
of the theorem in Sec. 1.1.4 then excludes this solution rigorousiy. The
discussion assumed the black hole is not extremal. In fact it can be
generalized to exclude extremal as well as electrically charged black holes
with £ < 0 hair [73].

Let us now turn to the case £ > 1/2. The mapping strategy has here
been applied rigorously to rule out electrically charged holes [73], but
does not work well for the neutral ones. Another line of argument does
the job. The first point to notice is that we expect i to asymptote to
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a definite finite value 4. This should be such as to make 1/y? ~ 87G¢
positive since as clear from Eq. (1.6), (1 — 87G£4?)™! plays the role of
gravitational constant in the asymptotic region, and this should always
be positive regardless of how unconventional the black hole itself may
be. Unless ¢ = 0, /¢ must fall off faster than r~1, so that the
denominator in Eq. (1.37) is asymptotically positive. And if ¢, = 0,
then 1,/ will behave like r~! so that the denominator is dominated by
1/1? and is again asymptotically positive. '
Let us now complement Eq. (1.37) with

=29 fp —
Tt — T¢¢ — £e :Sibz _gg’éfﬂp) (1.38)

As mentioned in Sec. 1.1.3, v = O(r~?2) asymptotically. If }1| decreases
asymptotically towards |¢y|, so that that ¢, /9 < 0 and ¥, /1 > 0, then
it follows from Eq. (1.38) that in the asymptotic region T;* — Ty¢ < 0,
while from Eq. (1.37) it, is clear that 73 — 7,” > 0. And if |¢)| increases
asymptotically, ¥/¢ > 0 while (¥2) ,» < 0, so that asymptotically T}t —
T4? > 0. In addition, rewriting Eq. (1.37) in the form

Tt —TT = e——l\lfgb?fr/d)a - (¢‘.r/’¢')2]
© T T 142 —8xGE — 8nGEr (v, /Y)

shows clearly that T;* — T, < 0 asymptotically. In both cases it is impos-
sible for |7}’[ to dominate in magnitude both |7;"| and |T,%|, as required
by the dominant energy condition. Thus unless 4 is strictly constant,
one cannot even give the black hole a physical asymptotic region. We
conclude that there are no hairy black holes for £ > 1/2.

The case 0 < £ < 1/2 remains open. Removal of the static and
spherical symmetry assumption is yet to be accomplished (but see Ayon’s
work [5]).

When the scalar 3 becomes complex (Higgs field) and couples to
the black hole’s electromagnetic field, things become more complicated.
Theorems ruling out nonextremal or extremal black holes for any & have
been given (2, 57, 73, 7).

(1.39)
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1.2 Superradiance

To the generation that witnessed the emergence of black hole physics
in the 1970’s, superradiance is a typical black hole phenomenon. Ac-
tually, forms of superradiance had been identified already in the 1940’s
in connection with experimental phenomena like the Cherenkov effect.
And, of course, the name is also applied to the physics behind the laser
and maser, which is not the sense in which I use it here. 1 give here a
self-contained review of various aspects of superradiance, from ordinary
objects to black holes. Further details can be found in references [23, 91].

1.2.1 Inertial motion superradiance

1t follows from Lorentz invariance and four-momentum conservation that
a free structureless particle moving inertially in vacuum cannot absorb or
emit a photon. But suppose a particle, possibly with complex structure,
moves inertially through a medinm transparent to photons. Then it can
spontaneously emit photons, even if it started in the ground state ! To
see this let (as in Fig. 2) E and E' = E — hw denote the particle’s
total energy in the laboratory frame before and after the emission of
a photon with energy fiw and momentum #k (both measured in the
laboratory frame), while P and P’ = P — hk denote the corresponding
momenta; v = OE /0P is the initial velocity of the particle. The Lorentz
transformation to the particle’s rest frame gives us the rest energy or
rest mass M = y(E — v - P) with v = (1 — v¥)~¥/2, Immediately after
emission M’ = y/(E' — v/ . P').

Now substract the formulae for M’ and M and neglect terms of order
higher in O(w), O(k) and O(v' — v):

M-M=—yhw-v k)+hw -OF —v) 2.1)

The factor O{v' — v) represents recoil effects; it is of order hw/M and
becomes negligible for a sufficiently heavy particle. In this recoiless limit

M — M = —yh{w — v - k) (2.2)

Were the particle moving in vacuum, « = |k > v - k, so that emis-
“sion would be possible only with de-excitation (M’ — M < 0), as plain
intuition would have. But in the medium intuition receives a surprise.
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Figure 1.2: Particle with initial energy F and momentum P moving
through a transparent medium emits a photon of momentum %k and
energy fuw thereby changing its velocity from v to v/.

Let its index of refraction be n{w) > 1. Then Aw and kk are still the
energy and momentum of the photon; however w = |k|/n(w). In the case
v = |v| > 1/n(w) the particle moves faster than the phase velocity of
electromagnetic waves of frequency w. If ¢ denotes the angle between k
and v, a photon in a mode with cosd > fyn(w)]"' has w — v -k < 0,
and can thus be emitted only in consonance with excitation of the object
(M’ — M > 0) ! In particular, a particle in its ground state can emit a
photon. Ginzburg and Frank {42, 43], who pointed out these phenomena,
refer to this eventuality as the anomalous Doppler effect. The reason for
the name is that in the case v < 1/n(w) (subluminal motion for the rel-
evant frequency) when w — v -k > 0 so that by Eq. {2.1) emission can
take place only by de-excitation, the relation between w and k and the
rest frame transition frequency wy = |M — M’|/h, namely

woe = y(w —v-k), (2.3)

is the standard Doppler shift formula; indeed Ginzburg and Frank refer
to this case as the normal Doppler effect. We shall refer to the emission
as spontaneous superradiance.

The energy source for superradiant emission and the associated exci-
tation is the bulk motion of the particle. And this emission is not just
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allowed by the conservation laws; it must occur spontaneously, as follows
from thermodynamic reasoning. The particle in its ground state with
no photon around constitutes a low entropy state; the excitation of the
object to one of a number of possible excited states with emission of a
photon with momentum in a variety of possible directions evidently in-
volves an increase in entropy. Thus the emission is favored by the second
law of thermodynamics.

The inverse anomalous Doppler effect or superradiant absorption can
also take place: when superluminally moving, the particle can absorb
a photon only by getting de-excited, and cannot absorb while in the
ground state ! The appropriate equation is obtained from Eq. (2.1) by
reversing the sign. Obviously superradiance is not restricted to photons.
All that is required is that the energy and momentum of a quantum be
expressible in terms of frequency and wavevector in the usual way. Thus
superradiance can take place for phonons in fluids, plasmons in plasma,
etc.

When the particle has no internal degrees of freedom, say a point
charge, its rest mass is fixed. We may thus set M’ — M = 0 in Eqgs. (2.2).
‘The equation cannot then be satisfied for v < 1/n(w) since its r.h.s.
would then be strictly positive: again no absorption or emission is possi-
‘ble from a subluminal particle. However, for v > 1/n(w) the r.h.s. van-
ishes for a photon’s whose direction makes an angle ©# to the particle’s
velocity, where cos® = [vn(w)]™'. Such photons must thus be emitted.
Obviously as the charge goes by, the front of photons forms a cone with
opening angie 28, = 2(m/2 - 9), or sin G¢(w) = {vn(w)]~*. This result
makes it clear that one is here dealing with the famous Cherenkov radia-
tion, which comes out on just such a cone. Thus Cherenkov radiation is
an example of spontaneous superradiance by a structureless charge {43].
Another example [23] is furnished by the Mach shock cone trailing a su-
personic object, whose opening angle also corresponds to the condition
w—v-k=0.

1.2.2 Superradiant amplification

The above section deals with spontaneous superradiance which occurs
when the Ginzburg-Frank condition

w—v-k<0 (2.4)
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15 satisfied. I mentioned that the radiation must be emitted in order that
the world’s entropy may increase. Einstein’s celebrated argument inex-
tricably connects spontaneous emission with stimulated emission. There-
fore, when condition (2.4) is satisfied, there must also occur amplification
of preexisting radiation by an object moving superluminally (superson-
ically) in a medium. Rather than dwell on the simple particle, I shall
show this for an object with complicated structure, so that it may dis-
sipate energy internally. The demonstration is thermodynamical (and
basically classical). For concreteness I suppose the object to move in a
transparent medium filled with electromagnetic radiation.

Let the radiation be exclusively in modes with frequency near w
and propagating within An of the direction n. Also let I(w,n) de-
note the corresponding intensity (per unit area, unit solid angle and
unit bandwidth). Experience tells us that the body will absorb power
a(w,n) X(n) I{w,n) AwAn, where Z(n) is the object’s geometric crossec-
tion orthogonal to direction n, and a{w, n) < 1 is its absorptivity for the
mentioned photons, The remainder power, [1—a(w, n)] S(n) I{w, n) AwAn,
will be scattered. In addition the object may emit spontaneously some
power W, say by thermal emission. By conservation of energy the ob-
ject’s total energy (in the laboratory frame) E changes at a rate

dE/dt = a$ I AwAn — W (2.5)

Now the linear momentum conveyed by the radiation is k/w times
the energy conveyed, where k = nwn(w). This is clear if we think of the
radiation as composed of quanta, each with energy fw and momentum
ik with wn{w) = [k|. The result can also be derived from the temporal-
spatial and spatial-spatial components of the energy-momentum tensor
for the electromagnetic field in a medium. Thus absorption and sponta-
neous emission cause the linear momentum P of the body to change at
a rate

dP/dt = (k/w)aZ ] AwAn - U (2.6)

where U signifies the rate of spontaneous momentum emission.

In calculating the rate of change of rest mass M of the body, I ignore
the effects of elastic scattering because in the frame of the body waves are
scattered with no Doppler shift (since there is no motion),so they contain
the same energy before and after the scattering. Thus the scattering
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cannot contribute to dM/dt. Obviously the change in M is obtained by
a Lorentz transformation:

dM/dt = y(dE/dt — v - dP/dt) (2.7)

Of course, a change in the proper mass means that the number of mi-
crostates accessible to the object has changed, i.e., that its entropy S
has changed. Recalling the definition of temperature T = M /3S and
Eqgs. (2.5)—(2.6), we see that
dS ir -1

—d-:t-=')/1‘ Wi {w—-—v-k)aElAwAn—-W +v U] (2.8)

The second law does not allow the claim that this last expression is
positive because there is also a change in the entropy in the radiation.
But one can put an upper bound on the rate of change of the radiation
entropy, dS/dt by ignoring any entropy carried into the object by the
radiation. Now the entropy in a single mode of a field containing on the
mean N quanta is at most [60]

Smax = (N+1)ln(N+1)~NinN~ N (2.9)

where the approximation applies for N >» 1. The scattered waves carry
a mean number of quanta proportional to I(w,n). Hence for large N the
outgoing radiation’s contribution to dS/dt is bounded from above by a
quantity of O[lnI{w,n)]. There is an additional contribution of O(W)
to dS/dt coming from the spontaneous emission. Hence

dS/dt < O[in I(w, n)] + O(W) (2-10)

Because the object dissipates energy, the second law of thermody-
namics demands dS/dt + dS/dt > 0. As I{w,n) is made larger and
larger, the total entropy rate of change becomes dominated by the term
proportional to I(w,n) in Eq. (2.8) because W and U are kept fixed.
Positivity of dS/dt + dS/dt then requires

(w—v-k)a{w,n) >0 (2.11)

Thus when the Ginzburg-Frank condition is fulfilled, a(w,n) < 0. This
result was obtained by assuming a X I AwAn >»> W. But since—barring
nonlinear effects—a must be independent of the incident intensity, the
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result must be true for any intensity which can still be regarded as classi-
cal. Now a < 0 means that the scattered wave, with power proportional
to 1 — a, is stronger than the incident one {which is represented by the
“1” in the previous expression). Thus the moving object must amplify
preexisting radiation in modes satisfying the Ginzburg-Frank condition.
Superradiant amplification is mandatory. For modes with w — v -k > 0,
a > 0 and so the object absorbs on the whole.

Obviously a switches sign at w = v-k. This switch cannot take place
by a having a pole since a < 1. If @ is analytic in w — v - k, it must thus
have the expansion

a=alvn)(w-—v-k)+--- (2.12)

in the vicinity of the superradiant treshold w = v-k. However, we must
emphasize that thermodynamics does not require the function a to be
continuous at w = v - k.

As an example of both spontaneous superradiance and superradiant
amplification we rederive Landau’s critical velocity for superfluidity [63].
A superfluid can flow through thin channels with no friction. However,
when the speed of flow is too large, the superfluidity is destroyed. As
Landau did, [ phrase the argument in the rest frame of the fluid with
respect to which the walls of the channel are in motion. The walls play
the role of the object in our superradiance argument, and the waves
of frequency w = &/h and wavenumber k = p/h associated with the
quasiparticles in the fluid are surrogates of the electromagnetic waves in
both our above arguments. In superfluid He? the dispersion relation (p)
has a nonvanishing minimum: v, = min e(p)/|p| > 0.

When the walls move with speed v > v,, the quantity w — v-k =
(e — v -p)/h becomes negative for at least one quasiparticle mode. Ac-
cording to Sec. 1.2.1 the wall material will then become excited and simul-
taneously create quasiparticles in those modes. Furthermore (Sec. 1.2.2),
the quasiparticles thus created can undergo superradiant multiplication
while impinging on other parts of the walls. As a consequence, an
avalanche of quasiparticle formation ensues, which acts to convert the
superfluid into a normal fluid. Thus the transition away from super-
fluidity is a literal example of the superradiance phenomenon. In this
phenomenon the speed v, of order the speed of sound, plays the role of
the speed of light in our original arguments.



1.2.3 Gravitational generation of electromagnetic waves

Now for our first black hole example. Consider an electrically neutral
black hole of mass M moving with uniform velocity v through a uniform
and isotropic transparent dielectric with index of refraction n(w) made
of material with atomic mass number A and pervaded by a spectrum
of electromagnetic waves. We could be thinking about an astronomical
sized black hole moving through a cloud of gas, or about a microscopic
black hole whizzing through a solid state detector. Anyway, I assume the
hole does not accrete material; however, its gravitational field certainly
influences the dielectric.

In applying the argument of Sec. 1.2.2, the entropy of the object is
replaced by the black hole entropy together with entropy of the surround-
ing dielectric. Now black hole entropy is proportional to the horizon area,
and Hawking’s area theorem [46] tells us that black hole area will increase
in any classical process, such as absorption of electromagnetic waves by
the hole. If the dielectric is ordinary dissipative material, it will also
contribute to the increase in entropy through changes it undergoes in the
vicinity of the passing hole. Thus an argument like that in in Sec. 1.2.2
tells us that the black hole plus surrounding dielectric will amplify ra-
diation modes obeying the Ginzburg-Frank condition at the expense of
the hole’s kinetic energy. Likewise, even if there are no waves to start
with, an argument like that in Sec. 1.2.1 tells us that the black hole plus
dielectric will spontaneusly emit electromagnetic waves in modes that
obey the condition.

