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Chapter 1

Classical Solutions in Multidimensional
Cosmology

1. Multidimensional Cosmelogy with Multicomponent Perfect Fluid

1.1. Introduction. The model

Multidimensional gravitation and cosmology {see, for example [1-21] and references therein) i
a very interesting object of investigations both from physical and mathematical points of view.
Here we continue the study of such models atarted in [21].

Last decade the interest in multidimensional cosmaology waa stimulated mainly by the Kaluza-
Klein and superstring paradigmas [22,23]. The "realistic* multidimensional cosmological modela
appeared mainly in & context of some unifications theories, Certainly, it is quite natural to believe
that the Entire Universe is multidimensional and we live in a some sort of a {3+1)- dimensional
layer, that is Our Universe. Of course, at first stage we should try to understand the structure
of our 3-dimensional crude (dense} matier and the formation of Qur Universe. But it seema to
be very likely that at some stage of our development it will be just impossible to describe our
(3+1)-dimensional layer (Our Universe) out of touch with other (multidimensional) layers and
domains.

A large variety of multidimensional cosmological models is described by psendo-
Euclidean Toda-like systems [19] (see formula (1.1.10) below). These systems are not well
studied yet. We note, that the Euclidean Toda-like nystema are more or less well studied [24-28]
(at least for certain sets of parameters, associated with finite-dimensional Lie algebras or affine
Lie algebras). There is also a criterion of integrability by quadrature (algebraic integrability)
for these (Buclidean) systems established by Adler and van Moerbeke [28]. Nevertheless, there
are some indications that cosmological models may contain rather rich mathematical structures.
For example, a self-dual reduction of the Bianchi-IX cosmology [20] leads us to the Halphen
system of ordinary differential equations (30). This aystem may be integrated in terms of mod-
ular forms [31] and is connected with a certain integrable reduction of the self-dual Yang-Mills



466

equation [32] (with the infinite-dimensional group SD%ffSU(2)). Another example is connected
with the Kaluza-Klein dyon solution from [33]. The field equations for a spherically-symmetric
Kaluza-Xlein dyon in 5-dimensions were reduced in [33] to an open (Buclidean) Toda lattice with
three points. Certainly, this problem may be formmulated in terms of an appropriate cosmological
model described by a pseudo-Euelidean Toda- like Lagrangian. So, we are led to an interesting
nontrivial example of an integrable cosmological model.

In this lectures we consider a cosmological model describing the evolution of # Einstein spaces
in the presence of m-component perfect-fluid matter. The metric of the model

g = —ezp|2v(t)]di ® dt + ¥ exp(22°(1)])g®, (1.1)
i=1
is defined on the manifold
M=RxMx.. xM, {1.2)

where the manifold M; with the metric g} is an Einstein space of dimension N;, i.e.

Brnenl9®] = ¥, (13)

i=1,...,n; n 2 2. The energy-momentum tensar is adopted in the following form

™ - f: M), (1.4)
a=1
(X)) = diag(—p*Xe), V(DT pENOEY)- (1.5)
a=1,...,m, with the conservation law constraints imposed:
uTae — g (1.8)

ea=1,...,m—1. The Einstein equations
1
RY - 36MR = T 7

(#? is gravitational constant) imply TuTH =0 and consequently VHT:"(-) =0.

We suppose that for any a-th component of matter the pressures in all spaces are proportional
to the density

$(0) = (1~ KDPS), a
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where

Ks) = 3 2), (19)

i=1,...,5, where ()(z) is a smooth functionon B*, @ =1,...,m. So, the total model is
anisotropic.

In Sec. 1.2 the Einstein equations (1.1.7) for the model are reduced to the equations of motion
for sume Lagrange nystem with the energy constraint E =0 imposed. When m = 1 and all spaces
are Ricci-flat {(3* =0 in (1.1.3), i = 1,...,n} sach reduction was performed previously in [9].

In Sec. 1.3 we consider the Einstein equations, when all spaces are Ricci-flat and A = const,
s=1,...,m, a=1,...,m. In this case we deal with pseudo-Fuclidean Toda-like system with
the Lagrangian

Ly= %G;,-é‘éj - 3 2 Al axp(ulla), (1.10)
a=1 .

where sign{Gij) = (~,+,...,+} [14,18], uf™ = N;a{™ and A = comst i = 1,...,n, @ =
L,...,m. The Einstein equations are integrated in the following cases: 1} m = 1; 2) n = 2,
m > 2, AR S0, ul® ) pledy g =1,...,m, where u? = Gluu; =0, u £ 0; 8)
ul®) = plady, w3 <0, Al > 0,a=1,...,m.

1.2. The equations of motion

The non-zero components of the Ricci-tensor for the metric (1.1.1) are following

Reo = — g;N.-[i" — & + (#)7], (1'_.2._1)
. =g‘.;"!mw+ecp<z=*—zv)(e‘+=f‘<f; N - 1)), - (122)
i=1,...,n
We put
T=R= i} Nz' (1.2.3)
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in (1-1.1) (the harmonic time is used). Then it follows from (1.2.1) and {1.2.2) that the Einstein
equations (1.1.7) for the metric (1.1.1) with + from (1.2.3) and the energy-momentum tensor

from (1.1.4}, (1.1.5) are equivalent to the following set of equations

Lo sisi e (o
5Gud's + Vet 4 3 ) exp(2m) =0,
axl

X+ exp(2e’ ~ 20) = «* exp(2s') zlp"’+(n 2)7 (o — zm‘*’n,
i=1,...,n. Here
Gi; = Nibi; — NiN;
are the components of the minisuperspace metric,
v, = -% 3 N Nieap( 22"+ 21)

is the potential and D = dimM =1+ T0, Ni.

The conservation law constraint (1.1.6) for a € {1,...,mm} reads
4+ $ M i) <
=1
We impose the conditions of state in the form (1.1.8), (1.1.9). Then eq. (1.2.8) gives

Pt} = A®lexp|-2N:a'(2) + $Ha(t))],

where A(=} = const and eqs. (1.2.4), (1.2.5) may be written in the following manner

%G.-,-é"z"' +V. + 4 El Al®) exp plo) = g,

X 4 & exp(2z' ~ 270) = —x* 3 ui o Al exp(2* — 290 + ),
a=1 .
i=1,...,n. In (1.2.11) we denote

ol = NA = 881, Wl = g%,

£

(1.24)

" (1.2.8)

(1.2.6)

(1.2.7)

(1.2.8)

(1.2.9)

(1.2.10)

{1.2.11)

{1.2.12)



where [15]
g &Y 1
G = . +ti g (1.2.13)

are the components of the matrix inverse to the matrix (G} (1.2.6).

It ia not difficult to verify that equations (1.2.11) are equivalent to the Lagrange equations for
the Lagrangian

L= %Gﬁe‘y -V (1.2.14)
where
V =V(z}= V=) + f: &2 Al exp[#=(z)). '(1.'2'.'15'3

Eq. (1.2.10) is the sero-energy constraint

E= % LGB +V =0, (1.2.16)

Remark 1. In terms of l-forms ul® = u®dzi, the relations (1.1.9) read: ul®} = Jdl™),
a=1,...,m. In this case

dul®) =0, (1.2.17)

a =1,...,m. The set of eqgs. (1.2.17) (on R™) is equivalent to (1.1.9).. An open problem
ia to generalise the considered here formalism for the following cases: a) dul®} # 0 for some
ac{l,...,m}; b) dul®) = 0 forall a=1,...,m, but ul*} are defined on an open submanifold
2 € B* with the non-trivial cohomology group H'(fl, R) # 0.

Using eqgs. (1.2.1) and (1.2.2), it is not difficult to verify that the Einatein equations (1.1.7)
for the metric (1.1.1) and the energy-momentum tensor from (1.1.4), (1.1.5), (1.1.8), (1.1.9) are
equivalent to the Lagrange equations for the following degenerate Lagrangian (see also [15])

L= %GXP(—“.F + ‘)\)(3])6‘(,‘5}‘@’. — exp{y - To{z))V{z) (1.2.18)
(L = L(,2,2)). Fixing the gauge

7 = mlz) — 2f(=), 1.2.19)
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where f = f(z) is a smooth function on R™, we get the Lagrangian

Ly = 5 exp(2(a))Cus'® — exp(~2{(2))V(2). (12.20)

For f = 0 we have the harmonic-time gauge (1.2.3). The set of Lagrange equations for the
Lagrangian (1.2.18) (or equivalently the set of the Einstein equations} with v from (1.2.19) is
equivalent to the set of Lagrange equations for the Lagrangian {1.2.20) with the energy constraint

By = 5 ep(2f(2))Gu's + exp(-21(z))V(2) = 0. (1221)

Remark 2. We remind that the action of the relativistic particle of mass m, moving in the
pseudo-Euclidean background space with the metric é.,(z) has the following form

§= f Gy (z['r))2 =i 'e('r)], (1.2.22)

where e = e(r) is 1-bein. Comparing (1.2.18) and (1.2.22), we find that for V(z} > 0 the
cosmological model (1.2.18) is equivalent to the model of relativistic particle with the mass m =1,
moving in the conformally-flat (pseudo-Euclidean) space with the metric Gy(z) = 2V{z)G;;). In
this case e = 2V{z)}exp{y — w(z)} . For ¥(2) < 0 we have a tachyon. The problem may be also
reformulated in terms of a geodesic-flow problem for conformally-flat metric (this follows from
(1.2.22) or from a more general scheme).

1.3. Classical solutions

Now, we consider the following case: X = 0 (all apaces are Ricci-flat), ul® = N:A{™ = const,
i=1,...,n. Then V. = 0 and we put = = {2 in (1.2.15). In this case the Lagrangian
(1.2.16) bas the form {1.1.10).

Remark 3. The curvature induced term V, (1.2.7) may be generated in the framework of the
model with the Ricci-flat spaces M; by the addition of n new components of the perfect fluid with
w* = 2N; — 26% and s7A™ = _X*N,/2, i,k =1,...,n. The introduction of the cosmological
constant A into the model is equaivalent to the addltlon of a new component with (=41} 2N;
and a? A} = A,

One-component matter

We consider the case m =1, A1) = A # 0. We denote Al = b, u!) = u; = Nihy. '
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We remind [14, 15] that the minisuperspace metric

G = Giyde' @ de’ (1.3.1)
har psendo-Euclidean signature (—,+,...,+}, i.e. there exist a linear transformation

= Ve, (1.3.2)
diagonalizing the minisuperpace metric {1.3.1)

G=q.5dz‘®dz‘=—dz°®dz°+§dx‘®dz‘, ) {1.3.3)

i=1

where

(nas) = (v*) = diag(—1,+1,...,+1), | &.3.4)

6.b=0,...,n-1.
Proposition 1. For any u = (t;) € R, u £ 0, there exists a (nondegenegate} n x n matrix (V*)
such that

ViV =Gy (1.3.5)

and a) V? = uif+/—u?, for u? < 0; b) V! = wfv/ul, for v? > 0; ¢} VP + V! = w;, for w? = 0;
Here and below (u = () = (Nih))

u? = upt = Gl = i: Nk + ﬁ(g Nik;). . {1.3.6)

(We note that in notations of [14] w¥ = A(h)/(2 - D).)

This proposition follows from the fact that < u,v >= G¥w,v; ia bilinear symmetric 2-form of
signature (—, +,...,+) and the following quite obvious.

Proposition 2. Let t € E= R*, n > 2, and < .,. >: B x E — R i» a bilinear symmetric 2-form
of signature (—,+,...,+). Then there exists & basis v°,...,v"~1 in E, such that < v, v® >= 5"
and a) v =%, b) u = v!, ¢} v = v* + v, in the cases: 2} v’ =< v, >= -1, by v* = 1, ¢}
v = 0 respectively.



4n

Let u # 0. In & = (27)-coordinates (1.3.2) with the matrix (V) from the Proposition 1 the
Lagrangian (1.2.14} has the following form

La = gnads = Va =~ () +'§: S - Vi, (13.7)
where
Va =«"Aexp(2gz°), u’<0, (1.3.8)
= x'Aexp(2gs’), W'>0, (1.39)
=s*Aexp{s*+2), W¥=0, (1.3.10)

is the potential {1.2.15). Here we denote
¥= s/I:;I {1.3.11}
The Lagrange equations for the Lagrangian {1.3.7)
= 0"V, (1.312)
with the energy constraint (1.2.16}
E,= %q...x?‘ib + V=0, (1.313)

can be easily solved. We present the solutions.

a) For v <0
d=pit4q, i=1...,n-1, (1.3.14)
2¢+" = y(1), (1.3.15)
where p* and ¢ are constants and
s(t)=  miC/Deink’(oVT(t - )),C #0,D >0, (1.3.16)
= Infs/D{i-%)], C=0,D>0, (1.3.17)
= Ih[-C/D oo;h’(%s/a(t —)),0>0,D <0, (1.3.18)

Here #5 is an arbitrary conatant, D = ~2uls14, C = —*(F)® and (F)® = T 1(F).
b) For u? > 0 we have

F=gttg, i=02...,n-1, (1.3.19)
242! = (1), (1.3.20)
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with (5)? = (F°) — TI*)? in (1.3.15)-(1.3.18).
c) ul =0, u3 0. In this case

F=pt+g, i=2..m-1, (1.3.21)

gt =24 2 = p*i + ¢t (1.3.22)

=0 spitg + st AL), {1.3.23)
where for p* #0

Ht) =2Ap* ) exp(p*t+4*), Pl =(F) (1.3.24)

: (p~ =0 for n = 2) and for p* =0
#t) = expgt, (P +2x%Aexpgt =0. {1.3.25)

- Here (3" = T ().
For # =0 we have

2 =g 4 ¢, a=0,...,n—1, {1.3.26)
Lnasp®p® + K14 = 0. (1.3.27)

Kasner-like parametrization. Here we consider the case u? < 0, A# 0. For ¢ = —u?(p)? > 0
we reparametrize the time variable

. %“%' (13.28)
where

e= Af|lAl= 21, T =(2/2A)2 (1.3.29)
We introduce new (Kasner-like) parameters

of = —2V}5' [y~ (5P, | (1:3.30)
where (Vi) = (V*)™! and the summation parameter s runs: 2 = 1,...,n — 1. Then, due

to relations (1.3.2), (1.3.5), (1.3.14)-(1.3.16), (1.3.18) and Proposition 1 we get the following
expression for the metric (1.1.1) [40] .

= ~([I(atr )"~ )r @ dr + 3 al(r)e, (1331)
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where
o) = AR Doy o e e (1332)
i=1,...,n; A; > 0 are constants and the parameters of satisfy the relations
wo' =0, (1.3.33)
Coed = —4fud (1.3.34)

(see Proposition 1 and (3.30)). For the density (2.15) we have
o) = ATTCa(ry (1.3.35)

We note, that (5)° = 25| A|[TL, AT
For A > () we have an exceptional solution (1.3.31), (1.3.33), {1.3.34) with the scale factors

afr) = Ayexp(+20'r/u’T), (1.3.36)

A: >0, i=1,...,n. This solution correspond to & =0 case {1.3.17).

Remark 4. In [19] the Einstein equations (1.2.10), (1.2.11) were solved for A} =0, a =
1,...,m, A #0, X = 0, i > 1. The solutions [19] may be also obiained from the formulas
(1.3.31)-(1.3.34). We note that the spherically-symmetric analogue of the solution [19] was con-
sidered in [36] (the case d = 2 was considered previously in [35]). There exisis an interesting
special case of the solutions [35, 36]. It is the n-time generalization of the Schwarzachild solution

9= —[(1 - £Mudt® @ d + (1 — 5)PAdR @ dR + (1 — L)~ P4R*dN?, where L # 0 and
A = (Au) is symmetric n x n matrix, satisfying the relation sp{A7) + (spA) =2.

We consider this solution in a separate publication.

Two spaces with m-component matter

Here we consider the following case: n =2, m > 2, Al®) £ 0,
LN ¢ ) QT (13.37)

a=1,...,m, where u? = 0, u # 0 and b=} are constants.

In z-coordinates {1.3.2), where the matrix {V*) satisfies the Proposition 1 (see the case ¢}

u? i 0) we have
2t =242t = (VP + V) = wist, (1.3.38)
W =l =a, 2t t a2, (1.3.39)
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where 200y = — < wlu' >, 2a_ = — < w',u >, and u* = (u}} is defined by the relation :

ule' = 5~ {or equivalently < u*,u* >=0, < u*,u >= -2).
Due to (1.3.37)-(1.3.39) the potential in {1.1.10) is factorized

V= V+(z+)V~(3‘ ),

where

Vi(2*) = exploy s7){(x2 A + )'fj <Al exp(Bladgt),
L]

Vo(27) = exp{a_27).

Let Al®) >0, &a=1,...,m,. We consider the f-gauge (1.2.19) with

F=e'=V
In this gauge the Lagrangian {1.2.20) reads
Ly= V(e )it V(e )i — L.
In the variables
' "
Wt =) = [ deVi(z)
m
ﬂle Lagrangian (1.3.44) has a rather simple form
Ly=—titem -1
g = —gW :
The equations of motion for (1.3.46) give
wt{t) =p*i+ gt
The parameters p* satisfy the energy constraint

231 = -y*p' +2=0.

(1:3.40)

(1.3.41)
(1.3.42)

(1.3.43)

(1.3.44)

(1.3.45)

(1.3.46)

(L3.47)

(1.3.48)

Remark 5. It is interesting to note that the so-called D-dimensional Schwarszachild-deSitter
- solution [44,45] may be obtained from the considered here cosmological solution with 7 = m = 2

..II.dN|=1,N3=D-—2.
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n spaces with m component matter

Now we consider the simplest case of the multicomponent matter. We put in (1.1.10) n > 2,
Ale} 5 0, ul®) = §=lu, u? < 0, where 8%} are constants, a=1,...,m.

In z-coordinates (1.3.2), corresponding to the case a) from the Proposition 1, the Lagrangian
{L.1.10) has the form (1.3.7) with the potential

Vi =Va(2") = }55’,1('*) exp(2g8™):°), (1.3.49)

i=1

where g is defined in (1.3.11) (A = (A®))). The solutions of the equations (1.3.12) and (1.3.13)
are expressed by the formula {1.3.14) and the following relation

[ a2 + 2l = (e ), (1.3.50)
(=]
where 28 = £ 1(p')?, and cp, o are constants.

1.4. Concluding remarks

In this section we investigated the muliidimensional cosmological model with n {n > 1) Ricci-
flat spaces, filled by m-component perfect fluid. In some sense, this model may be considered az
“universal” cosmological model: a lot of coamological models may be obtained from it under a
auitable choice of parameters. This fact may be used for *Toda-like” classification of known exact
cosmological (and spherically-symmetric) solutions of the Einstein equations. (We note, that the
Bianchi-IX cosmological model is described by the *Toda-like” Lagrangian (1.10) with n = 3 and
m=6.)

Here we integrated the Einstein equations for some sets of parameters. But an open problem
is the problem of integrability of the considered here model (at classical and quantum levels) for
arbitrary values of the parameters m, n, N; and uf-“’. We hope to continue the inveatigation of
this problem in forthcoming publications.

2. Multidimensional Cosmology with Multicomponent Perfect Fluid
and Toda Lattices

2.1. Imtreduction
We consider dynamical systems with n > 2 degrees of freedom described by the Lagrangisn

L=3% mi'd -3 aexp[} bz, m=2. (21.1)
=1 =1

=1

b | v
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A lot of systems in gravitation [33,44] and as well in multidimensional cosmology [1-21,45-48]
reduce to the syaterns with such a Lagrangian.

Without loss of generality it can be assumed that matrix {7;;) is diagonalized and n; = +1
for ¢ =1,...,m. Such system is an algebraic generalisation of a well-known Toda lattice [24,39]
suggested by Bogoyavlensky [25,40]. We say that it is an Euclidean Toda-like system, if bilinear
form of kinetic energy is positively definite, i.e. m; = §;. Nearly nothing is known about
Euclidean Toda-like systema with arbitrary sets of vectors by,... by, where b, = (M,...,8)
for s = 1,...,m. But, if they form the set of admissible roots of a simple Lie algebra, then
the system in completely integrable and possesses a Lax representation. Remind, that the set
of roots a,..., 0 is called admissible [25,40], provided veciors o, — a, are not roots for all
r,a=1,...,m. Each simple Lie algebra possesses the following set of admissible roots

Wyl =51 i (2‘1.2)

where uh, ..., uw, are simple roots and 0 is the maximal root [41] (usnally £ = wy + ... +wa).
Any subset of the set (2.1.2) is also admissible.

If the maximal root holds in the set (2.1.2), then generalized pariodic Toda lattices arise. The
different I — A pairs for them were found by Bogoyavlensky [25,40]. There were also presented
the Harniltonians of this systemns connected with simple Lie algebras.

The further progress in this field was attained by a aumber of authors (see, for example,
[26-28,42,43] and refs. therein). In ref. [28] Adler and van Moerbeke eatablished a criterion of
algebraic complete integrability for Euclidean Toda-like systema. {This criterion waa formally
applied to multidimensional vacuum cosmology with n Einstein spaces in [19].) The explicit
integration of the equations of motion for the generalized open Toda lattices (in this case the
maximal root is thrown away) was developed by Qlshanetsky and Perelomov [27] and Kostant
[26]. (See also [42).)

Here we are interested in the problem of integrability of the Toda-like systems with the in-
definite bilinear form of the kinetic energy. Let us call such aystems pseudo-Enclidean Toda-like
syatems. To our knowledge, this problem has not been discuesed intensively in the mathemat-
ical literature before. The reason, as it seems to us, consists in the following. If one try to
connect a psendo-Euclidean Toda-like systemn by the known manner with simple Lie algebra it
~ reduces {o an Euclidean system for the part of coordinatea (see Sect. 2.4). Nevertheless, inte-
grable pseudo-Euclidean Toda-like systems and search for their solutions in explicit form evoke
& special interest, because such systems arise in cosmology. For instance, 4-dimensional vac-
~ unm homogeneous cosmological model of Bianchi [X-type is described by the Lagrangian (2.1.1)
with (n,;) =diag(—1,+1,+1) [2540]. {In [31] it was shown, that this model has a rather rich
mathematical structure.)

