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Minimal Closed Set of Observables in the Theory
of Cosmological Perturbations!

Mirio Novello
Centro Brasileiro de Pesquisas Fisicas -— Rio de Janeiro

The theory of perturbation of Friedman-Roberison-Walker (FRW) cosmology is anal-
yaed exclusively in terms of observable quantities. Although this can be a very com-
plete and general procedure we limit our presentation here to the case of irrotational
perturbations for simplicity. We show that the electric part of Weyl conformal tensor
E and the shear & constitute the two basic perturbed variables in terms of which
all remaining observable quantities can be described. Einstein’s equations of Gen-
eral Relativity reduce to a closed set of dynamical system for £ and L. The besia
for a gauge-invariant Hamiltonian treatment of the Perturbation Theory in the FRW

background is then set up.

1. Introductory Remarks

It has been & cornmon practice (since Lifshite’s original paper [1]) to start the examination of the
Perturbation Theory of Einstein’s General Relativity by conmdering variations of non observable
quantitites such as §g,.... The main drawback of this procedure is that it mixes true perturbations
and arbitrary (infinitesimal) coordinate transformations. We are then faced with an extra task:
the separation of true perturbation terms from a mere coordinate transformation. Thie is the so
called gauge problem of the perturbhation theory. A solution for this difficulty was found by many
authora (cf. [2], [3}, [4], 5], [6], [7], [8]) by looking for gauge-independent combinations which are
written in terms of the metric tensor and iis derivatives,

The next step would then be to provide from Einstein’s equations, that deal with §g,,., the
dynamics of these gauge-independent variables which would then be used to deseribe physically
relevant quantities.

Here we will follow a simpler (and more direct) path, inverting this procedure. That is,
we will chocse irom the beginning, sa the basis of our analysis, the gauge.invariant, physically
observable quantities 2, The dynamies for these fundamental quantities will then be analysed

1Thiltﬂkwubucdonthahommimomp-per,byH.Novello.J.M.Sa]im,ll.C.llothd;Sﬂvn.S.EJm&I:
R.Klippert, published in Phys. Rew. D 51, 2 (1995), 50-481.

# Actoally, the gauge problem does not even appear into our scheme aud it can be completely ignored se far
as basic physical quantitics of the perturbation theory of FRW geometry are concerned. That is, there exists &
dynamical system that can be analysed without refs to this probl H , to make contact with the
standard procedure that deals with §g,, , we will p t the evolution of these smociated gaupe-dependent terma
Imier on.
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and any remaining gauge-dependent objects which we usually deal with will be obtained from
this fundamental set.

There are basically two fundamental approaches by which the perturbation theory can be
elaborated: one of them makes use of the standard Einstein's equations [1] and the other is
based on the equivalent quasi-Maxwellian description [4] [9) {10). In the case of the spatially
homogeneous and isotropic FRW cosmological model the vanishing of Weyl conformal tensor
suggests that the second approach is more attractive. In this case the variation of Weyl conformal
tensor SWop,o is the basic quantity to be considered, once there is certainly no doubt that §Wps,.
in a true perturbation, which can not be achieved by a coordinate transformation. This solves ab
initio the gauge problem that was pointed out in the first approach.

The crucial point of distinction between these approaches is that the dynamics of the observ-
sble quantities, as we shall see, does not require the knowledge of all components of Jg,,..

From a technical standpoint, instead of considering tensorial qusntitics, one should restrain
oneself to scalar ones. There are two ways to implement this:

o Expand the relevant quantities in terms of a complete basia of functions {.g. the spherical
harmonics basis).

# Analyse the invariant geometric quantities one can construct from g, and ita derivatives
in the Riemannian background structure, that is, examine the 14 Debever invariants.

In any of these ways we shall see that the net result 10 that there is a set of perturbed quanti-
tiea which can be divided into “good” quantities (i.e., the ones whose unperturbed counterparta
have sero value in the background and, consequently, Stewart's lemma [12] guarantees that the
associated perturbed quantity is really a gauge-independent one) and “bad™ ones (whose corre-
sponding values in the background are nonzerc). One should limit therefore the analysia only to
the "good” ones.

This same kind of behaviour seen for the geometrical structure of the model also exists both
for the kinematic and dynamic quantities for the matter. Therefore the “good” quantitics which
constitute the set of variables with which we work should then be chosen from these particular
scalars that come from these three structures: geometric, kinematic and dynamic. Doea that
mean that the present approach effectively avoids the gauge problem?

To anawer this question affirmatively one should be able to exhibit a set of “good™ variables
in such a way that its corresponding dynamice is closed. That is, if we call M|y the set of these
variables, Einstein’s equations should provide the dynamics of each element of M|y, depending
only on the background evolution quantities (and, eventually, on cther elements of M,)). This
would exhaust the perturbation problem and we shall show in this paper that this is indeed the
case.
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What should be learned from thia discussion is that one should then understand the gauge
problem not as & basic difficulty on the perturbation theory but just as a simple matter of asking
a bad question®, One could imagine (what has been used a number of times in the literature [4],
[51, [8]) that for FRW cosmology the perturbations of its main characteristics (the energy density,
§p the scalar of curvature §R and the Hubble expansion factor §8) would be natural quantities
to be considered as basic for the perturbation scheme. However, these are not “good” scalars,
since they are not zero in the background *. We shall see in the next sections which scalars
replace these ones.

