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LECTURES ON THE VERY EARLY UNIVERSE:
Formation of Large Scale Structure of the Universe

V.N.Lukash
Asiro Space Center of Lebedev Physical Inatituie
Profsoyurnaya, 84/32, 117810 Moscow, Russia

ABSTRACT

We consider the cosmological corner-stones of the Very Early Universe
(VEU): the theory of Parsmetric Amplification Effect (PAE} present-
ing the most general physical and mathematical grounda for creation
of Primordial Cosmological Perturbations {PCPa) which gave birth to
the Large Scale Structure (LSS} of the Universe, chaotic and stochastic
Inflation, principal tests of VEU, and some other related topics,

1. Introduction

The recent progress of VEU theory as the theory of the beginning of Big Bang, is majorly related to
its semiclassical nature allowing to operate productively in terms of classical (background} space-
time filled with quastum physical fields (including the gravitational perturbations). It (VEU
theory) connecta like a bridge the theory of our Universe based on the Friedmann model (FU),
with theories of Everything (TOE) essentially employing quantized gravity (still very ambiguous).
Thic relationship is already manifested itself in the important understanding that the quasi-
homogeneous isotropic state of the obeervable Universe at the horizon scale and the primordial
cosmological perturbations which gave birth to the Universe structure on smaller scales, are just
two features of unique phenomenon: the low-energy limit of VEU theory based on model of the
inflationary Universe {IU). Up to now we have no alternative to Inflation (resulting in the cold
remnants which we observe today as the micro and macro worlds) which is commonly considered
as a basic element and the probe test of high energy phytics and any VEU theory.

One has to begin from priorities when discussing VEU: whether to start from cosmological or
particie physica atandards. The particie physica in not yet fixed well at high energies: to follow
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this direction today means to start from N particle and modified gravity theories where N is a
big pumber, and then to build up N inflationary models based on them. For this reason, more
preferable now seems the investigation of cosmologically standard VEU theories hased of three
minimal points:

(i) setting some axioms (the cosmological postulates) within General Relativity (GR)
(i) developing the theory from these postulates, and
(iii) confronting the theory predictions with observations.

Along this way which I will follow in these lectures, we remain independent of the future
particle physics and, thus, may iry to find some basic properties and principal features of the VEU
* theory {tested by obaervationst) which stay independent of the high energy physics uncertainties
23 well. We know two good examples of such kind theoriea. The first is the Friedmanu- Robertson-
Wolkel model {FU) whick has ensured the great success of the observational and theoretical
cosmology, just based on the cosmological postulate {the homogeneity and isotropy of the 3
space). The second ie PAE, the theory of generation of PCPs which brought about LSS formation,
just based on the linear perturbation theory in FU.

So, our goal here would be to find the basics for IU in GR which could create the Friedmannian
region we live in now (which, in its turn, would provide for the necessary initial conditions for
both our examples, the FU and PAF theories). The answer which we know today is the model of
Chaotic Inflation based on the assumptions of existence of inflaton (the scalar field weakly coupled
to all other physicel field) and the start-inflation-condition postulating a quasi-homogeneous
spatial distribution of the initial inflaton in a Compton-wavelength region (i.e., in the finite-scale
region ! A great step in comparison with the FU cosmological postulate !).

The lectures are grouped in four parts. The first ia devoted to the PAR for scalar perturbations
in FU (Lukash 1980). Next, we consider its cosmological applications to the scaitering problem
and chaotic inflation (Lukash & Novikov 1983, 1992; Lukash 1995}. In the third part we present
some recent developments of the theary of chaotic and stochastic inflation proposed by Linde
(1983, 1986). The last Chapter deals with the problem of testing and confronting these theories
with observations.

Sure, we do not pretend to cover all the corresponding references and give a review of all
recent ideas and speculations in VEU theories. Our main goal here is to present some basic
propesties of VEU which {oday more or less settled and independent of future theoretical
constructions. We try to consider the simplest mathematic models paying particular attention
to the physical meaning of the effects considered. Some necezsary mathematical calculations are
given in Appendices. Our units imply ¢ = 82G =A =1 and H, = 100A~" km s~ Mpc?.
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2. Parametric Amplification Effect

The origin of LSS in the Universe is one of the fundamental problems of modern Cosmology. The
following two propertiea of the present Universe appear important to understand the physics of
its early expansion.

(i} High degree of spatial homogeneity and isotropy at large scales ( §pfp ~ 10~ on the
cosmological horizon) along with a well-developed structure ai scales less than 0.01 of the horizon.

(ii) High specific entropy (N,/N, ~ 10°) along with the baryon fraction comparable with
critical density of the Universe (§4,50.1).

The point (i) proves that LSS ( traced by distribution of galaxies, clusters, superclusters
and voids) stemmed from initially small density perturbations of homogeneous and isotropic
cosmic medium since it is the emall perturbation that may grow gravitationally up to the order
of unity (and then form gravitationally bounded object) only when the horigson becomes many
times larger than its linear scale. We do not know yet whether PCPs formed together with
the cosmological Friedmann mode] at Planckian curvatures of whether they originated in the
process of the homogeneous and isotropic expansion which is described by the Classical GR. In
the first case we have no theory. However, an important point is that the quasi-Friedmannian
Cauchy-hypersurface is already a classical object after Planckian time. So, if the PCPs are made
evolutionary and their scales less than the Friedmann-hypersurface scale then they are likely to
form at a semiclassical stage when the large-scale gravity was governed by the GR equations.
We know one example of this kind - it is inflation: galaxy-scale PCPs form at the very late
stages of the inflationary expansion when the Friedmannian Cauchy-hypersurface (which forms
the background of our local Universe today) has been already prepared before by the inflation.
Below, we will develop the theory of small potential (scalar) FCPr assuming the existence of
Friedmann background model. Also, it is quite evident that by no process could the Universe
be born strictly homogeneous and isotropic: there always exist quantum fluctuations of metric
and physical fields, the seed fluctuations could be of statistical, random character or they might
be thermal, etc. An important point here is as follows: the inevitable minimum level of seed
initial perturbations is always maintained by the quantum point-zero fiuctuations of demsity of
the quasi-homogeneous gravitating medium (the latter bases the Friedmann spatial slice).

The basic implication of point (ii) is that in the past our Universe was hot and its expansion
was governed by intensively interacting relativistic particles, At this stage the matter represented
to high degree of accuracy » hydrodynamic perfect fluid with equation of state p = €/3 (the Hot
Friedmann Universe, HFU). Small perturbations of auch radiationally dominasted gravitating fluid
are sound waves propagating through the matter with constant (in time) amplitude: adiabatic
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decrease of the wave amplitude due to the Universs expansion is exactly compensated in this situ-
ation by the increase of the amplitude gained due to the preasure gradient in the comoving to the
wave front reference system (the laiter is purely Special Relativity effect as the pressure gradient
pushing the wave in the direction of its propagation is revealed after the Lorentz transformation
from the Friedmann reference syetem to the comoving one}. Mathematically, such perturbations
in the expanding Universe are governed by the same equation as that for the acoustic pertur-
bations of a non-gravitating static hommogeneous termal bath in the Minkowski space-time (the
conformal invariance). A deep physics is behind it: no new phonons, cosmological potential
perturbations, can be produced during the expansion of HFU.

For the real generation of PCPs to occur in the early Universe, one has to reject the hot
equation of state (p # £/3) at some expansion epoch, which can be done in principle only in VEU
before the primordial heating of cosmic matter to high relativistic temperatures. In this case,
as we shall see below, the number of phonons is not conserved and new phonons (the quanta of
density perturbationa} can be created in the course of the expansion. The mechanism is purely
classical and worke as parametric amplification: energy of large-scale background non-stationary
gravitational potential iz pumped to the energy of small-scale perturbations (like new photons
are created in an electromagnetic resonator when its size changes in a non-adiabatic way). This
effect, which we will generally call "parametric amplification effect”, has nothing to do with Jeans
instability: actually it is the GR-effect (it includes the light velocity and Newton fundamental
constants) as the typical scales to be amplified are just the cosmological horizon ones. Before
we present the mathematical formalism the physical meaning of the parametric amplification is
discussed in the next Section.

2.1. Physical Meaning of the Parametiric Amplification

The theory of small perturbations in the FU was construcied by Lifshitz in 1946. According to
this theory there are three types of perturbations of the homogeneous isotropic model: density
(potential) perturbations, vortex perturbations and gravitational waves. We are interested now
in the first type of perturbations, potential perturbations, because they are related to galaxy
formation.

Let ua consider the spatially Buclidean background model:
de? = d? ~ a2 = a*(de’ — &%, o

where g is the scale factor which is a function of time, ¢ and 7 are universal (Friedmann) and
conformal (Minkowski) times respectively,

WE
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It is usual to present the density perturbations §p in a Fourier expaasion

6= (20) j LRbce™, (3

where § = fp/(p + p) (more rigorous definition which makes § = §(t,Z) the gauge invariant
function is given later on). Here, the wavenumber & =| X | and the physical wavelength A =
2xa/k.

Also we shall use the perturbation acale

L=x2=22

a-|"‘

' {4
and the horizen scale * ’

lg=H"=-

2R

(5)

The latter is a typical scale of the causally connected region during the evolution time scale
of the a-function. (Dot is the derivative over the universal time () = £).