The process in question is distinct from the standard Cherenkov ef-
fect because the hole is neutral. Now waves cannot classically emerge
from within the hole, so what is their source ? The hole’s gravity pulls
on the positively charged nuclei in the dielectric stronger than on the
enveloping electrons. As a result the array of nuclei sags with respect
to the electrons, and produces an electrical polarization of the dielectric
accompanied by an electric field which ultimately balances the tendency
of gravity to rip out nuclei from electrons. It is this electric structure
which is to be viewed as the true source of the waves. If one is interested
in the intensity of this gravitationally induced electromagnetic radiation,
one may map the present problem onto the Cherenkov one by noting
that the induced electric field E is related to the gravitational one, g by
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eE = ~du g where 6u =~ Am, is the nuclei-electron mass difference, and
e > 0 the unit of charge. From the gravitational Poisson equation it fol-
lows that V-E = 4nGM(8p/e)é(r —r,) where ry denotes the momentary
black hole position. The electric field accompanying the black hole is thus
that of a pointlike charge @ = G‘/iMm,, /e. This assumes, and this is no
trivial assumption [23, 91], that the dielectric has time to relax to allow
for the generation of the compensating field. If so, the electromagnetic
radiation will be Cherenkov radiation of a charge Q moving with velocity
v. In units of e, Q amounts to about 10°A times the gravitational radius
of the hole measured in units of the classical radius of the electron. Hence
a relativistically moving 10'® g primordial black hole would radiate just
like particle with ~ 1034 elementary charges.

1.2.4 Rotational superradiance

Zel'dovich came upon the notion of black hole superradiance by examin-
ing what happens when scalar waves impinge upon a rotating absorbing
object [110]. His later thermodynamic proof {111] that this superradi-
ance is a general feature of rotating objects and any waves provides the
inspiration for the argument given in Sec. 1.2.2. Here I just elaborate on
Zel'dovich’s original proof by taking into account the radiation entropy,
which he neglected.

I focus on an axisymmetric macroscopic object rotating rigidly in
vacuum with constant angular velocity 2 about a constant axis. Ax-
isymmetry is critical; otherwise precession of the axis would arise. I
consider the object to have many internal degrees of freedom, so that
it can internally dissipate absorbed energy, and that it rapidly reaches
equilibrium with well defined entropy S, rest mass M and temperature
T.

Let the object be exposed to external radiation. By the symme-
tries we may classify the radiation modes by frequency w and azimuthal
number m. This last refers to the axis of rotation. Suppose that in
the modes with azimuthal number m and frequencies in the range in
{w.w + Aw}, power In{w) Aw is incident on the body. Then, as is easy
to verify from the energy-momentum tensor, or from the quantum pic-
ture of radiation, the radiative angular momentum is incident at rate
(m/w)In(w) Aw. If I,(w) is large enough, we can think of the radia-
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tion as classical. Experience tells us that the body will absorb a fraction
am(w) of the incident power and angular momentum flow in the modes
in question, where a,,(w) < 1 is a characteristic coefficient of the body.
A fraction [1 — ap,{w)] will be scattered back into modes with the same
w and m. We may thus replace Egs. (2.5)-(2.6) by

dE

= = omlnbw-W (2.13)
dJ
= = (m/w)onInbw-Uy (2.14)

where J is the body’s angular momentum and U is the overall rate of
spontaneous angular momentum emission in waves.

Now the energy AEp of a small system measured in a frame rotat-
ing with angular frequency £ is related to its energy AE and angular
momentum AJ in the inertial frame by [59]

AEy=AE —Q-AJ (2.15)

Thus, when as a result of interaction with the radiation, the energy of
our rotating body changes by dE/dt x At and its angular momentum in
the direction of the rotation axis by dJ/dt x At, its mass-energy in its
rest frame changes by (dE/dt — S2dJ/dt) x At. From this we infer, in
parallel with the derivation of Eq. (2.8), that the body’s entropy changes

at a rate
ds

=T ! (w — mQ) o Iy Aw — W + QU | (2.16)

As in the discussion involving Egs. (2.9)-(2.10) we would now argue
that when I,,(w) is large, the term proportional to (w — mQ) an(w) in
Eq. (2.16) dominates the overall entropy balance. The second law thus
demands that

(w—mQ)am(w) >0 (2.17)
Thus whenever the condition
w—ml <0 (2.18)

is met, am(w) < O necessarily. As in Sec. 1.2.2, we can argue that the
sign of am(w) should not depend on the strength of the incident radiation
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if nonlinear radiative effects do not intervene. Hence, independent of the
strength of I, (w), condition (2.18) is the generic condition for rotational
superradiance. It was first found in the context of ordinary objects by
Zel'dovich [110]. _

Evidently a,,(w) switches sign at w = Qm. This switch cannot take
place by a,,(w) having a pole there since a, (w) < 1. If a,,(w) is analytic
in w — OQm, it must thus have the expansion

(@) = O (@) (w — ) + - - (2.19)

in the vicinity of the superradiance treshold w = Qm. However, we must
again stress that thermodynamics does not demand continuity of ap,{w)
at w — OQm = 0. Specific examples like that of the rotating cylinder
[111, 23] do show continuity.

1.2.5 Black hole superradiance

By analogy with the results described in Sec. 1.2.4, Zel’dovich {111} con-
jectured that a Kerr black hole should also superradiate with respect
to modes obeying condition (2.18). This was established directly by
Misner (78] for the scalar field case (so that I refer to {2.18) as the
Zeldovich-Misner condition), and some approximate formulae for the
gain were worked out by Starobinskii and Churilov {94] (they confirm the
rule (2.19)). One can give an illuminating and quick derivation of the
necessity for black hole superradiance [12] starting from Hawking’s area -
theorem [46]. In the present subsection I take units for which G =c = 1.

Consider a Kerr black hole of mass M and angular momentum J. Its
horizon area is

A=4n [(M + /M2~ (J/M)z)2 + (J/M)’] (2.20)

and small changes of it are given by
dA = Og7'-(dM —QdJ) (2.21)
Ox = }4—1,/41»12 — (J/M)? (2.22)
Q= —JIM (2.23)

ri® + (J/M)?
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Let these changes be caused by absorption from a wavemode whose angu-
lar and temporal behavior is Ve (6, ¢)e ¢ ~ P(8)e™**, with Vem the
spheroidal harmonics (close cousins to the spherical harmonics) relevant
to the parameter J/M (94, 99]. As in Sec. 1.2.4, the overall changes dM
and dJ must stand in the ratio w/m. Thus

dM — QdJ x am(w)(w — ms2) (2.24)

where a,,(w) is the absorption coefficient of the black hole and the coef-
ficient of proportionality is positive. Substituting this in Eq. (2.21) and
demanding that dA > 0 tells us that here, as with ordinary rotators,
superradiance ensues [ay,(w) < 0] when the Zel'dovich-Misner condition
holds.

The argument just reviewed differs from that spanning Egs. (2.13)-
(2.18) in that no cognizance need be taken of the radiation entropy.
This is because Hawking’s theorem is purely a dynamical one, not a
thermodynamic one: classically horizon area increases regardless of what
happens to the radiation outside the hole. In particular, one does not
have to assume high incident intensity to get the proof to work as was
the case for the ordinary rotator. However, suppose the intensity of a
superradiant mode illuminating the hole is so low that photons hit it
one at a time. Qccasionally a photon will tunnel through the potential
barrier guarding the black hole and be absorbed. A look at Egs. (2.21)
and (2.18) shows that horizon area will necessarily decrease this time
| Thus this purely quantum process violates Hawking’s area theorem.
Now in the framework of semiclassical gravity the only thing that can be
going wrong is the theorem’s assumption that the weak energy condition
is valid. It apparently is not for a one-photon quantum state.

This immediately opens the door to the Hawking evaporation. For
Hawking’s area theorem forbids spontaneous emission from a Kerr black
hole only in modes not satisfying the Zel’dovich-Misner condition since
such emission would be tantamount to a decrease in horizon area {look
at Eq. (2.21)]. The moment the theorem can be sidestepped by quantum
processes, spontaneous emission in such modes becomes a possibility. As
we know it really happens (Hawking radiance) when the fields are in
a particular quantum state (Unrub vacuum). The failure of the area
theorem does not destroy the argument for superradiance. One has only
to use the argument of Sec. 1.2.4 with the role of the object’s entropy
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played by black hole entropy and that of the second law by the generalized
second law [9, 13]. One then recovers the proof for superradiance in the
Zel'dovich-Misner modes even in the limit of low incident power where
one expects that quantum effects foul up the area theorem. We already
mentioned that superradiance is a manifestation of stimulated emission.
Thus we also expect a corresponding spontaneous emission purely in the
superradiant modes. This is Unruh’s nonthermal radiance [101] which
emerges from a Kerr black hole, and is distinct from Hawking’s. Unruh'’s
radiance does not appear in the nonsuperradiant modes.

One other black hole superradiance should be mentioned, namely
charge superradiance. Whenever a black hole bears some electric charge
and horizon electric potential ® (see Eq. (4.27) below), it can superra-
diate in any mode of a charged bosonic field, e.g. a pion field, which
obeys the condition w — (e/h)® < 0, where e denotes the field’s ele-
mentary charge. The proof [12] is similar to that for rotational black
hole superradiance. Of course, hybrid superradiance involving charged
bosons and a Kerr-Newman black hole can also happen. The appropriate
Zel’dovich-Misner criterion is left as an exercise to the reader !

1.2.6 Zeldovich’s superradiating cylinder

In Sec. 1.2.4 we saw that the second law of thermodynamics requires
that a rotating object superradiate. Now if electromagnetic waves are
the issue, how do Maxwell’s equations know that they have to engen-
der superradiance ? This question is analogous to the question how do
Einstein’s classical equations know to enforce superradiance as required
by the generalized second law of thermodynamics {(answer: because they
imply the area theorem). In his pioneering paper Zel'dovich [111] re-
marked that if one is concerned with a steadily rotating weakly con-
ducting cylinder, the electric current induced in it by an incident wave
obeying the Zel’dovich-Misner condition has opposite sign to the electric
field, so Ohmic dissipation is negative: rather than the wave dissipating,
it is enhanced. Zel’dovich’s calculation is skimpy and leaves unanswered
the question of how things would work out for large conductivity, or
for a dielectric cylinder which dissipates. I concentrate on the dielectric
cylinder here; the more general question is dealt with in my paper with
Schiffer [23].
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I consider a very long dielectric cylinder of radius R made of material
with permittivity ¢ (complex so that the material can dissipate energy)
and which rotates steadily with angular frequency (2. In a dielectric in
flat spacetime, Maxwell’s equation take the form

F[aﬁs'ﬂ =0 (2°25)
H¥ 5z = 0 (2.26)
where H% is an antisymmetric tensor built in the style of F*4, but with
the electric displacement D replacing E. Although we shall assume the
material is nonmagnetic, the space-space components of H*# differ from
those of F* unless the medium is stationary. If u® is the medium’s four
velocity, the constitutive relations are H*ug = ¢F*Pug, where ¢ must
be evaluated in the rest frame of the material. A complex relation be-
tween field and displacement components is meaningful if we are talking
about Fourier components which are complex anyway. I shall assume €
is constant throughout the cylinder.

In ordinary cylindrical coordinates {z°,z',2%,z%} = {t,r, 6,2} we
have ug = (—1,0,0r2,0)y with vy = (1 — Q*%)"/2, The important
constitutive relations are

H 3 = F 31 = B¢
H® - QH% FB _QF® = (ry)7B, (2.27)
(H® - Qr?H®)e™! = F® - Qr*F2 =47'E,

where E,, Bs and B, denote the corresponding physical components of
the electric field and magnetic induction in the rofating frame. Rela-
tions (2.27) just say that e is the ratio of electric displacement to electric
field in the frame of the dielectric.
| Because the rotation is assumed to be a steady one, and there is
~ axisymmetry, one is entitled to write F% = f(r)eX™#“%) where m is the
azimuthal (integer) quantum number and w is the frequency as seen in
the stationary frame (I exclude by fiat the possibility of a z variation of
the phase). Assuming that all field components behave as e¥™#~+%, I
get from Egs. (2.25-2.26) the components (the rest are not useful for the
present discussion)

OF" /97 + wF¥ =0
wF?B —mr2FB =0 (2.28)
H(H*'r)/0r — mr H® + wrH® =0
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where I have used the flat metric in cylindrical coordinates. The first two
equations determine algebraically 73! and F* in terms of the complex
amplitude f(r). With help of the constitutive relations (2.27) one can
eliminate H* and H® from the last equation, being left with

2+ rf - m?f - [w2 + (1 - e){w— mQ)z"yz] r’f =0 (2.29)

which is evidently the radial equation for the problem. The fact that the
components F*2, F®! and F" do not occur in the system (2.28) means
that they can only put in an appearance in a different mode (polarization)
with the same w and m. We can thus set them to zero if we are interested
only in the mode governed by f.

To determine when superradiance occurs we must have an expression
for the radial energy flux. Whether in vacuum or in matter this is given
by [61] S, = (E x H), /47 so that here

Sy = (FO?HY - FORH®) /4r = —FBH 14 (2.30)
This is the instantaneous flux; of more interest is the time averaged flux
which can be obtained by first replacing the complex fields by corre-
sponding real expressions [61]

F® 5 [felmé=ut) 4 pre-smé=at)] /o (2.31)

F 5 [iffetméot) frletmé=n) 1o (2.32)

In the course of time averaging two terms involving exponents e*2H{mé¢—wt) -
average out. Using Eqgs. {2.27) one gets

S, =uff - ff)/16nw (2.33)

This expression is clearly real, but its sign is none too clear. To find
it out, I calculate with help of the radial equation that

U = £ = 2o — mOP F e (234

where I means “take the imaginary part”. By integrating this equation
over r from r = 0 to r = R, and relying on the fact that S, must surely
be bounded at r =0, I get
-1
2rwR

S.(r=R)= Ji * o (w — mO)| fPrPe dr (2.35)
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By conservation of energy the flux at large distances from the cylinder
scales from 5,(r = R) according to R/r (no sources at r > R).

Now there is a theorem [61] that ¢ must be an odd function of
frequency and positive for positive frequency. This is a requirement of
thermodynamic origin. In our case frequency means frequency in the
rotating frame. Now the correct azimuthal coordinate in the rotating
frame is ¢ = ¢ — ¢, so if the phase is to have the form m¢ — Bt, then &,
the frequency as seen in the rotating frame, must be w — m{). Therefore,
the integral above must be negative for w — m$ > 0 and positive for
w — mf? < 0. This means that superradiance (net energy outflux) sets
in if and only if the Zel’dovich-Misner condition is satisfied. This is in
agreement with the thermodynamic argument of Sec. 1.2.4, but shows
what feature is “microscopically” responsible for the superradiance.