_ So, in this section we study integrable pseudo-Euclidean Toda-like aystems appearing in mul-
tidimensional conmology. This trend in the modern theoretical physics has appeared within the
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new paradigm based on unified theories and hypothesis of additional space-time dimensions. Ac-
cording to this hypothesis the physical space-time manifold has the topology M*x B, where M*
is a 4-dimensional manifold, and B is & so-called internal space (or spaces). Nonobservability of
additional dimensions ia attained in multidimensional cosmology by spontaneous or dynamical
compactification of internal spaces to the Planck scale (10~** ¢m.). Integrable cosmological mod-
els are of great interest, because the exact solutionz allow to study dynamical properties of the
model, in particular compactification of internal spaces, in detail.

In the Sect. 2.2, as in [37], we consider the cosmological model where multidimensional
space-time manifold M is a direct product of the time axis R and of the n Einstein spaces
My,.. ..M, We remind, that any manifold of constant curvature is the Einstein one. It is shown
that Einstein equations for the scale factors with a source in the multicomponent perfect fluid
form correspond to the Lagrangian (2.1.1) with (n;;) =diag(—1,41,...,+1}. We develop the
integration procedure to the case of an orthogonal set of vectors by,...,hn in Sect. 2.3. Sect.
2.4 is devoted to the reduction of peeudo-Euclidean Toda-like system to the Euclidean one for &
patt of coordinates. This reduction allows us to cbtain the class of the exact solutions for some
nonorthogonal sets of the vectors by,. .., hm. We present the exact solution in the simplest case,
when the reducible pseudo-Euclidean system is connected with the Lie algebra A;. Discussion of
results is presented is Sect. 2.5. We single cut some interesting solutions, in particular, Euclidean
wormholes.

We denote by n the number of Einstein spaces and by m the number of the matter compo-
nents. Indices i and § run from 1 to n. Index s runs from 1 to m.

2.2. The model

Here we consider a cosmological model describing the svolution of » > 2 Einstein spaces in the
presence of m-cornponent perfect-fluid matter [37] as in Sect. 1.1 with hi{z) = conat (see (1.1.9)).
Then

P (t) = A expl-270 + 30 6] (221)
=1
where Al®) —const and
W = N, (2.2.2)
The Einstein egs. {1.1.7) may be written in the following manner

% 3. Gui'# +V =0, (2.23)

Bi=1
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¥+ & exp[2e — 210) = —#? ,'\j'; A expl2z’ — 290 + f:ug"’zi}. (2.2.4)
a=1 =1
Here
G = Nibij — NNy (2.2.5)

are the components of the minisuperspace metric,

v=-1 g X N expl-22° + 2] + &2 ?;: A exp[_};j ule], (2.26)
We denote

Ua = g Goul®, | (22.7)
where

G = % + 2__1_5 (2.2.8)

are the components of the matrix inverse to (Gi;) [15).
It is not difficult to verify that eqs. (2.2.14) are equivalent to the Lagrange-Fuler eqs. for the
Lagrangian

t=1ves-v (2.29)

=1

| =

Eq. (2.2.3) is the sero-energy constraint.

We note, that in the framework of our model the curvature induced terms in the potential
(2.2.6) may be considered as additional components of the perfect fluid. The introduction of the
cosmological constant A into the model in equivalent also to the addition of a new component
with u;, = 2N; and x?A = A.

Finally, we present the potential (2.2.6) modified by introduction of A-term in the following
form
n i n .
V= Y (-3XM)exp[ 3 Gyvjy=]+
k=1 2 =1

Y. &7 A exp| 21 Gy’ + Aexp['}:l Giju'd], (2.2.10)

a=1 ¥
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where we denote:

. n 8
o =2 6% =2, oY =2AN; - ), (22.11)
=1
=Y GV, (2.2.12)

=l
Let < .,. > be n symmetrical bilinear form defined on n-dimensionzl real vector space R®
with the components Gi; =< &, 8; > in the canonical basis ey,...e,. (&1 = (1,0,...,0) etc.)
It was shown [14,15], that the bilinear form < .,. > is peeudo-Euclidean one with the signature
{~,+,.-»+). Then the Lagrangian (2.2.9) may be written as:

L= % <8,2> -3 d@exp[< by, z >]. (2.2.13)
axl

(z = z'¢; + ...+ z"ea, z € R"). Here we denoted by m the total number of components,
including curvature, perfect fluid and the cosmological term. We note, that for m = 1 the
Lagrangian system (2.2.13) in always integrable. The exact solutions were obtained in [37]. (Some
special cases were considered in [20,48].) In the present paper we consider mullicomponent case:
m>2.

We any that a vector y € R" in called time-like, space-like or isotropit, if < g,y > has negative,
potitive or null values correspondingly. Vectors y and 3 are called orthogonal if < y,z >=0.

2.3. Exact solutions for orthegonal sets of vectors
Let vectors b,, ..., b, satisfy the conditions: 1. They are linear independent;
2. < by,bg >=0 for all @ # B, i.e. the set of vectors is orthogonal.
Then m < n. It is not difficult to prove
Proposition 1. The set of vectora by, . .., 4. may contain at most one isotropic vector.

Proposition 2. The set of vectors by,.. ., b, may contain at most one time-like vector and, if
it holds the other vectors must be space-like.

Remark 1. The additional term a{®exp[< by, z ] with zero-vector by = 0 does not change
the equations of motion, but changes the energy constraint (2.2.3)

1 ™
g <HE>+ Y o expi< ba, 2 >] + 0 = 0. (2.3.1)
=1
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It corresponds to the perfect fluid with A{® = 0 for all i = 1,...,n. Such a perfect fluid is called
the stiff or Zeldovich matter [49). It may be considered also as minimally coupled real scalar field
[50). We take into account this additional component by medification of the energy constraint

% < &3>+ 'i: o™ exp[< ba, z ] = Eq. {2.3.2)
el

These propositions allow to split the class of exact solutions under copsideration into following
subclasses:

A. There are one time-like vector and at most {n — 1) space-like vectors.
B. There arc at most (n — 1) space-like veciora.

C. There are one isotropic vector and at moet {n — 2) space-like vectors (this subclass arises
for n > 3).

To integrate eqs. of motion in all subclasses we consider an orthonormal basis ef,...,e,.
-These vectors are such that

< o}, €] =y, (2.3.3)

when: we denote by 5;; the components of the matrix

(i) = diag(—1,+1,...,+1). (2.3.4)
Let us define coordinates of the vectors in this basis by

z=X'¢ +...+X"e,. (2.3.5)
For these new coordinates we have

Xi=gi<ez> o= ijs{x*, (2.3.6)

=1

‘whete we denoted by t} the components of a non-degenerate matrix defined by

é = i;::e,-. (237)
- Components t} satisfy the relations:

2 Gutht) = (2.3.8)
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Let us try to find exact solutions for subclasses A, B and C.

A. Let b, be & time-like vector. Then < b.,b >> 0 for # = 2,...,m (in this case m < n).
We choose the orthonormal basis f,.._,e! as

e =b/| <b 8> s=1,...,m. {2.3.9)
Then we have:
< bz >= ] < b, b, > [1AX, (2.3.10)

The Lagrangian (2.2.13) and the energy constraint (2.3.2) for the coordinates X%,..., X™ have
the form .

L= % 2 %X.X’ - Ea(‘)m[’ful < by b, > Ilnx']v (2.3.11)
wi=1 =1
o= 3 XX 43 o explnad < bob > [127). (2312)
y=1 =l
Lagrangian (2.3.11) leads to the set of egs.
Xt =—| < b, b, > ¥ expln,,| < by, 5, > [V7X7), (2.313)
P AL R (2.3.14)

which is easily integrable. We get
X* = —nul < by by > [TV 10[F3(t — ta,)], (2.3.15)
X gty et XN M g (2.3.16)
where we denoted
Ft—to) = y|a)/B,|coh{y/|E, < b, b, > |/2(t — ton)), if s” > 0, 7uE. >0,
= V) B, sinly/|B, < 8,5, > /20 — to,)], # nusa® <0, 7 E, <0,
= la)/E, | sinh[\/|E, < b,,b, > |/2(t — tau)], if &’ < 0, 7,5, > 0,

= 1 < bubu > aj2(t — 4,), if gua’ <0, E, =0. (2.3.17)

By to,, B (s = 1,...,m), p™*, ... ,p", ¢™*,...,¢" we denoted the integration constants.
Some of them are not arbitrary and connected by the relation

1
E+.. 4+En+ E(p'“'l)’ +ot %{p")’ = By (2.3.18)
We have for components t}

=B/ <b,b > (2.3.19)
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It is convenient to present the exact solution in a Kasner-like form. Kasner-like parameters
are defined by

ol =t o™ . R, (2.3.20)
B =thad™ +.. g™ (23.21)

Then for the scale factors of the spaces M; (sce (2.3.6}) we get
exple] = TTLF2(t ~ tan)) /<442 explo’t + 7. (2.3.22)

Vectors o, 8 € R*, are defined by

a =a'ey+...+ake,, B =B¢y+...+ : {2.3.23)
satisfy the relations

<aa>=HE—-E—...— B} 20, (2.3.24)

< a, b, >=< g,b,>=0, s=1,...,m (2.3.25)

We remind that < o, 8 >= 37, Gial,
Remark 2. Hm =n then a =8 =10.

Remark 3. The set of constants By, E,, to,, o' and G is the final set. Only 2n constanis
from them are independent.

Remark 4. The subclass of the solutions may be easily enlarged. It is clear, that the addition
of new component inducing a vector collinear to one of by,...,bw leads to the integrable by
guadrature model. Let us take into account the following additional terms in the Lagrangian
(2.2.13)

iz}
- 3 o explbyya) < b,z >, (2.3.26)
a=1

where byooy =const# 0 for @ = 1,...,m(¢), 1 £ & € m. It is not difficult to show, that
the modification of the exact solution {2.3.22) only consists in the replacement of the function
F,(t — to,) by one F(t —4,), satisfying the quadrature

o)
fﬂ]‘] E,F2—al®) — ¥ alre) po0¥ea)) =< b,, B, > (t — too). (2.3.27)

==l

The additional components with other numbers o may be taken into account by the same manner.
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B. We have the st of m space-like vectors by,. .., 5 {m < n— 1) snd the orthonormal busia
defined by

ey =b/f<b,b > sa=1,...,m (2.3.28)

The Lagrangian {2.2.13) and the energy constraint (2.3.2) in terms of X -coordinates have the
form

l - (2} a4l
=3 3: i X X7 - Zu exply/< b,, b >X*H), (2.3.20)
B==x 2 XX 4+ Z«Wup[\/’ < by, be X, {2.3.30)
U=1 FLo ]
The corresponding eqs. of motion
X=X ==, (2.3.31)

X9 = _\f<b,,b, >al explyf< b, 8, >X™ (2.3.32)

lead to the solution

Xl. _ P‘.I.t + q (2.3.33)
=l _ 3 t— 3.
X gty X ="t g (2.3.35)

where functions F,(¢ — fo,) are defined by (2.3.17) (in this case all 5,, = 1}. Some of integration
constants in {2.5.33)-(2.3.35) saiisfy the relation

1
EBit...t Bn— E(p‘)’ + %(p""’)’ +...4 %(p"]" =By, (2.3.36)
To present the acale factors in a Kasner-like form we define the parameters:

o = tipt il ™ L R, (2.3.37)
F=tig +th 0™ + . i (2.3.38)

Then from (2.3.6) we obiain the same formula:
exple] = [TUF(t — ton)]¥/<5+> explo’t + 5. (2.3.39)

The relations (2.3.8) lead to the following constraints for the Kasner-like parameters o and 8 ;.

<a,a>=2AE-E—...—Ey), (2.3.40)
<o by >=< B4 >=0, s=1,...,m. (2.341)

.
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Remark 5. If m = n — 1, then either < @, >< 0 or a = 0; and & has the same properties.

Remark 6. We may also consider the enlargement of this subclass by the manner described in
Remark 4, If we add to the Lagrangian (2.2.13) the terms {2.3.26) for some & < m, we should
replace the function F(t — I5, ) in eq. (2.3.39) by the function F{t — to), satisfying (2.3.27).

C. Let b, be an isotropic vector. Then < b, % »>>0forr=2,...,m (in thiscase m < n—-1),
We choose the orthonormal basis e}, ..., by

e:=brf'\\‘<bﬂbf>y bl=e;.+e:n+‘l' {2'3'42)
Then we get

L= 1 E %.j-'jfi_ (‘)exp[—X‘+X"""]—
25

fja(')esp[\/c b, 5 >X7], (2.3.43)
Bo=> Z 1 X XP + aexpl—X" + X +

IJ-I
2 at” exp[,/< b, b >X7], (2.3.44)
r=1

The corresponding egs. of motion have the form

X = —aWexp[-X* + X™H, (2.3.45)
Xt = _gWexp[— Xt + X™H, (2.3.46)
X = —J<b,,b, >aPexply/< b, b, >X7], (2.3.47)
= =¥=0 (2.3.48)

To integrate (2.3.45), (2.3.46) it is useful to consider the eqa. of motion for X+ = X1 4 XY™+
and X- = —X' 4 X™ Then we get the solution

X' = 36t —p 4 5le* - a7) ~ 2half (), (2.349)
Xmit = l(;a* +9 )+ l{q" +q7) - 2In[f(¢)], (2.3.50)
X = TTT“MF’“ tor )]s (2.3.51)

=LY L X =t g, (2.3.52)

Here by f(t) we denoted the function
afl)
fley = exp[m explp i+ ¢7]l, P~ #0, (2.3.53)

&
= expl——explg ], #7=0. (2.3.54)
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The integration constants satisfy the relstions

%p*p‘ +Es+...+En+t (r“'*’)’ Foot —(p")‘ Bo, p~#0, (2.3.58)
aPexplg ]+ By +... + Em + E(p"“)’ +ot E(p"} =By, p"=0. (2:3.56)

The Kasner-like puameterl are defined by
= -f‘[p" -p )+ S8t P ) ™ (2.3.57)
g= -t‘ et —a7)+ “'m-:(q FqT) g™ (2.3.58)

Then from (2.3.5) we obtain the scale factors in a Kasner-like form:

explef] = (A1 TRt — tor)]¥/<4> explaft + i (2.3.59)
r=2
The Kasner-like parameters satisfy
<oer =AR-EB—...—E,), <abh>#0 (2.3.60)
= (B — aWexp[< 8,5, >| — B2 — ... — En), <o, >=0, (2.3.61)
<o b >=< Bb>=0, r=2,...,m (2.3.62)

Remark 7. For the parameters p~ and ¢~ we get:
P =<ab> ¢ =<fih>. (2.3.63)

Remark 8. Em=n—1 and < a,by >=0, then < @, >=0,ie. a=p*h. Fm<n-1
and < a,by >=10, then < o, >2 0.

Remark 9. Let us consider the enlargement of this subclass by the addition of the terms
(2.3.26) to the Lagrangian. The modification of the exact solution (2.3.59) foreach ¢ = 2,...,m
in described in the Remark 6. Let us take into account the additional compounents, induced by
isotropic vectors collinear to & . It is not difficult to show that in this case (for o = 1) the
additional terms (2.3.26) leads to the following modification of the function f(¢)

o) 1) e
£(2) =m{mm[p‘t+q 1+ ):‘25( 7 explbpa(pt + 470} P £0,
(1)
= exp{(a™ explg”] + Z‘; al'} wrp[bu'..)q'!)z}. p =0 (2.3.64)

In {2.3.56) and (2.3.61) the additional terms appear

(1)
3 a"explbuayg)- (2.3.65)

=l

These are all modifications in this case.
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2.4. Reduction of pseudo-Euclidean Toda-like system to Euclidean one

Now we consider the case, when the set of vectors by, . .., b is not orthogonal. It is easily shown
that egs. of motion of our aystem with the Lagrangian

L= % <EE>— ’f; o™ exp[< be, 7 >]. (24.1)
. ] :
for the new variables
F=e€ R, (24.2)
L. = &' expl< b, 7 > (2.4.3)
have the following form
p=—3 luba, (2.4.4)
o=l
=l <b,p>. {2.4.5)

Note that this representation is valid for non-degenerate bilinear form < .,. > with arbitrary
signature.

Let us consider a simple complex Lic algebra . Let H be a Cartan subalgebra, and A;, eu,
be a Weyl-Cartan basis in G [41]. We denote by Ay, ..., R, some basis in H and by wi,...,ww
the set of roots (wy € H, 7= 1,...,N). If the roots wy,...,wn are admissible, then we have
[25,40]

[ ewa) = (wa, b)ew,, BEH _ (24.6)

[tonstuy] = Sapwn, a,f=1,...,m, (24.7)
where we denote by (.,.) the Killing-Cartan form. Let ua define in the algebra G the vectors
{1 — A pair} [2540]

K =3 et C i Meh+ O L e (249)

a=]

AW = -2 3 falt)e (249)
) o=l
where C is arbitrary constant. Using (2.4.6-2.4.7), it can be easily checked that eq.
, Lgy = iL(), A)] (24.10)
s equivalent to the following set of eqs. for the variables fo(t), A(1)
A=-— f; F AT (24.11)
acml

fa = falwe, b), (24.12)
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where we denoted b = AW()h +...+ A~{(t}h,, hEH.

Consider the real lincar subspace of dimension » H' € H such that the Killing-Cartan form
(.,-) on H' is a real non-degenerate bilinear form with the signature (—, +,...,4),ie. <.,. > It
in evident, that the sets of eqs. (2.4.4-2.4.5) and (2.4.11-2.4.12) are identical, if A,un,...,wm € H'.
Thus, if the set of vectors by,..., 5, € R equipped with the bilinear form < .,. > may be
identified with a set of admissible roots wy ..., w,, € H’, then pseudo-Enclidean Toda-like system
with the Lagrangian (2.4.1) possesses the Lax representation. If such identification is possible,
then the system is called to be connected with the simple complex Lie algebra.

Proposition 3. Let a pseudo-Euclidean Toda-like system is connected with a simple complex
Lie algebra. Then it is reducible to an Euclidean Toda-like system for a part of coordinates.

Proof: We get in an arbitrary orthonormal basis ef,..., ¢,

= % 3w XX — Zu(‘)exp[z B: XY, (2.413)
=1
where we denoted
B! =Y ;B (2.4.14)
a=1

We remind, that b, = Ble] 4 ... + B?¢l,.

1t is known [41] that the Killing-Cartan form defined on the real linear span of roots of a
simple {or semi-simple) complex Lie algebra is positively definite. But we have the indefinite
bilinear form < .,. >. Then the first components of the vectors &,..., 4, must be zero in a
suitably chosen orthonormal basis, i.e. B = 0 for 5 = 1,...,m. Then, in this basis Lagrangian
{2.4.1) has the form

Z R XX - 3o al® wrp{E BiX*. (2.4.15)

'.;—1 =1

Coordinate X1 satisfies the eq.: X' = 0 . Eqs. of motion for X?,...,X™ are followed from the
Euclidean Toda-like Lagrangian

E=z 2 SuXtXx' - Zu(‘)exp[z BiXx*). (2.4.16)
=2

k=2

Thus, we obtained the reduction of a psendo-Euclidean Toda-like system to the Euclidean one.

Integrating the egs. of an Euclidean Toda-like system by known methods [26,27 42, we obtain
the class of exact solutions for some nonorthogonal set of vectors by, ..., b, . Here we consider
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this procedure for the simplest 2-component case (n > 3), when Toda lattice is connected with
Lie algebra A,.

Suppose, that the veciors 5, and by, induced by two components in the Lagrangian
L= % < #,3 > —alV exp|< by, z >] — ol expi< by, z >), (2.4.171)
satisfy the following conditions
1 1
< by by >= —§<!n.b; >= —E<bg,b, >< 0. (2.4.18)

Then, we have two space-like vectors with the same lengths. The angle between them is equal to
120°. We denote :

V< bub > =y/<b,b>=b (24.19)

Let us define the orthonormal bacis ¢f,..., e in R* by

by = bel, (2.4.20)

b= b(—%e; + ?e;). (24.21)
In this basis the Lagrangian (2.4.17) and corresponding energy constraint have the form

L= % .-,,Z';:l 1 X — oW exp[pX?] — ol m[s(-%ﬂ + ?x’)], (24.22)

B = % 3w XX + ol exp(pX?) + o erp{b(—%x‘ + ?x‘)] (24.23)

=1

¥or the coordinates X!, X%,...,X™ we get the following egs. of motion:

X=Xz =X (2.4.24)
Therefore
X'=pli+qg, X=pt+d'.... X" =p"t+q", (2.4.25)

where g1, 5%,..., 07, 4%, ¢% ..., q" are arbitrary integration constants. The eqs. of motion for the
toordinates X? and X? follow from the Lagrangian

Ty = HUOY + (R) - 4V explbX] - D pl X7 + LX)  am)
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Let us introduce new coordinates y! and y* s

b b
= ——X3, = —X3% 2.4.27
nW =Rt TR ( )

We obtain the Lagrangian of the open Toda lattice connected with the Lie algebra A2 = S1{3,C)

Ly = () + 7)) - esd expl2vn] - egdexp(—vEn + V], (24.28)
where we denoted’

BalV/8 = g}, a™/8 = eq], (24.29)

€= lgl:l[a(l)] = m[a[’)] = 1. {2.4.30)

To atudy the open Toda lattice it is useful to add the additional coordinate y:

Lr= %((i‘)’ + (5 + () — o] expl2vin] - egd expl-vVop + Vo), (2.4.31)

After the orthogonal linear transformation

Q= "}—g(\/i‘h +y2 + V35),

@ = ‘/LE(—\/?Tm +a + V), (2.4.32)
&= —2p + V2 {2.4.33)

the Lagrangian (2.4.31) takes the well-known form [24,26-28,42 43)

Lr = (8 + 6+ &) — gl expl2n — o)) — esd expl2les — o)) (2.4.38)

In this representation the additional degree of freedom corresponds to the free motion of the
center of mass (§; + § + §s = 0). The integrating of the egs. of motion for this system leads fo
the result [26,27,42]

g1 exp(2(q1 — ¢a)] = %. 93 axp[2(@ — ga)] = %, (2.4.35)
= +
where
4
Fe= Al Ayt oA+ 20} B + (2.4.36)

e{ Ay + Aa)exp[£(A, - AN F (B — Ba)) + Az exp[F(2A) + A F Bii}.
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The integration constants By, B; are arbitrary and A, A; satisfy the condition: 4,4, > 0.
For the energy of the system with Lagrangian (2.4.24) we have

1 . 3
5@ + & + &) + o) expl2an — aa)} + o] expl2(as — @)] = (47 + Auds + A3). (2.4.37)
Doing the inverse linear iransformation
f[qx ol
ra= 7([@1 - @]+ 2lq — i), (24.38)
f(m +0+a),
for the syatem with Lagrm,pan (2.4.22) we get the solution
X = p, [ pla(x)l 7 )- (2.4.39)
V3 8 1
a_¥3 1
X = 5 el payaepya R (2440)
and the following energy constraint
Bom - + 0 ek L0 4 ST+ Akt A, (2441)
To present the scale factors in the Kasner-like form let us introduce the Kasner-like parameters
of =tip' + 85 + ... + 5", (2.4.42)
B =tig +tig+ ...+t (2.4.43)
where components £ are determined by (2.3.7). In this case they satisfy the relstions
§= 3, 8= a(Gh+ ) (24.44)
From (2.3.6) we obtain the coordinates ' and finally present the exact solution in the form
expla’] = [F2] R/ [F]H/<hb> expla’t + £, (24.45)
where
- 1 :
Fo= §9{(«°’)’|af”|}&p_, (2.4.46)
By = PP E,. (@447)
The vectors @ and § defined by {2.3.23) satisfy the relations
< a,a>=2E — %(Af + A1 Az + A3)), (2.4.48)
<o b >=< B b >=0, r=1,2. {2.4.49)

Remark 10. En =3, then < aya><0and < 8,8 ><0.
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2.5. Discussion

Let us consider some cosmological models corresponding to the introduced in the Sect. 2.3
integrable subclasses of pseudo-Euclidean Toda-like systems. For this purpoee in Table I we
present values of the bilinear form < .,. > (set Sect. 2.2) for the vectors

; U
w= UE"-)G]. +...+ UE:-)G,‘, ‘D'[") = —2N—., (2.5.1)
y a, 1 o [,
weSuge bt ufen W =AY H o5 Y NAP, (252)
; 2
s=ule+... +ute,, W= 5D (2.5.3)

induced by curvature, perfect fluid and A-term correspondingly.