We consider here only homogenecus and isotropic states of the perturbation fielda (random
spatial phase fields). Their important characteristic is a power spectrum of the density perturba-
tions A:

wal5csy) = AL 8GR - ), (6

where brackets (...) mean average over the field state, 6(F — £} is the 3-dimensional §-function
and (*} is the complex conjugate. This spectrum determines the second correlation of the density
perturbations

£r) = (e, it 247 = [ Eagen), ™
where r =| ¥ |. All the odd correlations are icltical.ly gero in linear appraximation. The
Gaussian fields which are the particular cases of the random fields, can be totally described only
by this correlation function {all higher order correlations are negligible in linear appraximation).
Eq. (7) also clarifies the physical sense of the power spectrum. The dimensionless amplitudes A,
are just the corresponding density perturbations in the scale interval Ak ~ & around &, they are
additive (the total power is a sum of the partial ones over all scales):

1 For brevity, we refer to the Hubble acale -7 as horison, although it is not technically correct.
L]
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Let us now consider the hot Universe {(HFU) when equation of state was ¥ p = &f3. The
solution for Ay ia

A} = (a(R)AR) + (k) A, (8)
where

k=~ g fly bl g B, = 7"5

fl(u)——cmx.+2( ey

. sinx
By = ine+2(55 - 55),
and ¢y 3(k) are the amplitudes of the growing and decaying modes respectively . The sound
velocity here is @ = 1/+/3 = 1, so, & function presents a ratio of the sound pass during the
cosmological time 2 to the perturbation scale Iy which is about the horizon to perturbation scale

ratio.

The perturbations of the gravitational potential or metric perturbations are as follows (exact
definitions are given below):

hy = ql —oon for the growing mode,
hy = qw {or the decaying mode {9)

An important feature of these perturbations is the following. Neither growing nor decaying
modes increase catastrophically in time. Both of them are described by sin and cos functions,
00, if ¢, and ¢; are less than unity (and it should be this way, otherwise hy 3 would be large at
smaller time) then both these modes are just sound waves with constant in time amplitudes ¢,
and ¢; and with different time phases.

First of all, this result means that the HFU ia absolutely gravitationally atable against amall
perturbations: if initial perturbations are less than unity then they remain amall forever till
equation p = /3 holda.

*In our unita the encrgy density and matter density are the same functions, € = pe? = .
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A more elegant proof of this important conclusion may be done with help of the g-scalar
{Lukash 1980) which is, generally, gauge invariant combination of matter velocity and gravita-
tional perturbation potentials. Below, we shall see that potential perturbations in FU are totally
described by this scalar (and back: all matter and metric perturbations can be expressed as func-
tions of g). The physical meaning of the g-scalar easily follows from its definition: for large scale,
& > I, ¢ is mainly the gravitational potential {matter effects are not important), while inside
horison, I < I, gravitational perturbations are negligible and g is just the matter (velocity)
potential.

In the HFU the g-field obeys the following equation:

§+:qu'-3 8¢ =0, (10)

where H = afa is the Hubble function and A = #/8%% is the spatial Laplacian. Transformations
§=aq, ("} =dfdy = adfdt reduce eq. (10) to (note, that a ~ y for HFU)

§- ~A~r 0, (11)
which is just the non-gravitating aconstic wave equation in the flat spacetime (y, :e) o

i ~ €10in & + czcoB K. (12)

Eqe. (1,10,11,12) indicate the conformal invariance of potential perturbationa in HFU and, as a
regult, the conservation of the adiabatic invariant — the total number of phonons, the sound wave
quanta — which proves the stability of the HFU expansion against emall matter perturbations 2.
Note in this connection that gravitational waves have a similar invariance property {see Grichshuk
1974) but we do not discuss them here,

The lurpa of the matter in these sound waves start growing only after the equality epoch
(Ig ~ 108yra) when the non-relativistic particles become to dominate in the expansion and the
pressure falls down in comparison with the total density. This process develops due to the Jeans
gravitational instability causing the fragmentation of the medium into separate bodies at the late
stages of the expansion {Ig ~ 10° — 10¥%rs).

*We do not go into further detail about this stability effect since we have emphasised it many times in our
previous lectures. Mention only that the incresse in time of the density contrest at x < 1 {see eq. (B)) which
some people interpret as an instability period, simply carresponpds to the period of time of the monotonic change
of the oscillatory function. (Nomofthennrom]lltmmmmﬁtu‘(l] Thus, to speak on the instability in
this case is as incorrect as to apeak on the instability of » math Julum when it moves, say, out of its
stable point for the time which is s than the oscillstory period. Ratumm;toournn,notethﬂthepotenhﬂ
energy of such & pendulum st % < 1 is all in the gravity (see eqa. (9)). The Jeans thinking fails here because the
&« 1 region in purely relativistic one.
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We chall not discuss here these late processes of galaxy formation. For us the following is
important: for the formation of large structures (superclusiers and clusters), we need a finite
amplitude of the sound waves ~ 10~* — 10~ in the linear scales which encompass the number
of baryons hig enough for these structures formation. So, ¢, orfand ¢; must be of the order of
104 on these scales.

It is a very serious demand on the initial perturbations. Indeed, when ¢ iz small, x < 1, we
have (see eqs. (9,12)):

a«<l,
o € K. (13)

From these expressiona we can see that £; must be extremely mmall and cannot be of the order
of 10~%. So, we need in fact the following equations to be met for x € 1:

(8) ¢ > e,
(5) & ~ 104, (14)

But both of them lock very strange.

Indeed, any general natural initial conditions assume a random time phase state for the seed
fluctuations

=o€ &1L (15)

E.g., the first eq. in (15) holds for vatuum or thermal fluctuations. More of that, any natural
fluctuations in hot gravitating medium imply that & and ¢z are dozers orders of magnitude leas
than 104,

The last point ie demonstrated with help of the following example. Let us suppose that the
origin time of the fluctuations is the Planckian one and let us denote k == 1 for Ly. Then on
the galactic scale kpy; ~ 10°%%, Now, let us take & thermal fluctustion spectrum at this moment
with the Planckian temperature and, thus, the maximum at [ ~ . Then the amplitude of the
perturbations for & < 1 would be proportional to %7 and, on the galactic scale, it would be
~ 107%, S0, ; has to be ~ 107 and it iz 35 orders of magnitude less than we need.

Our resulta are the following:
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1) The claasical cosimology of the hot VEU has principal difficulties in the explanation of origin
of the PCPs. Both requirementa provided by eqs. (14) for the large zscale structure formation,
cannot be naturally explained within the frameworks of the HFT.

2) To account for the appearance of the PCPs at the hot Universe expansion period we need,
as a necessary condition, to reject the p = £/3 equation of state at the VEU stage. The modern
cosmology provides for a variety of the possibilitiea of such type: from quantum-gravity effects
to vacyum phase transitions, cosmic sirings, textures, ¢tc. Here we consider the most general
conditions for the parametric amplification effect appearing in theories with one scalar field ¢
coupled to gravity in the minimal way.

Parametric amplification means the productions of the gravitating potential inhomogeneities
(PCPs) in a non-stationary gravitational background of the expanding Universe: large scale
dynamic gravitational field parametrically creates (amplifiea) the small scale perturbation fields.
Mathematically, potential perturbations of FU with a general expansion law are governed by the
g-scalar which, after the conformal transformations (g — 3, ¢ — ), meets the following equation:

Opd = Ug, (16)

where Og = 3%/8n® — BA is the light (8 = 1} or sound type (8 < 1} d’Alambertian operator
in the conformal spacetime and 7 = U(n) is the effective potential of g-field, which is a function
of the expansion rate of the FU. Eq. {(16) is a type of the parametric equation in mathematical
analysis capable to amplify the fields with scales £<I/%/? which are usually outside or about the
horison size (i.e., in the purely relativistic region).

Say, for the masaless scalar field » with minimal coupling the effective potential is If = 2" /a,
thus, the typical frequency in just the horison one (see eq. {16)):

v (@m” dlg 12
—G---—-—G—=H{2-?)"~H. amn

For the HFU, a ~ , the effective potential is identically sero U = 0, which reduces eq. (16)
to eqs. (11,12) considered before. In this case we can define the vacuum state of the ¢-field for
all spatial frequencies and introduce, for instance, a standard technics for the scattering problem
with } in) and | out) vacua, and so on, to see how many phonons are spontaneously created
during expansion, which are their apectrum, etc.

Further applications depend on the sign of the second derivative of the initial scale factor.
The point is that this sign can give us the idea about which scale expands faster: the pertur-

bation scale Iy or the horizon Uy {pse eqn. (4,5)). Indeed, the first derivative of their ratio is just
proportional to the second derivative of the scale factor:
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() ~a (18)

So, if & < 0 at the beginning, then the galactic scales are found initially outaide the horison,
and the Caunchy initial data should be set up ountside the horizon as well. On the contrary, if
& > 0, then the initial conditions for the scales of interest can be set up inside the horigon.

We ahall investigate both cases. The qualitative result is az follows: under natural initial
conditiona met by eq. (15) (e.g., | in) vacuum atate for the g-field) it is the growing mode
of perturbations that is finally created in the | out) state due to the parametric effect. So,
the resulting perturbation field is described by the first line of eq.{14) with the ¢,{¥) spectrum
depending on the expansion factor behaviour at time period when the parametric amplification
condition was met (k < U3), '

The Lagrangian theory and the quantization of potential perturbations in FU are considered
below. The next chapter deals with some cosmological applications.

2.2. Lagrangian Theory and Perturbations

Let us consider a scalar field @ = w(z*) with the Lagrangian density depending on ¢ and its first
derivatives in the following general form:

L = L{w,¢), wl= 'l",i"la’i = ‘P.iw.lgi"a (19)

The action of the gravitating i field iz az follows:

; 1
Wie,g"= [(L - 3R\V=5 d's, (20)
where gy, and Ry, are the metric and Ricei tensors respectively, B = R!, g = det(g,,). Variations
of eq. (20) over ¢ and g* in extrerum give the clasical equations of motions of the ¢ field
()i +nw =0 (21)
w‘P ' =4,

and of the gravitational field created by the -field-source

Gu=Tu, Ta= Ewm ~- gal, {22)
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where n = 8L/Bw, ny = —8L/8p, G = Ru — Rga /2, and colon is the covariant derivative in
metric gu. Note, that eq. (21) can be obtained from the Bianchi identities T = 0, as well.