1.1. Synopsis

In this paper we will deal only with observable quantities which are associated to true pertur-
bations of the cosmological FRW geometry as the background. We are interested thus in the
variation of the electric part of the Weyl tensor®, along with the variation of shear and accelera-
tion, since these quantities are not induced by coordinate transformations.

We will analyse a certain set of “good” scalar quantities which constitute a closed set, i.e.,
one which provides a complete characterisation of the perturbation problem. Let us choose them
as the Electric Weyl tensor §E;;, the shear §o;; and the anisotropic etress §II;; characterized by
its corresponding magnitudes:

S EY
1,511
yhoybaii

for the geometry, the dynamics and the kinematics respectively. In the case of perturbations
allowing for vorticity we should add other invariants containing the Magnetic Weyl tensor §H;;.
One should not consider the restriction to the irrotational case as a limitation of this method but
instead as an attempt of making our approach clearer and simpler in this paper. The application
of thia method to the case of vorticity perturbation and gravitational waves will be dealt with in
a forthcoming paper.

In Section 2. we will present the complete zet of definitions and equations which will be needed
in this paper. We inciude for completeness the 14 Debever invariants and in Section 3. we will

3Let us point out that some of the gauge dependent terms are particularly relevant, §p among these.

4 However, as it will be sean in a next section, we can construct amsociated “good” vector quantitics in termm
of thees scalars.

'chﬂlhnutoundmhmmlyhmotﬂmﬂputuhtmndthewlwtyﬁdd This implies that the
agnetic part of Weyl tensor in abseat. To prowe thix statement one has to use oge.(7.83) and

('r.nz).
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prove that they are not suitable to produce a fundamental nucleus M), from which we would
describe all our theory. Nevertheless one of the 14 invariants will be included in My, In this
same section we will characterise the set My, whose dynamics will be given in Section 4.. A '
comparison with previous gauge-invariant variables is then established. For completeness the
equations for some special remaining gauge-dependent quantities (§p and §8) are also exhibited.
We shall see that, under very general circunstances, only the pair of gauge-invariant quantities,
(E, I} (respectively the electric part of Weyl tensor and the shear), constitutes a closed dynamical
system. This suggests the use of the gauge-invariant Hamiltonian treatment for this problem. We
ghall then lay the foundation for such a treatment, applied to these variables. This exhausts
the total problem of perturbation theory in the FRW background®. In Section 5. the Fiers-
Lanczos potential is analysed in the framework of FRW geometry. We exhibit the perturbation
associated to this tensor and ita relationship with the fundamental kinematic quantities, shear
and acceleration. We end with Section 6., in which some general comments are given and future
developments are sketched.

All equations we need (quasi-Maxwellian, the equations of constraint of matter and the equa-
tions of evolution and constraints for the kinematical parameters of a generic fluid) are presented
in the Appendix.

2. Definitions and Notations

Greek indices run into the set {0,1,2,3}. Latin indices run into the set {1,2,3}. Weyl conformal
tensor is defined by means of the expression

Wotss = Besior — Mg + & Rbotim 21)
in which

Gappar = Gaudpy — JavJpp (2.2)
aad

2Mopp = Rougor + Rovgou — Renos — Ryl (2.3)

®However, if one persists in asking questions about the evolution of intrinsically gauge- dependent quantities
(as for instance the perturbed demsity §p), then a gauge mumt be obviously fixed. We would like to emphasise
magmthntthndoumtmmtuhad:uhdofthehndmtﬂwofpﬂtmm once — as we ghall

prove in the q ions — it is possible, in order to solve this problem, to deal with & complete closed
yatem of differential equati this is preci !,whlt'ﬂlbedonemthlplper




412

We use the completely skewsymmetric Levi-Civita tensor 1,s,. to perform the dual operation. The
10 algebraically independent quantities of Weyl tensor can be separated in the corresponding
electric and magnetic parts, defined (by analogy with the electromagnetic field) aa:

Eop = ~Wau V*V* (2.4)
Hoap = —W2, o V"V (2.5)

From the aymmetry properties of Weyl tensor it follows that the dual operation is independent
on the pair in which it is applied.

These definitions yield that tensors E,., and H,, are symmetric, traceless and belong to the
tridimensional space, orthogonal to the cbserver with 4-velocity V*, that is:

B = By
ELV*=0 (2.6)
Eng™ =0,

and
Ha =H,,
H.LV*=0 2.7)
Hug™ =0.

The metric g, and the vector V* (tangent to a timelike congruence of curves I'} induce a
projector temsor h,, which separates any tensor in terms of quantities defined along I' plua
quantities defined on the 3-dimensionat space M, orthogonal to V*. The tensor A, defined in
H, is aymmetric and a true projector, that ia
b =82 -V, V= p2 (2.8)
FRW geometry is written in the standard Gaussian coordinate system as
ds? = dt? | g;;dr'de (2.9)

in which g;; = —A3(t}y;{z"). The 3-dimensions] geometry has constant curvature and thus the
corresponding Riemannian tensor (VR can be written as

OB = Kvijm-
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Covariant derivative in the 4-dimensional space-time will be denoted by the symbol (;) and the
3-dimensional derivative will be denoted by ().

The irreducible components of the covariant derivative of V* are given in terms of the expan-
sion acalar (@), shear {ous), vorticity (w, ) and acceleration (g, ) by the standard definition:

Vip = 0up + %e:..., + wap + 8aV3 (2.10)
in which
9ap = 3h{ahg) Vi — 3Ohas
8=V,
wap = IRV,

oy = VaaV?