Within the subclass A we are able to construct the model with one Einatein space of non-gero
curvature. Let {n — 1) Einstein spaces are Ricci-flat and one, for instance M, , have a non-sero
Ricci tensor. Then we put by = v;. To get the orthogonality with & for at most (n—1) available
components of the perfect fluid (day1) = tga) for a < n—1) weput: A™ =0 (see Table I). Then,
these components appeared to be in the manifold M, in the Zeldovich matter form (see Remark
1). The model of such a type was integrated in [47). In the same way the model with all Ricci-flat
spaces and A-term arises . In this case we put & = u. The condition of the orthogonality reads:
e h,(“}N.- =0 for all @ <n — 1. Then we get the negative values for the some h,(-"}. It means
that for such perfect fluids p > p in some spaces (see (1.1.8)).

The vectors +; and u induced by curvature and A-term correspondingly are time-like, therefore
subclasses B and C correspond to the Ricei-flat models without A-term for some mullicomponent
perfect fluid source. These vectors can not be roots of any simple complex Lie algebra. Therefore,
the models with more than one non-zero curvature space and the models with curvature and A-
term are not trivially reducible to the Euclidean Toda lattices. Some possibilities of integration
of these models were studied in [18,46].

In conclusion we discuss the existence of the Euclidean wormholes [51-54] within the class of
the obtained exact solutions. We consider the simple model within subclass A with the manifold
R x M) % M;, when M, has a nonzero Ricci tensor with }; > 0 (see 1.1.3) and M, is Ricci-flat.
The integrable model arises in the presence of the perfect fluid in the Zeldovich matter form for
the space M;. It means Ay = 0 and the other parameter in the equation of state for M, (see
1.1.8)) may be arbitrary positive constant A. If we demand the positiveness of the mass-energy
density for the perfect fluid (A > 0), then from (2.3.22) we get for the scales factors of the M,
and M

exple?] = {F2(t — tor)} =0 {F2(2 — t0g)} T, (2.5.4)
exple®] = {F2(t — toa)} M, - (2.5.5)
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where

Fi(t —to) = | S/ |Bxlcoshly 2B, — 1t — tn), (256)

Fa(t — i) = /i3 A/ By mh[hJ %{N; V)Nl Eaf(Ny + Ny —1)(t — tea)]- (2.5.7)

In this case Ey < 0 and E, > 0. The energy constraint (2.3.24) leads to the condition: —E; =
E=E.

We may suppose that M, is 3-dimensional sphere 5% and M, is d-dimensional torus T4, Then
formulaa (2.5.4-2.5.7) present the multidimensional generalization of closed Friedmann model.
This model may be relevant in the theory of the Eazly Universe, because the Zeldovich matter

equation of state: p= p is valid on the earlier stage of its evolution {49).

To prove the existence of the Euclidean wormbholes we use the transformation t — it . Then

for the case Ly = #g3 = 0 we obtain

exple'] = {— ooc’[ M]}lﬂn) {311 cor’] g]}"‘f‘ (2.5.8)

expfa’] = {-—- cos”ly/ M]}"’ . (25.9)

1t is saay to see that when ﬁh’ > § one has wormhole with respect to the internal space T9.

The case 147 <  corresponds to the wormhole for the external space §°. Note, that for s =2

and d = 1 the wormbhole for the internal space is accompanied by the static external space. It is
" mot difficult to show that wormhole with respect to the whole space for this model arises in the

- presence of the additional component in the form of minimally coupled scalar field.
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3. Billiard Representation for Multidimensional Cosmology with
Muiticomponent Perfect Fluid near the Singularity

3.1. Imtroduction

A lot of interesting topics in multidimensional cosmology were considered: exact solutions and
the problem of integrbility, superstring cosmology and the problem of compactification, variation
of constants, classical and quantum wormbholes, chactic behaviour near the singularity, etc.

In the present section we deal with a stochastic behavior in multidimensional cosmological
models [53-55,18]. This direction in higher-dimensional gravity was stimulated by well-known
resulte for "mixmaster” model [56-50]. We note, that there is also an elegant explanation for
stochastic behavior of scale factors of Bianchi-IX model suggested by Chitre [58-59] and recently
congidered in [60-62]. (For "history” of the problem see also [63).} In the Chitre's approach the
Bianchi-IX cosmology near the singularity is reduced to a billiard on the Lobachevsky space H?
(see Fig. 4 below). The volume of this billiard ia finite. This fact together with the well-known
behavior {exponential divergences} of geodesics on the spaces of negative curvature leads to a
stochastic behavior of the dynamical system in the considered regime [64,65).

Chitre's approach [58] may also be used in the multidimensional case [55]. It allowa us to
obtain a more evident picture for the origin of the oscillatory bebaviour near the singularity
using the formation of billiard walls. The present section is devoied to a construction of the
“billiard representation” for the multidimensional cosmological model describing the evolution
of n Einstein spaces in the presence if (m + 1)-component perfect fiuid [37] (see section 3.2).
One of these components cotresponds to the cosmological contant term [66]. In some sense the
model [37] may be conzidered as “universal” cosmological model: a lot of cosmological models
(not obviously multidimensional) may be embedded in this model.
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We impose certain restrictions on the parameters of the model [37] and reduce its dynamics
near the singularity to a billiard on the (n — 1)-dimensional Lobachevaky space H*™' (Sec.
3.3). The geometrical criterion for the finiteness of the billiard volume and its compactness is
suggested. This criterion reduces the considered problem to the geometrical (or topological)

" problem of illumination of (5 — 2)-dimensional unit sphere 5™ 1 hy m, < n point-like sources
located outside the sphere [68-69]). These sources correspond to the components with {u{)* > 0

(Sec. 3.3). When these sources illuminate the sphere then, sad only then, the billiazd has a finite

_ volume and the cosmological model possesiea a stochastic behavior near the singularity. {We note,

that, for cosmological and curvature terms (u))? < 0 and these terms may be neglected near the
singularity). For the case of an infinite billiard volume the coamological model has a Kaaner-like
behavior near the singularity. When the minimally coupled massless scalar field is added into
consideration, the evolution in time is bounded: f > ty and the limit { — 4y corresponds to the
approach to the singularity. In this case the stochastic behavior near the singularity is absent.

In Sec. 3.4 we illustrate the suggested approach on an example of the Bianchi-IX cosmology.

3.2. The model

Here we start also from the cosmological model describing the evolution of n Einstein spaces in
the presence of (m+ 1)-component perfect-fluid matter (sce section 1.2). The metric of the model

9 = —explan(e)ldt ® dt + 3 explze(1)ls" (3.21)
in defined on the manifold

M=RxMx...xM, {3.2.2)

where the manifold M; with the metric g¢) is an Einstein space of dimension Nj, i.e.

Ruini[9" = X'g8,.., (3.2.3)
i=1,...,n; n > 2. The energy-momentum tensor is adopted in the following form

™ = i T, (3.24)

(T;r‘(‘);-: diag(—p'e), AT, - HUOED). (325)

a=0,...,m, with the conservation law constraints imposed:

TauTy ™ =0, (3.2.6)
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a=0,...,m—1, The Einstein equations

RY - 56N R=~TY (327)

L

(&? is gravitational constant) imply 7, T¥ = 0 and consequenily VuT: ™.

We suppoee that for any a-th component of matter the pressures in all spaces are proportional
to the density

- (w)
U =01- “i,—‘)p‘"(t). (3.2.8)

where u&“):aonst,i:l,‘.‘,n; a=0,..,m.

Non-sero components of the Ricti-tensor for the metric (3.2.1) are the following

Ruo =~ 30 N — 7+ (#)7, (329)
=l

R = g8 X + exp(22* — 29)(&* + é‘(i N - ), (3.2.10)
i=1,...,n.

The conservation law constraint (3.2.6) for & € {0,...,m} reads
LIS iZ::DN;i:i(p(“) +pM) =0 (3.2.11)
From eqs. (3.2.8), (3.2.11) we get
p2)(t) = A exp[—-2Niz'(¢) + wl™z(2)], (3.2.15)

where A® = const. Here and below the summation over repeated indices is understood.

We define
Tw=3 Nz (3.2.13)
=1

in {3.2.1).
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Using relations (3.2.8), (3.2.9), (3.2.10), (3.2.12) it is not difficult to verify that the Einstein
equations (3.2.7) for the metric (3.2.1) and the ¢nergy-momentum tensor from (3.2.4), (3.2.5) are
equivalent to the Lagrange equations for the Lagrangian

1 icd
= 5 &P~ + W(2))Cij#'# — exply — w(2))V(2)- (3.2.14)
Here
Gi; = Nib;; — NiN; (3.2.15)
are the components of the minisuperspace metric,
V=Viz)= _; T AN, exp(—22 + 210(2)) + 3 €7 A exp(ul). - (3.2.16)
=1 a=0
is the potential. Thia relation may be also presented in the form
‘ I3
V=3 Aaexp(u{s), (3.217)
m=0
‘where m=m+n; Ay = KA, a=0,...,m; Amyi = —}XN; and
ug“‘*‘" = (-8 + N;), (3.2.18)
$,i=1,...,n. Wealso put Ao = A snd
u” = 2N, (3.2.19)

i =1,...,n. Thus the gero component of the matter describe a cosmological constant term
{A-term).

Diagonalization. We remind [14,15] that the minisuperspace metric
G = Gyde* @ de' (3.2.20)
haa a pseudo-Euclidean signature (—, +,...,+), i.e. there exist a linear transformation
2 = el (3.2.21)

diagonalizing the minisuperspace metric (3.2.20)

a-1
G = qudr* @de* = —d° ©d2* + 5 dr' @ d¥’, (3.2.22)
=l
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where

(na) = (7**) = diag(-1,+1,...,+1), (3.2.23)

a,b=0,...,n — 1. The matrix of the linear transformation (e} satisfies the relation

n.;e:e; =Gy (3.2.24)
or equivalently
7" = efGeS =< et > . (3.2.25)
Here
2 1
S —
a7 = N, + D (3.2.26)

are components of the matrix inverse to the matrix (3.2.15) [15)], D = 1+ X%, N; is the dimension
of the manifold M (3.2.2) and

< u,v >= Gy, (3.2.27)
defines & bilinear form on B* (u = {w) , v = (1;)). Inverting the map (3.2.21) we get

o = a2t (3.2.28)
where for the components of the inverse matrix (e}) = (e}~ we obtain from (3.2.25)

et = Gelm,. (3.2.29)

Like in (15,21 ] we put

2=l =g W',  ¢=[(D-1)/{D-2)'% (3.2.30)

In this case the 00-component of eq. (3.2.25) is satisfied and the set (e®,a = 1,...,n -1} is

defined up to O(n—1)-transformation. A special example of the diagonalization with the relations
{3.2.30) and

s =esi= [N.!(Z N\ ): KM 3 Nife - <), (3:231)

j=a+l1



a=1,...,n—1, was considered in [14,15].

Tn s-coordinates (3.2.21) with 2° from (3.230) the Lagrangian (3.2.14) reads
L=z N) = %N“'q..i‘zf‘ _ NV(s),
where
N = exp(r — 1(2)) > 0
is the Lagrange multiplier (modified lapse function) and
Vie) = 3 daexpluts)
in the potential, Here we denote

u? = eful” =< ule), b > gy,

(3.2.32)

(3.2.33)

(3:2.3¢)

(3.2.35)

& =0,...,n—1, (see (3.2.27) and (3.2.29)). From (3.2.35) we get (sce (3.2.26), (3.2.27) and

(3.2.30))
W= < e >= (S uf)/e(D - 2)
Poe A-term and curvature components (see (3.2.19) and (3.2.18)) we have
tg=2¢>0, upt=2/g>0,
=1,...,n. The calculation of
() = g =< w5 (),
for these components gives
Y =4D-1)/2-D)<0, (u™Hy = 4(Ni’_ ~1)< n

& N;>1,j=1,...,n. For Nj=1wehave M = Ap,; =0.

(3.2.36)

(3.2.37)

(3.2.38)

(3.2.39)
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3.3. Billiard representation

Here we consider the behavior of the dynamical system, described by the Lagrangian (3.2.32) for
n > 3 in the limit

£ o0, z=(HeV, (3.3.1)

where V_ = {(s°, #) € R"|z° < —|#]} is the lower light cone. For the volume scale factor
ve up(f_': Niz') = exples?) (33.2)

(e (3230)) we have in this limit v — 0. Under certain additional assumptions the Lmit
(3.3.1) describes the approaching to the singularity. We impose the following restrictions on the
psrameters u” in the potential (3.2.34) for components with A, # 0:
DA, > 0if (u*F = —() + (@) > 0; (3.3.3)
uy > 0 for all a. (3.2.4)
We note that due to {3.2.37) the second condition is always satisfied for A-term and curvature
components (i.e. for a =0,m +1,...,m +n = ).

We restrict the Lagrange system {3.2.32) on V_, i.e. we consider the Lagrangian
L =Llrn., M_=V_.xRy, (3.3.5)
where TM_ is tangent vector bundle over M_ and Ry = {AV > 0}. (Here F|4 means the

restriction of function F on A.) Introducing an analogue of the Misner-Chitre coordinates in V_
[58-56}

o= _m(_,u):_t%;' (3.3.6)
2= —2exp(— °)%, (33.7)
i# < 1, we get for the Lagrangian {3.2.32)
Lo = SN e () + @V - NV, (338)
Here

@ =t -, (39)
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t,5=1,...,n—1, and

V=Vi)=3 Acpdiy, ), @33.10)
o=l
where
#(y,u) =~ (1 — 5®) uo(1 + §*) + 2657, (3.3.11)

We note that the (n — 1}-dimensional open unit disk (ball)
D r={i=0,.... /") <1} c R (33.12)

with the mettic & = hy;(7)dy*@dy’ is one of the realisation of the (n—1)-dimensional Lobachevaky
space H™~ 1,

We fix the gauge
N =exp(-24®) = 2. (3.3.13)

Then, it is not difficult to verify that the Lagrange equations for the Lagrangian (3.3.8) with the
gauge fixing (3.3.13) are equivalent to the Lagrange equations for the Lagrangian

L= 300 + pholl's — Ve (32.14)

with the energy constraint imposed

E.=—3(°) + gho@¥ + Vo= 0. (3:3.15)
Here
Vo= eV = 3 Acoxpl®(y, o)), (3..16)
=l
where
By, v) = -B° + By, u). : (3.3.17)

Nwwemmtuutedmthebehamofthedynmcalsynemm the limit 3° — —o0 (or,
equivalently, in the limit 2 = —(2°)*+(Z)® —» —o0, 2° < 0) implying (3.3. 1). Using the relations
(ue#0)

Al§, —,
$(3,) = —woexp( -y AL He0) g, (3318)
AG,S) = (-8 - 41, (33.19)
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we get

Aim ep(y,u)=0 {3.3.20)
for u! = —uf + (@)" <0, ug > 0 and

i &P #(1,4) = Bo(—A(F, —1i/uo)) (33.21)

for u? > 0, up > 0. In (3.3.21) we denote

ffz)=+ oo, z20,
0, z<0. (3.3.22)

Using restrictions (3.3.3), (3.3.4) and relations (3.3.16), (3.3.20), (3.3.21) we obtain

Vw{ﬂ = ‘Jl_iEl” K(l'n:ﬂ = Zg sw(_A(i! - “/‘“3)) (3‘3‘23)
Here we denote
Ay = {a|(u®)® > 0} (3.3.24)

We note that due to (3.2.39) A-term and curvature components do not contribute to V,, (i.e.
they may be neglected in the vicinity of the singularity).

The potential ¥, may be also written as following
Vulif)=V([§B)= 0, §¢B,

+o0, §E D\ B, (3.3.25)
where
B= () Bu~)c D™, (3.3.26)
aEdy
B} = {7 e D™+ | > Ty - 1), (33.27)
uf ug

a€ A,. Bisanopen domain. Ita boundary 8B = 5\ B is formed by certain parts of m, = A4
(m. is the number of elements in A, ) of (n — 2)-dimensional spheres with the centers in the
points

= —@/u8,  acl,, (3.3.28)
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(193] > 1) and radii

Y ==t | (33.20)

respectively (for n =3, m, =1, see Fig. 1).

Fig. 1
So, in the limit 3° — —oo we are led to the dynamical system
Lo = ~J + Vo5 — Vel (3:3.30)
Ew = —5(") + (il + Vo) =0, (3.3.31)
which after the separating of ¥* variable
¥* = w(t—to), . {33.32)

{w # 0, to are constants) is reduced to the Lagrange system with the Lagrangian

Ls = 2hy(§)i¥ - V(7. B). (33.39)
Due to (3.3.32)
Ba = AN + V(. B) =5 (3334)

We put « > 0, then the limit ¢ & —oo describes the approach to the singularity. When the
set (3.3.24) is empty (A, = @) we have B = D™ and the Lagrangian (3.3.33) describes the
geodesic flow on the Lobachevaky space H*' = (D™, hydy* ® dy’). In this case there are two
families of non-trivial geodesic solutions (i.e. y(t) # const):

1. §{t) = fylv/o¥ = 1 con p(f) — 2] + Rav/oT— T sim (2), (3.3.35)
w(£) = Zarctan((v — vo¥ - 1) tanh(wi)}, (3.3.36)
2, #(¢) = fitanh(wd). (3.3.37)

Hee P =l =il =1, fiyfia =0, v> 1, w> 0, =t — iy, iy = const.

Graphically the first solution corresponds to the arc of the circle with the center at point
{—vii,) and the radius +/v¥ — 1. This circle belongs to the plane epanned by vectors fi; and i3
(the centers of the circle and the ball 0*! also belong to this plane). We note, that the solution
(3.3.35)-(3.3.36) in the limit v — oo coincides with the solution (3.3.37).

We note, that the boundary of the billiard OB is formed by geodesics. For some billiards this
fact may be used for "gluing” certain parts of boundaries.

When A, # @ the Lagrangian {3.3.33} describes the motion of the particle of unit mass,
moving in the {n — 1)-dimensional billiard B C D™ (see (3.3.26)). The geodesic motion
in B (3.3.35)-(3.3.37) corresponds to a "Kasner epoch” and the reflection from the boundary
corresponds to the change of Kasner epochs. For n = 3 some examples of (2-dimensional)
billiards are depicted in Figs. 2-4.
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Figs. 2-4

The billiard B in Fig. 2. has an infinite volume: volB = +oo. In this case there are three
open rones at the infinite circle |§] = 1. After a finite number of reflections from the boundary
the particle moves toward one of theae apen sones. For corresponding cosmological model we get
the "Kasner-like" behavior in the limit ¢ —» —oo [19].

For billiards depicted in Figs. 3 and 4 we have volB < 400, In the first case (Fig. 3) the
closure of the billiard B is compact {in the topology of D™~*) and in the second case (Fig. 4) B
is non-compact. In these two cases the motion of the particle is stochastic.

Analogous arguments may be applied to the case n > 3. So, we are interested in the con-
figurations with finite volume of B. We propose a simple geometric criterion for the finitencss
of the volume of B and compactness of B in terms of the positions of the points (3.3.28) with
respect to the (n — 2)-dimensional unit sphere S*7 (n > 3). We say that the point § € 53
is (geometrically) illuminated by the point-like source locaied at the point ¥, |# > 1, if and
only if |§ ~ 7] < 4/Ii]* — L. In Fig. 1 the source P illuminates the closed arc [Py, P;]. We also
pay that the point §f € "2 is strongly illuminated by the point-like source located at the point
¥, |} > 1, if and only if [§ — 9] < 4/|7]* — 1. In Fig. 1 the source P strongly illumninates the
open arc (P, P;). The subset N C S? is called (strongly) illuminated by point-like sources
at {#*,a € A} if and only if any point from N is (strongly) illuminated by some source at &
(ﬂ € A+ )-

Proposition 1. The billiard B (3.3.26) has a finite volume if and only if the point-like sources
of light located at the points & (3.3.28) illuminate the unit sphere §~*. The closure of the
billiard B is compact (in the topology of D™ ~ H™1) if and only if the sources at poinis
{3.3.28) strongly illuminate 53,

Proof. We consider the set &B = B\ B, where B° is the completion of B {or, equivalently,
the clogsure of B in the topology of R*~!). We retmind that B is the closure of B in the topology
of D™, Clearly, that 8B is a closed aubset of 5™, consisting of all those points that are not
strongly illuminated by sources (3.3.28). There are three possibilities: i} 8B is empty; ii) &#B
contains some interior point (i.e. the point belonging to 8B with some open neighborhood); iii)
9°B is non-empty finite set, Le. #B = {§i,... i}, The first case i) takes place if and only if B
ia compact in the topology of D®~1. Qnly in this case the sphere 572 ig strongly illuminated by
the sources (3.3.28). Thus the second part of proposition is proved. In the case i) volB i finite.
For the volume we have

volB = L I9vh = fu Y dr(1 - r1)1RS,. (3.3.38)

The "area™ 5. — €' > 0 a3 r — | in the case ii) and, hence, the integral (3.38) is divergent. In
the case iii)

SOl —r) N asr 1 (3.3.39)
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(€ > 0) and, so, the integral (3.3.38) is convergent. Indeed, in the case iii), when r — 1,
the "area” 5, i the sum of ! terms. Each of these terms is the (n — 2)-dimensional "area™
of a transverse side of a deformed pyramid with a top at some point #, & = 1,...,{. This
multidimensional pyramid is formed by certain parts of spheres orthogonal to S in the point
of their intersection §i. Hence, all lengths of the transverse section » = const of the "pyramid”
behaves like (1 )7, when r — 1, that justifies (3.3.39). But the unit sphere 5 i illuminated
by the sources (3.3.28) only in the cases i} and iii}. This completes the proof.