Useful constructions sre the comoving (to -field} energy density and the total pressure of
the p field
e = Tup'ptiu® =nuw — L,
1
p=e-T)=L - (29)
where 7 = T}. Also, the following equations are valued '

ctp= g = wL alnn -. ] . :,._.

p=mh aouw  Ohu

z_ EB‘; w 8’1’; a].ll‘l'l. _

m""_ﬂo‘pgi [' ﬂBB W' (u)

(Functions m? and 5% can be negative).

While considering linear perturbation theory,  and g™ are presented as sums of same known
functions (the background (°) solution) and small perturbations ¢ and ha:

p=0+¢, g% =gM-nh (25)

Below, we consider the classical backgrounds {eqs. (21,22) are met antomatically in (°} order)
and the perturbations can be quantum ones.

The Lagrangian of perturbation field is got by expanding the integrand of eq. (20) up to the
second order in ¢ and A® with the total divergent terms excluded (see Appendix A):

wolg b = [ 1OV da,

L0 = 1w, 94 = ”TP[,.,,,-' +33(872 — 1) — 2uiiu* + v(vy — min + 2Tx)]+

+E5 2t~ 1)+ O™ ™ - S0, @)

where v = ¢/w, v = v +v(wifw), w = ¢/, x = v’ — hav'u*/2 = Swfw, ¥} =
— h#¥/2, h = ki = —¢. (Here after all manipulations with indeces are carried out with help



299

of the background metric tensors gl and ¢, and background index (°) is omitted where
possible). Obviously,

bp be

=¥—m
pried Sl

= x4+ (v 4 ). 7)

The clasical field equations which couple the metric and scalar perturbations, can be obtained
either when the first variations of the action (26) are tasken equal to sero or, directly, while
expanding eqs. (21,22} to the linear order terms. Generally, thess equations describe three
oecillators coupled to each other through the background ahear and vorticity (6-order in time
equation system): one ocacillator is the scalar potential perturbations and the other two are just
two polarizations of the gravitational waves *.

To find the physical degrees of freedom of the perturbation fields and to approach the problem

of the PCP origin, the following ateps have to be developed.
(i) Gauge invariant functions must be introduced instead of ¢ and ha

The point ia that, although the original fields {scalar ¢ and tensor gy ) are genuine by def-
inition, their decomposition into background and perturbation parts is not unambiguous at all.
Indeed, if we transform infinitesimally the reference system,

# =, (28)

where £ = ¢¥(z") are small arhitrary functions, then the new separation in the coordinates &
will take the following form:

¢ =Ny + =N F)+4, $=¢+uli,

Gads'ds® = Gads'ds®, kg = ha+ &z + bas, (29)

| where the background metric g,g:) has the same functional dependence in the new coordinates
#2)(#") aa that in the oid ones ¢§X(z).

‘To develop the gauge invariant theory one has, first, to expend the perturbation tensor hy, over
. the irreducible representations of the background geometry to mark off the scalar and gravitational

*For the matter ansats (19), the vortex perturbations (if any) arc standardly found as the first integrals of the
Border equation system.
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wave polarisations and, second, to find the approprists gauge invariant (i.e., independent of the
transformations {29)) linear superpositions of the perturbation functions.

(ii} The Lagrangian and Hamiltonian formaliems of the perturbation fields should be developed
on the basis of the gauge invariant theory.

Recall, that we have the original Lagrangian in the form of eq. {26)- An important thing here
i to find the canonical field varisbles {among gauge invariant functions of point (i)} accounting
for the physical degrees of freedom of the perturbation oacilators.

(iii) Secondary quantization of the perturbations and cosmological applications can be con-
pidered in connection of the PCP problem.

Here, we are going to analyze all these points for FU backgrounds. In this case

Y K g stp K
Ha‘_:f a' H=- 2 a2’
E+3H+v=ﬂ, w = v~ FPo3H +v + D, (30)

x =9—8%(AH +v+T), %:ﬁ"ﬁ—sﬂu.

where ~og = Yaa(z") ia the metric tensor of the homogeneous isotropic 3-space with the apatial
curvature K = 0,%+1 (manipulations with the Greek indices sre done with help of yag). All
the perturbation types evolve here independently of each other in the linear approximation since
the background shear and vorticity are identically zero (below, only potential perturbations are
considered). ‘To avoid formal mathematical constructions we try o use here spatially flat FU
(Fag = fup, K =0, see eq. (1)) and synchronous reference system for its perturbations (hei = 0)
if no other cases are pointed out explicitly. The general necessary formulae are given in Appendix
B.
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2.3. Potential Perturbations in Friedmann Cosmology

Let us obtain equations of motion of the gauge invariant potential perturbations directly from
the linearized Einstein egs. {22), and their Lagrangian from eqs. (26).

General metric perturbations in the synchronous reference system are presented in terms of
{wo gravitational potential, A and B:

ds? = 4 — 0¥(bag + hag)dzda®,

hap = Abop + Bas. _ (31)

Sinee this metric is governed by the scalar field (19), we have three perturbation potentials
v, A and B entering the field equations. In fact, only one of them is independent.

We will consider as the independent one a gauge invariant scalar ¢ which is & linear combina-
tion of the perturbation potentials. Let us first define the g-scalar and then, using the low order
equations, relate inversely this scalar to v, A and B. The gauge freedom in the choice of these
potentials follows from eqgs. {29):

i=u+§, A=A+ HF, §=B+ng+G, (32)
where F and @ are small arbitrary functions of the space coordinates, and

2% = Fui— a'(Fs [ 5 + GuPY, ()

is the most general form of the {i-vector in the synchronous gauge (Landau & Lifshits 1967),
P! = £ — u;u* is the projection tensor.

Eqs. (32) show that the following function is gauge invariant:

g=A—2Hv, (34)

In fact, this function it independent of any other gauge as well (see Appendix B) which proves
that ¢ = g(x") is a 4-acalar in the unperiurbed FU.

To derive the inverse transformations and the equation of motion for ¢-fieid we will need only
the low-order (in time) Einatein equationa:



§C2 = Hh - ﬂ = &, (35¢)
G = "‘iﬂ ={c+p}va (358}
5(OA - 36188) = r(CE — 3A08) = (35¢)

where = 3A+ AB and C = A—(Ba)/a. The first two eqs. (35a,b) are just the conservations
of energy and momentum, respectively, whereas the last one {35c) states the Pasealian condition
{the absence of preasure anisotropies for p-field). In the class of functions under interest eq. (35c)
have only the trivial solution 8

c=0 (36)
which relates 4 and B potentials straightforwardly.

Making use of eq. (35b), we can now express functions v, A and B in terms of the g-scalzr:

_1 q _ B e =2 -
”_E(Q_E)i A—HQ! B=a Q a™p

Q=f‘rth, P=fa1q#,

TETETE Y e S

Functions @ = Q(z') aad P = P(z') are the g-integrala over the Friedmannian world line
df = ude’. They are delermined up to the accuracy of some additive fonctions of the space
coordinates. This freedom for the @-function in just the gauge one (see (32)). The P scalar
is gauge invariant, so its "ambiguity” is physically meaningfull and related to a certain class of
perturbations of the Bianchi type I model. To prove it we need another relation between ¢ and
P functions which we are going to get from eq. (35a).

Let us recover the energy perturbation using eqgs. (30, 37):

The formal solution is ¢ = 5 + §5+ ¢, where f,§ and ¢ arc functions of time. The last two terms in the
1ha can be caxluded berause they do not enber the original hop fanchioms. The guadrstic term can be ascribed
only to B potential which resalts in Aap ~ f(t)&.p,themterm]udodhymdeﬁnm;theln]eh:hr
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be
e+p

= —f%/2H — 3Hv. (38)
Now, substituting it into eq.(35a), we have the key equation for g-acalar:

2@ = AP (39)
which is obviously the GR-analog of Poison equaticn.

Let us first assume that 8 0. Comparison of eqs. (37, 39) ehows that P(2, %) is specified
by the g-scalar up to accuracy of additive harmonic function of spatial coordinates P(Z):

AP(Z) =0. | (40)

In the class of the uniformly limited (in 3-space) functions heg ~ P{).s the solution is a

bilinear form with zero trace:
P(£) = 6492°%2°, anp =const, a2 =0. {41}

Thus, potentials v, 4 and B are reconstructed from the given g-scalar but a partial solution
that does not vanish under gauge transformations:

v=A=0, B=Hﬂf%. (42)

Appendix C demonstrates that these perturbations (42) are homogeneous and belong to the
Bianchi type I cosmological model.

For § =0, function P(Z} is arbitrary and eqs. (42) describe the decaying mode of perturba-
tions. The growing mode is determined by another arbitrary function of the zpace coordinates,
¢(%). The general solution in this case is

v=0, @@= Q(i)f!H
P=o@) [ordt+ P(@), se= 22, (43)

So, with all the above said we may conclude that, for § # 0, the g-scalar is totally respon-
sible for the evolution of the physical potential perturbations in spatially flat Friedmann model.
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Division over §? and differention of eq, (39) (with eq. (37) for the P-scalar taking into account)
givea the second-order equation of motion for the g-scalar:

a+er+205-Crac=o, (a0

where o = /287, Let us stress again that our derivation of the basic equation (44) is trivial
and straightforward: we made use only the first integrals (see eqs. (35)) and did not touch the
high-order Einstein eqs. (e.g. 6R or §R7).

Now, we can derive the Lagrangian density for the g-field. Substituting egs. (37) into eq.
(26) and leaving out full divergent terms, we have after rather lengthy calculationa:

Wg, 1] = Wia = [ La'dtls
L{g) = %a’(é’ - (g)’hq“)’ (45)
where L{g) and L1 differ each from the other only in the divergent terms.