(2.11)

We also define
1
9,.3 = Opat EBM (212)
Since the original Lifshitx paper [1] it has shown to be useful to deveiop all perturbed quantities
in the spherical harmonics basis. Once we are limiting ourselves to irrotational perturbations,

it is enough to our purposes to take into account only the scalar Q(z*) (with @ = 0) and its
derived vector and tensor quantities. We have thus

Qi=Qy
Qii = Qs

where the scalar ¢} obeys the eigenvalue equation defined in the 3-dimensional background space
by:

(2.13)

7@ =m@ (2.14)
where m is the wave number and
V'@ =" Qa = 7*Qua (2.15)

where the symbol 77 denotes the 3-dimensional Laplacian. The traceiess operator QG is defined

Q= i i — %Q'Yu (2.16)
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and the divergence of Q;; is given by

(2.17)

We remark that Q is a 3-dimensional object; therefore indices are raised with 4, the 3-space

metric.

In [13] the complete 14 algebraically independent invariants constructed with the curvature

tensor were presented. Considering that we are using an adimensional metric tensor, we can

classify them with respect to dimensionality as follows:

[ Dimensionality Invariants
L Iy
L= I‘h I!: Il
L= I’l I-h IT: I’l Iﬂ
L~ IB: Illh I‘_lj
L-T0 IE, T1e




The expressions for these invarianta are:

I = Wag Woow

I = W™ W, W,
Iy = W W,

Io= Webr W, »We ,
L=R

I =CuC™

I = CagO™C,>

Iy = CopOMC O™

L =C.D™

ho=Du.D™

in which we used the following definitions:

+

3.

CHERJD_% I
DPZ—WMC“

D = W2 a0,

Fundamental Perturbations of FRW Universe

415

(2.18)

As we observed in the previous section, a complete examination of the perturbation theory should
naturally include the analysis of the evolution of the Debever metric invariants associated to FRW
geometry.
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The only non identically zerc invariants of FRW geometry are given by

=(1-3\)

Li={1+A)P5°

I = ——%{1 + AP,*

I= B0V
in which we used Einstein’s equations

1
Ro-v - 5&3" = “‘Tw
and the stress-energy tensor is that of a perfect fluid
Tw =(1+2)eViV, - dogye.

If we restrict curselves to the linear perturbation theory, the only invariants which have non
identically sero linear perturbation terms are I, Iy, Iy, Iy, & and [1;. Among these the first
four are nonsero in the background and the latter two are sero, since the geometry is conformally
flat. This could lead to the conclugsion that J; and Iz are the “gocd® scalars to be examined.

However, a direct calculation shows that the latter two invariants have zero linear perturbation.
Ind=ed, it follows from FREW geomeiry that the perturbation of f; reduces to

§ly = O™ CPEW .

Then (due to the fact that Weyl tensor is trace-free) the above quantity vanishes identically. This
reanlt depends of couree on the fact that the source of the background geometry is given by a
perfect fluid. In effect we have in this case

1 1
- 1 w2 A _ -
Iy =(p+p) (V v 4g"") (V"V 4’#) W penp
which is sero. For the same reasoning 6533, given by
§hy = O™ CP5W,, .,

also vanishes.
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The corresponding perturbations for the remaining invariants are given by

8L =(1-3))5p
=31+ 20
$h =31+ 22 8p
5T = B(L+ A 5.
It follows from these results that the perturbations of these quantities are algebraically

related?. Besides, once all these scalars have a non-zero background value, they do not be-
long to the minimum set of good quantities that we are searching for.

Corresponding difficulties occur for the standard kinematical and dynamical variables, that
is, the expansion parameter 8 snd the density of energy p suffer from the same disease.

This is thus the bad choice for the basic variables which we should avoid. Let us now turn
‘gitr attention to which good variables should be considered as the fundamental ones.

3.1. Geometric Perturbation

Prom the previous section it iollows that

S E; A BN
is the only quantity that characterizes without ambiguity a true perturbation of the Debever
inwariants®. We need thus to consider only the perturbed E;; since, as we shall see, any other
metric quantity does not belong to the “good™ basic nucleus needed for a complete knowledge
of the true perturbations. We then set the expansion of this tensor in terms of the spherical
harmonic basis

6By = E(1) Qul="). (3.19)

Thus E(t) is the geometric quantity whose dynamics we are looking for,

TOme can writs thwse invarisnts in & pure geometrical way without wing Einstein’s equations. This does not
mdify our argmment.
% This is & conssquence of the vanishing of the perturbation of the magnetic part of Weyl tensor{cf.above).
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3.2. Kinematical Perturbations

We restrict our considerations only to linear perturbation terms. The normalisation of the 4-
velocity yields that the variation of the time component of the perturbed velocity iz related to
the variation of the (0-0) component of the metric tensor, that is:
1
8Va = 54g00. (3.20)
The corresponding contravariant quantities are related as follows:

5g™ = 6V, (3.21)

The expansion of the perturbations of the 4-velocity in terms of the spherical harmonic hasis

5V = 38(4) Q(=*} + 3Y(¥)

, (3.22)
Vi = V(t) Qu(=").

For the acceleration we set

day, = (2) Qu(=). (3.23)
For the shear

Boij = (1) Qui(=*) (3.24)
and for the expansion we set

80 = H(t) Q(«) + Z(2) (3.25)

where Y(i) and Z(¢) are homogeneous terms that are not true perturbations.