The problem of illumination of convex body in multidimensional vector space by point-like
sources for the firat time was considered in [68,69]. For the case of S*~* thia problem i equivalent
to the problem of covering the spheres with spherea [70,71]. There exist & topological bound on
the number of point-like sources ., illuminating the sphere $%-2 [69):

m, > n {3.3.40)

Thus, we are led to the following.

Proposition 2: When m, < n, i.e. the number of the components with (u*)* > 0 is lese than the
minisuperspace dimension, the billiard B (3.3.26) has infinite volume: vol B = 4oco.

In this case there exist an open zone on the sphere 5™ 1 and the stochastic behaviour near
the singularity is absent {we get a Kasner-like behaviour for t —+ —o0).

Remark 1. Let the points (3.3.28) form an open convex polyhedron P C R™. Then the
sources at (3.3.28) illuminate 52, if D*! C P, and strongly illuminate §"7, if DTcp.

Scalar field generalization. Let us assume that an additional {m + 1}-th component with
the equation of state p!"‘H) = p™+1) iy considered, i = 1,...,n. This component describes
Zeldovich matter [49) in all spaces and iz equivalent to homogeneous massless free minimally
coupled scalar field [50]. In this case ul™") = 0, i = 1,...,n and the potential (3.2.17) is
modified by the sddition of constant An.; > 0. Then the potential V, (3.3.16) in modified by
the addition of the following term

AV = Amy exp(—2¢°). (3.3.41)

This do not prevent from the formation of the billiard walls but change the time dependence of
¥°-variable:

exp(2y°) = 2Am1 sinh[w(t — b))/, (3.342)

{w > 0) instead of (3.3.32). In the Limit £ — ¢, + 0 we have ® — —oo and §{t} — g € B. 5o,
the stochastic behavior near the singularity is absent in this case.
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3.4, Bianchi-IX cosmology
Here we consider the weli-known mixmaster model [56,57] with the metric

9= - eplprlé e + 3 cps(Ol e, (341)
where 1-forms ¢ = ei{()d(* satisfy the relations

de’ = %s‘,-;e" A, (34.2)
i,j,&=1,2,3. The Einstein equations for the metric (3.4.1) lead to the Lagrange system (3.2.14)-

{3.2.17) with (see, for example, [57])) =3, Ny =Na=Ny =1, m =6, A, = A, = A; = 1/4,
A.‘:A‘:A‘:—lfz'AnzA-r:-ﬁ,.:An:n,md

I (343)

a=1,2,3. In this case o = £, =, the minisuperspace metric (3.2.14) is &; = &; — 1 and
the potential (3.2.17) reads

V =V = %(e"‘ + e et a4 _ goutiaet _ gartiady (3.4.4)

In the z-coordinates (3.2.30), (3.2.31) we have for 3-vectors (3.2.35)

u' = 74€(l|1: _ﬁ)s ul = 74'5(1-1’ +‘/§)r w'= %{1: -2,0), . (3.4.5)
ut = %(u‘ +ul), vt = %{u‘ +u¥), u' = %{u’+n’), (3.4.6)

and, consequently,
(P =8 () =y, (34.7)

a=1,2,3. Thus the conditions (3.3.3), (3.3.4) are satisfied. The components with a = 4,5,6
do not survive in the approaching to the singularity . For the vectors (3.3.28) we have

7 =(1,—V3), # = (1,+V8), #*=(-2,0), (3.4.8)
ie. a trinngle from Fig. 4 (see also [60]). In this case the circle 51 is illuminated by sources at

points &, { = 1,2, 3, but not strongly illuminated. In agreement with Proposition the billiard B
has finite volume, but B is not compact.



507

8.5, Discussiona

We have obtained the ”billiard representation” for the asymptotic cosmological model [37] and
proved the geometrical criterion for the finiteness of the billiard volume and the compactness
of the billiard (Proposition 1, Sec. 3.3). This criterion may be used as a rather effective {and
universal) tool for the selection of the cosmological models with a stochastic behavior near the
singularity.

For an "isotropic” component: p“) =(1-h)p®,i=1,.. ,n, with & # 0 we have ({*)) =
h3(D —1)/(2 — D) < 0 and, hence, this component may be neglected near the singularity. Only
*anisotropic® components with (u(™))? > 0 take part in the formation of billiard walla near the
singularity. According to the topological bound (3.3.40) [69] the stochastic behavior near the
singularity in the considered model may occur only if the number of components with (w(®)? > 0
iz not less than the minisuperspace dimension.

We also note that here, like in the Bianchi-IX case [58,59], the considered reduction scheme
uses a special time gauge (or parametrigation of time). As it was pointed in [60] one should be
careful in the interpretations of the results of computer experiments for other choices of time.
Restrictions on parameters. Here we diacuas the physical sense of the restrictions on pa-
rameters of the model (3.3.3) and {3.3.4). The condition {3.3.3) means that the densities of the
*anisotropic” components with (u{®))? > 0 should be positive. Using (3.2.8) and (3.2.36) we
rewrite the restriction (3.3.4) in the equivalent form

) gl
o

):N."( -

>0, (3.5.1)
(s #£0) a=1,...,m (for curvature and A-terms (3.3.4) is aatisfied). For
>0, g <, (35.2)

a=1l,...,mi=1,...,n,(3.51)is satiefied identically.
Remark 2. It may be shown that the condition (3.3.4) may be weakened by the following one

uE >0, if (WP <0, (3.5.3)

In this case there exists a certain generalization of the set B{u®) from (3.3.27) for arbitrary uj
((w*)? > 0). The Proposition 1 (Sec. 3.3) should be modified by including into consideration the
sources at infinity (for 45 = 0) and "anti-sources” (for u < 0). For "anti-source” the shadowed
domain coincides with the illuminated domain for the usual source (with u§ > 0). In this case
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we deal with the kinematics of tachyons. (We may aleo consider a covariant and slightly more
general condition instead of (3.5.3)

signud = £, for oll (u*) €0, £ = 1.} (3.54)

We note that for the component v € A, with 43 < 0 or, cquivalently, 5, uf”? < 0, the relation
(3.4.37) should be substituted by

Yulal <0 (3.5.5)
=l

4. Dynamics of Inhomogeneities of Metric in the Vicinity of a Sin-
gularity in Multidimensional Cosmology

4.1. Introduction

Az is well known a number of unified theories predict that dimension of the Universe exceeds that
of we normally experience at a macroscopic level [23]. It is assumed that presently additional
dimensions are hidden, for they are compactified to the Planckian size, and they do not display
themselves in macroscopic and even in microscopic processes. However, the situation must be
changed as we come back with time to the very beginning of the evolution of our Universe.
Standard cosmological models predict the existence of a singular point at the very beginning and,
therefore, the universe size could approach to the Planckian scale. Thus, in the early universe
the additional dimensions, if exist, must not be different from ordinary dimensions and should be
taken into account. Moreover, one could expect that the existence of additional dimensions may
drastically change properties of the singularity and even remove it. The main aim of this section
in to construct a general solution of multidimensional Einstein equations near a singularity and
to investigate properties of inhomogeneities.

The way to construct a general soluiion with singularity was indicated first by Belinaky et
al.in Ref. [57] for D = 4, where D is the dimension of & spacetime. Dynamics of metric at a
particular point of space was shown to resemble the behaviour of the well studied *mixmaster®
(or of the type-1X) homogenecus model and the last one has a complex stochastic nature [57,74].
Bubsequent utilising of that construction hac been done in Ref.[53] where the so-called scalar-
vectar-tensor theoty (at the case I = §) wes considered snd the muin feature of the mixmaster
model, i.e. the complex oscillatory regime was shown to be also present in the 5-dimensional case.

An investigation of inhomogeneities of metric based on the general solutions bas been con-
sidered first in Ref. (75]. The case of the scalar-tensor theory or D = 4+ scalar fields) was
considered and it turned out that the oscillatory regime lesds to the fractioning of the coordinate
scale A of the inhomogeneities of Kasner exponents {} & X2 ¥, where N is the number of
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clapsed Kasner epochs and )g is the initial scale of inhomogeneities). However, the methods by
means of which the properties and statistics of the inhomogeneities were investigated turned out
to be unapplicable for general case (i.e. for the absence of scalar fields as well as for the expanding
universe). This problem has been solved recently in Ref. [61]. In this paper we generalise the
results obtained in Ref. [61] to the case of arbitrary number of dimensions D.

As it was mentioned above the main features of the dynamics of an inhomogeneous gravita-
tional field nearby the singularity in 4-dimensional case may be summarized aa follows:

1. Locally dynamics of metric functions resembles the behaviour of the most general homogeneous
»mixmaster” model [57], which has stochastic behaviour [74]. Just the stochastic behaviour leads
to a monotonic decrme of the coordinate scale of the metric inhomogeneities [61,75].

2. In the vicinity of a singularity a scalar field is the only kind of matter eﬁecta.ng the dynamics
of metric [53].

These facts may be simply understood under the following qualitative estimates (that is con-
firmed by subsequent consideration). As is well known in cosmology the horizon size l is &
natural scale measuring a distance from the singuisrity. Therefore, inhomogeneities may be di-
vided into the large-scale (L7l ) and small-scale (& < I ) ones. The horison size varies with time
as I ~t (where ¢ is the time in synchronous reference system} whereas the characteristic spatial
dimension of the inhomogeneity may be estimated as §; ~ t* (a8 t — 0). In a linear theory for
an isotropic background the exponent o may be expressed via the state equation of matter as
a= iﬂ;‘ and what is important a < 1. Thus, it is clear that an arbitrary inhomogeneous field
becomes large-scale in the sufficient closeness to the singularity. Since the inhomogeneitien are
large-scale there are no effects connected with propagating of gravitational waves etc, and this
would mesn that inhomogeneitiea become passive. Consequently, dynamics of the field may be
appreximately described by the most general homogenecus model depending parametrically upon
the spatial coordinates. Note, however, that the homogeneous model would appear to be in a
general non-diagonal form.

The second fact may be understood in the same way. As it was ahown in Ref. [T6] the
gravitational part of the Einstein equations at the singular point varies with time, in the leading
order, a8 RF ~ t™7 whereu the matter has the order T3 ~ ¢t~*, where k depends upon the state
equation as k = 2. Thus, one can see that for the equation of state satisfying the inequality
P < € we have k<l and only for the limiting case p= ¢ (k =1) the both sides turn out to be of
the same order. We note that in the vicinity of a singularity scalar fields give just this equation
of state.

As it is well known {see for example Ref.[21,37,53,77,78]) additional dimensions may be treated
in ordinary gravity as a set of nonminimally coupled scalar and vector fields. Therefore, one could
expect that the main contribution to dynamics in the vicinity of a singularity would be given by
those dynamical functions which are connected with scalar fields, whereas other functions would
play a passive role,
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Thus, one could expect that in multidimensional cosmology local behaviour of the metric
fanctions {at a particular point of space) will be described by a moet general homogeneous model.
Here, it is necessary to recall the important property of the mixmaster universe that is the
stochastic behaviour. The problem of stochasticity of homogeneous multidimensienal cosmological
models has been investigated in a number of papers [18,54]. In particular, in Refs. [54] the result
was obtained that chacs is absent in the spaces whose dimension D > 11, since in this case
the last stage of a cosmological collapsae is described by a minimally-coupled scalar field [53.
Therefore it seems to be sufficient to consider the Finstein equation of D < 10 dimensions with
the scalar field matter source.

Thus, here we consider the D-dimensional Einstein e-qua.tions with the matter source given by
a minimally-coupled scalar field. Using generalised Kasner variables we divide the dynamical func-
tions connected with physical degrees of freedom into two parts. One part has a simple behaviour
while the other is described by a billiard on an appropriate Lobachevsky space. In dimensions
D < 11 the billiard has a finite volume and shows stochastic properties. This stochasticity causes
the degree of inhomogeneity of the part of dynamical functions and leads to the formation of
apatial chaos. The presence of a scalar field results in the fact that lengths of trajectories on the
billiard take finite values. This destroys the chaotic properties which, however, are restored in
the limit when the ADM energy density for the scalar field turns out to be small a3 compared
with that of the gravitational variables.

4,2. Generalised Kasner Solutjion, Generalized Kasner Variables

We consider the theory in canonical formulation. Basic variables are the Riemann metric com-
ponents g.s with signature (+, —, ..., —) and a scalar field ¢ specified on the n-manilold S, and
its conjugate momentum II** = /G{K™ — g™’ K) and II,, where o = 1,...,n and X is the
extrinsic curvature of 5. For the aake of simplicity we shall consider S to becompa.cti.e. 85 =10.
The action has in Planck units the following form

I= j {nvag" + n.% — NH® - N.H*) zdt, (4.2.1)
where

= 5 {3 — (0P + 410 + 0W(9) - R)), (422)

H® = -2 + ¢ 9a411,, (4.2.3)
here

W($) = 3 {00006 + V(#)). (424)
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A generalized Kasner zolution is realized under the following assumption

VAT ~ (I3, I,)3V = g(W ~ R), | (425)

where ./gT denotes the firat three terms in (4.2.2). Then, using (4.2.1) one can find the following
solution of the multidimensional Einstein equations

n-1
_ 2 t.'l: , l;dzcdzﬂ (4‘2.6)
n=0
where 19, s, are functions of space coordinates. Kasner exponents s, salisfy the identities
T2, =54 +4¢° = 1, and run the domain —2=2 < 5, € 1 (here ¢’ = b,‘t(;:“j,} Since,
as it was shown in Ref.[53,57] the generalised Kasner solution takes a substential portion of the
evolution of metric it is convenient to introduce a Kasner-like parametrization of the dynamical
variables [61]. We consider the following representation for metric components and their conjugate
momenta

9an = 3 exp{q"}2l3, (¢2.7)
=Y pl23, {4.2.8)

here L2 = & (a,b=10,...,(n—1)), and the vectors {} contain only n{n—1) arbitrary functions
of spatial coordinates. Further parametrization may be taken in the following form

=P8, Up € 50(n), S2=62+ RS (4.2.9)

where Re denotes a triangle matrix (R = 0 a1 2 < a). Subetituting (4.2.7) - (4.2.9) into (4.2.1)
one gets the following expression for the action functional

I= j (p.a"' + 'r-‘ R | n,a" NH® — N H*)d"zdt, (4.2.10)
. ‘bere T* = 25, wL{U} and the Hamiltonian constraint takes the form

= {ER-H(ERP + B V). - (4211)
In the case of n = 3 the functions RZ are connected purely with transformations of a coordinate
aystem and may be removed by solving momentum constraints H® = 0. In the multidimensional
case the functions R} contain !(';;’1 dynamical functions as well. Now it is casy o see that
the choice of Kasner-like parametrization simplifies the procedure of the constructing of the
generalizsed Kasner solution. Indeed, if we now neglect the potential term in (4.2.10) and put
N<= = 0 we find that Hamiltonian does not depend on the scale functions and other dynamical
variables contained in Kasner vectors introduced by expressions (4.2.7) (4.2.8).
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4.3. The asymptotic model in the vicinity of a cosmological singularity

As it is well known, [53], {57], the Kasner regime (4.2.6) turns out to be unstable in a general
case. This happens due to the violation of the condition (4.2.5) because the potential ¥ contains
increasing terms which lead to replacement of Kazner regimes. To find out the law of replacement
it ia more convenient to use an asymptotic expression for the potential [61], [55]. For this aim we
put the potential in the following form

1
V=3 hu™, (4.3.1)
A=1

here A4 is & set of functions of all dynamical variables and of their derivatives and u, are linear
functione of the anisotropy parameters @, = f; (ua = us(Q)). Assuming the finiteness of the
functions A and considering the imit ¢ — 0 we find that the potential V may be modeled by
potential walls

5 = dulua(@l = { T 440, (132)

Thus, putting N* = 0 we can remove the passive dynamical function 7%, H2 from the action
{4.2.10) and get the reduced dynamical system

T= [ {p% + 1% - 2 T8 - (8 +1T3 + U(Q)} } ek, (433)

here X is expressed via the lapse function as X = % In harmonic variablea the action (4.3.3)
takes the form formally coincided with the action for a relativistic particle

I= js {PEC _X(P2+U - P})}dadt, (4.3.4)

bere r =0,...,7, i=1,..,n, ¢* = A3 +5° (j = L,..,n—1), 5™ = /22§ and the constant
matrix A} obeys the following conditions

I AI=0,) AL =n(n— )b : 43.5)
and can be expressed in the following form

A: = j(j —l) (';"j@)!

l,j>a
0,i<a

¥

whereﬂ={
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Since the timelike variable 2% varies during the evolution as 3° ~ Ing the positions of potential
walls turn out to be moving, It is more convenient to fix the positiona of walls. This may be done
by using the so-called Misner-Chitre like variables [55] {§ = )

23-'. i

o i="2 1 veldi<l {4.3.6)

"Using these variables one can find the following expressions for the anisotropy parameters

Quly) = }1{ 14491, (437

which are now independent of timelike variable . From {4.3.T) one can find the range of the
- smisotropy functions -—5-:! <@Q.<1.

¢ Choosing as a time variable the quantity 7 (i.e. in the gauge N = M8 meyn(_27)/P°
. 2
‘we put the action (4.3.4) into the ADM form

I= fs {PLi+ PrLe - PoPy)}dadr, (4.3.8)
where the quantity
PPy} = (€. P+ Vig + (P)'e )2, (439)
 plays the role of the ADM Hamiltonian density and
= %(1 ~ P ' (4.3.10)
; The part of the configuration space connected with the variablea § in a realization of the
" {n—1) -dimensional Lobachevaky space [64] and the potential V cuts a part of it. Thus, locally
(at a particular point of §) the action (4.3.9) describes a billiard on the Lobachevsky space. The
_Ppositions of walls which form the boundary of the billiard are determined, due to (4.3.1) by the
meaquaht:es

0*=1+Q.—Qs—0=20,¢#5#c (43.11)

wmnd the total number of walls is 22=1~=2) {jyi5g the matrix (4.3. 5} one can find that the walls
~ are formed by spheres determined by the equationa

Ok = "(1+y,){(y+§*)a+1_ :"}'B""=n_i—f(1._‘?_‘{‘)' (#3.12)
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here for arbitrary 4,b,¢ we have B* = 1 + 35 In & general case n points of the billiard having
the coordinates B, = ﬁfl" lie on the absclute (at infinity of the Lobachevsky space). The
trajectories which end with these points correspond to the set of Kasner exponent (0,---0,1).
When n = 9 there appear additional isolated points Su lying on the absolute. The coordinates
of these points are given by the vectors S, = l—’,(L + Ay + A), a # b # ¢ (see appendix). In
the case of n > 10 in addition to the points P, and 5, there appesat open accessible domains on
the absolute (see appendix of Refs. [54] where has been used another approach) and the volume
of the billiard becomes infinite. If on the contrary n < 10, the volume of the billiard is finite and
the billiard turna out to be a mixing one. We give two simplest examples for illustration of the
billiards on fig.5. The case n = 3 on fig.5a coincides with the well-known mixmaster” model
and on fig.5b we illustrate the case of n = 4 considered in Ref.[53].

4.4. Dynamics of inhomogeneities

The system (4.3.8) haa the form of the direct product of "homogencous” local systems. Each local
system in (4.3.8) has two variables € and P™ a8 integrals of motion. The solution of this local
system for remaining functions represents a geodesic flow on a manifold with negative curvature.
As it is well known the geodesic flow on 2 manifold with negative curvature is characterized by
exponential instability [64]. This means that during the motion along a geodesic the normal
deviations grow no slower than the exponential of the traversed path { = fpe*), where the
traversed path is determined by the expression

s=f':d1=£(ﬁ!_ Il)d'r—— |P°+:Ir (44.1)

This instability leads to the stochastic nature of the corresponding geodesic flow. The system
possesses the mixing property [65] and an invariant measure induced by the Liouviuile one

duly, P) = conatd(E — e)d *yd* 1 P, (4.4.2)
where E is a constant. Integrating this expression over ¢ we find

& lydr3s
(-’

du(y, &) = conat (4.4.3)

where 5= g, |s| = 1.

Since the inhomogeneous system (4.3.8) is the direct product of "homogeneous” systems one
can simply describe its behaviour as in ref [61]. In particular, the scale of the inhomogeneity

decreases as

X~ (B~ R el s) (t44)
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and after sufficiently large time (s(r) — oo} the dynamical functions {{s}, F(z) become a
random functions of the spatial coordinates. In order to calculate different mean values one can
use the following n-point distribution functions [61]

Paromn(P1y s Yna Ty - - M) =< _Ijlﬂv.— - ¥(=))b(m; — m(z.)) >, (4.4.5)

where the angular brackets can denote the averaging out either over an initial distribution or
over a certain coordinate volume AV > (A{)'. The mixing results in the relaxation of initial
functions (4.4.5) to the limiling ones which bave the form of the direct product of measures
(4.4.3): dp = []; dy. Thus, asymptotic expressions for averages and correlating functions have
the form

<p(z) >=< P(z) >=0, < mlz), w(z) >=< ;.1 > 82,2, (44.6)

for |2 — x'|gA? exp(—s).