Fis. {45) evidence that g-scalar is the unigue single canonical variable for physical degree of
freedom of potential perturbations in the FU driven by scalar field of type (19). The Lagrangian
density depends only on the first derivatives of g-field. However, if a 3 conat then ¢ acquires a
mass, Endeed, introducing the following transformation

§=aq (46)
we may rewrite the Lagrangian in the form of standard scalar field with square-mass 4* = —&/e
{which may be of any sign):

I —.]; :— E 2z zm _
(9) = 5(8— (S)'dad" - 5'7) (47)

Appendix B confirms eqs. (44,45) for general case. The covariant generalization is as follows:

(D%:)a=0, Da = po’(uus+ 6°Pa), (48)

K9) = 30%ugs Wisl= [ Havgd', (49)
where o = (¢ + p)V2/28H, Py = ga —uus, g= det{ga), all Friedmann functions.
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Before going to the next point, we recall some relations for density perturbations in different

gystems most frequently used in literature.
For the synchronous gauge we have from eq. (38):

8e

Pt 2H,8’+ (q HQ).

For the comoving reference system with the synchronized time (¥ = 0):

8 §
e+p T2HpY

where

di* = (1 + ¢/ H)AP — a*(bap(1 + q) + Bap)di™di’,

For the Newtonian gauge (zero shear reference system, B= o)

6 _ 3
e+p 2Hﬁ’ 2ql

HP/a),

where
& =(1 - HPja)dt — a¥(1 + HP/a)bopdi®d5"

lap z2,1,a
t+§GB, x +§B .

eyt
I

(50)

(51)

(62)

(53)

For scales in the hotison (k7 3 1) all the three expressions for §e coincide since the leading
term is the first one {§e ~ §). In the relativistic region (kv < 1), §¢ depends explicitly on spatial

alice given,



306

2.4. Quantization and Conformal Non-Invariance

Taking in mind eqs.(48,49) one can formally treat the g-field as a test scaler field in the Friedmann
models. It allows for a standard development of the Hamiltonian formalism.

First, we can construct the Hilbert space of all complex solutions of eq. (48) with the scalar
product

(.0) = fﬂadﬂ.-.
E

T2 = iD*(glqax — giata) (54)
where d¥; is the invariant measure on & Cauchy-hypersurface . The integral in eq. {54) does
not depend on T choice because of the 4-flux conservation law Ji;; = 0.

Next, the canonically conjugate gauge invariant scalar is introduced:

o = o(z') = afTFq) = alq. (55)

Further steps to the constructing the field Hamiltonian and canonical quantization are as
simple as that in the case of any other scalar field. We would like to emphasize here two points.

The quantization is based on the simultaneous commutation relation for the canonically op-
erators ¢ and o:

lalt,2), o(t, )] = go ~ oq = iv/—g §E-F). (56)

This equation can be compared with the commutator between the velocity potential and
density perturbation operators of sound waves in the nongravitating static matter, |v,fe] =
i6(% — ) (see Lifshitz & Pitaevski 1978).

It is worth while rewriting ¢q. (48) in terms of the conformal coordinates (x,z) for the
confortaal field §:

Opg = Uq_l ¢ = aaq, (5?)

where [y = a%:" — A is the d’Alambertian operator in the Minkowski metric ds* = da?/a? =
dn? — d&*. The function I = U(y) = (ca)’ /(aa) plays a role of the effective potential of scalar
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perturbations in FU. It is an unambiguous function of the background expansion or, more precise,
of the scale factor and its time derivatives up to the forth order. Note, that the Lagrangian for
q.(57)

. .
L(g) = 3 5(3" - £'3a2" + UT) (88)
coincides with L(g) up to full divergent term.

The total energy of potential perturbations in the Friedmannian space ¢ = const — the field
Hamiltonian — can be also presented in terms of the conformal field:

H:lﬁ=astf£,
a

1. "
E = (1" + 5307 - UT), (59)
where B = E(n,£) is the local energy density of the g-field. Note, that for the non-gravitating
matter (or for short wavelengths tn 33 1) E is analogous to the sound wave energy density:

. (e3P (B
Ex=——+ Ae+p)'
where ¥ = (v*/a} is the matter velocity.

Since this formal analogy with sound waves and the fact that PCPs, which are just the resulting
{after amplification) g-field, are usually found at the beginning of the HFU expansion stage, we
will call below the g-field quanta as phonons. These cosmological phonons remind the standard
physica phonons only when phonon wavelength is inside the horizon (kg 3 1) ®, in this case the
gravity is negligent and ¢ ~ v (see eq. (34)). Por large scales (kn < 1), matter effectz are not
important and ¢ is mainly the gravitational field potential.

‘When acale factor is proportional to the conformal time, g-scalar appears conformally coupled
to FU (see eq. (5T)):

a~nfa: Uly) =0 {60)

In all the other cases U # 0 and the g-field ia conformally non-invariant. It means that g
interacts with background non-stationary metric, which provides for the spontanecus and induced
production of phonons in the process of cosmological expansion.

*Rigoromly speaking, inside the sound horison, kn 3| & |~ (sce the d'Alsmbertisn in eq. (57)). For estimates,
we ppsumse in the main text that g~ 1.
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The zecondary quantization of q-scalar results in the following expansion:

= f Hage + alep).
where
(‘K-ﬂr) = [“h“;] = 6(* - s‘),
(95, 9%) = [ag, ap} =0,
ag and a; are the annihilation and creation operators reapectively,
i My i
%= ‘l'i(z }= m e"',

and ¥ = w{7n) satisfies the following equations

o H{BE - =0, nol —vim =i

(61)

Below, we apply the theory of g-field for VEU. We shall assume | in > vacuum initial state for
the g-field. To define it explicity, we will consider in the next Chapter two caseaforn —+0: a < 0

and a > 0.

3. Origin of Primordial Cosmological Perturbations

Here, we consider some cosmological applicatione of the theory of g-field: the scatterring problem

and the problrm of the generation of PCPs in chactic inflation.

Let us separate explicitely the kinetic and potential terms in the Lagrangian:

L=p(u) - V(y)

From eqgs. (23), we have

8ad = —(e + 3p} = 2V(p) — (et} + 3p(w))

(62)
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where e{w) = nw — p{w). It is seen, that if V() > ¢ and &(w) > 0, then the case & < 0 can
be realized only when the potential term is negligible, whereas for the apposite case (a > 0) the
potential term may play a dominant role. For this reason, we will consider two interesting for us
asymptotics.

First, let us suppose that kinetic terms dominates the potential term in general Lagrangian.
The following theorem can be easily proved in this connection:

The theory of a real scalar field with Lagrangian depending only on the kinetic term,
L=plw), w'=gp", (63)

is mathematically equivalent to the theory of pofential motions of the ideal fuid with
arbitrary equation of siale

p=plu), e=cu)=w B pu) (0
The {-velocity of the ideal fluid i a time-hike vector:

=% e (65)
So, the p-field acts here as the velocity polential

In the other case, 4 > 0, the potential term becomes important and we may decompose
L-function over small parameter w?:

L{w,p) = V() + W(g)u'/2 1 0{u*). (66a)
A simple redifinition of w-field
o= [Wigo
reduces eq. (662) to the following case with standard kinetic term :
L=Zps" ~ Vi) (66%)

Next Section deals with a general scattering spproach for the g-field (the first case can be
sclved only in this approximation). In the last Section of this Chapter we consider the Lagrangian
(66b) with V() > pp* | initial conditicn.
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3.1. Scattering Problem for g-Field

First, let us suppoee that V{y) =0.
Applying the theorem to the flat FU, we see that for equation of state p = £/3 the ¢-ficld is
conformally coupled (7 = 0). Eqa. (59} give the integral of motion

a~y: H=const, {67)
which means the conservation of the total number of phonons in the process of the cosmological
expansion.

In fact, the phonon numbers conserve at any frequency mode. Let us dwell on it in a bit more
detail.

At relativistic stage (67) phonons are presented by the following choice of functions 7:

v = 2wy Ve W = k13, {68}

where a' = const, afa’ =7 = 9 + conat, recall the prime ('} is the derivative in conformal time.
The field Hamiltonian is a sum over all quanta energies:
Heuy = j PEEN;, (69)

where Ej; = w/a is the phonon energy and N; = ala; ia the operator of the number of phonons
with physical momentum E/a. The eigenvalues of the mean energy density operator

E=%, V=fd’£ (70)
are as follows
(2xa)® [ PEBu(rg + ), (1)

where ng are the occupation numbers of the phonon states.

Eq.{67) also allows for introduction of the growing and decaying mode operators:

"We do not go into detail about such standard for any quantized theory things as separation of the Hitbert
space in the positive and negative frequency sutwpaces, the Fock apace of mtates, Bogolubov izaasformations, etc.
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_d
=y(F) = (w/z)‘f'( -‘),
,,t
= Gl = (o2 (ETE), (r2)

In terms of these operators the field expansions have the following form (cf. eq. (12)):

g =(2e)y " [ LRSS0, st 6=,
H= Em" [#xe, |' +1G ), (73)
where | C [*= cct=ctc.

Now, let us calculate the number of phonons created at a period with some arbitrary expansion
law governed by the general Lagrangian (19):

a=afy), m<n<m. (74)

We can do it ditectly taking into account the phonon numbers before {(n < m) and after
(# = 1) this period and just comparing them (the scattering problem).

As we have already seen, it is possible to calculate the occupation numbers for any wavelength
at a linear expansion stage (see eq. {67)). Thus, to solve our problem, we should match the a-
function {and its first derivative @ ®) by the linear passes a ~ n at the beginning (4 = #} and
at the end (7 = 12} of the considered period.