Let us point out that, once we are ].i.mitins ourselves to the analysin of true perturbed gquanti-
ties, the important kinematical variable whose dynamics we need to examine is only E(2}, since
the other gauge-invariant quantity ¥ is & function of £ (and E), as we shall see {§ is just &
matter of choice of the coordinate syastem). '

®The vorticity is of course sero, since we are limiting ourselves to the irrotational case.
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3.3. Matter Perturbation

Since we are considering & background geometry in which there is a state equation relating the
pressure and the energy density, i.e. p = Ap, we will consider the standard procedure that accepts
the preservation of this state equation under arbitrary perturbations. Besides, our frame is such
that there is no heat flux. Thua the general form of the perturbed energy-momentum tensor is
given by

BT = (14 3) 6(aV,V0) = A6(p0) + 6TL. (3.26)
We write §p in texms of the scalar basis as:
8p = N(t) Q=) + u(t) (3.27)
in which the homogeneous term u{t) is not a true perturbation'®.
" According to causal thermodynamics the evolution equation of the anisotropic pressure is
related to the shear through [14]
vl + I = oy (3.28)

in which 7 is the relaxation parameter and { is the viscosity parameter. For simplicity of this
present treatment we will imit ourselves to the case in which = can be neglected and £ is »
constant '!; eq.(3.28) then gives

I; = foi; (3.29)

and the associated perturbed equation is:

m\'i = 60(,‘- (3-30)

Pollowing the same reasoning as before, 5II;; is the matter quantity that should enter in the
complete syatem of differential equations which describes the perturbation evolution. One should
alsc be interested in the dynamics of §p although it is not a fundamental part of the basic system
of equations. We will examine its evolution later on.

The “good” set Miy bhas therefore three elements: §E;;, §o;; and §1L;. But, since 8IL; is
written in terms of §oy;, the set M|y which will be considered reduces to:

My = {8E;;, 8033}

So much for definitions. Let un then tum to the analysis of the dynarmnics.

WWe willset ¥ = Z = u = 0, since these bomogeneoun terma are just & matter of choice of the coordinate
wystem. Nevertheless we are noi interested in examining pure gauge quantitics vuch a5 ¥, Z and u.

117n the general case § and v are functions of the equilibrium variables, for instance g and the temperatare T
and, since both varistions §I;; and oy are expanded in terma of the traceless tensar §y;, it follown that the
sbove relation does not restrain the kind of fluid we are cxamiving. However, if we consider £ as time-dependent,
the quantity §II;; must be incloded in the fundamental set Ady).
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4. Dynamics

In this section we will show that E(i}) and I(t) constitute the fundamental pair of vari-
ables in terms of which all the dynamica for the perturbed FRW geometry ia given, that is,
My = {E(}, (2]} is the minimal closed set of observables in the perturbation theary of FRW
which characterizes and determines completely the spectrum of perturbations. Indeed, the evo-
lution equations for these two quantities (which come from Einstein's equations) generate a
dynamical system involving only F and I (and background quantities) which, when solved,
containg all the necessary information for a complete description of #ll remaining perturbed
quantities of FRW geometry. Such a conclusion does not seem to have been noticed in the past.

We remark that we will limit ourselves only to the examination of the perturbed guantities that
are relevant for the complete knowledge of the system. These equations are the quasi-Maxwellian
equations of gravitation and the evolution equations for the kinematical quantities. In [6) and
[18] this system of equations was presented and analysed; we will list them in the Appendix for
completences.

4.1. The Perturbed Equation for the Shear

The perturbed equation for the shear eq.(7.98) is written as:

ho he” (5ow) + §G&g+§h¢&ﬁ;
1 2
- E"n” "ﬂ [6% + 6¢r,p]
= M (4.31)
where
Mep = Ropa, VHV™ = %R,.. VRV b, (4.32)

Using the sbove spherical harmonics expansion and ©q.{3.39), eg.(4.31) reduces to:
£=-E-3Z+my. (4.33)

4.2. The Perturbed Equation for E;

The perturbed equation for the eleciric part of the Weyl tensor ia given in the Appendix. Using
the above spherical harmonics expansion and eq.{3.30) one obtaina:

; - _(1+x) o,¢
E = 3 pﬂ—(s+2)E

- §(§+§) B+ J¢e. (e30)
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Thin suggests that E and I may be considered as canonically conjugated variables. We shall see
later on that thia is indeed the case.

Equations (4.33) and (4.34) contain three variables: E, T and ¥. We will now show that
using the conservation law for the matter we can eliminate ¥ in all cases, except when {1+A) = 0.
We will return to this particular (vacuum) case in a later section.

The proof is the following. Projecting the conservation equation of the energy-momentum
tensor in the 3-space, that is

™. h2=0 (4.35)
and using the perturbed quantities this equation gives:
(14 A)p Say — A(Bp)p + Ap 8Vs + 6I%y = 0. (4,36)

Using the decompoaition in the spherical harmonics basis we obtain

- ; 1 KN 42 '

(14 N)p® = MN — V] +2¢ (3 - m) A, (4.37)
Now comes a remarkable result: the right haad side of q.(4.37) can be expressed in terms of

the variables E and T only (since we are analysing here the case where (14 1) does not vanish).