1.3 Adiabatic invariance

An important turning point in black hole physics occurred with the re-
alization of Christodoulou [35), of Penrose and Floyd {86] and of Hawk-
ing [46] that transformations of a black hole generically have an irre-
versible character. That is, the black hole cannot afterward be brought
to its original state. Nowdays we summarize this lore with the rule
that horizon area tends to grow, a rule which has gotten identified with
the second law of thermodynamics through the correspondence horizon
area & entropy. But equally important is the feature, stressed origi-
nally by Christodoulou [35, 36}, that some special processes involving a
black hole are truly reversible. These reversible processes give to black
hole dynamics a more mechanical flavor than would be the case if horizon
area grew under any change of the black hole; they are the analogs of
adiabatic changes of a mechanical system. Further details may be found
in my contribution to the Festschrifft for Vishveshwara [24] and in the
paper by Mayo {74].
In this section I use units with G =c = 1.

1.3.1 Adiabatic invariants in general

In mechanics the evolution of a system is dictated by its Hamiltonian
H({g,p) (I write only one degree of freedom; there might be many). It
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may be the case that this Hamiltonian depends on an external parameter
A: H(g,p, ). For example a charged particle can find itself in an external
magnetic field B which then plays the role of A. Things get interesting
when A = A() whereupon the Hamiltonian ceases to be conserved. Now
suppose the system has a timescale T' for a motion which crudely brings
it back to the original state or dimensions (quasiperiodic motion). If
A changes on a timescale much longer than T, the process is called an
adiabatic one. Any mechanical quantity, Alg, p], which is found to change
on a timescale much longer than that of ) is called an adiabatic inveriant.

Ehrenfest {40] proved that for a system where a particular degree of
freedom is separable, the corresponding integral § pdg taken around one
orbit, usually called an action variable or Jacobi action, is necessarily an
adiabatic invariant. Some examples will clarify this. If a particle bounces
between two parallel walls whose separation L{t) grows linearly with
time, and no forces act on it between bounces, then §pdg = (|p_,|L1 +
|p+|L2), where L, is the separation at the end of the rightward motion,
etc. This quantity is exactly the same from cycle to cycle {a very good
adiabatic invariant). We can say approximately that [p(f)] oc L(#)™!, a
result of great importance in understanding adiabatic cooling of a gas.
If the string of a swinging pendulum of small angular amplitude 6 and
frequency w is paid out slowly on the timescale 27/w, then §ppdd =~
27 E/w with E being a typical value of the total energy in the oscillation.
This quantity varies little from one swing to the next, a result which
is useful in understanding why photon occupation number is conserved
under slow expansion of a radiation filled box. Finally for the charge e
moving in a spatially uniform field B(¢) which varies little in the course
of a Larmor orbit, § p,dp =~ 2ex BR? where B is a typical magnitude of
B while R is the Larmor radius of the orbit. Again this quantity varies
much slower than B from orbit to orbit, allowing us to conclude that the
magnetic flux through the orbit is approximately conserved. This result
hag many implications from plasma physics to astrophysics to condensed
matter physics.

The rate of change of a Jacobi action of a system with a smooth
Hamiltonian falls off exponentially rapidly as A — 0 [59). Without
smoothness this is not true; for instance, in the example of the particle
bouncing between separating walls, if the motion is not linear in time,
§ pdq varies as a low power of A as A — 0. And there is nothing in me-



35

chanics which forbids adiabatic invariants that are not Jacobi actions.
We learn that there may be adiabatic invariants which approach con-
stancy only as power laws in A = 0. In light of this, a useful definition
of an adiabatic invariant is that A/A ~ 0 as A — 0. This is at vari-
ance with the much tighter definition given in mathematically rigorous
treatises [3].

~ Now, does a black hole in near equilibrium have adiabatic invariants,
‘namely quantities which vary very slowly compared to variations of the
external perturbations on the black hole ? I will not look for quantities
analogous to the Jacobi actions. The Christodoulou reversibie processes
suggest that horizon area might be an adiabatic invariant. Let us see
how with the simplest example. '

1.3.2 Particle absorption by charged black hole

’ Consider a Reissner-Nordstrom black hole of mass M and positive charge
'Q. The exterior metric is

ds® = —x d® + x ' dr® + r2(d6? + sin® 8dy?), (3.1)
with
x=1-2M/r +Q*/r%. (3.2)

One shoots in radially from far away a classical point particle of mass m
‘and positive charge ¢ with total relativistic energy adjusted to the value

E=¢eQ/ry. (3.3)

where r is the r coordinate of the event horizon,

=M+ M- @ (3.4)

In Newtonian terms this particle should marginally reach the horizon
where its potential energy just exhausts the total energy. The relativistic
equation of motion leads to the same conclusion.

The relativistic action for radial motion is

s=[rar=[ [—m Jx (@/dr) — (dr/dr)?/x - eAs dt/d’r] dr,(3.5)
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where 7, the proper time, acts as a path parameter, and 4, = Q/r is
the only nontrivial component of the electromagnetic 4-potential. The
stationary character of the background metric and field means that there
exists a conserved quantity, namely

8L my dt  eQ

T 8@ T f@iar - @y &

(3.6)

Since the norm of the 4-velocity is conserved, the square root in this
above equation has to be unity. Substituting dt/dr from this condition
back in Eq. (3.6) gives

E=my/x+ (dr/dr) + %2- (3.7

It is easy to see that this is precisely the total energy of the particle,
for at large distances from the hole, E ~ m + mv?/2 —m M/r +eQ/r
(sum of rest, kinetic, gravitational and electrostatic potential energies).
Setting E' = £Q)/ry shows that the radial motion has a turning point
{(dr/dr = 0) precisely at the horizon [x{ry) = 0].

Because the particle’s motion has a turning point at the horizon, it
gets accreted by it. The area of the horizon is originally

A=dary? = dx (M + /M2 - Q2)2, (3.8)

and the (small) change it incurs upon absorbing the particle is
dA = Opy Y (dM — QdQ/ry) (3.9)
with
= .].'. -1 — )2
Opy = 2A VM2-Q (3.10)

Thus if the black hole is not extremal so that ©zy # 0, dA = 0 because
dM = E = £Q/ry while dQ = ¢. Therefore, the horizon area is invariant
under the accretion of the particle from a turning point (more precisely,
dA is of higher order of smallness than dM).

‘To a momentarily radially stationary local inertial observer, the par-
ticle in question hardly moves radially as it is accreted. Thus its assim-
ilation is adiabatic. By contrast, if E were larger than in Eq. (3.3), the
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particle would not try to turn around at the horizon, and the local ob-
server would see it moving radially at finite speed and being assimilated
quickly. And the horizon’s area would increase upon its accretion, as is
easy to check from the previous argument. Thus invariance of the hori-
zon area goes hand in hand with adiabatic changes at the black hole, as
judged by local observers at the horizon.

The above conclusions fail for the extremal Reissner-Nordstrom black
hole. When Q = M, /MZ* = Q7 in Eq. (3.8) is unchanged to O{c?) during
the absorption, so that dA = 8t M E. This is not a small change, so the
horizon’s area is not an adiabatic invariant. Thus extremal black holes
behave differently from generic black holes in this as in other phenomena.

Christodoulou actually first worked out the “reversible process” for
a Kerr black hole [35]; that calculation is more complicated than the
above. The generalization to the Kerr-Newman black hole was made by
Christodoulou and Ruffini {36]. We shall return to it in Sec. 5.

In all the above the particle model of matter is used. What would
happen if we let the black hole interact with waves 7 One can consider
the addition to the black hole of charge by means of a charged wave, and
demonstrate the adiabatic invariance of the horizon area under suitable
circumstances. The idea will be clear, especially against the background
provided by the last paragraph of Sec. 1.2.5, when we consider the addi-
tion of angular momentum to a Kerr black hole via waves.

1.3.3 Wave absorption by rotating black hole

Consider a Kerr black hole of mass M and angular momentum J. Its
rotational angular frequency 2 is given by Eq. (2.23); it is the angular
velocity with which every observer near the horizon gets dragged az-
imuthally. Let distant sources irradiate the black hole with a weak scalar
wavemode of frequency w, “orbital” angular momentum £ and azimuthal
“gquantum” number m. In the spirit of perturbation theory I neglect the
gravitational waves so produced. The black hole geometry will eventually
be changed by interaction with this wave, but since the latter is taken to
be weak, I shall assume that the change amounts to a transition from one
Kerr geometry to another with slightly different M and J. In the final
analysis such assumption is justified by the stability of the Kerr geometry
and the no-hair theorems. Since the geometry thus remains axisymmetric
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and stationary after the change, the wave preserves its angular-temporal
form Yy, (8, p)e™* over all time (here Yy, (#, ) denotes a spheroidal
harmonic function [94], a cousin of the spherical harmonic ¥ (8, ¢}). .

According to Sec. 1.2.5 the hole's absorptivity to scalar waves, an,(w),
must have the sign of w — m{): the hole absorbs energy for w —~ m} > 0
and gives up energy for w—mf} < 0. As w — mi}, a,, must pass through
zero because passage through a pole is unthinkable (a,, < 1 always). In
fact the general argument leading to Eq. (2.19) is applicable here and
tells us that a,, ~ w — m{} near the neutral point. Indeed, Starobinskii
and Churilov [94] calculated

G == Ky (w — Om), (3.11)

where K.4(M,J) is a positive coefficient. It follows from this and by
analogy with Eqgs. (2.13)-(2.14) that the changes in M and J are

dM x w (w — Qm) (3.12)
dJ oc m (w — 2m) (3.13)

with a common positive proportionality constant. By substituting these
in Eq. (2.21) we obtain

dA x (w—0Qm)?, (3.14)

again with positive coefficient. The fact that dA > 0 is in harmony with
Hawking’s area theorem [46). '

For small w —m§2, say on the scale M, the long term changes of the
system (black hole) are governed by changes in M and J which are seen to
be of O(w —m£). By contrast the horizon area change is of O{{w—mQ)?)
so that the horizon area behaves like an adiabatic invariant.

In Sec. 1.3.2 we saw that for the Reissner-Nordstrom case the process
may be termed adiabatic because the particle gets assimilated very slowly
by the black hole. For waves in the Kerr case the meaning of “adiabatic”
needs to be refined. It is known that a static (w = 0) but nonaxisymmet-
ric perturbation of a Kerr black hole, such as would be caused by field
sources held in its vicinity at rest with respect to infinity, necessarily
causes an increase in horizon area [48]. However, static perturbations in
this sense are not adiabatic from the local point of view. Because of the
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dragging of inertial frames [77], any nonaxisymmetric static field is per-

ceived by momentarily radially stationary local inertial observers as en-

dowed with temporal variation as these observers are necessarily dragged

through the field’s spatial inhomgeneity. At the horizon the dragging fre-

quency is the hole's rotational frequency {2, and a field component with

azimuthal “quantum” number m is seen to vary with temporal frequency

m$? which need not be small. Evidently, “adiabatic” must here mean that

according to momentarily radially stationary local inertial observers, the

perturbation has only low frequency Fourier components. As we saw

in Sec. 1.2.6, the frequency of a wave like Vo (8, @) e x e™¢~%* ag

sensed by observers rotating with the hole at the horizon is precisely

w — m2, and so it is this frequency which must be small in order for the

process to be considered adiabatic. As we just saw, only perturbations

with small w — m{} leave the horizon area invariant to a higher order than

other corresponding changes in the black hole.

These conclusions are inapplicable to the extremal Kerr black hole

{(J = M?). In this case Ok = 0 (see Sec. 1.2.5), so one cannot use
'Eq. {2.21) to calculate the change in area, but must work directly with
‘Eq. (2.20). From Eq. (2.23) one learns that } = 1/2M so that AJ =
Q1AM = 2MAM. Replacing M - M + AM and J — J+2MAM in

Eq. (2.20), and substracting the original expression gives

AA =872+ 2)MAM + O((AM)?). (3.15)

Since a generic addition of mass AM will give a AA of the same order,
the horizon area of an extremal Kerr hole is not an adiabatic invariant.

1.3.4 Dynamics of horizon area

Before delving further into the subject let us review the central result in
the field, Hawking’s area theorem [46), and the horizon dynamics upon
which it is based.

As usual, we denocte the event horizon by #. Consider a smail patch
of H’s area §A; it is formed by null generators whose tangents are I* =
dz®/d), where A is an affine parameter along the generators (see Fig. 3).
By definition of the convergence p of the generators [77], 6A changes at
a rate

dSA/d)\ = ~2pSA. (3.16)



Figure 1.3: The patch of area §A on H is formed by null generators
whose tangents are [* = dz®/dA, where ) is an affine parameter along
the generators; shown also are the spacelike vector m® and the ingoing
null vector n® of the same Newman-Penrose tetrad.

Now p itself changes at a rate given by the optical analogue of the
Raychaudhuri equation (with Einstein’s equations already incorporated)
[80, 87]

dp/dr = p* +|o|* + 4nT,5 1%I°, | (3.17)

where o is the shear of the generators, and 7,4 the energy momentum
tensor. The shear evolves according to

do[d) = 2p0 + Copys I*mPI'm®, (3.18)

where Cpgys is the Weyl conformal tensor, and m® one of the spacelike
Newman-Penrose tetrad legs which lies in H.
Many types of classical matter obey the weak energy condition

Tog 1°1P > 0. (3.19)

We have seen in Sec. 1.2.5 that matter in certain quantum states can
violate this condition. In the discussion of adiabatic invariance I take a



41

completely classical view, and will assume that Eq. (3.19) is always true.
Then p can—according to Eq. (3.17)—only grow or remain unchanged
along the generators. Now were p to become positive at any event along
a generator of our patch, then by Eq. (3.17) it would remain positive
henceforth, and indeed grow bigger. Eq. (3.16) then shows that § A would
shrink to nought in a finite span of X [46, 77] thus implying extinction of
generators. But it is an axiom of the subject [46, 77) that #’s generators
cannot end in the future. The only way out is to accept that p < 0
everywhere along the generators, which by Eq. (3.16) signifies that the
patch’s area can never decrease. This is the essence of Hawking’s area
theorem.

Under what conditions is 7{’s area constant ? Hawking [46] and Hawk-
ing and Hartle [48] consider this to be possible only if the black hole it
exactly stationary. The examples in Secs. 1.3.2-1.3.3 show that there
are slightly nonstationary situations where the increase in horizon area
is imperceptible. Let us characterize the situations where no change in
area OCCurs.