S0, in the resulting normalization we have:

a(n), m<p<n (78)

{?=f:=(2t)“", 1< m
Air = A +n.), 0>, o = consi

where 7 = 7(g) is the conformal horison (Hubble) time:

.,=£,=.,_f“_‘,‘;&,=lj(1+i!}&;. (76)

‘Wenwdth-omd;ﬁmmnrduhmﬂthmmhdnmﬁynnleﬁeuo{ tion in the matching points.
For further details about scattering problem, which are standard for any test field theory, see Grib et al. {1980),
Birrel & Davies (1981), and others.
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The value of the physical constant

adlz=m)
=2\=m) 7
o'{n=m} (m
depends on the average expansion rate at period (T4). Locally, A,-factor can be related to the
conformal acceleration:

1

d m—’m(;u"——m) (78)

Let ag and b be the phonon representations (68} diagalising the Hamiltonian at stages 7 <
and % > 1, reapectively. Then

bh=amop+fialy, lal-|AP=1, (19)
where a; and 8 are Bogolubov coefficients. The | sn) and | out) vacus are defined accordingly:
ag|in} =0, blout} =0. (80)

The Heisenberg state of the g-field is supposed {0 coincide with the | in) vacuum. It means
that there are no phonons (i.e., potential perturbations) initially.

Taking average over the | in}  vacuum state, we derive the mean occupation numbers of
phonons spontaneously created at period g < <9,

(bbg) = ma(E - B), v = Bu P, (81)

and ratio of the energy densities of the perturbations field to the homogeneous cosmological field
(see eqe. (70,71)):

Bngfe= (A" [#F 0l AT (82)

The factor A;? takes into account phonon energy cooling during the expansion period (74).

Calculations of the produced spectrum is also straightforward:

\ W= [T
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i = (P B! +Relalie™)) (53)

The spectrum dependence on the osciliatory exponent means that growing and decaying modes
are created non-equally (see eq. (73)). Now, we are going to prove that under general condition
a' > 0 (A1 > 1, see eg, {78)) which is most frequently met in the applications, it is the growing
mode of perturbations that is preferably created by the parametric mechanism,

Indeed, our initial conditions generally impty (1 < m, cf. eq. (15)):
(G ={CMN <<l | (84)

The situation is trivial in case of the acceleration (& > 0) when the perturbation scales inflate
from inside to outside the horizon. The decaying mode, appearing originally at the horizon with
the same amplitude as the growing one, decays quickly for larger timea while the growing mode
is frosen. It can be demonstrated with help of general solution of the dynamic eq. (4€) in large
scales (the Laplacian term is negligible):

1= 0@ +0@ [ o (35)

where gy a(Z) are arbitrary functions of the spatial coordinates. The integral sharply converges
to a constant in time function

g=q(2) (86)
which describes the growing perturbation mode at ¢ | Vg |€ g for any expansion law.
Let un consider in & more detail the case when the initial conditions (84) are set up outside the

horizson. The general solution (85) helps again. Comparing it with the a-representation funciions
¥: = 1(5) which have the form (68) for 5 < s, and

k) = (2w) Hane™" + fre™)

for 3 > 7, we obtain for the Bogolubov coefficients at kn <0 1:

1 : 1,0 .
@ = (A7 +Higds), B = AT —imd), (87)
where g5, = x1/k —4 is the amplification coeflicient,



314

xm/vV3=1-A'n/n - j: (aa)dn = const.

Obviously, gy = x1/k for g5 > ) and g ~ (wrn )™ for A, » 1.
Substitution of eqs. (87) into eq. (83) givea the following specirum for Ay > 1:

= (o) gu | T2

(88)

The comparison with eqs. (73) reveals easily that only the growing mode is created.

To clarify the physical meaning of this effect, let us relate direcily the O, opﬂ'atm in a and
b representations {see eqs. (72,79,87), kny < 1)

o =i+ Bep, off = Aef. (89)

So, if one begins with eq. (84) then, in the end, eqa. (89) give for 4, 2> 1 and g5 > 1

(G =giC*>C > (1G], (90)

what ia just required by the galaxy formation theories (cf. eq.(14)}. In fact, the effect is a pure
game of the mode mixing, it is not the g-field itself that is created but rather the g-momentum
(the time derivative 7). In other words one can say that the parametric amplification effect brings
about the creation of squerzed state (Cy > ) from initially random state (Cy 2 C3).

So, as we could see, it is not a problem to produce the growing mode of perturbations with
necessary amplitude. The amplification coefficient is the larger the earlier HFU expansion is
violated. The typical spectra (88) go like

=Mk, k<M, (91)

with the maximum amplitude corresponding to the massscale M ~ 7, when the linear expansion
lnw was broken for the first time. (Note, that the spectrum (91) decreases to large wavelengths
in comparison with the Harrison-Zeldovich scale-free spectrum gug ~ const). For & 3 M, the
amplification coefficient is exponentially small.

There are two points concerning q. (91).
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(i) Initial {vacuum} conditions are set up outside the horison which requires phywical expla-

nation.

(ii} To get the expansion factor required for typical scales & < M to be of the order of the
galactic acales, it is necessary to ensure the acceleration (inflationary) condition & > 0 at period

(74).

In the latter case, the initial vacuum condition must be set up in the adiabatic zone — within

the horiron — which can be done independently of the expansion law at ihe beginning.

3.2. Generation of Perturbation on Inflation

Let us consider Lagrangian (66} with a potential ¥V = V(p) € €3 (at least, the first three
derivatives determined). We shall generally assume it to be a monotonically growing function of
¢ for ¢ > p,. Without loss of generality we can put o, =0 and V =dV/dp =0 at p =0
which, with the symmetric condition V(i) = V{—), makes a stable minimum of the potential
V(¢) at point @ = 0. Under such normalisation, our main assumption takes the following form:

" Also, we define three auxiliary fanctions of ¢ related to the potential derivatives:

V>0, dVide>0 for o> 0.

codlnV _dinc . dine
T dhg’ °T dnp’ ' T dlng’

(92)

The simplest examples are ¥; = m?p?/2 and V; = Xg*/4 where constants m, X are the
field mass and dimensionless parameter, respectively. Evidently, for the power-law potentiala
Vo~ c=2n=const, and e=f=0.

The background Friedmann quantitics and eqs. (30) are

Inflation occurs when

26713 = (1 +2V/$"),
B=1, w=n=—¢, p=-V+§'f2,
e=3H* =V +¢*2, H=-¢2,
@+ 3Hp +dV/de =0.

(93)
{s4)
(85)
(96)



3i6

d=ollH + H) = oV —¢")/3>0. (97)

At V > ¢ the potential energy density contributes dominantly to the Hubble parameter. For
our functiona {(92) it may happen at large , and inflationary solution can be got as expansion
over the inverse powers of | |3 1:

H = (V311 + 56~ + 06 )), (98)

&= ~(cH/p)1 + e~ Vo™ +0(w™), (#9)
a=exp|- [do ple + 31~ el + 00~ (100)
a = (e/26)(1 + 3{e = Doy + Ofp™)) (101)

Then the inflationary condition can be rewsitten in terms of ¢-function:

lefe I< V3, (102)
or in terms of potential V:

| dV/dp < V3V. (103)

Eqs. (98,99,100,101) are obviously true in & so-called slow-roll approxirmation which assumes
friction-dominated equation of motion for -field (the second-derivative term in eq. (96) is
subdominant). There are two conditions for this approximation following directly from expansions
(98 — 101):

lefel<2, [{e—1)e/o® < 2. {104)
The first condition nearly coincides with eq. (102). From the second condition we have
| #V/de? | <2V. {105)

So, the inflationary solution {98, 99, 108, 101) requires certain analytical propertiea from
potential V(i) (see egs. (103,105)). We can put it in other terma: eqs. (98, 99, 100, 101) are
valued for large @,
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l¢ |2 pr =maz(le] /2, | (e—1)/2 7). ((106)
One can show that, within class of functions (92) satisfying the inequality {106} for
{9 ]2 o1 = const (107)

where ¢, is a positive root of equation ¢ = i) °, eqn. (98, 99, 100, 101) describe a trap
(for growing time) separatrix towards which all the other dynamical trajectories 10 with initial
| ¢ |> w1 approach rapidly during their dynamical evolution to the stable point ¢ = ¢ = 0.
On the inflationary separatrix (98, 99, 100, 101) ¢, H and a vary slowly while the scale factor
increases nearly exponentially in time, a ~ ezp(Hi).

Eqs. (98 ~ 101) break when the field reaches the point | @ |~ @1 ~ 1 and the further evolution
proceeds with damping oscillations around o = ¢ = 0. If &V/dp" > 0 at =0, then

B2 an o= (83 me) sinmit + L) S L, (108)

where V ~ m*/2 for |y |< 1, here m and ¢, are constants. At this stage the Universe
expands like a pressureless medium since the average cosmological pressure is exponentially small.
The medium — coherent oscillations of spatially homogeneous field — is unatable in this situation
and will decay in patticles. The result is reheating and the HFU expansion beginning.

This reheating process although producing some inhomogeneities on the horison scale ~ K,
cannot damage the large scale perturbationa created already during the inflationary epoch (k <
k).

To find the postinflationary PCP spectrum we must solve Eqs. (61) with parameters (98, 99,
100, 101} for ¢ > iy

v+ (K -Um =4, (109)

) _oafi L B (a%) )
U= =%l (“fﬁ m)-

® Por estimates, py ~ 1. If there are few roots in eq. p = pr(p) for ¢ > 1, thea the solution (98, 99, 100, 101)
cant be broken for some large p. We do not analyse here such possibility.