Indeed, from the equation of divergence of the electric tensor (see Appendix), we find

. 3K » 3K\ .
N—pV—(l—:){EA —2(1—~;—)A E. (4.38)

Combining these two equations we find that W is given in texms of the background quantities
and the basic perturbed terms E and I:

3K\ i 1
(1+A)p'l=2(1~~;)A’[—AE+§A£E+§{8]. (4.39)

Thus the whole set of perturbed equations reduces, for the variables E and I, to a time-
dependent dynamical system:

L= A”(5,E) w0
4.
B = Fy3, E)

.

with

F,E—E—%{E+m'l
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Fy

1 1
-(30+3¢) 2
(je+83 2 ko) =
+ % 3

in which ¥ is given in terms of E and I by eq.(4.39).

4.3. Comparison with Previous Gange-Invariant Variables

FRW cosmology is characterized by the homogeneity of the fundamental variables that specify
ita kinematica (the expansion factor ), its dynamics (the energy density p) and its associated
geometry (the scalar of curvature R). This measns that these three quantities depend only on the
global time $, characterized by the hypersurfaces of homogeneity. We can thus use this fact to
define in a trivial way 3-tensor associated quantities, which vanish in this geometry, and look for
its corresponding non-identically vanishing perturbation. The simplest way to do this is just to
let U be a homogeneous variable (in the present case, it can be any one of the quantities p, &
o R), that is I7 = U(t). Then use the 3-gradient operator (My7,, defined by

g, =h va (4.41)
to produce the desired associated variable
U, =h> galh (442)
In [16] these quantities were discussed and its associated evolution analysed. In the present
section we will exhibit the relation of these variables to our fundamental ones. We shall see that

under the conditions of our analysis'? these quantities are functionals of our basic variables (E
sad I} and the background ones.

4.4, The Matter Variable x;

It useful to define the fractional gradient of the energy density . as [16]

. _
Xa = ;"’ Fa P (4.43)

13We remind the reader that we restrain here our ination to irrotational perturbation, The formulas which
we obtain are thus simpler. However the method of our analysis in not restrictive and the study of generic cases
can he obtained through the same lines.
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Such quantity ). is nothing but a combination of the acceleration and the divergence of the
apisotropic stress. Indeed, from eq.(4.36) it follows (in the frame in which there is no heat flux)

14+2X 1

A

From what we have learned above it follows that this quantity can be reduced to a functional
of the basic quantities of perturbation, that is £ aod E, yielding

fxi = -2 (1 - ﬂ) ’% (E - %L‘) Q. (4.45)

™m

4.5. The Kinematical Variable 7,

The only non-vanishing quantity of the kinematics of the cosmic background fluid is the (Hubble}
expansion factor ©. This allows us to define the quantity 5, as:

e = ko’ 0. (4.46)

Using the constraint relation eq.(7.90) we can relaie this quantity to the basic ones:
E 3K
= (1-10) @ (447)

4.6. The Geomeirical Variable r

We can choose the scalar of curvature R which depends only on the cosmical time ¢ like p and 6
to be the U/ -geometrical varisble. However it seems more appealing to use a combined expression
¥ involving R, p and & given by

T=R+{1+3)i)p—§8’. (4.48)

In the unperturbed FRW background this quantity is defined in terms of the curvature scalar of
the 3-dimensional space and the scale factor A(t):

™R
AT

We define then the new associated variable 7, as

Ta=ha? 4. (4.49)
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This quantity 7., vanishes in the background. Iis perturbation can be written in terms of the
previcus variations, since Einstein’s equations give

r=2 (p—%e’).

We can thus, without any information loss, limit all our analysis to the fundamental vari-
ables. Nevertheless, just for completeness, let us exhibit the evolution equations for some gauge-
dependent variables.

4.T. Perturbed Equations for p and &

From ¢q.(7.103) and using the decomposition of the perturbed energy density in the scalar basia
(eq.(3.27)) we obtain the equation of evolution for &z as:

N—%ﬁﬁ+(l+)ﬁ)9N+(l+l)pH=0. ' (4.50)

Applying the same procedure for the perturbed Raychaudhuri equation (eq.(7.100)) and uaing
the decompoaition eq.(3.25) we obtain

S . m {1+ 3)4)
- = T —N=10 4.51
H 2,@9+39H+A3\F+ 2 N=10 (4.51)

To solve these two equations we need to fix the gauge (5(t)) and to use the values for E
and ¥ which wete obtained from the fundamental closed system found in the previous section
{eqe.(4.40)). All the remaining geometrical and kinematical quantities can be likewise obtained.
This exhausts completely our analysia of the irrotational perturbations of FRW universe.

4.8. The Singular Cane (1 + 1) = 0: The Perturbations of De Sitter Universe

We have seen that all the system of reduction to the variables I and EF was based on the
possibility of writing the acceleration in texms of £ and I. This was possible in all cases, except
in the special one in which (1 + A} = 0. Although no known fluid exists with such negative
presaure, the fact that the vacuum admits such an interpretation has led to the identification of
the cosmological constant with this fiuid. It in therefore worthwhile to examine this case in the
same way as it waa done for the previous sections.

At this point it must be remarked that, contrarily from all the previously studied cases,
perturbations of this fluid must necessarily contain contributions which come from the heat flux
or the anisotropic pressure. Indeed, if we take both of these quantities as vanishing, then the
set of perturbed equations implies that all equations are trivially satisfied, since all perturbative
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quantities vanish, except for the cases where §p = X4p, with A = 0, and A + 1 = 0. We will
analyse these cases below.