Here it ir necessary to point out a role of the scalar field in dynamics and statistical properties
of inhomogeneities. Aa may be casily seen from (4.4.1) in the absence of a scalar field {ie. P™ = ()
the transversed path coincides with the duration of motion (we have 5 = Ar = 7 — 7y instead
of (4.4.1)). Thus, the effect of scalar fields is displayed in the replacement of the dependence for
transversed path of time variable and, therefore, in the replacement of the rate of increasing of
the inhomogeneities. This replacement does not change qualitatively the evolution of the universe
in the case of cosmological expansion. But in the case of the coniracting universe the situation
changes drastically. Indeed, in the limit + - —oco from (4.4.1} we find that the transversed path
s takes a limited value s, and therefore the increasing of inhomogeneities turns out to be finite.
One of consequences of such behaviour is the fact that at the singularity the functions § and B
take constant values. In other words in the presence of scalar fields a cosmological collapse ends
with a stable Kasner-like regime {4.2.6). This fact may be seen in the other way. Indeed, in the
limit + — —oo the scalar field gives the leading contribution in ADM Hamiltonian (4.3.9) and
P? doea not depend on gravitational variabies at all.

The finiteness of the transversed path s(r) leads, generally speaking, to the destruction of
the mixing properties [65], mince for establishment of the invariant measure it is necessary to
satisfy the condition 2, — o¢. Evidently, this condition requires the amallness of the energy
density for scalar field as compared with the ADM energy of gravitational field (the last term in
{4.3.9) in comparison with the first ones). Indeed, in this case s, is determined by the expression
8 = —1n % which follows from (4.4.1), and as P* — 0 one get 5 — oo {i.e. 5 can have
arbitrary large values).

Thus, in the case of cosmological contraction one may speak of the mixing and, therefore, of
establishment of the invariant statistical distribution just only for those spatial domains which
have suficiently small energy density of the scalar field.
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4.5. Estimates and concluding remarks

In this manner the large-scale structure of the epace in the vicinity of singularity acquires a
quasi-isotropic nature. A distribution of inhomogeneities is determined by the set of functions of
spatial coordinates e{z), I, {z) and R which conserve during the evolution & primordial degree of
inhomogeneity of the space. The scale of inhomogeneity of other functions grows as A = Age=4("),
In this section we give some estimates clarifying the behaviour of the inhomogeneities. For
simplicity we consider the case when the scalar field is absent.

To find the estimate for the inhomogeneity growth in a synchronous time ¢ (dt = Ndr) we
put ¥ = 0. Then for variation of the variable v one may find the following estimate /g ~
exp{—Je™"} ~ P, (here the point ¢ = 0 corresponds to the singularity). According to (4.4.4)
the dependence of the coordinate scale of inhomogeaeity upon the time ¢ takes the form

A % X9 In(1/g0)/ In(1/g)
in the case of contracting (g — 0) and

A % 2o 1n(1/g)/ 1n(1/g0}
in the case of the expanding universe.

A rapid generation of the mare and more small scales leads to the formation of spatial chacs
inn metric functions and so the large-scale structure acquires a quasi-isotropic nature. Speeds of
the scale growing (Hubble consiants) for different directions turn out to be equal after averaging
over s spatial domains having the zize = Aq. Indeed, using (4.3.7) one may find the expressions
for averages < Qs >=1/n.

Besides, it is necessary to mention one more characteristic feature of the cacillatory regime
in the inhomogeneous case. This is the formation of a cellular structure in the scale functions
Q. during the evolution which demonstrate explicitely the stochastic process of development of
inhomogeneities. Indeed, let us consider some region of coordinate space AV. Two functions y(z)
define the map of that region on some square E € K (aee fig.1c). During the evolution the size of
the aquare I grows =~ e*() and £ covers the domain of the billiacd K many times. Each covering
determines its own preimage in AV. In this manner the initial coordinate volume is splitted up
in "cells” AV = | AV.. In the every cell the vector y{;) takes almoet all admissible values
¥ € K and that of the functions Qu(@. € [Qmin, 1| where Gpin = —!";3:—;&“1&1. To illustrate
this process let us consider the case n = 3. In this case it is convenient to use the Poincaré model
of the Lobachevsky plane on the upper complex half-plane H = {W = U +iV,V = 0} (see
fig.5¢). The line V = 0 is called the absolute and its points kie at infinity. Geodesics in H are
given by semi-circles with centers on the absolute, or by rays perpendicular to the absolute. The
billiard constitutes the region K € H, bounded by geodesics triangle 8K = [|W| = 1,/ = +1].
The area of the billiard is equal to x. The motion ean be continued to the whole plane 5. For
this aim one needs to reflect the domain of the billiard with reapect to one of the boundary walls
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and make iteration of such procedure. In this way the Lobachevaky plane will be covered bya
set of domaine K™ each of which is connected with the region of the billiard K by a one-to-one
mapping. During the evolution an arbitrary initial square I° begins to grow and covers the
more and more number of the domaine K™ (see fig.5c). Such celiular structure turns out to be
depending on time and the number of cells incresses a3 N &5 Noe"™). However, the situation will
be changed if we consider a contracting space filled with a scalar field. Then the evolution of this
structure in the limit ¢ — 0 ends, because the functions Q. become independent of time, and ca
the final stage of the collapse one would have a real cellular structure [75].

In spite of the isotropic nature of the spatial distribution of the field the large local anisotropy
displays itaelf in the anomalous dependence of spatial lengths upon time variable for vectors and
curves. Indeed, a moment of scale function < g¥9+ > (where M > 0) decreases in the asymptotic
g — 0 as the Laplace integral f5__ g%9-p(Q.}dQ,, where p(Q.) is the distribution which follows
from (4.4.3). The main contribution in this integral is given by the point @ = Quin 82d @ = Qua,
and in the case of n > 3 in the limit (@ — Qmin) — 0 one can find Q) = C(Q — Quin)™?,
where C is a constant and we obtain the estimate

Quuin,
E N sl
<O T s
This expression shows that for n > 3 average lengths even increase while approaching the singu-
larity. The case n = 3 must be considered separately. In this case we have Qu = 0 and the
explicit form of the distribution function s(Q.), as it follows from (4.4.3), is

o@) = 2Q - @y + 390 (45.2)
As Q <1 one has p(Q,) = 2(Q.)"/ and, thus, in the limit g — § we get the estimate
< g™ 5 (M In(1/9))7172. (4.5.3)

In conclusion we briefly repeat the main results. The general ihomogeneous solution of D-
dimensional Einstein equations with any matter sources satisfying the inequality € > p near the
cosmological singularity is constructed. It is shown that nesr the singularity a local behavior of
metric functions ( at a particular point of the coordinate space) is described by a billiard on the
(D — 1}-dimensional Lobachevsky space. In the case of D < 11 the billiard has a finite volume
and consequently & mixing one. The rate of growth of inhomogeneities of metric is obtained.
Statistical properties of inhomogeneities are described by the invariant measure. It is shown that
» minirmally-coupled scalar field leads, in general, to the distruction of stochastic properties of
the inhomogeneous model.
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Appendix

Here we show that the billiards in the dirnensions exceeding » = 9 become infinite. Let us
introduce & new set of variables connected with the old ones as 7 = 1—:5; Within these variables
the absclute of the Lobachevsky space keeps the old position |z?] = 1 and the walls become
planes (see (4.3.7), (4.3.12)). Furthermore, it will be more convenient to select a region on the
Lobachevsky space on which the anisotropy parameters are in the increasing order Qy < @, <
-+ & Qa2 < Qn-y and which is restricted by the only wall (see (4.3.11)) o{Z) = oy p—9n-1- Thiz
region is formed by the vectors of the type & = I 'w'c;, where the parameters (0 < u* < 1 and
the set of basic vectors is given by: & = Jy Yot A* for i Sn -2, &g = 5tq(A0 + A7)
and &, ; = ;L A™'. They are normalised so that o{&) = 0. It is easy to find that the wall
causes the restrictions on the parameters ' : T u* < 1. The Buclidian norms of the basic vectors
are ¢ = Ml for i <n-2el, = Hpy and |en-a| = 1 (bere we used the following
property of A% : 707! AZAt = nfn — 1)6% — (n — 1)). Now, it is easy to find that for n < 9 all
basic vectora exeept €,_; have norms less than unity and we have |#| < 1 (equality is achieved
only when £ =€, ;). In the case n = 9 we get e = e] = 1, all the other vectors have norms
less than unity and we have the similar situation as above (ie., |2} = 1 only when & = & and
£ = €3). In the case n > 9 a number of basic vectors have norms exceeding unity, e.g., & for
i=[3]+10ri=[3]+1, where [3] denotes the entire part of the number 3. This means that
the wall in these directions lies cutside the absolute of the Lobacheveky space and there appears
an open accestible domain. In other words, the trajectories do not meet any obstacle in these
directions and run to the infinity. This proves the statement made in Sec. 4.3.

5. Multidimensional Cosmology and the Time Variation of G: a Dy-
namical System Approach [78]

5.1. Introduction

Multidimensional coernology has since long ago atiracted the attention of cosmologists, who were
stimulated initially mainly by the Kalusa-Klein theory [80-81] and more recently by superstrings
models [23]. The idea that the Universe we live in can be represented as a 4-dimensional hyper-
surface imbedded in a (4-+n)-apacetime manifold has actually different versions. In particulac,
we could mention the one put forward by Wesson, who has developed an embedding scheme in
which the Friedmann-Robertson-Walker-Lemaitre cosmology can be entirely obtained in a rather
simple and elegant way from (4+1)-dimensional Ricci-flat spacetimes [82-83). Further generaliza-
tion of this theory to arbitrary dimensionality with applications to multidimensional cosmology
and lower dimensional gravity was later carried out by Rippl et al [84]. General multidimensional
and multicomponent schemes were studied in [21] (see also refs. therein).

In addition to the role multidimensional theories might play in providing a theorstical frame-
work in which the most fundamental laws of physics appear to be unified, another motivation
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may come from a conjecture - originally proposed by Dirac [85] - regarding the time variation of
the Newtonian gravitational constant . lndeed, this ides, which was to be taken seriously by
superstrings theory and recent inflatiorary models, is also present in the context of multidimen-
sional cosmological models where G is considered not as a fundamental constant of Nature, but
#4 a cosmological function depending on the geometry of an ‘internal space’ [12,50,86].

Among the several attempis to construct gravity theories with varying G iz Brans-Dicke
theory, where the strength of the gravitational force is determined by s scalar fisld [87,88]. Here
we find again the same idea underlying the connection between higher dimensions and time
variation of (7, as it can be shown that n-dimensional Kalusa-Klein models reduce to Brans-
Dicke vacuum models for w = 0. Other theories with scalar field (especially conformal) see in
. 50].

In this section we consider, as in [21], a (4-+n)-spacetime manifold defined by the topological
' !pmduct MY® = R x M} x K™, where M} is & 3-dimensional space of constant curvature
(i, M} = 5 R, I* according to £ = +1,0,—1, respectively), and K™ is a n-dimensional
Ricci-flat manifold. We assume also that this spacetime is generated by a (4-+n)-dimensional
multicomponent perfect fluid.

Now, it turna out that the fisld equations for the special case k = § may be reduced to an
autonomous homogeneous system of the second order. This aystem contains some free parameters,
one of them being n (the dimensionality of the internal space) and the others come from the
equations of state of the rulticomponent-fluid. However, by restricting ourselves to 'dust-like’
matter, we are left with n as the only parameter of the aystem. Then, we construct the phase
diagram of the system o obtain a general picture of the solutions. As a by-product of the analysia
we also obtain analytical solutions of the equations for arbitrary values of n (see also [14]),

5.2. The field equations

‘The gravitational field equations in a (4+n)-dimensional gravity are postulated to be
(m)R‘w e g __1,_ (5.2.1)
i (ﬂ + 2} 1 b

where all the geometric quantities are defined in (4 + n) dimensions and «? is the generalised
Einstein constant [21]. We take the metric tensor to be given by the line element

ds® = dt* — R{(1)Vgyy(2*)doidz’ — BP(1)M g (v P ", (5.2.2)
where i, 7,k =1,2,3;p,¢,r = 4,.,n+3; Olg. (slg . R(t) and b(t) are, respectively, the metrics
and scate factors for GIM, and K™. The {4 + n)—dimensional energy-momentum tensor for a
multicomponent perfect fuid is taken to be

T = diag(olt), (1)), —pu(1)ET) (523)
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From (5.2.2) snd (5.2.3) the Einstein equations become:

R % xt '

3g +ng = g (-(n 4 e —3n - np), (8.2.4)
2% R bR B « -.
BHRETR I T agg et mo ) (5:25)
5 8 RV 0w

3"'("'1)35 +3-§;=m(ﬂ—3m+2ph) (5.2.6)

At this point it is worthwhile mentioning the way by which higher dimensional gravity theories of
this type can be naturally related to their 4 dimensicnal counterparis with varying G [21]. This
is simply done by integrating the (4 + n)-dimensional energy density over the K™ compact space
and equating the result to #3g(t), thereby defining the energy density in 4-dimensional spacetime:

Wg(t) = [ dy™yWgtn(t)elt) = ot)pn(s), (5:27)

where 1/("g is the determinant of g, . It is convenient to ‘normalise’ the scale factor &{t)
by imposing the condition fym 4f{"lgdy* = 1. Thus, in order to get the equationa of the 4-
dimensional gravity we put

8xG(t) [(Ve(t)] = s%o(2). {5.2.8)

This procedure leads us to the definition of an effective gravitational ‘constant’ G(i} given by
8xG(t) = s*b~"(t). In this way the time variation of @ is directly related to the time variation
of the internal space scale factor ¥t) by

L-oT -

g - (5.2.9)

Clearly for n = 0 the Friedmann cosmology in ordinary 4-dimensional spacetime is recovered.

5.3. The dynamical system and the phase portraits

In this section we let M7 = R? and assume that the multicomponent fluid satisfies the equations
of state py = pn =0, i.c., we assume that matter behaves as a (n -+ 4)-dimensional ‘dust’. Then,
letting z = 3 and y = § the equations (5.2.4-6) become

27 . oy mEl,
3t = e (53.1)

3

z+
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#+a’+ Noy= — (5.3.2)
and
Fny’ oy = :1'2. (6.3.3)
Eliminating p from these equations results in
- +2)[ 2n + 1)z + 2n(1L — n)zy + In(n — 1)y?] (8.3.4)
rend
¥= 2(ﬂ 9 [2” —4zy — n(n +5)v’] (5.3.5)

.. Defined? in this way # can be interpreted as a measure of the usual cosmological expansion
of ithe 4-dimensional observeble Universe, while y is & measure of the time variation of the grav-
itational constant G or, equivalently, the expansion of the compact space K™ (see eq.(5.2.9)).
The above system of equations represents a homogeneous autonomous dynamical system of the
second-order. To carry out an analysis of this systern we first note that, as the system ie homo-
geneous, the origin of the phase space ¢ = y = 0 corresponds to an equilibrium point (in fact
» at1 isolated equilibrium point ) [89]. Physically, this point represents nothing else but the flat
Minkowski spacetime of General Relativity, with ¢ = 0.

I order to construct the phase diagram of & homogeneous dynamical system we first determine
the invariant rays of the system [89] by introducing the polar coordinates in the phase plane:
# =rcosf,y = raind. In these coordinates a general homogeneous dynamical system of order m
of the form

#= X.(S, ")lﬁ = Yu(“: V)
is transformed into
E F = r2(8),8 =+ N(8),
“where the functions Z(8) and N{6) are given by

Z(0) = Ya (0006, sin ) xin § + Xon(c08 4, sin 8) coe § (5.3.6)
_ N(#) = Yu(cos #,5ind) con 8 — X, (con 8,2in §) sin §. (53.7)

- Alt.is poasible, of couree, to abscrb the factor by defining a new time dr = 2(n + 2)dt. However, nothing
guined by this in terms of simplicity.
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Then, the invariant rays of the system are obtainded by solving the equation N(8) = 0. Clearly,
in the phase plane they will be depicted as straight semi-lines starting from the origin and it ia
not difficult to see that if they do exist then they are automatically solutions of the dynamical
aystem [89]. In our case n = 2 and a straightforward calculation leads to

20 = m[-u(ﬂs)ﬁn’aﬂan’-3n—4)ain’sco.a
+ (211—211’+§)lin90u’9—2(n+1)ooo“0] (5.3.8)
N@) = m[—aﬂ(ﬂ—l)ﬁn’a-knfﬂ—?)lin’Omﬂ

+ 2n—1)oos"sind + 3 cos®d]. (5:39)

Here let us make some comments. Firat, we should point out that the dynamical aystem (5.3.4-5)
is not defined for n = 0, since in this case we would not have equation (5.2.6). If » = 1, then
the solutions of the equation N(#} = O yield six invariant rays which correapond to the angles
§; = +% and arctan(+1), with i = 1,..,6. For an arbitrary n > 1 we can put the equation
{6.3.9) in the following factorized form:

N(®) = % {(% — a)[3n(n — 1)6” + 6na + 2]} ' (5.3.10)

where we have defined a2 = tan#. Then, for n > 1 we have again six invariant rays, now
corresponding to the angles #; = arctana;, with

1 o1 1 2
°°*§'°*-m(‘1*\/§“+;))

See fige. 6 and 7. The knowledge of the invariant rays as well as the analytic expressions for the
functions N(#) and Z(#) sllow us to draw separately the following phase diagramn for the two
cases n = 1 and n > 1 (for details see appendix). These diagrams show the behaviour of all
solutions of the equations (5.3.4-5) which make up our dynamical system. Each cutve corresponds
to a specific cosmological model satisfying the field equations {(5.3.4-5), the origin representing
the Minkowski spacetime M. In order to know the behaviour of the solutions at the infinity we
employed a method due to Poincare’, consisting of projecting the phase plane onto & plane circle
[93]. In this compactified phase plane the points at infinity correspond to points located in the
border of the circle. The directions of the invariant rays are not affected by the transformation
(see appendix 5.8).
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5.4. The physical picture

Let us begin our analysis considering n >» 1, and leave the comments on the case 5 = 1 to the end
of this section. In figure 6 we have a typical diagram for arbitrary » > 1. First we note that the
invariant rays divide up the phase plane in six topologically distinct regiona (or sectors) A,B,...,F.
Each of these regions containa an infinite number of solutions which represent cosmological models
with different physical properties. The atrows in the curves are to be interpreted as the time
evolution of the correaponding models.

Since there is no closed curve in the phase plane we can conclude that all models are singular (
the expansion parameter x tends o infinity either in the past or in the future), some of them
starting from a big-bang (# — +o00)while othera collapsing to a big-crunch {(z — —oo). Tn this
sense the solutions represented by the invariant rays exhibit the same bebaviour. It would be
rather tedious to describe exhaustively the time evolution of the models corresponding to all the
curves of the phase diagram. So, we will pick up some illustrative cases, although the complete
informations about all sclutions are provided by the phase portrait.

To begin with let us consider the solution represented by the invariant ray depicted in figure 61
as the semi-line I*. This curve clearly describes a universe starting from a big-bang (z = +o0)
and evolving towards the Minkowski spacetime (depicted in the diagram as the fixed point M
located at the origin) . Since y > 0 along this trajectory we see that as time goes by the
gravitational constant (& decreases. Thia in in agreement with the known hypothesis formulated
by Dirac who, postulated, inspired on a different reasoning { the large numbers conjecture}, that
Newtonian gravitational constant should decrease as the Universe expands [85].

Analogously, the same analysis shows ua that the invariant ray JI* corresponds to an expand-
ing universe starting from a big-bang and tending to Minkowski spacetime. Since y is negative
in this anti-Dirac universe the gravitational constant & increases with the coamic time.

The inveriant rays It and IJ* encloses an infinite class of golutions all lying within the
region A. A typical solution of this class describes an expanding and singular universe undergoing
a transition from an increasing G {anti-Dirac ) to an decreasing G era { Dirac phase).

A quite different situation arises when one examines the solution corresponding to the invariant

ray J1I*. Here we observe an initially static universe (z = 0) entering an expansion regime during
which the gravitational constant increases with {ime.
At this point it js intereating to note that one might lock alternatively at the dynamica of the
meodels corresponding to I+ and IIf+ as describing the usual cosmic expansion taking place
in ordinary 4-dimensionality (here expressed by the variable x) followed by a contraction of the
internal n-dimensional space ( represented here by y). The sector B, which is delimited by JIt
and [Ift, contains only solutions which do not approach Minkowski spacetime, neither in the
future nor in the past. On the other hand, the solutions lying in sector F all tend to M and start
their {rajectories as contracting universes, slowing down before enter an expanding era. In this
class of models the gravitational constant is an ever decreasing function of the cosmic time.
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We shall not carry out a detailed analysis of the solutions lying in sectors D and E as these
describe only contracting universes, ipse facto not being physically relevant. {As we shall see
later, in section 5.5, sector E as well as sector B both represent classes of solutions with negative
energy density.) In sector C a typical universe comes from Minkowski spacetime in the past and
has a contracting era followed by further expansion.

In the case n = 1 (see figure T} the physical picture is very similar. However, now as two
of the invariant rays, namely 7IJ+ and IIJ~ lie exactly on the y-axis they represent vacuum
flat solutions with a time-varying &.( In fact, an identical configuration has been already found
in the context of Brans-Dicke theory by Romero-Barros [90]). An alternative way to look at
these solutions is to consider them as a topological product of a static Minkowski spacetime by a
time-dependent (expanding or contracting} compact internal space.