0[5 the phase space (@, #), initial conditions for the clasical trajectorien of eqe. (96, 96) are set up on the
guantum boundary € = 1 which represents a kind of cllipse {circle in case of ¥;) around the central point
¥ = =0. The radii of this ellipse along  and ¥ axes are ¥~ [1] and 2, respectively.
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=2aH) (1 Jap™ +0(p™) =

- ni (14300 +0e™), (110)

dt 1 Hat 1 1, _ -
ﬂ=f:=—;—ﬂ—(l+aHjm)=—ﬁ(l+§C"p’+0(@‘)), (111)
where c3fe =c+6(l —e¢), and ofc=c+2{e—~1). The conformal time # < 0, and initial
conditions are

v = (2R) Y exp(—ikn), for k|n|> L. (112)

Eqs. {109,110,111,112) can be solved explicitely by matching two following solutions in the
overlapping region

apt<k|n|<t, (113)

where e/ = (c+ e —2)(1 — ) — ef. The first solution sssuming the left inequality (113),

allows for the 7 -potential approximation by I = canst/n? nesr k |y |~ 1 (cf. eq. (110)). Since
UL fork|g|>1, wehavefor k|| >cpp™

n = VR T IED 0 ) = QR0 - ) (0 + 0ty ™), (114)
where H{!)(z) is the Hankel fonction, » = (3 + caw™?)/2.

Under the right inequality (113), eq.(85) describes the general solution for any U{y). Since
the integral in eq. (85) converges sharply in time, we have for k |5 |< 1:

= ixv2k ¥ aq, = —Ek'm( Jax, (L15})
where constants g; are the FCP spectrum {see eg. (83)).

Fitting eqs. {114,115) at region (113} gives the following spectrum of the perturbations para-
metrically created outide the horison:

1, v

_LeH
i S

Yos (116)
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where @ = ; at the horison crossing (k4 = —1) can be expressed directly in terma of the wave
number

k= aH = a(y)H(p). )

The resulting specirum (116,117) belongs obviously to the growing perturbation mode since
only for this mode g-field is constant in time outside the horizon. We have already emphasized
that this property of the growing mode is independent of any expansion law or equation of matter
state. In particular, spectrum (116,117) holds in large scales for any microphysics processes after
inflation like phase transitions or reheating.

Sometirmnes, people prefer to deal with the power spectrum of density perturbations. Below,
relation between g-scalar and the coupled density perturbation field is obtained in a general form.

Indeed, eq. (44) allows for the growing mode general solution outside horizon:
g = q(£} + Q(t)Aq(3),
Q) = ~BlePEE - 2 [ o). (118)
So, the comoving density perturbations are (see eq. (52}

5=5 - 2wyt - T faiag) (a19)

Now, it is not a problem to get the desired relation between power spectra:

b= 3o~ T [ odt) = w0/l < o (120)

We return now 10 eq. (117) which gives ua the connection between k and ¢ on the inflationary
separatrix (98,99,100,101). This equation can be solved explicitly for a class of so-called smooth
potentials V{i7).

Let us introduce smooth potential functions V(i) for which ¢{¢) varies even slower than 4
1,

| () |« 1. (121)
11 Physically, the characteristic scales of mmooth potentisls are not much shorter than .
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For such potential eq. (100) yields

o~ 'p'”’e:ep(—g). w2 P (122)

which shows that y varies logarithmically in the conformal time {cf. eq. (111)). B ey = (1) 2 2,
then o = &1/2 > 1 (see egs. (106,107)) and

1/2
75

7 _ 1He)
v = (¢/2) (q +4lﬂ(ﬂlH‘l‘Pl

}) , (123)

for ¢ 21 (|7 12| m [). The substitution to eq. (117) gives for k < ky:

Hol®
ot = e/ (o + 4t 2, (124
(the second equality implies k < &, ).

So, smooth potentiala generate the Harrison-Zeldovich types of specira (see eq. (116)) growing
only logatithmically to large scales.

Typical example of emooth potential is & power-law potential

Vo = —alp™

1
n

which generates the following spectrum:

@ = (4mn?) Vo =

(n+1)/2
= Giran* e [ 11 Bga 2yl 2s)
where a, and ¢ = ¢y = 2n 2> 2 are constants.
Important cases are the masvive field (n =1, &y =m):
o = (mo)in (S 27). (126)

and the A-field (n =2, a3 = \/X)
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o = V3/m) i (20m %J‘f')]m (a7

For non-smooth ¥(p) spectrum g, can have, in principle, any form depending on given
potential and the first derivative shapes. Moreover, it is possible to inverse the problem and
to find potential V(y) for any ** given postinflationary PCP spectrum (Hodges & Blumenthal
1889). True, some potentials appear to be rather exotic ones, but the result is very important:
PCP apectra are very sensitive to the potential forms 13

We shall return to the latter problem in the fifth Chapter. But now, let us siress two more

points in the conclusion.

Postinflationary perturbations (116,117) are Caussian with random spatial phases since it in
the seed point-gero vacuum fluctuations (of the g-field) from which they were parametrically
created, that are Gaussian by definition. Here, we have no problem with initial conditions for the
g-acalar because they are determined by microphysics inside the horizon.

Another interesting point is that most spectra grow with scale growing. 1t means that there
existe some critical field (and, thus, the critical scale) for which the corresponding amplitude
e~ 1

(’PHJ‘JC)N. ~1, kw. ~ (GH),_ < k. (128}

Say, for potentials {125,126,127) we have

821 (pH/cle~1,  hifhr. ~cxp(aa™"),
n=1: go 2 2/am M kfke o (m/x)' exp(x/m),
n=2: oy m3A"VE ky/ ko ~ exp(A1/3).
We shall see in the next Chapter that the Universe on large scales, & < k., iz globally
non-linear and it is stochastic {(dominated by quantum fluctuations) for ¢ > ip...

“mmmmmmwmﬁm:mmmmmpmMmumamt
2 Physically, non-Hartison-Zeldovich wp from potentials which have characteristic acales {ess then
v.
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4, Ynflation

There is no secret that Inflation is a corner stone of the VEU theories. This is not a surprise
since up to now we have no alternative to the Infiationary Paradigm. -

We ace not going to discuss the Paradigim here. There is 2 lot of reviews and courses devoted to
the subject (¢.g. see Colb & Turner 1989, and references therein). Instead, we would like to dwell
on the chaotic inflation which, in out view, is the first theory of the kind that can be called the
cosmologically standard theory. At least, in a sense as this status has the standard Friedmann
coamology or the parametric amplification theory. All of them, based on simple cosmological
postulates which are not directly related to any particular particle physics, can explain and
predict & lot of obvservational consequences (see the Introduction).

The gosl of inflationary theory is to prepare initial conditions for the standard FU. There are
the following five items among them.

(i} Homogeneity and isotropy along with the Euclidean geometry of the spatial slice on scales
near the contemporary horizon.

(ii} The amplitude ~ 10~ of PCPs at this slice on galactic to supercluster scales.

{i5) Reheating sufficient for the primordial entropy production, nucleosyntesis and baryogen-
esis met in Friedmann cosmology.

(iv) Small particle numbers (i, < 1) of the unwanted massive relics ereated by the Big Bang
and primordial reheating.

{v) Small density of the Friedmann vacuum which is the A-term (1, < 0.7).

First inflationary models were rather connected to the specific physical theories and hypotheses
like GUTs, phase transitions, quantum-gravity effects, etc. However, in view of absence of the
true high energy physics and,which is more important, taking into account a purely cosmological
status of the first three items above, there was an understanding of the necessity in constructing &
cosmological standard inflationary theory which could be independent of any current speculationa
about future fundamental physics, on one side, and could account for the first three pussles of
FU, on the other side. Certainly, such a theory would not solve the fourth an fifth problems
which were much more related to the particle physics indeed.

The first theory of such type was proposed by Linde {1983). A basic assumption is that
potential energy of inflaton p-field growa with ¢ growing (see eq. (92)). The word chaotic’
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minds the requirement for a large value of the initial y-field (p -3 1) which could be realized
somewhere in spacetime under hypothesis of the chaotic initial conditions. However, we do not
think that the latter requirement is somehow a problem for the theory at all. Below, we dwell on
the necessary and sufficient conditions for chaotic inflation and then discnss some implications
related to the subject. '

4.1. Chaotic Inflation

Let us dwell on Lagrangian (66} with the potential term of type (92). To start inflation, the latter
must predominate at ¢ 2 1;

V(e) >l pae® |- (129)

Let us estimate the zize of the region where eq. {129} is initially met.
As we have seen in the previous Chapter the time derivative of initial ¢ is not a problem
regarding the inequality (129) if the spatial homogeneity is postulated, since the inflationary

solution is a trap separatrix for > 1. So, of principal importance is the spatial gradient
condition following from eq. (129):

| V¢ |< B. (130)

Eq. (130) can be read as follows: to start inflation one has to prepare a quasi-homogeneous
distribution of ¢ on scale ~ L = g/ | Vig | which is much larger than the horizon scale:

Lrlss=pH > Iy {131)

The start inflation scale has a physical meaning of the Compton scale of inflaton which becomes
explicitly clear in case of the massive field (V = ¥;):

lyr = mL

Taking it into account for estimates, the start inflation condition (131) is not probably a great
surprise in a general case as well.

Eq. (131) deals with the initial distribution of -field. In principle, one can rise a question
about another (additional to eq. {131)) start inflation condidtion, namely, about initial spatial
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distribution of metric (curvature) on scales lesa than I3;. However, we will not discuss thia
problem here by the formal reason. From the beginning, we decided to restrict ourselves by the
case when @-field is the only source of the metric g, . The point ia that the small-scale nonlinear
curvature perturbations (if any) assume another source unrelated to the ip-field since the latter is
homogeneous on scale Ig;. So, the curvature born by the ¢-field is supposed to be homogeneous
on scale {g7, as well as the p-field itself.

Eq. (131) can be interpreted in another way: initial p-field should be large enough so that
{ir could be amall. However, more stringent constrainta for the potential comes from the slow-roll
conditions (103), (105). Let us explicitly rewrite these conditions in terms of the PCP spectrum
(108},

From oq. (103) we have the potential restrictions:
VY < 104 (132)

Eqs (105,116) constrict the spectrum index range:

dln g,
k) S (133)

So, & cannot vary from the Harrison-Zeldovich spectrum faster than k*? (which is quite
compatible with the market of galaxy formaticn theories considered today).