By Eq. (3.16) this requires that p = 0. But then Eq. (3.17) implies
that also o = 0 while Tosi*# = 0 on H. Then Eq. (3.18) implies that
Capré 12mP1Ym® vanishes on H. The particular Weyl tensor component in
question describes gravitational waves crossing the horizon inward bound.
"These will not occur if the situation is quasistationary, since gravitational
waves are generated by matter only to O(v®) where v is the velocity of the
matter sources. Thus as a minimum we must have an approximate time
Killing vector and slow motion of matter. This granted, preservation of
‘H’s area requires in addition

Topl®l? =0 on#H. (3.20)

Is this condition always satisfied in a quasistationary situation even when
sources of nongravitational fields reside in the vicinity of the black hole
? If not, then there is no hope for an adiabatic theorem because the area
will be found to increase even in situations which look like requiring no
changes of the black hole.

Computations, some of them arduous, show that the condition indeed
holds. It is true for the energy-momentum tensor of either minimally or
conformally coupled scalar fields from static sources in a Schwarzschild [24]
or Reissner-Nordstrom [74] black hole’s vicinity, for that from minimally
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coupled scalar field’s sources axisymmetrically arranged around a Kerr
black hole {74], and for the electromagnetic field’s T}, from charges ar-
ranged statically about a Schwarzschild black hole. Energy-momentum
conservation is the common reason for the enforcement of Eq. (3.20) in
a (nearly) stationary situation. The argument is very simpie.

Assume that the exterior geometry has a time translation Killing vec-
tor £*. This might be the only Killing vector as when a Schwarzschild
black hole is perturbed by static field sources placed with no particu-
lar symmetry around it. Or the situation might also be axisymmetric
(additional Killing vector n*) while still static if the array is made ax-
isymmetric. A third case is that of a nonstatic but still stationary and
axisymmetric situation where the black hole rotates with angular fre-
quency 2. Because H is a Killing horizon, the tangent to any of its
generators, I®, must be along a Killing vector, itself a linear combination
of the above Killing vectors. In a truly static situation {* o £¢, but if the
black hole rotates, I* &< (£ + Q*). The Killing vector {* = £% + Qn®
(with Q # 0 or, if appropriate, 2 = 0) defined over all the black hole ex-
terior is an extension of I* off #. Now because 7%? 5 = 0 and T*# = T4«
as well as the Killing equation (a;p + (gia = 0, (T%(,);6 = 0. Gauss’s
law then gives

[ @) (~9) 'z = §T20¢, 55 =0 (3.21)

where the second integral is taken over any closed orientable 3-surface,
and d%g is the outward pointing element of 3-volume on it.

As shown in Fig. 4, let us take this 3-surface to be composed of the
section of H between two constant-time hypersurfaces, £, and X,, the
two hypersurfaces themselves, and the part X, between T; and ¥, of a
spacelike hypersurface with $2 x R topology in the asymptotically flat
region far from the black hole. The contribution to the integral from
2 cancels that from ¥; because the time translation maps one into
the other while leaving 7%% unchanged, and because the sign of dX, is
opposite on ¥; and ¥y. The d¥g on I, points in the radial direction
in suitable coordinates. In the static situation with (¢ = £, T*9(,d%;
at X, represent energy flow inward at X,. If no energy influx exists, for
example because the ropes supporting various objects that perturb the
black hole are not moving, then the contribution of I, vanishes and we
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g(l

Figure 1.4: The bounding 3-hypersurface is composed of the section of
the horizon H between two constant-time hypersurfaces, 3, and X, the
two hypersurfaces themselves, and the part X, between X, and X, of
a spacelike hypersurface in the asymptotically flat region far from the
black hote.
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get
/ﬂ T, d%; = 0 (3.22)

In the rotating case when ¢ = £2+Qn%, T*%(, d=; at ¥, contains an ad-
ditional term representing inflow of angular momentum (T, dt r?df dy in
the usual coordinates). In other words, the new term represents a torque
on the black hole. If the sources disturbing it are arranged axisymmet-
rically and coaxially with its rotation, there will be no such torque. In
this case we recover Eq. (3.22).

If the weak energy condition (3.19) is satisfied at Z,, it is preserved
between I; and X, by the time translation symmetry. Thus the integral
in Eq. (3.22) is a sum of positive semidefinite contributions, one for each
horizon patch. Hence Eq. (3.22) implies that Eq. (3.20) is true everywhere
on the horizon. There is thus no reason for the area to increase, even
secularly. Thus if external sources disturb a Schwarzschild black hole in
a static way or a Kerr black hole in a stationary and axisymmetric way,
they do not cause the horizon area to grow. This is as we would have
liked to believe, but it is reassuring to have a proof that mere presence of
matter fields at the horizon does not cause its area to increase. There is
thus no impediment of principle to an adiabatic theorem for black holes.

1.3.5 Black hole disturbed by scalar charges

In Sec. 1.3.3 I demonstrated the adiabatic invariance of horizon area for
a Kerr black hole under the influence of scalar waves. Here I demon-
strate the invariance for a Schwarzschild black hole subject to low fre-
quency scalar perturbations originating from sources “rattling” in the
hole’s vicinity.

Consider a Schwarzschild black hole with exterior metric

ds? = —(1—-2M/r)dt®+(1—2M/r) " dr?+r*(d6®+sin’ 0 dy?).(3.23)

Suppose sources of a minimally coupled scalar field & have been brought
to = finite distance from the hole and are there caused to perform some
motion at low frequencies. Does this influence cause an increase in H's
area ?
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If the scalar’s sources are weak, one may regard & as a quantity of
first order, and proceed by perturbation theory. The scalar’s energy-
momentum tensor,

TP = Va®dVP® — %62 v, 8V'P, (3.24)

will be of second order of smallness. 1 shall suppose the same is true
of the energy-momentum tensor of the sources themselves. Thus to first
order the metric (3.23) is unchanged. The scalar equation outside the
scalar’s sources can be written

3 rt e + 8
(r2—2Mr) 882 oOr

[(r2 - 2M)% -’ =0. (3.25)

where L2 is the usual squared angular momentum operator (but with-
out the % factor). This equation suggests looking for a solution of the
form [77]

® = RLN&U i i Com(w) fom(w, ) Yem(8, p)e*". (3.26)

=0 m=-¢

where the Yj, are the familiar spherical harmonic (complex) functions.
Since the Y}y, form a complete set in angular space, any function ®(r, 6, ¢, t)
can be so expressed with the help of a Fourier decomposition in the time
variable. The constant coefficients Cpy,(w) are to be used to match &
to the prescribed sources; their presence allows for arbitrary normal-
ization of the fp,. Since .Engm = .f(f + l)Ytrm the radial and an-
gular variables separate. In terms of Wheeler's “tortoise” coordinate
r* = r + 2M In(r/2M — 1), for which the horizon resides at r* = —oo,
and the new radial function Hy,(w,7*) = rfam(w,7), one finds for Hypy,
the equation

d*H,,, 2MN (2M  £(E+1)
T dre? +(1— r )(r3 + r2

) Hpm = W Hyppp. (3.27)

Since the index m does not figure here, I write just plain H,(w,r); one
may obviously pick H, to be real.

The resemblance between Eq. (3.27) and the Schrédinger eigenvalue
equation permits the following analysis [77] of the effects of distant scalar
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sources on the black hole horizon. Waves with “energy” w? on their way
in from a distant source run into a positive potential, the product of
the two parentheses in Eq. (3.27). The potential’s peak is situated at
r &~ 3M for all £. Its height is 0.0264M~2 for £ = 0, 0.0993M 2 for
£ =1 and = 0.038£(¢ + 1)M~2 for £ > 2. Therefore, waves with any
¢ and w < 0.163M ™! coming from sources at r 3> 3M have to tunnel
through the potential barrier to get near the horizon. As a consequence,
the wave amplitudes that penetrate to the horizon are small fractions of
the initial amplitudes, most of the waves being reflected back. In fact,
the tunnelling coefficient vanishes in the limit w — 0 [77]. This means
that adiabatic perturbations by distant sources (which surely means they
only contain Fourier components with w « M~!) perturb the horizon
very weakly (this is just the inverse of Price’s theorem [77] that a totally
collapsed star’s asymptotic geometry preserves no memories of the star’s
shape). Thus one would not expect significant growth of horizon area
from adiabatic scalar perturbations originating in distant sources.

What if the scalar’s sources are moved into the region 2M < r < 3M
inside the barrier ? They will now be able to perturb the horizon; do
they change it’s area ? To check let us look for the solutions of Eq. (3.27)
in the region near the horizon where the potential is small compared to
w?; according to the theory of linear second order differential equations
they are of the form

Hy(r*) = exp(2uwr®) x [1 + O(1 — 2m/7)}. (3.28)

The Matzner boundary condition [71] that the physical solution be an
ingoing wave, as appropriate to the absorbing character of the horizon,
selects the sign in the exponent as negative. Hence the typical term in
P is

1+ O(1 — 2m/r)

. Py{cos 8) cos P =w(r*+1£) —myp. (3.29)

We obviously require that the event horizon remain regular under
the scalar’s perturbation; otherwise the black hole would be destroyed.
A minimal requirement for regularity is that physical invariants like
T, = T2, 1o = T,PT5%, Y3 = T,°Ty"T,", eic., be bounded, for diver-
gence of any of them would surely induce curvature singularities via the
Einstein equations. By Eq. (3.24) the invariant T} is always proportional
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to (® o,®)*. Por a single mode like that in Eq. (3.29), an explicit cal-
culation on the Schwarzschild background using dr*/dr = (1 — 2M/r)~!
gives, after a miraculous cancellation of terms divergent at the horizon
(pointed out by A. Mayo),

@, P?+..-,(3.30)

rdgin? df rd r3
where “ -- - ” here and henceforth denote terms that vanish as r — 2M.
This expression is bounded at the horizon. Now suppose ® is the sum of
two modes like (3.29), which we label with subscripts “1” and “2”. Then
a calculation gives ® ,®** as consisting of three groups of terms, two of
them of form (3.30) with subscripts 1 and 2, respectively, and a third of
the form

mlmngngz si.nqbl Sill‘(bg + dPgl dPgs (‘,081,01 COS‘I,L';
rdgin’® @ do de ré
+w1 sin i COB%;';“"“S'“%COB%HIH’ +--e (331)

This is also bounded. By induction any ® of form (3.26) will give a
bounded & ,®*°. Thus all the T are bounded at r = 2M, and a generic
scalar perturbation does not disturb the horizon unduly.

The extent to which the black hole is perturbed must be linear in the
magnitude of the invariant T; (Einstein’s equations have T,g as source,
not T,7T,?). It is then clear from both our results that this perturbation
is of order @{w®) generically, and of O(w) in the monopole case. As we
shall now see, the change in the horizon area is of Q{w?), so that for
small w the area is (relatively) invariant.

A 3-D hypersurface of the form {Vi,r = const.} has as tangent
the Killing vector £* = §,* with norm —(1 — 2M/r), and as normal
o = O,(r — const.) = &," with norm (1 — 2M/r). The vector N® =
€% 4+ (1 — 2M/r)n® is obviously null, and as r = 2M both its covariant
and contravariant forms remain well defined, so that it must there be
proportional (with finite nonvanishing proportionality constant) to I,
the tangent to the horizon generator. This can be verified by remarking
that N, just as I%, is null, future pointing (N* > 0) as well as outgoing
(N > 0).

m2 P2 sin? 1 (dP¢)2 cos? ¢ N w sin(2¢)

+
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Now
Tus NN = (T," — T/) N, N" + 2T N.N°. (3.32)

From N“’s definition we have N, N" = 1-2M/r and N,N* = 1. And from
Eq. (3.24) it is clear that 7, — T = @, D7 — @_tfP" while 7} = @ ;.
Thus

TogNONP = [®,+(1 — 2M /1), )% (3.33)

If one now substitutes a ¢ made up of a single mode like in Eq. (3.29),
one concludes that

2p2 o 2
Tusl® %n_}_b_*_

(3.34)
A quick way to this result is to recognize that I* o« £2 = (§/8t)* because
the horizon generators must lie along the only Killing vector field of the
problem. In view of Eq. (3.24) and the null character of {?,

Taﬁzalﬂ x {®,q ga)z = (3‘1’/&)2, (3.35)

which reproduces Eq. (3.34). And if one substitutes the generic ®, the
proportionality to the square of frequency will obviously remain.

Thus, when scalar field sources are moved inside the barrier, they
perturb the geometry by an amount which does not, in general, vanish
as the perturbations is made to change slower and slower. By contrast,
the rate of change of the horizon area vanishes as the square of the typical
Fourier frequency of the perturbation. In this sense the horizon area is
an adiabatic invariant. The result has been generalized by Mayo [74]
for electromagnetic fields from charges near a Schwarzschild black hole.
That calculation was harder than the one above, and succeeded only
by judicious use of the analogy between electrodynamics in a curved
spacetime and in a flat spacetime filled with a medium with appropriately
varying permittivity and permeability [104].

1.3.6 Sketch of a proof of the adiabatic theorem

The above permits us to discuss a process quite different from those
treated in Secs. 1.3.2-1.3.3. In those cases the black hole is transformed
by the process, its charge or angular momentum changing, so that the
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adiabatic process converts one Kerr-Newman black hole into another.
But imagine instead slowly bringing a scalar charge from a distance to
near a Schwarzschild’s black hole horizon, and then withdrawing it slowly
as well. The horizon undergoes a perturbation which is then relaxed.
According to Sec. 1.3.5, the horizon’s area does not change appreciably,
so the black hole must return to its original Schwarzschild state. We
now sketch a simple proof of the adiabatic theorem for the same kind of
situation, but for any sort of matter perturbations, which need not be
small.

We assume a static black hole is surrounded by charges of some sort
which perturb it via their fields; these charges are assumed supported
in some way, for example by ropes coming down from large distances.
The black hole need not be close to Schwarzschild; it could be strongly
distorted from sphericity. This, of course, does not violate the no-hair
principle because the black hole is not an isolated black hole.

Now suppose the charges, initially at rest, are set into slow motion,
for instance by being lowered slowly with help of the ropes. Let v be
the signed scale of the velocity involved. For example, this could be
the typical proper radial velocity of one of the charges. The sign of v
distinguishes one slow motion from its exact reversal, all starting from
the same configuration.

Let £ be the Killing vector of the background geometry before mo-
tion sets in and let 75 denote the exact energy-momentum tensor, at
all times, of the sources and their fields. The spacelike components of
Tez£?, the energy flux components defined with respect to the back-
ground metric, gfﬂ,), obviously switch sign together with v. If we assume
that 7% £# can be expanded in a series in v, that series must thus start
with O(v). By the Einstein equations linearized about g{%), some of the
components of the metric perturbations coming from the motion, ég,.,
must be of @(v). This means that the black hole is generically distorted
to O(v). However, it does not follow that the horizon's area changes to
O(v).