When &p = X 8p, for X = 0, the system is stable. Indeed, we obtain for the electric part of
Weyl tensor, in the case that © is constant in the background, the following expression:

E(f} = Eoe"' ¢

The other cage of interest is the one in which the condition (1 + X) = 0 is preserved throughout
the perturbation. Looking at eq.(4.50) it follows that, from the fact that § = 0 and reminding
the reader that (I + A) = 0, temporal variation of the energy density exists only if we take into
account the perturbed fluid with heat flux. We then write

& = g(t) Qu(=").

Equation {7.103) gives

m

N=F* {4.52)

The projected conserved equation gives (see eq.{7.104)):

X
q‘+0q+N=%(l—%) E. (4.5}

The evolution equation for the electric part of Weyl tensor gives:

;. B m
8-0-38-—?‘1 (45‘)

in which we used the definition
S=E-l¢x
= FEE

Finally, from the equation that gives the divergence of E;;, we have the constraint

%(1—%)8:—(N+9q). (4.55)

The evolution equation for the shear provides the value of the acceleration ¥. Equations
{4.53)-(4.55) conatitute thus & complete system for the variables E, T and g. This completes
the general explicitly gauge-invariant scheme that we presented here even in the singular case
{1 + ) = 0. Notwithstanding, just as an additional comrment, it would be interesting to consider
the perturbation acheme in the framework of Lancsos potential. This will be done in a later
section.
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4,9. Hamiltonian Treatment

The examination of the perturbations in FRW cosmology, which we analysed above, admits a
Hamiltonian formulation that is worth considering here [17). In this vein, the variables E and X,
analysed in the previous section, are the ones that must be employed to obtain such a formulation.
From the evolution equations for & and E (eq.{4.40)) it follows that they are not canonically

conjugated for arbitrary geometries of the background.

The natural step would be to define canonically conjugated variables @ and P as a linear
functional of T and E as!3:

21-1: 31(3)

It should be expected that functionals of the background geometry would appear in the construc-
tion of the canonical variables in the functions a, 8, ¢ and §. It seems worth to remark that
this matrix is univocally defined up to canonical transformations. We can thus use this fact to
choose 7 and § as zero; we shall use this choice in order to gimplify our analysia.

The Hamiltonian  which provides the dynamics of the pair (@, P} is obtained from the
evolution equations of E and £ (4.40). The condition for the existence of such a Hamiltonian is
given by the equation

& B 1
= + E—f—ie
amé 3Ky
t TN (1-;)_0. (4.57)

It then follows that the Hamiltonian which provides the dynamics of our problem takes the
form

H:%Q’+%3P’+2h,1=q (4.58)

where 5y, ha and Ay are defined as

o 2 2432 3
o (- 25) (3+3) ws
by = _g{uﬁ;ﬁ (1-3) (4.50)

12The attentive reader should notice that in this subsection the quantity @ shall not be confused with the
previous scalar beais.
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ha=o -

e A ¢ 2m £Y. ¢
35 i mn,m (W) (481)

Let us consider the case in which ¢ = (), that is, there is no anisotropic pressure. The case
where { does not vanish presents some interesting peculiarities which will be left to a forthcoming
paper.

We will choose 8 = A and take a as given by eq.{4.57). We then define the canonical variables
@ and P by sctting

Q==%
P=AE,
1t then follows that 7 is given by
H=-At) P+ (1) @? (4.62)
where 4(t) and A(t) are given in terms of the energy density of the background p, the scale
factor A(t) and the wave number m as:
()= (22 p 4

()= & (1+ st (1-5)).

Let us make two comments hers: first of all, the fact that the system ia not conservative
{which means H is not sero} is & consequence of the fact that the ground state of this theory
(@ = P = 0) corresponds not to Minkowskii flat space-time but to FRW expanding univerae.
The necond remark is that the same applies to the non-positivity of the Hamiltonian; this is also
a consequence of the non-vanishing of the curvature of the fundamental state. The system which
we are analysing is not cloaed and so momentum and energy can be pumped from the background.

We notice that the Hamiltonian structure obtained in terms of the variables E and T in com-
pletely gauge-invariant and, as such, deserves an ulterior analysis, which we will make elsewhere,
‘We would like only to exhibit an example where this pumping effect can be easily recognized; this
will be achieved by applying the Hamiltonian treatment to a static mode] of the universe.

(4.63)

Einstein’s Static Universe

In this case the expansion vanishes and consequently (1} and A(¢) become constant. The above
Hamiltonian reduces thua to:

1 i
'H:—z—#-’- P’+§w’ Q* (4.64)

where 4 and w are obtained from eq.(4.63) for p and A constant.

This is nothing but the oacillator Hamiltonian with an imaginary maess. We recover then the
well known result of the inatability of Einstein’s universe.
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5. Fierz-Lanczos Potential

As it was remarked in a previous section, perturbations of conformally flat spacetimes do not
need™ the complete knowledge of all components of the perturbed metric tensor dg,a., although
they certainly need to take into account the Weyl conformal tensor, since all the observable
information we need is contained in it (namely, 5E;; and §5,;).

Let us note at this point that the tensor W, can be expressed in terms of the 3-index Fiers-
Lanceos potential tenscr, (18], [19], that we will denote by L.y, and which deserves a careful
analysis. Indeed, one could consider §Lqps, as the good object for studying linear perturbation
theory, since as we shall see it combines both §E;; and §as (which are alternative variables to
describe §E;;).