Eq. (132) puts the direct observational limits on the potential amplitude V(g) for ¢ = ¢4
within the structure scale range &~* ~ (10— 10*)4~! Mpc. Eq. @ ~ 10™* evidences for the weak
coupling of p-field to the potential V(i) in this region.

Endeed, let us demonstrate it when the c-function variation along the scale range can be
negligent_ In this case V = Ay, and we obtain a very small value for the conpling parameter (in
the Planck units):

A~ 32107 %04 < 1078 (134)

Remember that the small coupling parameter is also required for the large sige of the Fried-
mannian slice (the FU-bubble to be more than the horizon today, see below eq.(139)).

Eq. {132) can be used for some other important constraints, e.g., on the reheating temperature.
The radiation energy after rebeating cannot actually exceed the inflation energy near the end of
inflation:
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2
praa = 258" Thn < V(i) < V() < 10°g], (135)

where ¢ = o > ¢ (k < &), g* is the total number of massless degrees of freedom of the
thermal bath particles. Eq. (135) gives the following upper limit for the reheating temperature:

Tay < ( JI,M HI? < ( )l,u 1/2 (136)

Making use the microwave quadrupole anisotropy qu ~ AT/T ~ 10~%, we have for the
standard model (g°* ~ 100} : Try < 10'® GeV. The latier inequality can be confirmed with help
of similar estimate for the gravitational waves produced during inflation (we do not discuss this
problem here).

Next important parameter is the Friedmann slice scale Iy, i.¢., a typical scale of the part of
the Universe, created by inflation, which can be approximated by the Friedmann model. Any
scale in such quasi-homogeneous region is described by eq. (117%

k = H{p)alp) = H{p)e ™™ |Mpc™), {137)

where N(p) = f Hdt = Nt + Ny is the number of e-folds of the Universe expansion from the
moment when the perturbation was at the inflationary horizon and up to now

Nr = N{p) = j ‘—’?, Np = 60, (138)

After substituting ¢ = @, from £q.(128) we have
Ir = k3* = exp(p, /) ~ (A"B) ~ eap(10°) >3 10* [om]. (139)

The non-linear global Cauchy-Hypersurface which develops in the result of the chaotic in-
flation dynamica, is not built up yet. Nevertheless, we nee no principal difficulties to solve thia
problem.The point is that the global spatial Cauchy-Hypersurface cannot exist everywhere in
spacetime; it breaks in the spacetime regions where the p-field reaches Planckian densities
{pp1 ~ A"V}, s0 that the semiclassical approsch becomes self-inconsistent. We show in the
next Section that the latter regions occupy the most part of the physical volume of the Universe
produced by the chaotic inflation.
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4.2. Stochastic Theory of g-Field

Let us return again to small scales & < Iy where ¢ can be treated as a linear quantum operator
against the Friedmann background. Equation of motion of g-field is

§+3InH¢g—a*Aq=0. (140)

where 5 = 1 + 2&/3aH, o and H are the classical background functions, sec egs. (93, 94, 95,
96, 98, 99, 100, 101). As we know from the previous Chapters, the large scale perturbations are
classical for I, > Ig while the gquantum perturbations affect only small scales, & < Iy, Let
us separate these two parts of g-field at the inflation period assuming that g is generated by
quantum perturbation:

g=%+F, (141)

where & is the classical large acale part of the ¢-field operator.

To make this separation explicit let us introduce a notion of the miniuniverse (MU} as & part
of the actual apace-time of the size proportional to the horison:

e = (H™ 2 In, (142)

where { = const > 1. Evidently, MUs do not expand with the comoving volume.

Now, we can define the classical $-field as the mean value of ¢ in MU:
& = #(t,2) = j K, (- 2 )glt, &), (143)
where K, () = (2x)"3/ g~ 2exp(—r?[20%) is the Gaussian MU-window, and

o = lyg/a = ({aH) = —-m{n
is tha MU-dimension in the comoving Z-space, ny = (—anH)™'.

Similarly to € we can define the clasaical part of the g-field momentum:
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V= V(t,#) = j Ko (2 - £)4(t, 7). (144)

The evolution of the coarse grained fields & and V is governed by the quantum perturbations
presented by the F-operator: in the inflationary process new and new perturbations created
inside the horizon inflate, one followed by another, outside the horizon and start contributing to
the classical fields ® and V when their scalea become about (and then larger) than lue. So, F
plays a tole of the stochastic generator for &, the latter moving like a Brownian pi.rticle in the
gas. More of this, the dynamical equations are similar as well.

Let us prescnt eqs. (143,144) as the Fourier integrals (see eq. (61)):
#= f PRO(age; + a;qi),
V= [ #Feei + alad), (145)
where
8 = O(ko) = e $¥°¢ = j K (F)e¥ 7.
Thes the original eq. (140) can be rewritten in terms of the classical fields:

& -V= f!
V+mHV = He/O, (146)

f and g can be called the noise functions (or generators) driven by the quantum fluctuations:

f=mio® [ EEFONope; + oled),

9= Ho* [ EHFOY ap; + alsp), -~ (47)

where

P =g +m{/H, m=—5/(cH)
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Before we calculate correlators of the noise functions let us introduce the normal modes of the
classical fields,

and separate the Eqs. (146):

-0
0
L

(148)

{Eq. {146) for V-function did not change). Here F= F+mg/(®. The background functions
n¢s) and myy sre easily derived on the inflationary separatrix (p > 1):

n=1+el—elp?+0{pY),
m=1- éé’w" +0(™),

m=1- 2t +0(),

my=1— :—ic‘p" +0(e™). (149)

Eq. (148) coincides with the Langeven equation describing the drift of a Brownian particle if
the particle coordinate is understood instead of §.

When comparing windows © and &*© for the classical and noise functions, we can see that in
the Jatter case the main contribution comes from scalea | ~ lyir. It in clear: the field averaged over
the mini-universe, can change its value not before the new perturbation reaches the MU -scale
which happens in a characteristic time (step-time} At ~ [yy. Since the perfurbations phases
appearing on the MU -scale are random, the process of the classical field change ia stochastic.
To calculate the characteristic values of thia process we must know the correlators of the noise
functions on the Friedmann hypersurface t = const.

If the g-field is in the vacuum state then

(alag) =0, (agal) = 60k E),

and the process is the Guussian one, so that the second correlators are quite sufficient to know
about. In this case the perturba.hon amplitudes for ¢ > 1 and { > 1 are as follows (see egs.
{61,115,118)):
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gc = WV Hp/hezp(ikE), (*qfH = Fo'yg.

Finally, after the straightforward caleulation we bave in the main approximation over 1 and

Py = UF) = (Ufe + (0 Y) = lag') = 2D8(e - 1), (150)

where D = D(t) = B{p/2xc)* is the diffusion coeflicient. The §-function in eq. (150) is used
instead of sach of the following expressions,

23(5 + %)" and 12H(£; + %)".

because the halfwidtha of the latter bell-functions are about the sosmological horison (AL ~ H7)
which is less (by the {-factor} than the MU -scale,

Now, we can introduce the probability distribution P = P(t, &) to find field & at time ¢. By
definition,

dei:l.

Following the standard methods, we can derive the Fokker-Planck equation for this function:

8P &P
% = Do (151)

Obviously, the field dispersion grows in time in this stochastic process.

Let us take some arbitrary MU at time i, with the classical field &,, which we call the
mother. During inflation the physical spatial volume which belonged to the mother MU at
t ~ &,, expands to larger and Iarger scales. For ¢ > t,, this volume can be covered by other MUa
{daughters) 4. The &-field varies from one daughter to another, and the r.m.s. deviation {from
§.) & = &(t) can be calculated making average sither by the quantum g-state in one MU or
. over the daughter MU's assembly:

- a4 each yiap At ~ (H ! the mother volume expands by factor N ~ ewp(3(}, 8o there are about N daughters
of the first generation, N? of the second, and 80 on so forth, inside the volume.
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= (- &) = [(B—&.Pdi =
=2 [ Dit= - f ( ;‘;;::}, (152)

It can be confirmed also by the exact solution of eq. (151)

P, 8) = cep (— %) . (153)

At the beginning
5’(‘,) = 0, P(‘o: &) = 6{6 - 60):

while, during time, the distribution {153) broadened around &, with equal probability for both
signs of the deviation (§ — $,). The typical one-step-change of the &-field is

A(®) = &(At) = ((D/H)/ ~ (/H. (164)

Before we discuss some implications of this stochastic process, let us consider the necessary
conditions for the diffusion approach.

Eqs. (148,150} are generally true if the D-function varies slower than the characteristic step-
time A# ~ {H~!. This requirement iz commonly satiafied on the inflationary separatrix.

The Fokker-Planck approach (151) is less reliable here. Indeed, the notion of the P-function
assumes that it characteriatic change-time should be no larger than the step-time. However,
regarding eq. {153), it can be marginally so if £ is not too high. Below, we will assume that
¢~1.

4.3, Non-Linear Inflation

Mini-universes of size H~!({ ~ 1) introduced in Section (4.2), are juat the causally connected
regions of the inflating space. If any two points with constant comoving #-coordinates (i.e.,
expanding with the Universe) belong initially to the same MU then they will manage to exchange
the light signals at least once. But if they belong to two different MUs then the light signal sent
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from one point will never get the other one. An important consequence is that each MU expands
in time independently of any other.

It means that any M/ can be chosen as mother regarding the next generations of the daughter
MUs it produces. In its turn, any daughter taken at a moment £ ~ i,, although created by some
mother at ¢ < {,, it the mother itself for ¢ > ¢,. This picture has neither beginning no end.
Actually, this boiler of MU/ is eternally self-reproducing inflationary Universe.