5.6. Exact solutions of the fleld equations

Often the knowledge of the invariant rays present in a homogeneous dynamical system is helpful
in obtaining exact apalytical solutions of the system. In that case the problem of finding the
solutions corresponding to the invariant rays reduces to solving an algebraic equation of one
order higher as the system itself. In our particular case we will have to solve a cubic polynomial
equation, the roots of which are nothing more than the already known tangents a; of the arcs
defined by the invariant rays. Let us express the equations of the invariant raya simply by y = ¢z,
where clearly a generically denotes a;. Now, putting this into the equations (5.3.4-5) we get

i = 2(:__:” (~2(n +1) + 20(1 — n)a + dn{n — 1)a’] (551)

I S L PP a]
Ve T2 [3 4a—nin+5a (5:52)
The condition for (5.5.1) and (5.5.2} to be consistent is the algebraic equation

3n(n— 1)a” + (7 - n)a’ 4 (1 - m)a ~ 2 =0 (55.3)

which ia, in fact, equivalent to eq.(5.3.9). Again, we have to consider the two cases a) n > 1 and
by n=1:

a) If n > 1 then the roots of (5.5.3) are given by

so=1/%08 = —— [—1 + \/g(l " %)l
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Now, going back to equation (5.3.4) and putting y = az, with 2 = ag, 4., we get respectively:
£ =z’ (5.5.4)
 where = 70,7 and

! o= _(n+3)

; 659
1= —(1+naz) (5.5.6)

. These last equations can be immediately integrated to give R{?} and 3{t).Then, correaponding to
" $he three values of 4 = ap, 44 Wwe have respectively (after suitable coordinate transformations):

R(t) ~ %% = Rotohs (5.5.7)
BE) ~ [RE)P = bote (5.5.8)
R(t) ~ 55 = Rt™FD (559
Bt) ~ [P = bt Tz '(5.5.10)

" where R, and B are constants (see alsc 12).
b} If n = 1 then the equation (5.5.3) has two solutions, namely, ¢ = +1. Naturally, these
,-solutions correspond to the invariant rays defined by §; = arctan +1 in section 5.3. The third
- molution, corresponding to the other invariant rays, &; = +F can be obtained directly from the
. dynamica) systemn (eqe.(5.3.4-5)) just putting n = 1 and z = 0, This procedure leads us bark to
~ the siatic solution referred carlier in section 5.4:
~ R(t) = constant, {5.5.11)
CBE) = bot (5.5.12)
The other solutions are:

R(t) = Ryt (5.5.13)

b(t) = bt (5.5.14)
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R(t) = Rott (5.5.18)
Ki) = bt 1. {5.5.16)

We conclude this section by noting that equations (5.5.7-16) actually represent six distinct pair
of solutions R(t), b(t) , each being singular at ¢ = 0. Indeed, after integrating (5.5.4) we
obtain (apart from & constant of integration which can be further eliminated by a coordinate
transformation)

2= (5.5.17)

which,in fact, has to be understood as representing different solutions (for the same ) according
tot € (—o0,0) or ¢ € (0,+00). In the phase diagrams these twofold degeneracy is reflecied by
the presence of distinct solutions ( including the equilibrium point M ) all lying on the same line
¥ = az . Finally, we should mention that if n =0 in (5.5.7) we recover Friedmann’s solution for
a dust filled universe.

5.6. The energy density

So far we have not been concerned with the energy density predicted by the models. A brief look
into the field equations shows us that p must be given by

= 61? |:2:|=3 +3n{n — 112 + any] . (5.6.1)

If n > 1 the above equation however can be put into the factorized form :
1
e=g3(v—~asz)y-aa), (5.6.2)

with a4 as defined in section §.5. This last equation allows us to draw the following conclusions:

i) For n > 1 we verify that the solutions lying on the invariant rays corresponding to ay are
vacuum solutions.

i) All solutions lying on the sector B and F are non-physical (in the sense that they have
negative energy, which classically is forbidden). Incidentally, these are the only solutions which
never tend to Minkowski spacetime neither in the past nor in the future.
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iii) Solutions lying on the invariant ray corresponding to 4y have positive energy density for
arbitrary value of n > }. This can be easily verified by computing g for this case as we have
o= s +n+12.

All the properties mentioned above are ilusirated in figure 8. 2

For n =1 the same procedure leads to the picture displayed by fig. 9.

5.7. Conclusions

"The idea that the Newtonian constant of gravitation G could indeed vary with time on a cosmic
‘scale, which seems to have ocurred first to Dirac, in 1938, is far from being supported by cur-
rent experimental data. Recent results [91) based on solar-system experi.ments tend to indicate
an upper Limit given by |G[G’| < 107" to any possible variation of 7. Yet even this rather
stringent condition has not prevented cosmologists to speculate and investigate what theorstical
consequences would such hypothesis lead to (for a list of references on past and recent works
see [12,21 50,86,92]). Among other attempts to insert G in gravity theoties as a scalar field
(e.g. , Brans-Dicke-Jordan theories ), is the multidimensional cosmology approach {21] which was
described in section 5.2. The fact that in this scheme the field equations plus some symmetry
smumptions may be tractable by mathematical techniques of dynamical system theory led us to
obtain a whole spectrum of cosmic configurations where the matter of the Universe is regarded
as & multicomponent perfect fluid in higher dimensions. It turns out that in this scheme some
‘ solutions exhibit a non-physical behaviour {at least from & clasnical standpoint). However, other
solutions seem not to be in contradiction with generally accepted and standard models of the
Universe, as they manifest properties such as cosmic expansion and the existence of an initial
singularity. Also, in some of these expanding solutionz the gravitational constant G decreases
with time, a property which may justify calling them Dirac universes ( we detect the presence
of anii-Dirac models an weil ). Evidently, it was not our aim here to provide a quantitative dis-
‘cussion of the solutions, even of the more physically relevant ones, trying to square them in the
context of present observational and experimental data. Rather, our interest in this paper was
actually to call the attention of theorists for the extremely rich scenario which arises when one
allows for higher dimensionality and the varying gravitational conatant hypothesis.

_’Oneoouldu‘uslhntitilnotmcﬂyg,but {‘]ethephyliulqnmtitywhichwnldbeutwiymd
Bowever, from equation (5.2.7) we see that all that bas been said in this section of ¢ is also true for (3.
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5.8. Appendix

In order to construct the phase diagrams corresponding to the figures 6 and 7 all we need ie to
calculate the values of the functions N'(#), and Z(#) at # = 6;, where 8 is an invariant ray and
the superscript { refers to the first non-vanishing derivative evaluated at #; [89]. Since the system
is quadratic the phase poriraits are saymmetric by plane reflections ( £ —+ —z, y — —y ), although
the time orientation of the curves must be reversed in this operation. Such property means we
only need carrying out our analysis in the neighbourhood of just three of the six invariant rays.
Then, let us summarige the results which come from straightforward calculations.

For both cases n > 1 and n = 1, we obtain the following:

1=1, N'{#) < 0, NY(8;) < 0, N'(8;) > 0, Z(8,) <0, Z(8;) < 0, and Z(#) > 0; where
for the case n > | the invariant rays are: &) = arctan i, & = arcian oy, §; = arctan g_, wheress
for the case n = 1, 8, = arctan +1, #; = arctan—{ and 8 = —§. With these results we can
classify for arhitrary values of n the invariant rays & and 8, as being of type (8), while 85 is of
type (a) [89]. From this classification we are led to the diagrams displayed in figs. 6 and 7.

To carty out the Poincare’ compactification of phase plane we perform the transformations
of varisbles u = ¥ and z = 1. Then, starting from the equations (5.5.1) and (5.5.2), we end up
with the dynamical system:

“- m {3~ ante = 0"+ o+ 3 (58.1)
dé  z 2
E=m[z(mu1)+zu(m-1)u+::.n(1—m)u], (5.8.2)

where gdr = dt. The equilibrium points of the dynamical systemn in the plane uz are: (1/3,0), (u4,0),
with uy = ay. A simple analysis of the topological character of these points revcals that they
cotraspond to a saddle-point and two nodes (unstable and stable), respectively [93].

6. Bulk Viscosity and Entropy Production in Multidimensional In-
tegrable Cosmology

6.1. Introduction

Up till now we studied different properties of multidimensional coemology using the matter source
of multidimensional Einstein equations in the form of the perfect fluid [37-38). But, of course,
more realistic may be the model which incorporates some viscosity effects. Within 4-dimensional
cosmology the viscous Universe was considered by a number of authors from quite different points
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of view. Without carrying of a detailed review of the subject (extensive review was given by Gron
[34]), we mention some main trens in cosmology with viscous fluid as & source,

First, Misner [95] considered neutrino viscosity as a mechanism for reducing the anisotropy
in the Early Universe. Stewart [96] and Collins and Stewart [97] proved that it in possible only if
initial anisotropies are small enough. Another series of papers was started by Weinberg [98] which
concerns the production of entropy in the viscous Universe. Both isotropization and production
of entropy during lepton ers in models of Bianchi types I,V were considered by Klimek [99].
Caderni and Fabbri [100] calculated coefficients of shear and bulk viscosity in plasma and lepton
eras within the model of Bianchi type 1. The next trend is connected with obtaining of singularity
free viscous solutions. The first nonsingular solution was obtained by Murphy [101] within flat
Friedman-Robertson-Walker model with fluid possessing & bulk viscosity. Murphy supposed that
the coefficient of a bulk viscosity is proportional to the density of a fluid. However, Belinsky
and Khalatnikov [102,103] showed that this solution corresponds to the very peculiar choice of
parameters and is unstable with respect to the anisotropy perturbations. Other nonsingular
solutions with bulk viscosity were obtained by Novello and Araxjo [104], Romero [105], Oliveira
and Salim [106).

In this section we study the multidimensional cosmological model with a chain of Ricci-flat
spaces for the source in the form of a fluid possessing bulk viscosity. In section 6.2 we describe the
model and get basic equations. For their integration we develop some vector formalism proposed in
our previous papers. In section 6.3 we summarize thermodynamics in multidimensional cosmology
and obtain the formula for the rate of change of entropy. In section 6.4 we integrate equations of
motion for special set of parameters in the first and second equations of state. Exact solutions
are presented in the Kasner-like form and their properties are studied.

8.2. The model

As in previous sections we consider here a multidimensional cosmological model with the met-
ric (1.1.1) defined on the D-dimensional manifold (1.1.2). We consider only Ricci-flat spaces
My,..., M, ie

Royd =0, miki=1,..,N. (62.1)

It is easy to obtain in the usual way the following non-zero components of the Rieci-tensor for
the metric {1.1.1)

By=e1) ('2:; N{&'Y + % - ‘i"’i'o) , | (6.2.2)

R =™ (& 4 (3~ 7)8) 80, (6.2.3)
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where we denoted 99 = 3%, Niz*. Indices m; and k; run over from D—F7,, N; to D-Y7 . N;+
Nyfori=1,....n(D=14+3%, N; = dimM).

We take the energy-momentum tensor for a viscous fluid in the standard form (without shear)
T# = putug + (p - (8) P4, (6.2.4)

where p and p are the fluid density and the pressure, respectively, { in the bulk viscosity coeffi-
cient, Vector u# is the D-dimensional velocity of & fluid and P# = 5+ whup is the projector on
the (D —1)-diménsional space orthogonal te u*. By # we denote the scalar expansion & = utia.

We impose the comoving observer condition for the D-dimensional velocity: u# = e
Then

(v up) = dieg(—1,0,...,0), (6.2.5)
(PBA) = dils(o: 1., 1), ’ (626)
0 = foe . (6.27)

Let us remark that the function 4(#) in (1.1.1) determines a time gange for the comoving observer.
We have the harmonic time gauge for 4(t) = 9o and the proper time gauge for 4(t) = 0. Harmonic
time ¢ and proper time 7 are connected by dr = exp|yo|dt.

We admit that the pressure and the bulk viscosity term in (6.2.4) are anisotropic with reapect
to the whole space M, x ...x M,. Such an admission leads to the following generalisation of the
expression (6.2.4)

(T4) = ding(—p, (p1 ~ 66, . ., (Pn — B(a)ET), (6.2.8)

where p; and {; are the pressure and the bulk viscosity coefficient in the space M:. Furthermore,
we auppose that the barotropic equations of state holds

» = (1 - h:)p(t), (6.2.9)

where Aj=conat for i =1,...,n.

It is easy to show that the equation of motion 7a T4 = 0 for the viscous fluid with the tensor
(6.2.8) looks as follows

b+ )'_'“T Nt (p+ pc — G0) = 0. (6.2.10)

.
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The Einstein equations R} - 164R = «*T§ {«? is gravitational constant) may be written as
Rf = s3(T# — §5;64). Further, we employ the equation RS — 15JR = x?T7 and the equations
Ryt = (T — 5550). Using (6.2.2), (6.2.3) and (6.2.8) we get

gﬂfi(*‘)’ - ¥ = -2"e"p, (6.2.11)
£+ (0 — )8 =« [(—h.- + E;‘—f;'") e 4 (—c.- + %) ")be“'] . (6.2.12)

To develop the integration procednre for the equations of motion (6.2.11),(6.2.12) we introduce
the n-dimensional real vector space R*. By e;,..., e, we denote the canonical basis in K™, i.e.
e1 ={1,0,...,0) etc. i

Let < .,.> be a symmetric bilinear form defined on R™, such that
< &, 85 >= 5 N; — NiN; = Gy, (6.2.13)

In our previous papers this form was introduced as a minisuperspace metric for the cosmolog-
ical models. It was shown that it is a nongenerate form with the pseudo-Euclidean signature
{—:+,...;1). So, for vectors a = ale; + ... + a™e, and b= b'ey +...+ b"e, we have

<ab>= 3 Gya'. (6.2.14)
4, j=1
The form < «,d > may be also written as
bt . hid . hid a
<ab>=Y ab =Y a'b= ¥ (Uad;, {6.2.15)
iml il =1
if we introduce the covariant components of vectors by
a =Y Gya' (6.2.16)
=1

By G¥ = §%/N; + 1/(2 — D) we depote components of a matrix inverse to ().

We call a vector y € ™ time-like, space-like or isotropic, if < y,y > takes negalive, positive
or null values, respectively. Vectors y and z are called orthogonal if < y,z >=0.

In our model the following vectors are used

z =2 +... +z e, (6.2.17)
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E'l‘=l Nﬁ’“

u=uley+...+ute,, uw=#h— S W= Nk (6.2.18)
f=feat.. .+, f"=(i—z%—l_'~;"c—l, &= Nl (6.2.19)

H h;=1for i =1,...,m, we have dust in the whole space (p; = 0, see (6.2.9)). The vector
(6.2.18) corresponding to dust in the whole space is denoted by ug. We note that

(ug)i = Ni, ub= B_—LT < ugthg >= ——%, < g, T >= Yo (6.2.20)
Thus, using (6.2.14), (6.2.17)-(6.2.19) we obtain the Einstein equations in the form
< &,z »>= —2x%e"Tp, ' {6.2.21)
B+ {<unt > —A)e = —n (pe™Mut <upy 2> e'¢) . (6.2.22)
The equation of motion (6.2.10) can be written as
pto < 2ug—u,E>—e T <ugz>< {3 >=0 (6.2.23)
Excluding the density p from (6.2.22) by (6.2.21) we get the following equation

:'=+((u¢,:i'.>-—"r)a'==%(é,a‘:)u—n’«(w,é)e"{. {6.2.24)
To integrate (6.2.24) we need a second equation of state for the bulk viscosity coefficients (;.
To obtain an exact solution in & 4-dimensional flat Friedman-Robertson-Walker model with bulk
viscosity Murphy [101] uged the second equation of state of the form { =constp. Belinsky and
Khalatnikov {107] studied the qualitative behavior of this model with a more general equation:
¢ = ap”, where a,v=const. Ii is easy to show that for this model on manifold R x M} for
¥(t) = 0 the set of equations (6.2.23),(6.2.24) may be written as

3H® = x%p, {6.2.25)
1= Sy dno (6.226)

where H is the Hubble parameter of the 3-dimensional Ricci-flat manifold M, ie. H = ', The
pet of equationa {6.2.25)-(6.2.26) coincides with the one obtained by Belinsky and Khalatnikov
[107]. It is easy to see that equation (6.2.26) for H is always integrable by quadrature. In the
simplest case with » = 1 we get the exact solution obtained by Murphy-[101]. Other solutions
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for special parameters ¥ and A and & solution for arbitrary v and A were also obtained (sce [94]
for details).

For multidimensional cosmological model with manifold M = B x M; x ... x M, the set
of equations {6.2.21)}-{6.2.22) is more complicated. Obvionsly , we have the set of nonlinear
differential equations (5.2.24} for scale factora exp{z'] of the spacesM),..., M,. If we adopt
Belinsky and Khalatnikov’s condition: { ~ p*, then rather complicated equations arise. Tn
particular, for » =1 Appel and Ricatti squations appear. Chakraborty and Nandy [108] within a
$-dimensional model with manifold R x M} x S} avoided this difficulty by imposing az additional
constraint for the scale factors: exp[z] = pexplwe!], pt,» =const.

Here, with no loss of generality, we consider an integration of the set of equations (6.2.22) for
another second equation of state. We suppose that the bulk viscosity coefficient ¢; corresponding
to the apace M, is proportional to exp[—y), i.c.

¢i ~ [scale factor of My~ ™t . . [scale factor of M) *™Ms, (6.2.27)

Physically, the assumption {6.2.27) means that the expansion of the spaces M,,..., M, is accom-
panied by a decreasing of the bulk viscosity effect.

Let us notice that the metric dependence of the bulk viscosity coefficient was also considered
by other authors. Lukacs [109] integrated the homogeneous and isotropic 4-dimensional model
with a viscous dust for such second equation of state: { = const[scale factor] ™. Curvature-
dependent bulk viscosity was studied in a multidimensional cosmology by Wolf [110]. Recently
Motta and Tomimura [111] studied a 4-dimensional inhomogeneous cosmology with some metric
dependence of the bulk viscosity coefficient.

8.3. Thermodynamics of viecous Buid in multidimensicnal Universe

We first summarize thermodynamics in multidimensional cosmology on the manifold M = R x
M, x ... x M, following papers [112,113]. The first law of thermodynamics can be written as
follows

T4S = dpV)+ V );“1 w2 (63.1)

where V; is any fluid volume in the space M;, V is a fluid volume in the whole space: ¥V = ;... .-V,
and § is an entropy in the volume V. We suppose the conservation law for the baryon particle

number Ny in volume V. Then, for entropy per baryon s = §/N, and baryon number density
n = N/V we obtein from (6.3.1)

nTé=j+pY, Nid' + 3 mNid', (6.3.2)
=1

=1
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We remind that exp[z®] is the scale factor of the space M; of the dimension N;.

For the perfect fluid ({; = 0) comparing (6.3.2) and equation of motion (6.2.10) we get the
conservation of entropy :s =const and by the barotropic equations of state (6.2.9) the integral of
motion

pexp{}'_‘:ﬂ ~ ki)Niz'] = const. (6.3.3)

Temperature of the perfect fluid can be obtained in such a wa.]r {113]. From (6.3.2) we have

%).,.s = —pNy —pN; = (hi —2)Nip, j#i. (6.3.4)
Then
p=K (Qm[il(h - 2)Niz'], “ . (635)

where K(a) is an unknown function of the entropy #. By inverting (6.3.5) we get
s = s(pexp[3_(2 — hi)Niz']). (6.3.6)
=1

Substituting (6.3.6) for s in (6.3.2), we obtain

nl ds
d(pexp|(2 - k:)N:z'])

For the perfect fluid we have ds/d(pexp([2 — b;)N;z’]) = B = const (see (6.3.3)}, then

= expl3 s — 2’ (6.3.7)

nT = —exp[Z(h, 2)N.z'] = exp[< u—2ug,z > {6.3.8)

i=1

Now we consider the fluid with a bulk viscosity. Comparing (6.2.10) and (6.3.2) we obtain
nTé =8y Nt {6.3.9)
imi

Using (6.2.7),(6.2.14),(6.2.17)and (6.2.19) we get

‘TQB
nT

i= ZN. = E <ugE><EE>. (6.3.10)
This formula gives the rate of change of entropy per baryon in multidimensional cosmology on
the manifold M = R x M, x ... x M, with anisotropic bulk viscosity. The production of entropy
in the -model can be calculated if the temperature of a fluid is known. Further, we suppose that
the temperature is given by the perfect fluid formula (6.3.8}. Then we get

i= Bexpl< us—u, x> -] <ug,z >< §,3 >, (6.3.11)
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6.4, Exact solutions

In this section we consider only the model with identical pressures and identical bulk viscoaity
coeflicients in each space M, ie.

p=(1—-h)p or u=bhug, {6.4.1)
CI'=£%=-* or E= %e_‘”“l: ‘.=1)'”:ﬂs (6.4.2)

where {3 and A are constants. Here we suppose that
A>0, (>0 (6.4.3)

Then, the set of equations {6.2.24) in the harmonic {ime gauge (7 = o} looks as follows

L

= - 2,2 > ug— o < UdyT > Ud. {6.4.4)

{We remind that v =< ug,z >.) To integrate (6.4.4) we use the following decomposition of the
vector z

d ad ) ]
=Cunz> —aA —+Y <ez>el .45
wE > s g € (6.4.5)

The vectors ug, &}, ...,¢; form an orthogonal basis in R®, ie.

<ug ¢ >=0, <&, ei>=48; 1,j=2,...,n (6.4.6)

We notice that in this basis any vector e; can not be time-like or izotropic because the vector uy
is time-like. The set of equations {6.4.4) may be written an

. hf<ugg>»® & . .
= G St T > e i5| 4,
< ug, > (m,m)[z(( ' >+E < .,=>) Co<u,;,=>], (6.4.7)
<e,g>=0, i=2,...,n (6.4.8)

Integration of (6.4.8) leads to the results
<ehz>=pt+d, i=2...,n (6.4.9)

where p* and ¢' are arbitrary constants. To present the scale factors exp[z’] in a Kasner-like
form, we introduce the vectors a, 8 € B®

a=pe+... +t =ale +... + o en, {(6.4.10)
B=d+...+de,=Fer+...+ 8¢ {64.11)
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We remind that the vectors ey,...,e, form the canonical basis in R*. The coordinates o' and
B are the Kasner-like parameters. Integration of (6.4.7) results in

< g, & >= —:—lln[Cf‘] + % < g, Ug > 8, (6.4.12)

where € > 0 is an integration constant.
Using (6.4.5),(6.4.9)-(6.4.12) we obtain the exact solution in the Kasner-like form

e = (CF) T expl(of - ,.(Ef“ -+ Al (6.4.13)

The Kasner-like parameters obey the relations

< 0,1y >= ZaM_O < Byug >= ):,&.N-_a (6.4.14)

=1

< a,a>= Z(a‘)’Ni = E(p’)’. {(6.4.15)
iml =2
Using (6.2.21) we obtain the density

p= “m_" ~&a ’(c;’)fexp[—t] (F+ ,/zm) (F+ “*m) (6.4.16)

Val+ < a,a > Vet < a

For the functions f and F in (6.4.12),(6.4.13) and (6.4.18) we have the following variants

= sich[AR(t - 2)/2], F = coth[Ah{t —t)/2], € >0, (6.4.17)
f = cosh[Ah(t — t4)/2], F =tanh[AA(t—1t0)/2], C >0, {6.4.18)
fenlahi-w)/a, F=1, C=epl-S2ly, - (64.9)
f = expl-Ab(t—ta)/2], F=-1, C=expl- g’ =) (8.4.20)
Constants A and a are such that
D-
C': 2, A=ﬂ §+D f(tx,a> (5{.21)

Using (6.3.11) we obtain the rate of change of entropy per baryon in this model

i = S6CL it p 24 ( o +AF) (64.22)

Let us consider the properties of this model. Further we consider only solutions with

< oo >>0. (6.4.23)
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Condition < &, >= # means that all Kasner-like parameters are sero, then the identical dy-
namics follows for all spaces M, ..., M,. Such solutions in the framework of multidimensional
coamology are out of interest. Indeed, the observable distinction between external and internal
dimensions demands the stage of various dynamics for the external and internal spaces. In this
connection the solutions with expansion of the 3-dimensional external space and simultancous
‘comtraction of the internal space (or spaces) are mostly attractive.