We saw in Sec. 1.3.4 that for a static situation p = 0 = Cogys I°mPl'm? =
0; thus g}ﬂ,) by itself must give p = 0 = Cagys 1emfl"m® = 0 while g,
[which has some components of O(v)] will generate corrections 8p, o
and §(Cogys 1°mPI7m?) of O(v) or higher. Now look at Egs. (3.18). Its
right hand side is of O(v) so ddo/dX = O(v). This is consistent with do
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being of O(v) because §o — 0 in the far future when things settle down
to staticity.

Eq. (3.17) now tells us that the question of whether dép/dA is of O(v)
or O(v?) is determined by the order of T,5i%l?, the other terms in the
right hand side being necessarily of O(v?). We showed in Sec. 1.3.4
that T,sl%l? = 0 for the background situation involving no motion.
Can Toal®l? be of O(v) for the dynamic situation in question 7 No !
That eventuality would allow it to switch sign with v, but this would
contravene the weak energy condition Eq. (3.19). We conclude that
Tupl®l? = O(v?), or higher. Then Eq. (3.17), together with the require-
ment that §p — 0 in the future when all changes die out, tells us that
dp = O(v?). 1t finally follows from Eq. (3.16) that the overall change in
horizon area is of @(v?). This shows that the change in horizon area is
of higher order of smallness than those of the changes undergone by the
perturbation of the hole; but this is precisely what the adiabatic theorem
would claim.

1.4 Black hole quantization

Quantum gravity effects supposedly become important only at the Planck
scale, variously stated as Mp = (h/G)/? = 1.2 x 10®MeV or Lp =
(RG)Y? =~ 1.6 x 10733 cm. Now this scale is so extreme by laboratory
standards that it would seem one shall never be able to put quantum
gravity to the test in the laboratory. Is this really so or is it possible
that by some recondite effect quantum gravity may make itself felt well
below the Planck energy (well above the Planck length) ? The Hawking
radiance, it is true, is expected also well away from the Planck scale.
However, it is generally acknowledged that derivations of it (at least those
not based on superstring theory) are semiclassical in nature (no quantum
gravity), and cannot tell us what would really happen at the Planck
scale. In this lecture I show how one can use a mixture of classical hints
and quantum ideas to guess what the departure from Hawking’s simple
spectrum should be. The surprise is that there are serious departures
expected well away from the Planck regime.

1 stated the basic idea {15] immediately after the appearance of the
Hawking radiance paper. It was taken up later by Mukhanov [79], and we
eventually synthesized our ideas [19, 22]. Other references are my Marcel
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Grossman VIII talk [25] and my talk at the XVII Brazilian Meeting on
Particles and Fields {20].

Henceforth in this section I use units with G = ¢ = 1 and denote the
charge of the electron by —e.

1.4.1 Quantum numbers of a black hole

In setting out to give a quantum description of black holes, a primary
question (first asked by Wheeler in the late 1960’s) is what is the complete
set of quantum numbers required to describe a black hole in a stationary
quantum state. Quantum numbers are first and foremost attributes of
elementary particles. Now an elementary object with mass below Mp has
its gravitational radius tucked below its Compton wavelength; it is thus
properly termed “elementary particle”. By contrast an elementary object
with mass above Mp has its Compton wavelength submerged under the
gravitational radius; it is best called a black hole. The discontinuity
between the two occasioned by the emergence of the horizon is illusory
because at the Planck scale the spacetime geometry should be quite fuzzy.
So there is no in between regime here, and by continuity the smallest
black holes should be quite like elementary particles, and should merit
description by a few quantum numbers like mass, charge, spin, etc.

As the black hole gets larger, it should become more classical and thus
come into the province of Wheeler’s no-hair principle (see Secs. 1.1.1-
1.1.2): a black hole is parametrized only by mass, spin angular momen-
tum, electric and magnetic charge. Of course there are the nonabelian
generalizations of the Kerr-Newman solutions. But as we saw, with the
exception of the Skyrmionic black hole, these are all unstable. I now
argue, by analogy with field theory, that we need not promote the pa-
rameters of these unstable solutions to the status of quantum numbers.

Recall the Higgs field with Mexican hat potential in flat spacetime. A
homogeneous configuration of Higgs field taking on a value on the slope
of the potential is not a stationary classical solution. No stationary quan-
tum state corresponds to it. A configuration with the field at a minimum
of the potential is a classical stationary stable solution. Small perturba-
tions away from it, which classically oscillate around it, are interpreted in
the quantum theory as excitations of the field above the minimum state.
By contrast, a configuration with the field at a maximum of the poten-
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tial is a classical stationary but unstable solution. A small perturbations
away from it runs away. In the quantum theory such perturbations are
reinterpreted as tachyonic excitations. To us this really means that the
underlying stationary configuration are pathological.

By analogy we may conclude that to each stable stationary classical
black hole solution corresponds a stationary quantum state which is capa-
ble of excitation. Again by analogy, the excited state can be interpreted
as the base black hole state plus quanta of various fields propagating on
its background. By contrast, an unstable stationary classical black hole
solution cannot be associated with a stationary quantum state because
excitations of the later would be tachyonic in nature. Thus, the unsta-
ble nonabelian hair black holes and the BBM black hole de not furnish
classical analogues of quantum stationary states.

Of course the above argument cannot rule out quantum stationary
black hole states without classical analogs. But it does suggest that, as far
as present evidence requires, the only quantum numbers of a stationary
black hole state are mass, spin angular momentum, electric and magnetic
charge and Skyrmionic topological number. As mentioned in Sec. 1.1.2,
this last is a kind of winding number, and as such not obviously additive.
For this reason [ strike it from the list.

1.4.2 Mass spectrum of a black hole

I thus focus on black hole eigenstates of the operators mass M angular
momentum J2 and J,, electric charge Q, magnetic charge § and, of
course, linear momentum P. This last can be set to zero if we agree to
work in the black hole’s center of mass. The eigenvalues of Q, G, J2, J, are
well known. By making the standard assumption that these operators
. are mutually commuting, we may immediately establish the spectrum of
the mass for the extremal black holes [75].
The classical eztremal Kerr-Newman black hole is defined by the van-
ishing of the square root in the expression for the Boyer-Lindquist radius
of the horizon:

ry = M+ /M2 — Q* ~ G2 — J2/M? (4.1)
This means

M= Q2+ G+ B /M (4.2)
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Now solve for M and discard the negative root solution (it gives imag-
inary M). One enforces the quantization of charge, magnetic charge
and spin angular momentum by replacing in this expression @ — g¢e,
G — gh/2e and J* = j(j + 1)A? with g, g integers and j a nonnegative
integer or half-integer. One thus obtains the mass eigenvalues first found
by Mazur [75]

My; = Mp[By+ ﬂ§g+j(j+1)]m ' (4.3)
B = q’e? /25 + g*h[/8€? (4.4)

What the above manipulations really mean is the following. The classical
constraint (4.2) is replaced by the quantum statement

(M2 - Q2 — G* — J*/M?)lqgj) =0 (4.5)

which picks out the extreme black hole states |ggj) whose mass eigen-
values are given by Eq. (4.3). Any black hole state not anhilated by the
shown operator is just not the quantum analog of an extreme black hole.
For the moment I sidestep the question of factor ordering (H 2 and J2
may not commute).

For nonextremal black holes one does not have a constraint like Eq. (4.2).
One can, however, proceed from the Christodoulou-Ruffini formula for
the mass of the Kerr-Newman black hole in terms of its area (irreducible
squared mass): [36]

2 A ar(Q* + G?) 2 4n3?
M (1+ . + (4.6)

T
This can be obtained by substituting Eq. (4.1) into the generalization of
Eqgs. (2.20) and (3.8), namely

A =4x(ry + 32/ M?), (4.7)

and solving for M2. One should note that only the parameter domain
A2 > 167%((Q% + G*)* + 437 (4.8)

of Eq. (4.6) is physical. For smaller A the Ruffini-Christodoulou formula
has M? decreasing with increasing A (for fixed @, G and J?), a trend
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which contradicts Eq. (4.7) with Eq. (4.1) substituted in. Obviously
when restriction {4.8) does not hold, formula (4.6) is an extraneous root.

In converting Eq. (4.6) to a quantum relation between the operators
M, @, G and J, one faces the problem of factor ordering. Now the area
of a black hole should be invariant under rotations of its spin; since J is
the generator of such rotations, one sees that [A,J] = 0. Similarly, area
should remain invariant under gauge transformation whose generator is,
as usual, the charge Q. Hence [A,Q] = 0. Duality invariance of the
Einstein-Maxwell equations would then suggest that [A,§] = 0. Hence
one may merely replace the parameters in Eq. (4.6) by the corresponding
operators:

A A an(O? +EM\?  4nd? . . . .
M= [16_« (1+ i ;g)) + 1:‘1 ]G(Az—lﬁwzl(Q2+92)2+432])(4-9)

The Heavyside © (step) function enforces the physical restriction Eq. (4.8);
when this last is violated, a zero mass eigenvalue is predicted, which
means there is no such black hole. One may thus read off the mass
eigenvalues of the Kerr-Newman black hole; this approach was first used
in Ref. {15].

Two comments are in order. One might object that it is not obvious
that the operators A, M, @, ¢ and J? are related in exactly the same
way as the classical quantities. Might not the classical relation (4.6)
arise as an expectation value of some more complicated looking quantum
relation ? This is possible, but the available evidence does not seem
to require any such complication. If one can neglect fluctuations of the
various observables, the expectation value of formula (4.9) will reproduce
the Christodoulou-Ruffini formula. The second comment is that it seems
nothing was gained in putting (4.9) forward. To judge from the classical
situation, A would seem to have a continuous spectrum, and so all that
(4.9) tells us is that there are several continuum mass sectors, one for
each set of eigenvalues of {Q, G, J 2}. The next section shows the evidence
pointing to a discrete spectrum for A.

1.4.3 Discrete spectrum for horizon area

As we saw in Sec. 1.3, the horizonr’s area of a nonextremal black hole is
an analog of an adiabatic invariant in mechanics. This is interesting to us
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because one can often understand classical adiabatic invariance in simple
quantum terms. As an example consider the plain harmonic oscillator.
When it is in a stationary state (labeled by quantum number n), E/w =
(n + 1)A. One expects n to remain constant during an adiabatic change
(changing the spring constant or the length of a pendulum) because the
perturbations imposed on the system have frequencies < w, so that by
perturbation theory, quantum transitions between states of different n
are strongly suppressed. Therefore, the ratio E/w should be preserved.
Now for the harmonic oscillator the Jacobi action s § pdg = 27 E /w so
it should be preserved. Thus a quantum insight here gives us an easy
understanding of the classical adiabatic invariance of the Jacobi action
involved. '

Ehrenfest generalized this insight into a principle [40): any classical
adiabatic invariant (action integral or not) corresponds to a quantum
entity with discrete spectrum. Again, the rationale is that an adiabatic
change, by virtue of its slowness, is expected to lead only to continuous
changes in the system, not to jumps that change a discrete quantum
number. The preservation of the value of the quantum entity then ex-
plains the classical invariance. FEhrenfest’s idea was embodied in the
Bohr-Wilson-Sommerfeld quantization rules of the old quantum theory:

f pdg = 2nhin (4.10)

Ehrenfest’s hypothesis can be used profitably in many problems. A
not too well known example concerns a relativistic particle of rest mass
m and charge e spiralling in a magnetic field B. One knows that the
Larmor spiralling frequency is
_ ¢|B} _ ¢[Bj
T ym  E
where v is Lorentz’s factor (1 —v?)~'/2, and F the total energy. When B
varies (in space or in time) slowly over one Larmor radius r or over one

Larmor period 27 /<), there exists, by Ehrenfest’s theorem, an adiabatic
invariant of the form

f pdg = j( myQr d = 2we|B|r? = 2eq, (4.12)

1) (4.11)
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namely, the magnetic flux ¢ through one loop of orbit [53]). Now rewrite
the energy

E=m(1-#-2-r0)"" (4.13)

by replacing Zz — p,/mvy, taking into account that + is nearly vanishing,
and replacing Q and r? by means of Eq. (4.11) and Eq. (4.12) to get

El=m?+p2+e¥’B*=m® +p? + pB/m (4.14)

By Ehrenfest’s principle, in the quantum problem ¢ should have a
discrete spectrum. One is thus led to expect that for fixed p,, E? should
be quantized, possibly with uniformly spaced eigenvalues. And indeed,
the ezact solution of the relativistic Landau problem with the Klein-
Gordon equation [64] leads to the spectrum

E'=m?+p2+ehB(2n+1); n=01,--- (4.15)

which justifies the prediction from the Ehrenfest principle.

I now take seriously the analogy between horizon area and adiabatic
invariants to conjecture, in harmony with Ehrenfest’s principle, that the
area of an equilibrium black hole has a discrete spectrum. We do not
have any evidence that one can express horizon area in the form § pdg.
Therefore, one should not immediately jump $o the conclusion that the
area eigenvalues are equally spaced. After all, what if horizon area cor-
responded to (§ pdg)? rather than to § pdg ? Thus at first I only write
the area eigenvalues as

an = f(n); n=123-. (4.16)

The function f must clearly be positive and monotonically increasing
(this last just reflects the ordering of eigenvalues by magnitude). In light
of Eq. (4.9) and the quantization of charge, magnetic charge, and angular
momentum, this conjecture implies that the nonextremal Kerr-Newman
black hole also has a discrete mass spectrum. Its form will be elucidated
in Sec. 1.4.5.

How are the area eigenvalues really spaced ? One can obtain a hing
by elaborating on Christodoulou’s reversible processes, a special case of
which (for a Reissner-Nordstrém black hole) was discussed Sec. 1.3.2.
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More generally Christodoulou and Ruffini [36] showed that the assim-
ilation of a point classical particle by a Kerr-Newman black hole can
be made reversibly if the particle, which may be electrically charged and
carry angular momentum, is injected at the horizon from a radial turning
point in its orbit. In this case the horizon area (or equivalently the irre-
ducible mass) is left unchanged, so that the effects on the black hole can
be undone by a second reversible process which adds charges and angular
momentum opposite in sign to those added by the first. One can check
that Christodoulou and Ruffini’s calculation establishes reversibility only
for nonertremal black holes.