Before going into the perturbation-related details let us summarise here some definitiona and
properties of Laga,, since the literature has very few papers on this matter'®.

5.1. Basic Properties

In any 4-dimensional Riemannian geometry there exists & 3-index tensor L., which has the
following symmetries:

Lopu + Lpap =10 (5.85)
Loau + Lapa + Ly = 0. (5.66)

With such L.g, we may write the Weyl tensor in form of a homogeneous expression in the
potential expression, that is

It

Loppt + Linjait) +

1
+  3llies)9on + Lipyifer — Liapi9m — Lige)9au] +
+

2
2172 Sate (5.67)

Wﬂﬂw

14The reader should refer to the sbove quoted gauge problem which has been widely discussed in the lLitersture
{wet the references given in the Introduction).

15:This tensor waa introduced in the 30's to provide, in & similar way a5 the pymmetric teasot 9., doet — in
a mote used approach — an alternative description of apin-2 field in Minkowski background. In the 80's Lancscs
rediscovered it — without gnising he was dealing with the same object — an a Lagrange multiplier in order
to obtain the Bianchi identities in the contert of Einstein's Ceneral Relativity. Rowever only recently [20], [21]
» complete analysin of Fiers-Lancsos object was undertaken and it was discovered that its generic (Fiers) version
dencribes not only one but two spin-2 fields. The restriction to just a single spin-2 field is wrually called the Lancson
tewor, We will limit all our considerntions here to this restricted quantity.
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Lo=L.,.

Let us point out that, due to the above symmetry properties, eqs.(5.65) and {5.66), Lancsos
tensor has 20 degrees of freedom. Since Weyl tensor has only 10 indepandent components, it
follows that there is a gauge symmetry involved. Thia gauge symmetry can be separated into two
classes:

ANV p, = My gay — Mp gay (5.68)

. 1 1
- AWML = Wagu - Wi + 5 Wit

1 1
+ gn= W!x;,\ - ignl Waa;\ (5.69)

in which the vector M, and the antisymmetric tensor W,s are arbitrary quantities.

8.2. Lanczos Tensor for FRW Geometry

The fact that Friedmann-Robertson-Walker geometry is conformally flat implies that the associ-
ated Laneros potential is nothing but a gauge. That is, we can write the Lanczos potential for
FRW geometry as
1
Lapu = Nagou— Np Sau+ Fapu — 5 Fpacn

1 1 1 X
§F wha + Egm Fﬂl;a - Eﬂd F'*:A . (5.70)
for the arbitrary vector N, and the antisymmetric tensor Foy.

+

5.3. Perturbed Fierz-Lanczos Tensor

- In the case we are exAﬁiﬂng in this paper (irrctational perturbations) the perturbed Weyl tensor
reduces to the form

Wopu = (Tapre Thade — Gatre Gimre) VIVAEE®. (5.7)

_ #ince the magnetic part of Weyl tensor rernains sero in this case.
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It then follows that the perturbed electric tensor is given in terms of Lanczos potential as:

1
—6B; = Loy + 8Lojost — 58 Lionys
1 2

3 351."‘,_,—7.-,-‘ {5.72)

§Lup +
Although the L.a, tensor is not & unique well defined object (since it has the gauge freedom
we discussed shove) we can use somne theorems (see [22], [23]) that enable one to write L.a,
in terms of the associated kinematic quantities of & given congruence of curves present in the
associated Riemannian manifold. Following these theorems and choosing the case of irrotational
perturbed matter it follows that §L,s, {the perturbed tensor of FRW background) is given by

5Lopy = 60,4a Vi + F(t)saVaVi (5.73)
where
1E r2 1
F)=1-—2 (59 + 55) . (5.74)

In other words, the only non identically sero components of 8L,g, &re:

§Lowe = —F{)¥ Qy, {575)
and
Lss = () (5.76)

that coincides with the previous results.

From what we have learned in the previous section, we can conclude that this is not a univocal
expression, that is, egs.(5.75) and (5.76) are obtained by a specific gauge choice.

Let us apply the above gauge transformation to the present case. In the first gauge, eq.(5.68),
we decornpose vector M, in the spatial harmonics (scalar and vector):

Mo = MOE) Q(2) 1)
M; = MP)(1) Q=) {5.78)
md in the second gauge, eq.(5.69), we have

W = W) Q) (5.79)
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and

1
Wi = — 75 &iiv W) QM(z). {5.80)
To sum up, asking what is the Lancsos tensor for the perturbed FRW geometry is one of
those questions (like the one about the perturbed tensor 8g,, ) that should be avoided, since thia
quantity is gange-dependent. A good question to be asked should be — as we remarked before:
What is the perturbation of Weyl tensor? This was precisely the motivation of the previous
section.

8. Conclusions

In this paper we have shown that the electric part of the Weyl tensor E and the shear I can be
taken as the two basic quantities which describe the evolution of all perturbed quantities of FRW
universe in the irrotational case. For rotational perturbations the magnetic part of Weyl tensor,
H, and the vorticity f) should be also included in the set M[y. The proof of this remark will
be presented in a forthcoming paper.

We used the quasi-Maxwellian system of equations, which is equivalent to Einstein’s equations,
but is more convenient to treat perturbations in conformally flat universes, e.g., FRW cosmology.
We showed that it is possible to reduce all the dynamice to a pair of equations in £ and E,
providing a dynamic planar system. A reparametrization of these variables allows us then to
establish & gauge-invariant Hamiltonian treatment for this class of perturbation.