Also we suppose the weak energy condition for the solutions obtained, i.e. p{r) > 0 for any
proper time r. ‘It is not hard to prove that only solutions with f = exp[AA(t — 1)/2] and
f = sinh[AA(t — £5)/2] eatisfy the weak energy condition under the condition {6.4.23).

We first consider the properties of the solution with f = exp{Ah{t — &)/2]. In the proper
time 7 it can be written as follows

; — g\ M(D-1)-Toat ’
& F (ﬂ)T T) , T < To, (6.4.24)
o

) =S,

(6.4.25)

where 7, is arbitrary constant and parameters & obey the relations (6.4.14). For constant Ty we
have

1 _D-14_ JQ

T -D_2'h h=+

4.26
D=1 < oo >), {6.4.26)
The formula {6.4.22) for the rate of change of entropy per baryon is easily integrable in this

Bl k
s(r) = s(—o0) + 7~ SToh (—-—*) . (6.427)
It ia evident from (6.4.25) that this solution is singular at the final point of evolution T = 7,
because p{r) — +oo as ¥ — 75 — 0. We also notice that p(r} —+ 0 as 7 —+ ~-00, so this solution
can be interpreted as that describing creation of matter in the Universe.

The entropy per baryon s(7) under the conditions (6.4.3) is monotonically increasing to infinity
function on the interval {—co, ;). Existence of the solutions with similar unbounded production
of entropy at the final stage of evolution within 4-dimennional viscous models of Bianchi types
LIX with the second equation of state { = ag” was proved by Belinsky and Khalatnikov [107].
Such solutions can be considered in connection with the problem of extremely large entropy per
baryon in the present Universe. Indeed, it is evideni that such solutions (multidimensional or
not) are applicable up to some proper time 7.. From the time 7. other equations of state are
valid, then the evolution of the Universe is described by another model. However, it is possible
that on reaching the time 7. the entropy per baryon (6.4.27) is large enough (pee fig.10).
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It is also worth noticing, that this solution describes contraction of at least one space of
My, ..., M,. Indeed, due to the relations (6.4.14) at least one of the Kasner-like parameters is non-
positive, so the corresponding scale factor monotonically decreases on the interval (—oo, 7). This
process can be interpreted as contraction of the internal space (or spaces) to the Plaack scale
(107®cm.). In fact the unbounded production of entropy arises due to the necessary contraction
of part of the spaces, which we interpret as internal. Moreover, it can be shown that for some set
of Kasner-like parameters the solution describes expansion of one part of spaces and simultaneous
contraction of the other part.

Let us consider this property for a simplest model on the manifold R x R* x T, where R? in a
3-dimensional flat external space and T4 is an internal space having the shape of d-dimensional
torus. The exact sclution (6.4.24) gives

wifr _ To— T l?‘(‘ﬂ)“'ﬂ'
i A T ) , (6.4.28)
) = Q;P[_Epl] = ’)”‘“"’*F’“ i (6.4.20)
where
1 443 d+2
T~ a+2 (31' B et ) (64.30)

70, A and " are arbitrary constants. If a! > 0 then the internal space monotonically contracts.
It is not difficult to show that under the condition

(i’f3_§i-_1),an S 2‘-'_: (6.4.31)

we obtain the monotonic expansion of the external space on the interval (—oo,7p) (see fig. 11).
This condition can be satisfied for d > 2.

Let us suppose that the solution (6.4.28),(6.4.20) describes the evolution of the multidimen-
eional Universe on the time interval (7o — Ty, 7.). Also we put s(—o0} = 0 in (6.4.27). Then
under the condition of expansion of the external space (6.4.31) we obtain

explet(n — To)} H s(r:)
( explz?(7:)] ) ” ot~ Toy’ (6.4.32)

ie. if the internal space T contracts on the time interval (o~ T, 7,) in K times then the entropy
per baryon increases on this interval less then in X™ times. Thus, there exists the upper limit
for the production of entropy provided the expansion of the external space. This limit depends
on the final sizes of the internal space T and can be removed to infinity as £ — +o00.

The exact solution (6.4.13),(6.4.16) with f = sinh[AA(t — £,)} under the condition (6.4.23)
satisfiea the weak energy condition for any ¢t € (&g, +0c) and this interval correspouds to the
proper time interval (—oa, 7). It follows from (6.4.13),(6.4.16) that this solution and that with
F = exp[AA(£ — 19)/2] have identical behavior near the singularity point r = 7,. So, they have
the same main propertics. We only note, that for 2/A > 1 we have p{7) = 00 a3 7 — —c0, then
this solution alto can be interpreted as that describing creation of matter.
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7. Inflationary Selutions in Multidimensional Cosmology with Per-
fect Fluid

7.1. The model

It iz of interest to study also inflationary solutions in multidimensional cosmology which [119-120].
We consider a cosmological model describing the evolution of n Ricci-flat spaces in the presence of
the 1-component perfect-fluid matter [37) and a homogeneous massless minimally coupled scalar
field. The metric of the model and the manifold are taken as (1.1.1-2)

We take the field equations in the following form:
RY - 264 R = OTY, (r.L1)
=0, : (7.1.2)

where «% is the gravitational constant, ¢ = (¢} is acalar field, O is the d’Alembert operator for
the metric (1.1.1) and the energy-momentum tensor is adopted in the following form

TH = THED L T (7.1.3)
(TN 1) = diag(—p, &1 .., Pu8T), (7.14)
1
TR = 8Mybwy — 563 (B0 (7.1.5)
We put pressures of the perfect fluid in all spaces to be proportional to the density
L™
pi(t) = (1 — 57)e(th (7.1.6)

where w; = const, s =1,...,n.
We impose also the following restriction on the vector u = (u;) € R*

< u,u < 0. (?.1;?}

Here bilinear form < .,. >,: R* x B* — R is defined by the relation

< u, v 3= Pluy, (7.1.8)
u,v € B*, where
g 8 1

Y = I + -0 (7.1.9)

are components of the matrix inverse to the matrix of the minisuperspace metric [8,9]
Gy = Nibis — NiN;. (7.1.10)

In (7.1.9) D=1+ %%, N; is the dimension of the manifold M (1.1.2).
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7.2. Classical solutions

We get the following non-exceptional solutiona of the field equations {7.1.1-2) [121)

g = —(IT& (a(r)™ % )dr @ dr + T8, a}(7)g", ' (1.21)
ai(r) = Ailsinh(rr [T)/r]™"/<%>« [tanh(rr/2T)/r}", (7.2.2)
exp(rip(T)) = Ay [tanh{rr/2T)/r], _ - (1.2.3)

&p(r) = AT (a(r)) M, - (7.2.4)

i=1,...,n; where r = JA/|A|, T = (}|A < w,u >, [}V, 4;, A, > 0 are constants and the
parameters 8% 3, satisfy the relations

Y wa =0, Y Gy + (B, = 4/ <uv,u>,. (7.2.5)
=1 =1 .
Here r > 0for A>0and 0 <1 < o7 for A< 0.

For positive energy density (A > 0), see (7.2.4), we have a family of exceptional solutions
with the constant real sealar field [37]

g= _(n:‘:d“i("'))m‘-q]d‘r ®@dr+ L, “3(7)9(0: {7.2.6)
ai(7) = Aiexp[+20'r /(T < u,u )], (7.2.7)
@(7) = conat, (7.2.8)

and p(r) is defined by (7.2.4). Here A; > 0 (i = 1,...,n) are constants, and T is defined as in
(7.2.1-4).

We note that for A > 0 the solution (7.2.7) with the sign *-+* is an atiractor for the solutions
{7.2.2).

Inflationary solutions. First we consider the case
<ul®) —u w0, (7.2.9)
where w{*) = 2N; correspond to the cosmological term. The solution (7.2.6), (7.2.7) in syn-
chronous time parametruigation reads as

§=—dt, @ dt, + %, ai{t,)e"?, ('};2;10)
at.) = AV, (1.2.11)
Wp = e (1.2.12)
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where
V= <u >, {7.2.13)

i =1,...,n. Thus, formulas (7.2.10)-{7.2.13) and @ = conat describe exceptional solutions for
the case (7.2.9). We call these solutions as the power-law inflationary solutions.

The solution is a self-similar one.

Now we consider the case

<ut —u =0 ) (7.2.14)
In this case
x¥p = const (7.2.15)
and
Cat) = &m[?%%], {7.2.16)
f;: whese
Ty = (202p) 1. (7.217)

The relations (7.2.10), (7.2.15)-(7.2.17) and ¢ = const describe the exponential-type inflation
for the case (7.2.14). In the special case u = u*} (cosmological constant case) this solution was
considered in [48].

The corresponding quantum solutions were considered in [121]. Applying the arguments con-
sidered in [67] one may show that the ground state wave function

L T (J:I__‘I m,(q,o}) . A<o, : (7.2.18)
Jo (3@ exp(qz")) ,  A>0, : . (7.2.18)

satisfies the Hartle-Hawking boundary condition. Hers 27 = /= <u,u >, and ap(gs®) =

e, &%/ is quasivolume.
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7.3. Some Examples

Let us consider the isotropic case when pressures in all spaces are equal. Then

w = hN,= g o™, (7.3.1)
g = (1-A)p=p ' (13.2)
For thiz case
D-1
<u,u>»>, = -—h P-2 <0 (7.3..3)

Hh#£0 or p#p.

The cosmological constant corresponds to A = 2, and the dust-like matter to A =1,
Then,

W = GYu;=hj(2-D), (73 4)
Vo= 2/MD-1)=v

We see that for 4 > 0 (or p < p} we have according to {7.2.11) the isotropic expansion and for
h < 0 (p > p) the isotropic contraction. We may calculate also for thia isotropic case

<u® g s, 41 (2—h) <@, oW 5, | (7.3.5)

which for A = 2 ia equal to sero.
Accordingly, we have the power-law (in general) and the exponential law (A = 2) inflations

here as well.

8. Integrable Weyl Geometry in Multidimensional Cosmology. Nu-
merical Investigation [122]

8.1. Introduction

The multidimensional gravitation theories are very attractive in the context of the unification
of fundamental interactions. Moreover, several modern theories require space-time to have more
than four dimensjons [23,123-128]. The nonobservability of additional dimensions in such theories
needs an explanation. Among different possible ways of such explanation the hypothesis about
dynamical contraction of internal manifold during expansion of the universe is very popular.
This idea in realized in many exact coemological solution of multidimensional Einatein’s equations
[21,128-139]. As a rule such models require additional fields and do not avoid initial big bang
singularity. The introduction of additional fields in multidimensional gravitation theories destroy
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their pure geometrical character and require an additionsl metivation [126). Such motivation may
be done in the framework of some generalizations of Riemannian geometry. In four dimensional
case such generalization in several cases leads to removing of coemological big bang singularity
[140-142]. That is why the unification of generalised geometric structures and multidimensional
gravity seems to be very attractive. Unfortunately, only in several papers the multidimensional
gravitation theory and coamology are considered in the scope of some generalization of Riemannian
geometry [143-145).

One of the simplest generalization of the Riemannian geometry is the integrable Weyl geometry
with the connection components

T3, = I3, — 5 (wnf3 + wal3 — san”),, (8.1.1)

where T are the Christoffel symbols, wa = w,a, w is 8 scalar field, 55 are the Kroneker symbols,
Gop 18 & metric tensor; the amall Greek indices take values from 0 to n — 1, u is a dimension of
space-time. The Ricci tensor and the curvature scalar of the connection (1) are equal to

% -2 1 -2
Ra = Ra + nT"‘a-ll- + 3000 + 1;—* (wm - sw‘wa) ) (8.1.2)
R=R+(r-1)0w- (—"—?M‘m, (8.1.3)

where the tildes denote the quantities calculated in the conmection I'z,, two parallel vertical
bars and O denote the covariant derivative and the d'Alembert operator of this connection. It is
necessary to note that the integrable Weyl space-time ia also conformally-Riemannian, since there
is a conformal transformation of metric tensor g,s which maps the Riemannian space-time into
integrable Weyl space-time. As the integrable Weyl space-time is defined by the pair (gap, w) the
gravitation theory in this space-time does not coincide with Einsteinian genera] relativity because
the field w must be contained in the Lagrangian independently from g, and cannot be excluded
by the conformal transformation.

Some features of the Einsteinian cosmological models with acalar fields were recently con-
sidered by several authors {21,129,131,137,139,145-150] both in 4-dimensional and in (4+d)-
dimensional space-times. The cosmological models in four-dimensional Weyl-integrable space-
time were recently considered by Novello et al. in [140], where the existence of nonsingular
open cosmological models was ahown. The appearance of Weyl geometry in multidimensional
cosmology was discussed also in [144].

In this paper we consider the influence of Weyl geometry on the evolution of Friedman-
Robertson-Walker (FRW) cosmological models in multidimensional gravitation theory. As usually
the space-time is sassumed to have the structure of direct product M* x V4 of four-dimensional
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FRW space-time M* and d-dimensional interior space V¢ that is supposed to be d-sphere 57 or
d-torus T, The metric of space-time is supposed to be block-diagonal

im0 (2

S+ r’dﬂ’) — Gadusdu®, (8.1.4)

where & = 41, 0, —1 for closed, plane and open models, d{}? is a line element on two-sphere,
u®, & = 1,...,d, and J,g are the coordinates and metric tensor of the interior space V¥. Once
we consider only spatially homogeneous FRW cosmologies, it is natural to make the Weyl scalar
field w to be a function of cosmic time ¢ only: w = w(t). We consider both vacuum case and non
vacuum case with the additional scalar field ¢ with non minimal coupling. The 4-dimensional
case will be briefly considered also for completeness. The existence of the conformal map betwsen
Riemannian and integrable Weyl space-times may be used for generation of exact solutions from
the known solutions of general relativity. Such approach admits obtaining oniy the particular
solutions, Therefore to demonstrate general qualitative behavior of the models we solve the
system of cosmological equations nurnerically with initial values given at ¢ = 0 and zatisfying the
conatraint equation. For that purpose we use adaplive numerical methods with automatic choice
of integration step and with the stiffnesa checking. The geometrical units where G =c =1 are
ueed in what follows.

8.2. Integrable Weyl cosmology in vacuum

Following [140] we shall consider the vacuum cosmological models in the gravitation theory with
the Lagrangian

L =R+ fww™ (8.2.1)

where R is defined by (8.1.3) and £ = conat. After excluding the total derivatives of the scahr
field Lagrangian (8.2.1) takea the form

Lefi- (n— 1)(1‘;4— 2) _“:.'“w

(8.2.2)

So, the theory differs from the Einstein theory with the massless scalar field by the coefficient
before the square of the scalar field gradient and has different geodesic lines. Note also that due to
the definition of the Weyl connection (8.1.1) the scalar field w cannot be renormalized and hence
the coeflicient £ before w®w, cannot be put to £1 as it may be done in the pure Einstein theory
with massless scalar field. Variation of (8.2.2) with respect to the pair (g, w) of independent
variables yields the equations

R Somii- (";‘)('_‘i-_?)_:ﬁ Wi~ 3w =0, (8.23)
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and
Ow = 0 {8.2.4)

The equations {8.2.3-4), coincide with the Einstein equations for the massless scalar field, whose
solutions for the FRW cosmological models were investigated both in four-dimensional [148] and
multidimensional cases [78]. By this reason here we only summarize briefly the main results.

8.2.1 Four-dimensional case. As the scalar field w is 2 function on t only, equation (8.2.4)
yields the first integral

W= % _ (8.2.5)

where overdot denotes time differentiation and <4 = const in the integration constant. Due to
(B.2.5) equations (8.2.3) take the form

" b
@ 4k- =0 (8.2.6)
and
2
m+a’+k+%=o (8.2.7)

where X = (3—2£). As it in easy to see from (8.2.6), only singular and static solution of equations
(8.2.6-7) exist if A > (. For negative values of X solution exiats only for the open models. In
this case a{t) > ap = (§ — 3}7*/12 and so the cosmological singularity is absent. The qualitative
behavior of scale factor a(t) for negative X is shown in figure 12 and its features are discussed in
detail in [140).

8.2.2. Multidimensional case. In the multidimensional case the behavior of the model depends
not only on the parameter £, as in the previous case, but on the structure of the intetior space also.
For simplicity only 5- and §-dimensional models will be considered in the following. We consider
these two cases separately. The main qualitative features of models in general n-dimensionat
{n > 6) case are the same as in 5- and f-dimensions.

8.2.2.1. 5-dimensional models. In 5-dimensions space-time interval (8.1.4) reads

dr?
1— by

ds* = d? — (1) ( + r’m’) - o%(t)du? (8.2.8)

where « € 5' is the interior space coordinate. Assuming, as above, a scalar field w to be a
function of the cosmological time only, the first integral of equation (8.2.4) takes the form

W= #a(t) {8-2.9)
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where 1y = const. Due to (8.2.8-9) equations {8.2.3) become after simplification

3__ ( )+ % ""g“f) =0, (8.2.10)
oa(l et heo -
and

g + 355 -0 (8.2.12)

i=2 (8.2.13)

where 12 = consi. It is easy to see that analogous to the four-dimensional case the nonsingular
solutions of equations (15), (17) exiat only for the open models (k = —1). In this case for £ < 0
the scale factor of 3-space at) decreases monotonically from infinity to its minimal valus ao and
then grows to infinity at ¢ > 0, while the Weyl field w(t) and the scale factor of interior space
evolve monotonous from w_ = limy, o w(t) and 8. = limy_o, 8(1) to &, = lim,_ ., 5(2), where
49, wy and a3 are defined by the integration constants and may have arbitrary values. Note
that if v; < 0 than the constants a_ and s, satisfy the condition s_ > a, and so the standard
dimensional reduction scenario is realiged. The typical shape of the functions a(t) snd s(t) are
shown in the figures (13.a,b).

The figure {13a) shows that unlike the 4-dimensional case the evolution of 3-¢pace in 5-
dimensional mode] in time-asymmetric. This asymmetry appears because the equation {8.2.11)
depends not only on 3(t) but also on the time-asymmetric interior space scale factor s(t).

8.£.2.8. 6-dimensional models. In 6-dimensional case we consider two types of topological
structures for the interior space: the 2-sphere §* and 2-dimensional torus T2. Therefore, the
space-time metric (8.1.4) may have one of two forms

a5t = db* &) (1 f"w +r’ms) - (1) (1

i":, + u’du’) (8.2.14)

or

d? = & — a*(t) (1 f";, + r’dﬂ’) — ()’ — s2(t)do?, (8.2.15)
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where {u,v} are the coordinates on §% or T? respectively. First integrala of equation (8.2.4) take
the form

. _ g
g {8.2.16)

for metric (8.2.14) and

' @ o
W= E;;E, (3-3-“3

for metric (8.2.15).
Equations (8.2.3) for the metric (8.2.14) after simplification take the form

a A as 2k

:_+2(2) +2224 5520, (8.2.18)
3 Nn? a1

S+ (5) 4+ =0 (8219)

and the constraint equation

G fa $ 3k 1 5 —
() + G- tamd-o (8:2:20)

The first two equations are dynamical and the last is the constraint.

It is casy to see that only singular solutions of equations (8.2.18-20) exist: the acale factor
#(2) of the interior apace evolves from zero at ¢t = ty to its maximal value Spae sud return to
zero at ¢ = t; > ty. The bebavior of a(¢) depends on the sign of k. Namely, if ¥ = +1 then
the qualitative evolution of aft) is the same as the evolution of s(t). If k¥ = 0 than o{t) increase
from sero at i = Iy to infinity at t = £, or decrease from infinity to zero; the unatable solutions
with a(t) = const are also exist. Finally, if £ = —1 then a(t) evolves from infinity at ¢ = 1, to
its MINIMUM Gy &nd then grows to infinity at £ = ¢,.

For the metric (8.2.15) equations (8.2.3) after simplification read

24. & (5_1 + -‘_=) +2 (E)’ + %’; =0, (8221

a \5n a3

L PLL G T I
L an 4 4z

0, (8.2.22)

a a sy 81 83

(8.2.25)
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and the constraint equation

$(eae2) 33 e

As in 4 and 5-dimensional cases the nonsingular solutions of the equations (8.2.21-24) exist
only for the open models (k = —1). Analogously to 5-dimensional case the acale factor of 3-
space a(t) in these models decreases monotonously from infinity to its minimal value ay and
then grows to infinity at ¢ — +co, while the scale factors s;(t), i = 1, 2, of interior space
changes monotonously from &_ = lime .o 8;(t) to s;y = Limy_ 5;(t). The necessary condition
for the realization of the dimensional reduction scenario in this case are defined by the following
inequalities

and
4;(0) < 0,45(0) < 0 (8.2.26)

It is necessary to note that inequality (8.2.25) is the necessary condition for 3, and 3§, to be of
the same sign. The time behavior of scale factors a(t), s,(¢) and s;(t) in this case is qualitatively
the same 88 in 5-dimensional case (Figure 13).

8.3. Integrable Weyl cosmology in theory with non minimal scalar field

In this section we consider cosmological models in gravitation theories with Lagrangian
1
e e (83.)

where R is defined by (8.1.3), ¢ is a real scalar field, n = +1 and § = const as above. In the
limiting case ¢ = conat Lagrangian (8.3.1} coincides with (8.2.1) while in another limiting case
w = conat it coincides with the Lagrangian for the conformal-invariant scalar field.

The substitution of (8.1.3) into (8.3.1) gives after simplification

L=R (1 + —2{1:1 1)) — e, — (n = 1)("4_ - “:.-"w.. _{=2) ; 2}w’w‘w. + 19" pa,(8.3.2)

where the total derivatives of the acalar fields are omitted.
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Variation of (8.3.2) with respect to independent variables g,., w and ¢ yields the squations
(.ﬁ,,—;g,.,.ﬁ) (1+.2(“":1)) (n—l)(n 2) - 46( iy — -g,..w w‘.) ‘

‘;‘V (P Wv“m) - 2"‘;—2¢’ (Uw'w,, —--Mo"%) + ;'---_—l (’&D'P - Vmﬂv)""

ISR S
(= 2-3 K222 o gt -t (834)
. _ _
w0 - (Ot R 2y ww)o=0, | (38.3.5)

Equation (8.3.5) shows that non-Riernannian nature of space-time geometry in the considered
model leads to the effective mass generation for the scalar field .