1.4.4 Quantum Christodoulou processes

In the Christodoulou-Ruffini process the particle follows a bound clas-
sical orbit, and must be a point particle in order for its absorption to
leave the area unchanged. Particularly the first requirement clashes with
quantum theory. The particle cannot both be at the horizon and be at @
turning point; this contradicts the uncertainty principle because “turning
point” means the radial momentum is exactly zero and this is incompat-
ible with being precisely “at the horizon”. How ther do we formulate
the Christodoulou-Ruffini process while taking cognizance of quantum
mechanics for the particle 7

The first thing to settle is the condition under which one can work
with classical bound orbits at all. According to the tenets of quantum
mechanics this requires that the particle be in a state with large quantum
number. Thus let us imagine a particle of mass 4 < Mp and charge ¢
in a quantum stationary state in the spherically symmetric field of a
Reissner-Nordstrém black hole with mass M > Mp and charge Q < M.
In this preliminary investigation we ignore relativistic effects, and focus
on Schrédinger’s problem in the attractive potential V = (—Mpu+Qe)/r
(hence My > Qe). The radii of Bohr orbits of order n are [76]

n?h?
T u(Mp— Qe)
We require R, &~ M for a fairly large n so that only semiclassical states

R, (4.17)
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are involved in describing the particle near the black hole. Thus

1/2
ﬁi < (1 - :—ﬁ) (4.18)

An additional requirement is that the particle’s Compton length %/p
be much smaller than r;, ~ M, so that one can speak of the particle
localized near . For Qe not approximately equal to uM, the second
requirement guarantees that restriction (4.18) is satisfied; for Qe =~ uM,
restriction (4.18) already takes care of making the Compton length small
on scale M. In any case, consideration of semiclassical orbits near
requires h/(uM) < 1.

We now turn to the general relativistic problem. We generalize the
black hole to a Kerr-Newman one (mass M, charge @ and spin parameter
a = J/M). Boyer-Lindquist coordinates r and @ are used; the following
abbreviations are useful:

A r?—2Mr+ad®+ Q@ (4.19)
pF = r’+a’cos’d (4.20)

It may be noted that A = 0 at .

The condition /(M) < 1 granted, we should be able to describe the
motion of the particle away from a turning point by applying WKB ap-
proximation [76] to a wave packet representing the particle. This means
the packet’s center of mass will move classically on a geodesic or—if the
particle is charged—on the appropriate solution of the Lorentz equation
in Kerr-Newman spacetime. At the turning point the WKB approx-
imation breaks down {76}, so we expect the above description to fail.
However, since the gist of the quantum description is the existence of
uncertainty relations, it should be possible to obtain correct relations
between the various parameters of the orbit if we replace the physical
radial momentum at the turning point by the radial momentum uncer-
tainty 6P, and the proper radial distance of the turning point from the
horizon by the radial proper distance uncertainty £/6P. This has to be
done in the integrated classical orbits.

‘Carter [32] was first to find the first integrals for the meridional (6)
and radial (r) motions in the Kerr-Newman background. The first inte-
grals can be combined as in Misner, Thorne and Wheeler [77):

0 = GE?2-28E+7 (4.21)
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& = (r?+a?)*—a’sin’0A (4.22)
8 = (r*+a®)(al, +eQr)—aLl,A (4.23)
5 = (aLy+eQr)? — L2/sin? 04 — 20A — ot [(0°) + (0°AL2}t)

Here E and L, denote the total energy and angular momentum about
the symmetry axis of the particle, while p” and p° denote the appro-
priate contravariant momentum components. It proves useful to express
these last in terms of the physical components (in an orthonormal tetrad)
P = A~Y2pp" and 11 = pp®. Note that I1 bears dimension of a linear
momentam.

Following Christodoulou and Ruffini (see also Appendix A in Ref. [13]),
one solves the quadratic for E taking care to select the root which would
give positive energy far from the hole. We are only interested in the
expression near the horizon where A is small, so one may replace r — 7y
and p? — py? everywhere except in A itself. Pulling a factor A out of
the root we get after some rearrangement

A2 B 2(,,2 2
E-QL,—ed = rgz-t-a."‘\/sinzﬂ + p2(p? + P? + I12) + O(AY5)
Q = ary®+a?)"! = rotational angular frequent$.26)
& = Qry(ra’®+a®)™! o electrical potential  (4.27)
B = L,Q(aL,+ ryQe)sin®f (4.28)

Q) is identified with the angular frequency of the hole because it turns out
to coincide with the dragging angular frequency at the horizon [77]. Like-
wise @ is interpreted as the hole’s electrical potential because it equals
the component A; of the vector potential evaluated at #.

As mentioned, one may not set A = 0 in Eq. (4.25) even if one
is interested in capture by the black hole because of the uncertainty
principle. It thus pays to reexpress the prefactor of the square root in
Eq. (4.25) in terms of the (small) proper radial distance £ of 7 from 7.
One easily calculates that

2pu(r —ra)? _ 2puA?
(ra —re)1/? (ru —rc)

= [' Sardr (4.29)
Ly

where r¢ is the radius of the inner (Cauchy) horizon [negative square root
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in Eq. (4.1)]. We may thus rewrite Eq. (4.25) as

(?"1.( - ‘rc)f \/ B?

E—QL, —e® = 2(u2 + P2 +1P2)(4.

o® 20y (r32 + a?) ¥ sin® 8 + ot + P2+ TT)(4.90)

Let us now calculate the change in horizon area occasioned by the
particle’s capture. The differential of Eq. (4.7) is

dA = OF\(dM — QdJ — 3dQ) (4.31)
Oxn = (ra’+a®) " (ru — rc)/167 (4.32)

Not coincidentally, 2 and ® appear here. Their physical identifications
are again clear from analogy with thermodynamic formulae. We must
of course substitute dM = E, d@Q = e and dJ = L, in accordance with
energy, charge and angular momenium conservation. In view of the result
(4.30) we have

dA = 87r£‘/ ngﬁ + u?+ P24 I12 (4.33)

In this equation @ represent the meridional angle at which the capture
takes place while £ is a measure of the radial proper distance from the
horizon at which the particle can be said to merge with the black hole.
In the classical case the limit £ — 0 recovers for us Christodoulou’s
reversible process for the nonextremal black holes (the turning point
condition is p" — 0 or £P — 0). But dA4 cannot be zero in the quantum
case. We are interested in the minimum possible value for dA required
by quantum mechanics. Actually quantum mechanics places no onerous
limits on II; since we are not terribly interested on precisely where on
the horizon the particle hits, one can tolerate substantial uncertainty in
angle #, or equivalently in the linear coordinate ry8. As its canonically
conjugate momentum, II is allowed to have a small uncertainty. More
precisely, we could have I1 ~ §II ~ k/ry so that the contribution to dA is
~ h(€/ry). Of course our whole treatment presupposes that the particle
can approach the horizon close compared to the latter’s radius, so the
contribution to dA can be made negligible compared to k = £p2.

Now the sign of L,, the angular momentum along the symmetry axis,
is free. One can classically arrange for L, to be such as to nullify the
quantity B. In the quantum theory L., is quantized, as usual, with the
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spectrum (no spin) & x {--+ —2,-1,0,1,2, ---}. But this occasions no
special problem. Suppose first that Qe = 0. Then we can certainly
pick L, = 0 so that B makes no contribution to dA. Now suppose Qe
is nonzero. Our whole treatment presupposes that absorption of the
particle is a small perturbation on the hole, so that |e] < |Q|. Since
charge is quantized in of = (B/137)!/2 we see that |eQ| > h/137. Now
for the Kerr-Newman black hole Qry < 1/2 and Qa < 1/2. Thus unless
the black hole is nearly nonrotating, it is possible to select a nonzero
eigenvalue of L, which nullifies B with an error no larger than about %.
For a hole very close to nonrotating or an accretion point near the hole's
pole (so that |aQeQ|sin®§ < h), this can be accomplished with L, = 0.
Hence the term B? under the root in Eq. (4.33) contributes to dA at
most a term of O(hf/py). Again the contribution to dA can be made
small compared to £p2. :

The contribution to dA of the P? term under the square root cannot
be made so small. At the turning point P cannot be said to vanish, but
must be replaced by its uncertainty 6P. And the center of the particle
cannot be placed at the horizon with accuracy better than the radial
position uncertainty %/8P; thus £2P? > h%. Likewise, the particle cannot
be localized to better than a Compton wavelength %/ so that £2p® > B2,
T follows that there must exist a quantum lower bound on dA:

(dA)min = 87Eh = a Lp? (4.34)

where the numerical coefficient £ takes into account the inherent fuziness
of the uncertainty relation. Incidentally, this conclusion fails for extremal
black holes because O in Eq. (4.31) diverges in that case. The minimal
increase in area is then not Eq. (4.34), but a quantity dependent on
M, Q and J, just as in the example discussed at the end of Sec. 1.3.2.
But, surprisingly, for nonextremal black holes (dA)min turns out to be
independent of the black hole parameters M, ¢ and J.

It is in order to emphasize the approximations made in obtaining
Eq. (4.34). We assumed the particle only slightly perturbs the black
hole. Thus if it is charged, @ 3> (%/137)'/2 and in any case M > .
We also assumed the particle can get close to the horizon which means
M > £> h/u. Of course, the last two inequalities are consistent by our
original assumption that M > /h = Mp.
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1.4.5 Spacing and multiplicity of the area eigenvalues

The fact that, as soon as one allows quantum nuances to the problem,
there is, for nonextremal black holes, a minimum horizon area increase
suggests that this (dA)mi, corresponds to the spacing between eigenval-
ues of A in the quantum theory. And the fact that (dA)m, is a universal
constant suggests that the spacing between eigenvalues is a uniform spac-
ing. For it would be strange indeed if that spacing were to vary, say, as
mass of the black hole, and yet the increment in area resulting from the
best approximation to a reversible process would contrive to come out
universal, as in Eq. (4.34), by involving a number of quantum steps in-
versely proportional to the eigenvalue spacing. I thus conclude that for
nonextremal black holes the spectrum of A is

ap=0alp?(n+n); n>-1; n=12--- (4.35)

where the condition on 5 excludes nonpositive area eigenvalues. Since
Eq. (4.34) fails for an extremal Kerr-Newman black hole, one cannot
deduce as above that its area eigenvalues are evenly spaced. This is
entirely consistent with Eq. (4.3) according to which the area spectrum
is then very complicated.

For nonextremal black holes the evidence of Sec. 1.4.4 only suggests a
uniformly spaced spectrum well above the Planck scale. Thus Eq. (4.35)
is supported for large n, or for any n if 7 > 1. However, I shall go beyond
the concrete evidence and assume that the formula is valid also at low
quantum numbers even if = O(1). Some support for this comes from
the heuristic picture of a patchwork horizon discussed below.

Thus far I have said nothing about entropy; the discussion has been
at the level of mechanics, not statistical physics. But Eq. (4.35) allows
us to understand, in a pleasant and intuitive way, the mysterious pro-
portionality between black hole entropy and horizon area.

The quantization of horizon area in egual steps brings to mind an
horizon formed by patches of equal area o £p? which get added one at
a time. There is no need to think of a specific shape or localization of
theése patches. It is their standard size which is important, and which
makes them all equivalent. This patchwork horizon can be regarded
ags having many degrees of freedom, one for each patch. After all, the
concept “degree of freedom” emerges for systems whose parts can act



63

independently, and here the patches can be added to the patchwork one
at a time. In quantum theory degrees of freedom independently manifest
distinct states. Since the patches are all equivalent, each will have the
same number of quantum states, say, k. Therefore, the total number of
quantum states of the horizon is

N = kA/(eLF?) (4.36)

where k is a positive integer and the effects of the n zero point in
Eq. (4.35) are glossed over in this, heuristic, argument.

The N states may not all be equally probable. But if the k states of
each patch are all equally likely, then all N states are equally probable. In
that case the statistical (Boltzmann) entropy associated with the horizon
islnN or

Ink A
(44 .Cp2
Thus is the proportionality between black hole entropy and horizon area
justified in simple terms. Even if not all k states are equally probable, one
can still use Eq. (4.37) provided & is regarded as an effective number of

equally probable states. Only at this point thus one compare Eq. (4.37)
with Hawking’s formula for Sgy to calibrate the constant a:

a=4lnk (4.38)

Spr = (4.37)

The above argument depends crucially on the uniformly spaced area
spectrum. The logic leading to the number of states Eq. (4.36) was
used in the early days of black hole thermodynamics by me [10] and by
Sorkin [93] without regard to any particular area spectrum, but these
early arguments are not really convincing because their partition of the
horizon into equal area cells would be without basis if the desired result,
entropy o< area, were not known.

Mukhanov’s {79, 19] alternate route to Eqs. (4.36) and (4.38) starts
from the accepted formula relating black hole area and entropy. In the
spirit of the Boltzmann-Einstein formula, he views exp(Spr) as the de-
generacy of the particular area eigenvalue because exp(Spy) quantifies
the number of microstates of the black hole that correspond to a partic-
unlar macrostate (a black hole with definite M, @ and J). Since black
hole entropy is determined by thermodynamic arguments only up to an
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additive constant, one writes, in this approach, Spy = A/4Lp?+ const.
Substitution of the area eigenvalues from Eq. (4.35) gives the degeneracy
corresponding to the n-th area eigenvalue:

gn = €Xp ( 42';2 + cbnst.) =gy e*n-/4 (4.39)

As stressed by Mukhanov, since g, has to be integer for every n, this
is only possible when {19, 22]

g=12- and a=4x{n21n3,--} (4.40)

The simplest option would seem to be g; = 1 (nondegenerate black hole
ground state). Here the additive constant in Eq. (4.39) must be negative:
were it zero, the area a, would also vanish which seems an odd thing for
a black hole. Just this case was studied in Ref. [19]; it is a bit ugly in
that the eigenvalue law Eq. (4.35) and the black hole entropy include
related but undetermined additive constants.

The next simplest case, g1 = 2 (doubly degenerate black hole ground
state), no longer requires the ugly additive constant in the black hole
entropy to keep @; from vanishing. With this constant set to zero and
the choice @ = 41n2 corresponding to k& = 2, Eqs. (4.35) and (4.39)
require that = 0 so that one is rid of the second ugly constant as well.
The area spectrum is

an =4Lp'In2-n; n=1,2,--- (4.41)

't Hooft has independently found evidence for a fundamental unit of area
on the horizon of size 4Cp?1n 2 {100].

Spectrum (4.41), which I shall adopt henceforth, is good for nonex-
tremal Kerr-Newman black holes. The corresponding degeneracy of area
eigenvalues

I=2" (4.42)

corresponds to a doubling of the degeneracy as one passes from one area
eigenvalue to the next largest. Mukhanov [79] thought of this multiplicity
as the number of ways in which a black hole in the n-th area level can
be made by first making a black hole in the ground state, and then
proceeding to “excite it” up the ladder of area levels in all possible ways.



65

Danielsson and Schiffer [37] considered this multiplicity as representing
rather the number of ways the black hole with area a, can “decay” down
the staircase of levels to the ground state. In either case there are 2n-1
ways. The extra factor of two in the scheme here adopted comes from
the double degeneracy of the ground state.