This suggests a natural way of quantization, in which @ and P become operators of a Hilbert
space. A simple look into the Hamiltonian suggests that this quantization will give rise to single
mode squeege states {17]. It is not difficult to eee that introducting the pair ({1, H) will generate
double mode pqueese states. This analysis is now under development.

7. Appendix — Quasi-Maxwellian Equations

We list below the quasi-Maxwellian equations of gravity'®. They are obtained from Bianchi iden-
tities as true dynamical equations which describe the propagation of gravitational disturbances.
Making use of Einstein’s equations and the definition of Weyl teneor, Bianchi identities can be
writien in an equivalent form as

e % Rutess] _ %gn[ﬂg-ﬂl

1 1
- M oMerS)
22‘"(' +sg"[T.

15ee, for instance, Eilis [11).
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Using the decomposition of Weyl tensor in terms of E,g and Hoy {see Section 2.) and pro-
jecting apropriately, Einstein’s equations can be written in a form which is similar to Maxwell's
equations. There are 4 independent projections for the divergence of Wey! tensor, namely:

woter,, VaVa ha”

Wnﬂww "r'daﬁ LA

W, b P Va

W”ﬂw Va kn(_r"')n'

The unperturbed quasi-Maxwellian equations are thus given by:
AR Bory + 07 VP H2 0% + 3H™ w,
%ru,+§¢—§@u—mmn" |
+ Er"‘ a, + Eh"‘ T (7.81)
A Hay — 70 VAE? o) —3E™ w,

= (p+pp" - %n"""" Vi guus

1
+ 3 N s + wep) T Vi (7.82)

RRAE~ + OH™ - %H,{‘k‘},. v
+ VY, Hoy B0
- & E’(*,f)'mﬂ v,
+ 3E ey,
= —gg('w‘“ + %ﬁ“ ",
% oy Vg,
T el A (7.83)
MRWAES 4 OE - LB, v
+ VY, BayBus + au HPy ™ Y,
- %Ha”,. hyleg?er v,

1
= PN Pr— o)

.
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1 1
~ 5lp+p)o™ + 5otV
_ ikﬂlh%]u%_l_%h-lh“liﬂu .
+ lrg(‘a"” - lrp(‘wn’ + 191"‘. (7.84)
4 4 6
The contracted Bianchi identities and Einstein's equations give the conservation law
™, =0
Projecting it both in the paralle]l and the orthogonal subepaces we obiain:
™"V, =0
T h =0
which pve the following equations:
pH(p+PIO+ PV 44— 1B =0 (1.85)

(ﬂ + P)“n - p,p.k", + q"»h'u + e%n
+ O + QW + W, OV, =0 {7.86)

and, from the definition of Riemann curvature tensor
Vit — Visgia = RucpV*
we obtain the equations of motion for the unperturbed kinematicel quantities as:
- '
9+?+20’+W—¢“,=R,.V"V" (7.87)
. 1
At'bg G + ‘s'hwﬁ(_&"’ -2+ "’A:l} + 2adp
1 " 2
— gha"he” (A + au) + 3800p + 0auts + wapis
= RagV'V¥ - %R,..V"V"ﬁ.p (7.88)

AR G = ARy (o — ) + 2B
+ oty — opts = 0. (7.89)
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We also obtain from ihe definition of R, three constraint equations:

2

38487 — (0% + W )uhTs — &*(on + ) = RV (7.90)

W+ 2 " 8, =10 (7.91)
1 o o B

—3 A B 0™V, (Gop + wag)y + 6 wa) = Hea {7.92)

These results constitute a set of 12 equations which will be used to describe the evolution of
amall perturbations in FRW background. Writing all the perturbed quantities in the form

Kipertursed) = X packgrond) + 8X

and after straightforward manipulations one finally obtains (6] the perturbed equations from the
set of equations (7.81)-(7.92) as:

GE=) hoh? + ©FE) - %(.ss,(‘-)afl,. e
+ T (B ) b
~ SEH)y bR,
= —3(o+3) (50
+ % AP (6¢") — i
+ % AR (51L.) + % 8 (511*%) (7.93)

WY (5.0

(B bhP + O (GH)— J(6H,), V™
+ STV, (65 b

- SBEM hePTY,
= 3RV, (IL), (7.94)
(BB} b= = (o4 5) (60%) — 3 1™V, (Bac) (7.35)

(BB )oh™ W™ = (60)ah™ - 36 (5V")
- G raleVV

£ IR T+ 3 (60 (1.96)



(86)" + 6 (6v°) + 30 (0) - (fa") = - L2 )
(bow) + 3hw(B6%~ Sbore)ay by b

+ 36 (5) = ~(6E) — 5(6T1)
(862) + 30 (6%) = 1™ (Sag)e V

F60ARL — Z6(8V)+26(5v0)8°
- (60" + Ew"p)“h‘ u = ~{8g.)

| (5"’“ )aﬂ =0
(68 = =3 K BBk + ()} ™ .

(80" + 4 (6V°) + 8 (8 + 8p) + (p+ 7) (60) + (6"} =0

B(EV) + pa (V)80 — (6p)a W 4 (0 1 P) (Fm,)
+ BualS) + 50 (52) + by (5509 =0,
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(7.97)

(7.98)

(7.99)

(7.100)

(7.101)

(1.102)

(7.103)

(7.104)
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