8.3.1. Four-dimensional models. In four-dimensional case the equat:om (8.3.3)-(8.3.5) consist
of the constraint equation

T O R
and three dynamical equations

R [T A Ar PR
(%’—ms)«s—vw(s—se+§¢=)§«:a-a§wé'—¢'=o. (8:28)
and

m6— w5+ 202 +3% (16— i) + 290 + 20 (8) + By, (839)

The coeflicients before 4/a, @ and @ in the equations (8.3.7)-(8.3.9) depend both on the
parameters £, # and on the scalar field . The determinant of the matrix of coefficients before
afa, & and @ is equal to

=(3-De'+ @+ ¥-T -0 +ton-1nt.

The points where d = 0 are the singular points of the system (8.3.7)-(8.3.9). These points

are not described by the system (8.3.6)-(8.3.9) because for fixed f and ¢ equation d = conat
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defines not more than four fixed values of y and the system (8.3.6)-(8.3.9) reduces to the first
order system. Therefore the initial value of the field ¢ must be from the open set 4 # 0.

For 5 equation & = 0 divide the half-plane {£,4%}, in three regions that will be denoted aa
A, B and €, while for # = —1 there are only two regions A and B {figure 14a,b). The behavior
of the model depends on the region where the point {¢,pd} is situated.

Numerical investigation of equations (8.3.1)-(8.3.3) shows that for the closed (k = 1) and
flat (k = 0) cosmological models only singular solutions exist for any initial conditions. For the
open models (k = —1) if the pair ({,]) defines the point in the region B (both for p =1 and
n = —1) or € (for = 1) than only singular solutions of the equations (8.3.7)-(8.3.9} exist.
If the pair {¢,id} defines the point in the region A then solutions may be both regular and
singular. The numerical investigation does not permit to find the exact conditions of regularity,
but it shows that both regular and singular solutions are stable against finite perturbations of the
initial conditions. The typical qualitative behavior of the universe scale factor a(t), Weyl field w
and the matter scalar field ¢ are shown in figure 15a-c.

The universe scale facior a(t) in the typical nonsingular solution evolves from infinity at
= —oo to its minimal value ap = a(0) and then grows to infinity at ¢ — oo (figure 15a).
Both scalar fields, the Weyl field w and the field ¢ evolves between two limiting values: from
w. = limy . w(t) and w_ = limy_. o to w, = limy, w(t} and p; = limy_@(t). The
difference in the evolution of these fields is that the field w evolves monotonously (figure 15b)
while the field ¢ near ¢ = 0 (i. e. near the minimum of a(¢)) may have several intermediate
extrema with one absolute maximum if p = 1 (figure 15¢c) or absolute minimum if 5 = —1. As
ip(t) for big |¢| tends asymplotically to constants, the model evolves asymptotically as an empty
Weyl cosmological model that is considered in section 8.2.1. It is necessary to note also that the
evolution of the universe acale factor a(t) has & emall time-asymmetry in comparison with the
case of the empty space. This asymmetry is a result of non symmetrical evolution of the matter
field ¢ because the field equations (8.3.7)-(8.3.9) contain both ¢ and ¢.

8.5.8. 5-dimensional models. In 5-dimensional case equations (8.3.3)-(8.3.5) after simplifica-
tion become

3{5(§+§)+£}{1+£}+?(?+§)+ﬁ—ﬂ+

al\ae s/ a* 8 2 2. _
4%' (E— 3_3_:’;_) =0, o (8.3.10)
(-itE-9eBlpeghe G- e

s{1+"i’}{§+f(25+§)+i—:}+“"—‘5+%?(3§+i+i)-_-o,  (e312)
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a(—s’;ﬁ—zns)—w+w(a§+§)(af:-ze+s) (a 44 +P)=o. (83.13)

and

(D)o mrm (ot emed 1)+ ()

L3k
+50 =0. (8.3.14)

The equation (8.3.1) is the constraint that must be satisfied by the initial conditions and the
equations (8.3.11-14) are the dynamical. The determinznt of the matrix of the coeflicients before
afa, ifa, ir and ¢ in the dynamical equations (8.3.11-14) ia equal to

d=(Zn— &) e+ (Zn+ 36— Ant — D'+ (Tn+ -0t - 6) ™+ 18 —bpt.

The qualitative features of function &(¢,7, @) are the same as in 4-dimensional case: for n =}
equation d = 0 divides the hali-plane (¢,4* > 0) in three regions that are dencted as A, B and
C, while for 5 = —1 there are only two regions A and B (figure 16a,b). The behavior of the
mode] depends on the region where the point (¢,4f) is situated.

Numerical investigation of equations (8.3.10-14) shows that as well as in the previous 4
dimensional case only singular solutions exist at any initial conditions for the closed (& = 1)
and flat (k = 0) cosmological models. For the open models (k = —1) if the pair (£,]) defines
the point in the region B (both for 5 = 1 and n = —1) or € (for 5 = 1) than only singular
solutions of the equations (8.3.10-14) exiat, while if the pair (£,3) defines the paint in the region
A than the solution may be both regular and singular. The regularity of solutions depends on
the constants of integration that may be considered as the initial conditions at £ = 0. It was
found that the regularity of solutions dependa mainly on the signs of 4{0), (0) and ¢(0). Their
pousible combinations that give nonsingular solutions of equations (8.3.11-14) are represented in
table 2. The last column of this table shows the general direction of the interior space evolution
by means of the signa of the difference A = 5, — a_, where a3 = limy_ 3o, 5(2).
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Table 2.
Conditions of the solutions ity and the direction of #(t) evolution
3(0) | #ignoA0) | signg(0) | vignls, —o_)
-1 .1 0 -1
1 +1 ] =
-1 -1 +1 1.,
-1 +1 -1 1
0 +1 0 i
] ) [ +1
+1 +1 -1 +1 .
+1 -1 0 +15 "
’ s *1 [ s G §
+1 -1 T A +1

The typical behavior of the nonsingular solution of the equations {8.3.11-14) for » = 1 is
shown at the figures 17a-d for the case A <0, i e. for the contracting interior space.

In general nonsingular zolution the radius of the ytiverse changes monotonously from infinity
at # = —oo to minimal value ay and then grows to infinity (figure 17a), while the radiug of the
internal apace statte from s_ = lm,., o 3{t), passes through several {one or 1wo) intermediate
extrema, that are situated near minimum of a{t) and may be absent in some cases, and then
changes to s, = lim, .., 5(t) (figure 17b). Note that s; and s_ may be of the 2ame or different
order, The field ¢ evolves analogoualy 10 4-dimensional case (figure 17¢). Note that the extremal
points of the functions aft), s{t) and {t) do not coincide with each other in gemeral case and
the function a(t) is time asymmetrical especially near its minimum. Finally the Wey] field w
changes monotoncusly between two limiting values: w_ = limy ., w(t} and wy = limy, g, ot}
(figure 17d). In the caze 5 = —1 the model evolves as above but the extremal pointa of the field
¢ change type: minimum becomes maximum and vice versa.

8.4. Concluding remarks

We have considered the gualitative evolution of multidimensional cosmelogical models hased on
the integrable Weyl geometry both in vacuum space-time and in the presence of nonminimal scalar
field. The existence of nonsingular solutione of field equations for open cosmalogical models that
realized the dimensional reduction acenario was demonetrated, 14 was shown that in mulvidi-
mensional case the evolution of the scale factor of the universe a{t) becomes time-asymmetric
unlike the four-dimensional case. We have shown also that all nonsingular cosmological models
considered above have some commonp features. In particular the evolution of the universe scale
factor (radius) a{t) for big |t} is asympiotically linear. Purther in all nonsingular models Weyl
sealar field wt) 23 well as the matter field 1) in the models with nonminimal conpling tend
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asymptotically to constants. So the models tend to the pure Einsteinian models of the corre-
sponding dimensions and the change of the collapse era into expansion one may be considered as
s cosmological phase transition induced by the transition of scalar fields «w(t) and (i) from one
stationary state w = w_ and ¢ = ¢_ into another stationary state w = uy and w =, . At the
late stages of the universe evolution the fields w{t} and () are unobservable.

There are several qualitative differences between the vacuum models and the models with
nonminimal scalar field. First of all in vacuum models the existence of coasmological singularity
depends only on the parameters of the theory while in the case of nonminimal scalar field it
depends on the initial conditions also. Secondly, in the modele with nonminimal scalar field the
evolution of the internal space scale factor s{) may be nonmonotonous. In the typical scenario
one of the limiting values of s{t) at { = +-00 is much smaller than another but in several models
both limiting values of internal radiua st} may be arbitrary small and it become finite only near
miniroum of the universe acale factor aft).

We have discusaed here only the models with the one- ar two- dimensional interior space
because if interior space has dimension 4 > 3 and direct product topology of torus on several
spheres then the models have the same qualitative features as considered above. In particular,
the nonsingular solutions exist only for toroidal interior space topology.

The modets considered above show that the real geometrical structure of space-time may have
& non-Riemaniann nature but the universe may evolve in such a way that its non-Riemaniann
nature is essential only near ¢ = ) and become uncbservable at late stages of the evolution.
Therefore, the consideration of generalized geometrical structures in multidimensional cosmology
may be of a considerable interest. [n particular, the models considersed above may be generalized
in the following manner. First of all, both Weyl scalar field w(t) and matter field (t) may be
massive and have nonlinear potential. Secondly, the possible influence of the cosmological term
A must be considered also. At last, the term Ryp?/2(n — 1) in the lagrangian (8.3.1) may have
negative sign. One may suppose that in this case nonsingular eolutions of the field equations may
be obtained not only for open models, but for closed and flat models also, These possibilities will
be considered elsewhere. :

9. Exact Solutions in Integrable Weyl Geometry in Multidimen-
sional Cosmology [152-153]

9.1, Introduction

Here we continue to study multidimensional models in integrable Weyl geometry started in section
8. We stress that the gravitational field in a Weyl-integrable space-time (WIST) is determined by
the tensor gap and the scalar w, just as in scalsx-tensor theories (STTY of gravity. The difference
between these two cases is determined by Eq. {8.1.1). Namely, both in STT and in WIST there
is & conformal gauge in which test partitles move along geodesics; however, in WIST, unlike
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STT, even in this frame the motion in general depends on both the metric and the scalar field.
Thus, a gravitation theory on the basis of WIST is in general not a special case of STT due to a
nonminimal coupling between the matter and the scalar field.

However, field equations in STT and WIST-based theories in many cases coincide, in partic-
ular, for all vacuum apace-times.

The description of cosmological models in STT is often reduced to that of Einsteinian cosmolo-
giea with scalar fields. The latier were considered by many authors [21,50] in both 4-dimensional
and (4+d)-dimensional apace-times.

In this section we consider the evolution of muttidimensional cosmological modeis based on
integrable Weyl geometry with finding exact solutions for some simplest cases of empty spaces.
The main characteristic features of the solutions aze illustrated graphically. Keeping in mind the
poesible applications of the results to the description of quantum stages of the universe evolution
we also consider WIST with the Fuclidean signature.

9.2. Model

An is the case with STT, the gravitational field Lagrangian may in general contain various invari-
ant combinations of gan and w. Let us restrict curselves to Lagrangians which are {a) linear in
the scalat curvature 2nd (b} quadratic in wy. Then the general form of the Lagrangian satisfying
(a) and (b} is

L = A(w)R + Blw)wwa — 2A(w) + L (9.2.1)

where R is the Weyl scalar curvature corresponding to the connection (8.1.1), A, B and A are
arbitrary functions and L, is the nongravitational matter Lagrangian.

Using the expression {8.1.2) for R in terms of the Riemannian curvature R corresponding
to the metric gan, the conformal mapping well-known in STT [154], modified for D dimensions
[78,152]:

gun = ATV PNy, {9.2.2)

and omitting a total divergence, we obtain the following form of the Lagrangian:

L= A(w)R + F{w)T*Pwawp + A~/O-3_2A(w) + Ly] (9-2.3)
where
Plw) = A(‘T),[A(w)s(w} —(D-1)A(w) (A_, b- 2) +D- A_] (9.24)
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Tet us comsider vacuum coamological models with the following structure of the space-time
Wp:

Wp=Rx M x...x M, dim M; = N;; {9.2.5)

where the subspaces M; are assumed to be maximally symmetric. The component R corresponds
to the time 7; besides, we assume w = w(r). Thus, the effective Riemannian metric is written in
the form

35 = gapdzida® = Mhir? _ ze”""’)daf (9.2.6)

=1

where ds! are 7-independent metrics of the N;-dimensional spaces of constant curvatures X;;
with no loss of generality one can put X; =0, £1.

Making use of the freedom to choose the time coordinate 7, let us introduce the harmonic
time by putting

v =Y N&. {8.2.7)
=1
Then the Ricci tensor for ¥, has the following nonzero components:
B o= em(i-7+ N8,
il
By = 6m[e™Bi+ (N-1)Kie™™] (9.2.8)
where the indices m,, n; belong to the subspace M;.

fl

The field equations take an especially mmple form under the additional condition A = 0:

RHN + F(U)WWN =10, (9.2.9)
3V u[Flo)™M] ~ FowMuy =0. (9.2.10)

9.3. Solutions

They can be integrated completely under one of the above assumptions: (i} if all the subspaces
M; are Ricei-flat snd (ii) if one of M; (for instance, M, ) is a space of nonsero constant curvature
{ K1 ). Indeed, putting K; = 0 (3 > 1), we obtain:

0 = Fu' =S5 =const; (9.3.1)
0 = Bi=PBothr, i>]; (93.2)
F-B = Kb (9.3.3)
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where d+1 = N, = dim M. The equation (9.3.3) leads to different results for different X : for
Ky =0 (case (i)) Eq. (9.3.2) may be regarded to include i = 1; for K; # 0 {cane (ii)) we get:

A = gmhh, k>0 (Ki=+1), (6.3.4)
(d/k)sinh kr, k>0,

AT = doslkr)= { i, k=0, (Ki=-1) (9.35)
(d/£)sin kr, k<0,

where & = const and another integration constant iz elimintaed by a particular choice of the
origin of 7. Laatly, a combination of components of (9.2.9) representing the temporal component
of the Einstein equations (the initial data equation) leads to the following relation among the
integration constante:

(z"j N.-i..-)’ “Y M =S5 K=0 (9.3.6)
il =1
2 pign & = %(g Nibs) + g NS, K Ao (0.3.7)

Thus, the set of equations (9.2.9-10) has been integrated in quadratures.

As the original functions A(w) and B(w) and hence F{w) are arbitrary, it in difficult to
describe the physical properties of the models in & general form. Therefore, here we would like
to restrict ourselves to some simple special cases.

Thus, we will assume A =1 while B{w) remains arbitrary, so that the metrics §,5 and gup
coincide.

9.4. Special Cases

As the first step consider 4-dimensional homogeneous isotropic cosmologies. For this purpose we
must put n = 1, d = 2, B4 = B(r}). The condition that r iz a harmonic coordinate {akes the
form v = 38 and for the scale factor we get:

lle(k,f), Kl = l|
= a(r) = { e, K, =0, (9.4.1)
1/2cosh kr, K;=-1,

where a(k,r) is defined by (9.3.5) and the physical time iz determined by the integral ¢ =’
+ f e"")dr . The constant k ia connected with the “scalar charge® § aceording to (9.3.6), (9.3.7)
where one should substitute A; = 0 (i > 1) and h; = &/2:

_ [ 3Wsignk, Ki=31,
2§ = { 30 Py (94.2)
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It is easy to obtain that in the case of a spherical world (K; = 1} the values v = doo
correspond to finite times #; and ¢y at which a = 0 (the initial and final singularities}. For = flat
world (K; = 0) at k #£ 0 and a hyperbolic one (K, = —1) at & > 0 an initial or final singularity
is observed at infinite 7. In the special case Ky = —1, k = & we obtain the Milne vacuum model
which is known to describe a domain in flat space-time (in this case 5§ = 0, so that the scalar
field is trivial).

Lastly, in the case Ky = ~1, k& < 0 we see that the limits r — 0, x/|k} correspond to
t — to0; the scale factor a(t) decreases in an asymptotically linear manner in the remote past
{t = —co), reaches & minimum at + = x/2|k| and grows in an asymptotically linear manzer at
t — oo while the scalar field w changes monotonically from one limiting value w_ at t —+ —oo
to ancther limiting value w; at ¢ — +oo. The model is time-symmetric with respect to the
maximum contraction instant. The tipical shape of the function a(t) for this case is shown in
Fig. 18. i

By (9.4.2) a necessary condition for the existence of nonsingular solutions is the restriction
F < 0 on the function (3.2.4), (as in this case § < 0), or, in terms of the mitial function Blw):
B < 3/2,

These results confirm those of Ref. [140].

Consider now the metric 7,5 for n = 2: let a{t) = ¢®1{"} be the scale factor of the ordinary
physical apace ( Ny = 3), while b(t) = &%) that of the internal space (N, = N},

In the case Ky = 0 {spatially flat models) we obtain:
d5% = HMHNMY g2 T R cther gyl (9.4.3}

where with no loss of generality the scales in M; and M, are chosen so that B = B = 0.
Herewith '

6(h1 + Nha/2) ) = N(N +1/2) + § (9.4.4)
In the special case 3hy + Nhy = 0 the time coordinate T is synchronous, in other words,
physical. The metric (9.4.3) is nonsingular at finite 7 and describes an exponential expansion
(inflation) of one of the spaces (e.g., the physical one, M;) and a simultancous exponential
contraction of the other, M;, since A; and Ay have different signs. However, by {9.4.4) and
(9.3.1)
8§ =Fo' = -A32N +1)/N <. {94.5)
So, & neuenuy condition for the existence of the special solution {9.4.3) is the restriction

B(w) < (D — 1)(D — 2)/4, (9.4.6)
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more general than B < 3/2 for the 4-dimensional case,
In the more general case 3h, + Nk; = H # 0 a transition to the physical time dt = e*dr
leads to the metric

ds® = 4P — IRl _ pth/H g2 (9.4.7)

which is singular at ¢ = 0 if at least one of the constants %, or h; is nonzero. At Ay = Ay =0
the metric is static and {9.4.5) implies that either & = 0 (the solution is trivial),or F =0, »
special choice of B such that w({n has no dynamics.

For a sphericﬂ world { K; = 1) the metricis

e.—Nbr d'r’

lﬂ’ = m m - d&: - emds: (9.4.8)

where da{ is the line element on a unit sphere. A consideration like that as for K; = 1 leads to
the following conclusions:

{a) The model behavior is classified by the values of the constant h = h; as compared with
k > 0. The physical time ¢ = + " )dr varies either within  finite segment [t;, #a] (if
|NA| < 3k), or within a semi-infinite range (if [NA| > 3k).

(b) At any finite boundary of the range of ¢ at least one of the scale factors o(2) or () vanishes,
i.e., & singularity takes place.

(c) At t - +oo either a — 0, b — oo, or conversely, 8 — 00, § — 0.
The value S = —Fir is determined at K, = +1 from
3k%sign k = N(N + 2)h* 4 28. (9.4.9)

For hyperbolic models { K; = —1) the metric has the form

—NM- ar?
2s(k T) 4&’(& 7)

d..’] e dsd (9.4.10) -

(the same a5 (9.4.8) but the function coeh kr is replaced by s(k,7) deﬁnedm (9.3.5). Preserving
generality, let us assume v > 0.

The model behavior may be briefly described as follows:
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(w) At k > 0, NA € ~8k or k = 0, h < 0 the physical time { = & [e""dr ranges from
—oc to +oo. The factor ¥t) = e* varies from a finite value at 7 = 0 (¢ = —o0) to
zero at T — oo (# — 00). The factor a(t) describes a power-law contraction from infinity
(at ¢ — ~o0) to a regular minimum and an infinite (in general, power-law) expansion a
t — oo. There ia no singularity at finite ¢.

(b) At k>0, Nh > 3k the model is singular at finite ¢ corresponding to 7 — 00. In the special
case h = k = 0 we come again to the Milne model supplemented with the space M; with
a constant scale factor.

(c) At k < O the time ¢ ranges again from —oo to +oo. The factor a(t) behaves as it did in
item (a), however, its variation at t — doo is linear (but in general with unequal slopes at
the two asymptotica). The factor 5t) changes monotonically between two finite boundary
values. The typical time dependence of the scale factors a{t) and ¥(t) in this case is shown
in Fig. 19.

Tt is necessary to note that, unlike the 4 dimensional models, the nonsingular multidimensional
ones with A # 0 exhibit a time-aaymmetric behavior of a(t).

It is seen in & straightforward way that in all the nonsingular models the requirement {9.4.6)
is imposed on B(w}, which, as it could be formulated in general relativity, means the negative
scalar field energy density.

Some properties of the above models have been discovered in numerical calculations for a
number of special cases with D =5 and D =6 {[125] and section 8).

8.5, Euclidean Solutions

Keeping in mind possible applications of our models to quantum stages of the universe evolution,
let us continue them to the Euclidean sector. For this purpose let us replace the metric (9.2.6)
by a slightly more general one

d5? = §agdridz® = P ldr? + 3 £;e?P s} (9.5.1)
=l

where ¢ = +1. Then in Eqs.(9.2.8) and consequently in the field equations the only change is
that K; are replaced by £,K;. i we put, as before, K; =0 for { > 2, the equations depend only
on #;K;. That means that the evolution of the Lorentsian open model (K; = -1, £ = —1})
coincides with that of the Euclidean closed model (K; = 1, £, = 1) and vice versa, and the
evolution of models with a flat 3-space (K = 0) does not depend on the metric signature. In
particular, the nonsingular Lorentsian model with an open 3-space, whose exterior and interior
scale factors are shown in Figs. 19a,b, corresponds to the Euclidean four-dimensional wormhole
S* x R,
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In conclusiofi, we have seen that many of the muitidimensional Weyl cosmologies with flat
additional apaces are nonaingular: there are special flat-space models with eternally increasing
or decreasing acale factors (auch models are absent in 4 dimensions) and there are more general
hyperbolic models with a cosmological bounce (generalising the 4-dimensional ones {140]) which
realize the dimensional reduction scenario. It has been shown that in the multidimensional case
the evolution of the scale factor of the universe a(t) becomes time-asymmetric, unlike the 4
dimensional case. In particular the evolution of a(t) for big |¢| is asymptotically linear.
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