To what extent do these intuitively physical predictions correspond
to results from more formal quantum gravity schemes ? Mention should
be made of Kogan's string theoretic argument [56], and the quantum
membrane approaches of Maggiore [67) and Lousto [66] which establish
the uniformly spaced area eigenstates as the base for excitations of the
black hole. The efforts of D-brane aficionados (for a review see Ref. [84])
have rather concentrated on the question of degeneracy qua entropy, and
it is not clear that they have anything to say about a discrete mass
spectrum.

There are also several canonical quantum gravity treatments of a shell
or ball of dust collapsing on its way to black bole formation. Those by
Schiffer [92] and Peleg [85] obtain a uniformly spaced area spectrum. But
Berezin [26], as well as Dolgov and Khriplovich [38], obtain mass spectra
for the ensuing black hole which correspond to discrete area spectra with
nonuniform spacing (and in Berezin’s approach the levels are infinitely
degenerate). Other canonical quantum gravity approaches by Louko and
Mikels [65], Barvinskii and Kunstatter (8], Makeld [68] and Kastrup [54]
treat rather a spherically symmetric vacuum spacetime that gets endowed
with dynamics by some subtlety; they also come up with a uniformly
spaced area spectrum. There is, however, no general agreement on the
spacing of the levels. The analogous treatment of the charged black hole
by Maikels, and Repo [70) gets a nonuniform area spectrum.

In the loop quantum gravity approach (for a review see Ref. [4]) the
black hole area spectrum is discrete but with a spacing which narrows
with increasing area, becoming virtually continuous in the infinite area
limit. This is completely at variance with the uniformly spaced spectrum.
However, as noticed by 1. Khriplovich [55], the area spectrum for the
extremal neutral Kerr black hole according to Mazur [Eq. (4.3] coincides
in part with the loop gravity horizon area spectrum.

The contradictory conclusions mentioned support the view that none
of the existing formal schemes of quantum gravity is as yet a quantum
theory of gravity. Clearly a role exists for the heuristic approach.
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1.5 Black hole spectroscopy

Of the ramifications of the discrete area spectrum, the most surprising
is the prediction of quasidiscrete spectral lines from a black hole, even
one well away from the Planck scale. In this last lecture I explore this
aspect. 1 continue to use units with G =c=1.

1.5.1 The mass levels and a paradox

In the operator relation (4.9) we substitute the area spectrum (4.41).
The mass eigenvalues of the Kerr-Newman black hole are thus [15]

2 e 1/2
Mogy; = Mp [nln2 (1+ 27’_/899) + ﬂ_(.-’_"'_l)] (6.1)

47 nin2 nin2

n o> %1/ﬁ§g+j(j+1) (5.2)

where f,, is the same as in Eq. (4.4) and the constraint on n comes from
the Heavyside function in Eq. (4.9); we have written a strict irequality
because we know that formula (5.1) applies to nonextremal black holes
only.

For zero charges and spin the mass spectrum is of the form

M x +/n; n=12--- (5.3)
implying the n => n — 1 transition frequency
wo = dM/h = (8xM) in2 (5.4)

This simple result is in agreement with Bohr's correspondence prin-
ciple: “transition frequencies at large quantum numbers should equal
classical oscillation frequencies”, because a classical Schwarzschild black
hole displays ‘ringing frequencies’ which scale as M1, just as Eq. (5.4)
would predict. This agreement would be destroyed if the area eigenvalues
were unevenly spaced. Indeed, the loop gravity spectrum mentioned in
Se¢. 1.4.5 fails this correspondence principle test (practitioners of loop
gravity are content with trying to recover the Hawking semiclassical spec-
trum in some limit—see review in Ref. [4).

It follows from the discussion in Sec. 1.4.4 that absorption of a massive
particle by the hole always causes a jump in black hole mass of at least
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dM (this corresponds to dA = 4LpIn2). What if the particle is very
light (1 < h/M), or if we replace it by a photon (g = 0). The discussion
in Sec. 1.4.4 is no longer relevant since we cannot follow the localized
particle to near the horizon: we have to treat the particle as a wave. Then
a paradox—the treshold paradox—arises. Scatter off a Schwarzschild
black hole an electromagnetic wave whose frequency w is below wp, or is
not a precise multiple of wy. Photons in the wave do not have the right
frequency to cause a transition between two mass levels. It would seem
that none of the wave can be absorbed. Admittedly, the transmissivity is
small at small frequencies, but the quantum prediction of no absorption
contrasts starkly with the classical picture of some absorption. And when
w > wy, the classical transmission coefficient for electromagnetic waves
is close to unity, so one sees no correspondence between the quantum
picture espoused here and the accepted classical picture, even in the
limit of large black holes. Does all this mean the area spacing we have
postulated is not really there ?

One should not confuse the question of the classical transmissivity
with the question of quantum absorptivity. The transmissivity is deter-
mined by the potential barrier around the black hole that shows up in the
electromagnetic wave equation. By contrast, the statement that a pho-
ton cannot get absorbed unless its frequency is wp or a multipie thereof is
a quantum gravity statement. A single photon with w < wy should never
be absorbed (modulus the question of line broadening and splitting to be
discussed below) even though it has some probability of penetrating the
potential barrier [94]. But if we are dealing with a macroscopic wave with
w < wy, multiple photon absorption may help to achieve the treshold;
re-emission of photons with frequency # w is then possible. This would
be analogous to multiphoton processes in nonlinear optical media where
the incident frequencies are shifted. This anomalous absorption would be
interpreted in classical theory as the expected absorption of subtreshold
frequencies. Now consider a photon with w = 100.3wp. It also is not
in resonance with the black hole levels. But after negotiating the po-
tential barrier, which it does easily because of its high frequency [94], it
may get absorbed with re-emission of a quantum with frequency 0.3 wo,
or 1.3wg, etc. One would thus expect that a macroscopic wave with
w = 100.3wy can get partially absorbed with accompanying re-emission
of lower frequency radiation.



Admittedly this absorbing behavior of black holes is at variance with
what one is accustomed to expect from quantum field theory on a fixed
background, where a wave’s frequency is not shifted while scattering off
a stationary object. But such shifts are seen in nonlinear optics, and
gravitation is a nonlinear phenomenon.

1.5.2 The black hole line emission spectrum

By analogy with atomic transitions, a black hole at some particular mass
level would be expected to make a transition to some lower level with
emission of one or more quanta of any of the fields in nature. In the
sequel I call these photons for short. The corresponding line spectrum—
very different from the Hawking semiclassical continuum—was first dis-
cussed in Ref. [15] and further analyzed much later [19, 22]. According to
Eq. (5.4) the spacing between mass levels is uniform over a small range
of M. Thus quantum jumps larger than the minimal produce emission
at all frequencies which are integral multiples of wy: w = wpdén with
n=12,-...

As Mukhanov was first to remark [19, 22], this simple spectrum pro-
vides a way to make quantum gravity effects detectable even for black
holes well above the Planck mass: the uniform frequency spacing of the
black hole lines occurs at all mass scales, and the unit of spacing is in-
versely proportional to the black hole mass over all scales. Of course,
for very massive black holes, one would expect all the lines to become
dim and unobservable (just as in the semiclassical description the Hawk-
ing radiance intensity goes down as 1/M?), but there should be a mass
regime (primordial mini-black holes ?) well above Planck’s for which the
first few uniformly spaced lines should be detectable under optimum cir-
cumstances. It is thus important to understand clearly the nature of the
line spectrum.

First we must know the ratio of line intensities. Again proceeding
by analogy with the perturbation theory of atomic line transitions, each
line intensity should be proportional to the square of a matrix element,
to the photon energy hwydn, to the photon phase space factor, and to
the degeneracy of the final black hole state. We do not know anything
about the matrix element, or even what the relevant operator is. Thus it
seems wisest to assume that the matrix element does not vary much as
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one goes from a nearest neighbor transition (frequency w = wy) to one
between somewhat farther neighbors {w = wp dn). Thus, aside from the
question of normalization of the spectrum, the matrix element does not
enter into our simple estimate.

The phase space factor is, as usual, w? = {wpdn)?. The final black
“hole state’s degeneracy factor is 2"" where n refers to the initial state.
Thus all possible transitions from the state n will give lines with frequen-

cies w = wpon and intensities proportional to (weén)® exp(—dnln2) =

w3 exp(—8nIn2). The same result can be had by relying on the relation

between the Einstein coefficient of spontaneous emission Ay and that for

absorption By (this last equivalent to the squared matrix element):
: hwd Gaown hwd 2n—6n

A=Brga e, P

(5.5)

'With w — wp 6n this gives the same result stated earlier. Therefore, the
line spectrum emitted by the black hole is expected to be

Iw) x i I'(w) hw® exp(—w In 2/wp) 6(w — wp 6n) (5.6)

dn=1

where I'(w) is the transmission coefficient through the potential barrier
surrounding the black hole averaged over angular momenta of the quanta.

This result should be compared with Hawking's semiclassical spec-
trum

Twhe D@t
exp(hw/Tpr) —1  exp(wIn2/wo) — 1

I(w) x (5.7)
where we have used Eq. (5.4) and the standard expression for the Hawk-
ing temperature Ty = h/87M. It may be seen that, apart from the
question of normalization, Hawking’s spectrum becomes the envelope of
the line spectrum for w 3> wp while “overshooting” slightly the first few
lines. Both the existence of lines and the “deficiency” in the first few
as compared to the thermal spectrum are predictions of the heuristc ap-
proach.

The above is not to say that the emission spectrum should be a pure
line spectrum. Multiple photon emission in one transition will also con-
tribute a continuum. To go back to atomic analogies, the transition
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from the 2s to the 1s states of atomic hydrogen, being absolutely for-
bidden by one-photon emission, occurs with the long lifetime of 8 s by
two-photon emission {photon splitting in the jargon). The hydrogenic
spectrum is thus a continuum over the relevant frequency range. We
have already mentioned multiphoton absorption as a possible resolution
of the “treshold paradox”. By detailed balance some multiple photon
emission should accompany decay of the black hole from higher to lower
mass levels which should generate a continuum that would compete with
the line spectrum {19, 22]. However, for the black hole no reason is
known why one-photon transition would be forbidden. Thus my expec-
tation, again based on the atomic analogy, is that most of the energy will
get radiated in one-photon transitions which give lines. The spectrum,
in first approximation, should be made up of lines sticking quite clearly
out of a lowly continuum.

1.5.3 Broadening and splitting of black hole lines

Another question is whether natural broadening of the lines will not
smear the spectrum into a continuum. First explored by Mukhanov [79],
this issue has been revisited recently by both of us [19, 22]. By the usual
argument the reciprocal broadening of a line, (6w)™?, should be of order
7, the typical time (as measured at infinity) between transitions of the
black hole from level to level. One may estimate the rate of loss of black
hole mass as
dM hwy hiln2
d =t 8xMrt (58)
Alternatively, one can estimate dM/dt by assuming, in accordance with
Hawking’s semiclassical result, that the radiation is black body radiation,
at least in its intensity. Taking the radiating area as 47 (2M)? and the
temperature as h/8x M one gets
aM ~h
dt  15360rM?
where v is a fudge factor that summarizes the grossness of our approxi-
mation. By comparing Eq. (5.9) with Eq. (5.8) one infers 7 which then
gives

(5.9)

‘l—“’ ~ 0,019 (5.10)

]
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Mukhanov and I regard v to be of order unity, which would make
the natural broadening weak and the line spectrum sharp. More recently
Makeld [69] has estimated a much larger value, and claimed that the
line spectrum effectively washes out into a continuum. He views this
as a welcome development because it brings the ideas about black hole
quantization, as here described, into consonance with Hawking'’s smooth
semiclassical spectrum.

Miikeld uses Page’s [82] estimate of black hole luminosity which takes
into account the emission of several species of quanta, whereas our value
~ ~ 1 is based on one species. It is, of course, true that a black hole will
radiate all possible species, not just one. This is expected to enhance 7y by
an order or two over the naive value. But it is also true that because the
emission is, in the first instance, in lines, part of the frequency spectrum
is thus blocked, which should lead to a reduced value for «y in Eq. (5.9).
Mukhanov and I consider the two tendencies to partly compensate, and
expect v to exceed its putative value of unity by no more than ar order of
magnitude. According to Eq. (5.10) this should leave the emission lines
unblended.

Anyway, the most important thing to get out of Eq. (5.10), of which
only the value of + is in contention, is that the natural broadening scales
in proportion to the line spacing. Thus natural broadening is not the
way to get a spectrum which gradually becomes a continuum for more
massive black holes. If the lines are smeared into a continuum by natural
broadening, then this is true even at the Planck scale.

We now come to line splitting. In atomic physics emission spectra
display a hierarchy of splittings which can be viewed as reflecting the
hierarchical breaking of the various symmetries. Thus in atomic hydro-
gen the O(4) symmetry of the Coulomb problem, which is reflected in
the Rydberg-Bohr spectrum, is broken by relativistic effects (spin-orbit
interaction and Thomas precession) thus giving rise to fine structure split-
ting of lines. But even an exact relativistic treatment in the framework
of Dirac’s equation leaves the 2s and the 2p levels perfectly degenerate.
They are split by a minute energy by vacuum polarization effects and the
Lamb shift. In addition, the rather weak interaction of the electron with
the nuclear proton’s magnetic moment leads to a small hyperfine splitting
of members of some of the other fine structure multiplets. The very sim-
ple spectrum in Eq. (5.3) is analogous to the hydrogenic Rydberg-Bohr
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spectrum. Are there any splittings of the lines here discussed ?

There is certainly room for splitting because of the 2°-fold degen-
eracy of the levels, particularly well above the Planck scale where 27
is large. And we must remember that the higher the mass level, the
smaller the mass spacing between adjacent levels. Thus, contrary to
what happens with natural broadening, degeneracy splitting could give
a spectrum which becomes quasicontinuous at some mass well above the
Planck mass. To answer the question of whether there is level splitting
and how much, we obviously need a more formal derivation of the black
hole mass spectrum which could take into account the lifting of symme-
tries. This is the purpose of the algebraic approach to be described in
Sec. 1.5.4

1.5.4 Algebraic approach to the quantum black hole

In quantum theory one usually obtains spectra of operators from the al-
gebra they obey. For instance, Pauli [83] obtained the complete spectrum
of hydrogen in nonrelativistic theory from the O(4) algebra of the rele-
vant operators. This approach sidesteps the question of constructing the
wavefunctions for the states. I will now describe an axiomatic algebraic
approach, whose genesis goes back to joint work with Mukhanov, and
which gives an area spectrum identical to the one found above. It thus
supports the results obtained previously, and illuminates the question of
level splitting [20)].

In Sec. 1.4.2 1 introduced some of the relevant operators for a black
hole: mass M, charge Q, magnetic charge G and spm J. The spectrum
on is {gelq € Z}, that of J? is {§(j + 1)A%|j = 0, 1 3:1,+++}, while that
of J, is {~jh, —(j ~1)A, - +, ( —1)h, jh}, where Z denotw the set of
integers. For brevity I sha.ll 1gnore G henceforth. Our first axiom expands
the algebra to include horizon area:

Axlom 1: Horizon area is represented by a positive semi-definite opera-
tor A with a discrete spectrum {a,; n=0,1,2--- }. The degeneracy of
the eigenvalue a,, denoted g(n), is independent of the j,m and 4.

I do not prove discreteness of the area spectrum. It is here an as-
sumption justified by the adiabatic invariant character of horizon area.
One imagines the eigenvalues to be arranged so that ap = 0, g(0) = 1
corresponds to the vacuum |vac) (state devoid of any black holes) while
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the rest of the a, are arranged in order of increasing value. (Since I do
not refer to G in what follows, no confusion will arise with the use of g for
degeneracy.) The independence of g, from, say j, is here an agsumption.

As argued in Sec. 1.4.2, 4, @, J2 and J, mutually commute. We have
as yet said nothing about mass M. 1t is premature to think of it as the
Hamiltonian because in relativity the last can vanish. Thus, rather than
introducing M into the algebra, we assume it can be gotten from A Q
and J? by the usual relation from classical black holes:

Axiom 2: The Christodoulou-Ruffini formula Eq. (4.9) is valid as a
relation between operators.

As mentioned, the commutativity of A, Q@ and J? makes this formula
immune to factor ordering problems. Thus, as already done in Secs. 1.4.2
and 1.5.1, one can infer the spectrum of M directly from those of A Q
and J2.

The algebra so far is too trivial to tell us anything about the spec-
trum of A. Of course we do not want to assume the uniformly spaced
spectrum. That is a desideratum. Recall now the discussion in Sec. 1.4.5:
the horizon is envisaged as being built one patch at a time. There is a
temptation here to introduce a “patch creation operator” which makes
one new patch each time it is applied to the black hole quantum state.
But if we assume that, then we are prejudicing the formalism in favor of
equally spaced area eigenvalues, since the patches would then be equiva-
lent. Or in other words, a single “area raising operator” can give nothing
but an equally spaced spectrum. So let us be more general.

Axiom 3: There exist operators Rn,mq_, with the property that R,,,m,,,|vac)
is a one black hole state with horizon area a,,, squared spin j(j + 1) A2,
z-component of spin m K, charge ge and internal quantum number s. All
one-black hole states are spanned by the basis {Rpjmgs|vac)}-

The stress here is on creation operators for single black holes, rather
than on raising operators that convert one black hole into another with
different quantum numbers because, as mentioned, introducing raising
operators runs the risk of assuming what we would like to establish. Of
course, assuming that each basis black hole state is created by its own
operator is a very mild assumption. It amounts to defining the operators
by their simple action. Introduction of the internal quantum number s
is necessary because from the black hole entropy one knows that each
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state seen by an external observer, even that of an uncharged nonrotat-
ing black hole, corresponds to many internal states; these need to be
distinguished by an additional quantum number (below called variously
s, or r). When no misurderstanding can arise, I write R,, or plain R,
for R,.,mq,

Commutation of the operators now available creates more operators.
If this process continues indefinitely, no information can be obtained
from the algebra unless additional assumptions are made. Faith that it
is possible to elucidate the physics from the algebra leads me to require
closure of the algebra at an early stage. I suppose the algebra to be
linear in analogy with many physically successful algebras. All these
assumptions are formalized in

Axiom 4: The operators A, J, Q, and Ry, form a closed, linear, infinite
dimensional nonabelian algebra.

This assumption has two different parts: the closure at some low level
of commutation (sunphmty) and the linear character of the algebra when
formulated in terms of A. As we shall sce presently, this last implies the
additivity of horizon area, which is a reasonable property. Additivity of
mass for several black holes is not reasonable (nonlinearity of gravity),
and this is really the reason why one cannot assume linearity of the
algebra of M, @, J and R,. In this sense A is singled out as special
among all functions of the black hole observables.

Since ﬁ’,,,-mqslvac) is defined as a state with spin quantum numbers §
and m, the collection of such states with fixed 7 and all allowed m must
transform among themselves under rotations of the black hole like the
spherical harmonics Y}, (or the corresponding spinorial harmonic when
J is balf-integer). Since |vac) must obviously be invariant under rotation,
one learns that the Rpjm,, may be taken to behave like an irreducible
spherical tensor operator of rank j with the usual 25 + 1 components
labeled by m {76). This means that

[jza é&] =myhR, (5.11)

and

[jit RK] = Jj&(jn +1) - mn(mn +1) hésm,‘:tl (512]

where Ji are the well known raising and lowering operators for the z-
component of spin. To check these commutators I first operate with
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Eq. (5.11) on |vac) and take into account that Jjvac}) = 0 (the vacuum
has zero spin) to get

Je Ry ,lvac) = muhR, ,|vac) (5.13)
Also from the relation {76] 32 = (J J. + J_J.)/2 + J2, one can work
out [J%, R,,] and operate with it on |vac); after double use of Egs. (5.11)
and (5.12) one gets

J2 R, vac) = jx(ix + 1)A2 R, ,]vac) (5.14)

Of course both of these results were required by the definition of R.,,—mq, fvac).
Moving on one recalls that  is the generator of (global) gauge trans-

formations of the black hole, which means that for an arbitrary real

number X, exp(txQ) elicits a phase change of the black hole state:

exp(txQ) Ry .|vac) = exp(axgxe) R,‘,[vac) : (5.15)
This equations parallels
exp(zq&f,/h) R,‘,|va.c) = exp(1¢m,) ﬁnlvac), (5.16)

which expresses the fact that J, is the generator of rotations of the spin
about the z axis. Thus by analogy with Eq. (5.11) one may settle on the
commutation relation

[Q, Bro) = greRra (5.17)
Operating with this on the vacuum (recall that Qvac) = 0) gives
Q Ry,|vac) = geeRy slvac) (5.18)

so that B, ,|vac) is indeed a one-black hole state with definite charge ge,
as required.

In addition to Egs. (5.11-5.12) and (5.17), one would like to determine
[A, R..], but since it is unclear what kind of symmetry transformation
A generates, a roundabout route is indicated.
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1.5.5 Algebra of the area observable
Consider the Jacobi identity
[B,[V,Cl1+[V,[C,B]) + [C,[B,V]=0 (5.19)

valid for three erbitrary operators B, V and O Substitute B — A,
¢ - R,m replace V in turn by J,, Ji and Q, and then make use of
Eqs. (5.11-5.12) and (5.17) as well as the mutual commutativity of J, Jy,
Q, and A to obtain the three commutators

[jh [A: R'u]] =My h [fi: Rna]:

[jﬂn [‘&! R—"mu JJl = \/ju(jn +1) —my(m £ 1) A [A: Rxm,tl ols

[Q: [/i, Rn s]] = ggt [f:is R&s]- (520)
Now compare these equations with Eqs. (5.11-5.12) and (5.17). Obvi-
ously, for fixed {jmg}, a particular (A, Rpjmgs] has commutators with
Jz, J:t and Q of the same form as would all the R,.,mq_, with the same

{jmq}. This means [A, Ryjmgs] transforms under rotations and gauge
transformations just like a Ry mqgs with the same {jmgq}. Thus

["Zi: Aua] = Z hiea™ R,\t + Tna (5.21)

nt

where ny, belongs to the set ), the h,,*? are structure constants, and 7',
are operators not in the class of B, which are defined in such a way as
to make Eq. (5.21} true.

By Axiom 4 the T}, can only include A, J and Q. But A and Q are
both gauge and rotationally invariant, so they can appear in Eq. (5.21)
only for the case {ngjms} = {n000s}. Further, J constitutes a gauge
invariant vector operator, namely its (spherical) components J_, J, and
J; correspond to {ngjms} = {n0lms}. Because the algebra is to be
linear we can thus rewrite Eq. (5.21) as

AR =3 ke Ba + 8,.°00,.° (DQ + BA) + 8, F ] (5.22)

nt

where D, F and F are numbers depending only on n, and s.
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Operating with Eq. (5.22) on the vacuum, and remembering that AQ
and J all aphilate it (because it is gauge invariant, rotationally invariant
and contains no horizons), one gets

ax By vac) =3 hiy™ Ryelvac) (5.23)

nat

Now because the Ry|vac) with various ny and ¢ are independent, one
must set .

hee™ = a0, ™ 8, (5.24)
so that the final form of Eq. {5.21) is
[4, By} = 0 R, +8,°06,,° (DQ + EA) + 8, ] (5.25)

Let us now define a new creation operator
R = Reo+ (a,)7'6,°06, (DQ + EA) + 6, FJ,]  (5.26)

Since A, J, and Q all anhilate {vac}, it is seen that R™¥ creates the same
one-black hole state as R.,. But the R,‘,';_e‘" turn out to satisfy simpler
commutation relations. Substituting in [A, R¢¥] from Eq. (5.25), (5.11-
5.12) and (5.17) one gets the commutator

[A, RY) = 0 BYY (5.27)

which supplements Egs. (5.11-5.12) and (5.17) and completes the algebra.
Henceforth I use only R2%” but drop the “new”.

1.5.6 Algebraic derivation of the area spectrum

Now that we have the full algebra, we can get on with the job of elucidat-
ing the spectrum of A. Operating with ResRy; on |vac) and simplifying
the result with Eq. (5.27) gives

ARMRM|vac) Res(A + ag)Rylvac) = (ax + a;)Rn,fmlvac) (5.28)

so that the state R,;,R,\dva.c) has horizon area equal to the sum of the
areas of the states R,,lvac) and RM|vac) Analogy with field theory
might lead one to believe that R, ,B|vac) is just a two-black hole state,
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in which case the result just obtained would be trivial. But in fact, the
axiomatic approach allows other possibilities.
Recall Eqs. (5.11), (5.17) and (5.27), namely

[X,R.] =z.R,. for X={4,0, J.} (5.29)
The Jacobi identity, Eq. (5.19), can then be used to infer that
[X! [RM ﬁz\]] = (:L',‘ + xl)[ﬁm -RA] (5.30)

which makes it clear that [ﬁ!,,, R\] has the same transformations under
rotations and gauge transformations as a single R with the index g =
{ngjms} defined by the condition

Ty = I+ I (5.31)
Axiom 4 then allows one to conclude that (,3* are structure constants)

[Re, Ry] = zmm +8,°06,,° (DQ + EA)+8;,' FJ,, ] (5.32)

where D, E and F are numbers depending only on n,, 2 and s,. Al-

though closure was postulated with respect to the old R’s, we use the

new A’s here. This causes no difficulty because the two differ only by a

superposition of A, § and J,, and these have been added anyway.
When one operates with Eq. (5.32) on |vac) one gets

[Re, Ry]jvac) = |o) (5.33)

where |e) stands for a one-black hole state, a superposition of states with
various u. Were R ,R,\:Ivac) purely a two-black hole state, as suggested
by the field-theoretic analogy, one could not get Eq. (5.33). Inevitably

Ry, Rylvac) = [ee) + o) (5.34)

with | e @} a two-black hole state, symmetric under exchange of the xs
and A¢ pairs. The superposition of one and two-black hole states means
that the rule of additivity of eigenvalues, Eq. (5. 31), applies to one black
hole as well as two: the sum of two eigenvalues of Q, J, or A of a single
black hole is also a possible eigenvalue of a single black hole. For charge
or z-spin component this rule is consistent with experience with quantum
systems whose charges are always integer multiples of the fundamental
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charge (which might be a third of the electron’s), and whose z-spins are
integer or half integer multiples of si. This agreement serves as a partial
check of our line of reasoning.

In accordance with Axiom 1, let a; be the smallest nonvanishing
eigenvalue of A. Then Eq. (5.31) says that any positive integral multiple
na; (which can be obtained by repeatedly adding a, to itself) is also an
eigenvalue. This spectrum of A agrees with that found in Sec. 1.4.5 by
heuristic arguments. But the question is, are there any other area eigen-
values in between the integral ones (this has a bearing on the question of
whether splitting of the area eigenvalues of Sec. 1.4.5 is at all possible) ?

To answer this query, I write down the hermitian conjugate of Eq. (5.27):

[A,Rt) = ~a, R} {5.35)
Then
ARLR, vac) = (RLA - a,RY) Ralvac) = (ax — ax) RLRivac) (5.36)

Thus differences of area eigenvalues are area eigenvalues in their own
right. Since A has no negative eigenvalues, if n) < ny, the operator Rt
must anhilate the one-biack hole state R, |vac) and there is no black hole
state RLR) |vac). By contrast, if n, < n,, R} obviously lowers the area
eigenvalue of R,. There is thus no doubt that & 1 Ry |vac) is a purely
one-black hole state (a “lowering” operator cannot create an extra black
hole: Eq. (5.36) shows that Rl anhilates the vacuum). In conclusion,
positive differences of one—black hole area eigenvalues are also allowed
area eigenvalues of a single black hole.

If there were fractional eigenvalues of A, one could, by substracting
a suitable integral eigenvalue, get a positive eigenvalue below a,, in con-
tradiction with a;’s definition as lowest positive area eigenvalue. Thus
the set {nay; n = 1,2,---} comprises the totality of A eigenvalues for
one black hole, in complete agreement with the heuristic arguments of
Sec. 1.4.5 (but the algebra by itself cannot set the area scale a,).

What about the degeneracy of area eigenvalues ? According to Axiom
1, g(n), the degeneracy of the area eigenvalue na,, is independent of
jym and g. Thus for fixed {n,, jx, M, gx} where not all of js,m, and
g~ vanish, there are g(n.) independent one-black hole states R, jvac)
distinguished by the values of 5. Analogously, the set {n), = 1,/ =
0, my, == 0, g» = 0} specifies g{1) independent states Rx¢lvac), all different
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from the previous ones because not all quantum numbers agree. One can
thus form g(1) - g(n,) one-black hole states, [R”,R,\ ¢|]vac}, with area
eigenvalues (n, + 1)a, and charge and spin just like the states Ry |vac).
If these new states are independent, their number cannot exceed the total
number of states with area (n. + 1)a,, namely g(n, +1) > g(1) - g(n,).
Iterating this inequality starting from n, = 1 one gets

g(n) = g(1)" (5.37)

The value g(1) = 1 is excluded because one knows that there is some
degeneracy. Thus the result here is consistent with the law (4.42) which
we obtained heuristically. In particular, it supports the idea that the
degeneracy grows exponentially with area. The specific value g(l) =2
used in Sec. 1.4.5 requires further input.
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