Let us consider some physical volume expanding with the comoving space. New and new
MU are created inside the volume during the evolution. We can connect by the time-like iracks
causally related Ms {mother-daughter, mother-daughter, etc.). We saw in the previous Section
that there is an equal probability for both signa of the field deviation A to be found along any
track from the past to future. Since any MU develops independently of the previous history
and its neighbours, we can forget about the seed mother field () and try to find the current
classical quasi-Friedmannian field ¢uns driven the given MU on the track and applicable only
to this MU . Certainly, war is the local p-field renormalised each time by the classical part of
q-field {see eq. (141)).

. Technically, we can use Newtonian gauge to find pa, since this particular frame moat closely
imitates the local Friedmannian expansion (see eqa. (53)):

doy = (1 — HPuu a)dt® — &3(1 + HPyy/a)de?, (185)
where
Puv = [ arbat.
The local time is
tary =t — j (H Paw [20)dt.
and the local expansion factor is
auu = a{l + H P /2a).

In both equations we disregarded the dependence of the Py function on the #-coordinates
within MT/. In doing so, we can easily recover the paqy-field from background eqs. (95). In the

main approximation over 3 1, we have:
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wa[p® =1+ (v — HPuu/a)/e. (186)

Below, we give only qualitative ideas about some results of this investigation.

The most interesting question arisen is an to which densities of the p-field most tracks lead
during stochastic inflation? The answer in a production of two factors: the probability to find
a certain ip-field on one track, and the number of tracks carring given ¢-field. As far as the
first factor is concerned, the classical monotonic decrease of ¢ when sliding down the polential
V{p), is the amaller the larger the field in: Awg ~ —cfyp for one step-time At ~ . On
the other hand, the field stochastic change due to the quantum perturbations proceeds in both
directions of ¢ with amplitude | Ap. |~ H growing to higher field values. So, for large enough
wlw > (A/AM¥(3+)} the quantum stochastic process predominates, so that, at each step half of
the created daughters have higher  than their mother. But the total number of tracks created
per unit time grows to higher fielde as well, dN/dt ~ 20H. So, the majority of tracks leads to
high densities, thus, the largest part of global physical volume iz occupied by the Planckian field
density, i.e., by the space-time foam.

‘We can only guess what is happenning there, in these most typical high density states of
the global! Universe, — the notions of the space-time and inflaton break, mutable transitions
to different physics, signatures, dimensions and other conceivable and inconceivable worlds may
occur. In fact, we can only say that the inflation states with densities leas than the Planckian one,
are non-typical and very unprobable ones in this really chaotic Universe dominated by the sea
of quantum fluctuations. The stochastic regime considered above is just a part, the semiclaasical
part of this sea, where the space-time is already classical while the inflaton i still dominated by
quantum fluctuations. Evidently, such regions decouple occasionally from the space-time foam
and exist independently during some period of the classical time.

A very important conclusion is that inside these semi-classical regions there exist some very
few tracks which lead occasionally (through the random stochastic process) to lower and lower
densities of p-field. When the latter becomes below the critical quantity (p < (2/A)/0@+h,
quantum fuctuations are not able any more to increase  in the created daughter-MUs and the
successive inflation continues with a monotonic decrease of the inflaton. Now, the quantum flue-
tuations are responsible only for small density perturbations varing slightly from one daughter to
other. So, the result will be the adiabatic Gaussian perturbations {with the amplitude decreas-
ing to smaller scales) againat the Friedmannian background patch surrounded by the non-linear
chaotic Universs.

Let us emphasize two other points in the conclusion.



333

The global Cauchy-Hypersurface does not rigorously exist. It can be constructed near the
Friedmannian patch in a space-time region restricied by the Planckian denasities. In fact, such
a non-linear solution describes just a temporal island formed with a very small probability in
the chaotic space-time foam of the Universe and suitable for life. In thiz connection, we can
mention that we do not think it is worth while putting seriously the question as to how general
are the start-inflation conditions for the chaotic or other inflation theories from the point of view
of general solutiona of the GR equations? In our opinion, it is quite enough that the probability
for creating a low-density world where life can appear, is non-zero. We have no time to discusa
this subject in more detail here.

The next important point is as followa. There are the inflaton quantum Buctuations in the
chaotic inflation theory that are the reason for both, the non-linear global atructure of the Uni-
verse as a whole and the adiabatic density perturbationa reaponsible for the large scale structure
formation in the Friedmannian patch of such a Universe, Therefore, we can test the inflationary
theories just investigating the spectrum of PCPs and then recomstructing the global structure
within the theory frameworks. This is, probably, the only informative cosmological channel to
learn anything about the features beyond optical horison, as well as the fundamental physics
parameters beyond direct experiment. We can see that the problem of testing inflation becomes
part and parcel of the VEU theories. We are going to discuss it briefly in the next Chapter.

5. Testing Very Early Universe

There are few important cosmological predictions coming from the very early inflationary epoch.
Among them are the total energy density in the Uiniverse and the spectrum of adiabatic PCPs.

The former quantity is to be equal to critical density up to accuracy of the PCP amplitude
on the contemnporary horizon:

S =118q, [K|<éy. (157)

This amplitude 8y = 8i(k = H,) can be easily estimated by the quadrupole anisotropy of the
microwave background radiation:

8g ~ 1074

The real dynamical density is close to the critical one with the accuracy ~ 30%. However,
even if eq. (157) were confirmed with & much higher accurary by future observations, it could not,
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unfortunately, tell us much information about the inflation principal parameters. In this respect,
more informative is the PCP spectrum generated by last stages of the inflationary epoch before
the beginning of FU.

As far as the chaotic inflation is concerned, the postinflationary PCP spectrum is very sensitive
to the potential form (see eqs. (116, 117). On the other hand, the shape of the potential energy of
the infiaton found in a given Particle Physics, must be unambiguously fixeds by the fundamental
Lagrangian regarding all the particle fields and interactions.

Thus, a principle test of inflation is the large scale structure of the Universe. Its analysis allows
for restoring of the postrecombination PCP spectrum on galactic to horison scales. This part of
the spectrum is obviewsly related to the postinflationary PCPs which, in their turn, depend
directly on the inflaton potential within the field interval responsible for the scales mentioned
above (see eq. (117)).

Two following questions arise from this consideration:
= How to relate the postinflationary and postrecombination spectra?
+» Which are the basic cosmological observations now pouring the light on the PCP specirum?

Below, both topics are discussed very briefly.

5.1. Transfer Functions

The point is that any real confrontation of theory with observations can be done only within
the framework of some cosmological model allowing to transfer PCPs from times when they
were produced and up to the moment when they entered the non-linear evolution to form the
hierarchy of the objectz observed. The principal parameters of the model are those of the dark
matter components running out the gravitational evolution of PCPs.

Regarding the gravitational impact to PCPs there are two components of the Dark Matter,
Cold (CDM) and Hot (HDM}, that are important. The cold particles may be heavy relics (m, 3
10eV')} or coherent axions which behave like a non-relativistic medium. The hot particles are those
like massive neutrino with the equilibrium particle density and according restmass (m,, < 10 eV).
These two components evolving very differently in the past are both non-relativistic and maintain
the critical density now:

0+ 0+ 0 = Q=1 (158)
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Baryons can be included in £, the third term which is the energy of physical vacunm cannot
be totally excluded today ({14 < 0.7).

The rest dark matter, which we call as the »-component, does not contribute crucially to
eq.{158) and consists of relativistic and semirelativistic weakly interacting particles (m, « leV).
We can characterize #-particles by there total number N, with respect to the relic photons:

N,

ey A G (159)

=

For the standard CDM and HDM models » = 0.4 sad v = 0.3 respectively, counting three
or two sorts of the maaslesa neutrino. Generally, v-particles include gra\nhonu, very light SUSY
and other hypothetical ...inos probably existing in the Universe.

So, in the simplest case ({lpy = 1, A = 0, stable particles) we have two free parameters, {2y,
and v, both ranging from sero to one, which determine the past history of PCPa beginning from
Inflation. The goal is to find the ratio of the final to initial PCP spectra as a function of these
two parameters. This ratio ia generally called the transfer function,

T(k) = /4, (160)

where postinflationary spectrum qﬁ") coincides with the function gy from eqs. (1186, 117), qin is
the postrecombination PCF spectrum responsible for LSS formation in the Universe. Evidently,
T(k) does not depend on the inflationary period, it is a functional of the Friedmann model
dynamics from the beginning to our days.

T'(k) is equal to unity for very large scalea (7'(0) = 1) and then decreases monotonically with k
growing. It atill remains to be about unity up to some characteristic scale !, which coincides with
the horizon at period at equality of all relativistic and all non-relativistic component densities.
The further T(k)-fall-shape to shorter wavelengths is an intrinsic property of the model (we refer
this subject to the special courses at this achool).

For the standard models &, ~ 30A~7 Mpc but, for arbitrary v,L, grows with v growing like
o~ (-

As we see, the resulting spectrum q&f ) is & sensitive function of both fundamentals of the early
Universe, the postinflation PCPs and dark matter composition. So, the investigation of its direct
creature — the large scale structure of the Universe — cannot be overestimated today. Ancther
principle test — a laboratory detection of the dark matter particles — ia not discussed here.
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5.2. Observations

Since there are few special cources devoted to this subject we only briefly outline the hot spots of
the confrontation between observations and theory important for us. We see tremendous impor-
tance for the modern cosmology of two groups of experiment nowdays: AT/T observations on
angular acales & > 10" and direct observations of the distribution and evolution of the hierarchies
of LSS.

The point ir that both experimenta confront and complement each other.

If AT/T upper limits and detections which are just becoming available now, make us to lower
down the primordial perturbation amplitudes on scales larger than ! > 104" Mpc, then LSS
needs for ite existence high enongh cosmological perturbation amplitudes on scales ! ~ 10—200A-2
Mpec, Fot the most theoriea of galaxy formation the gap between these two requirements is quite
pegligible, Say, within the Gaussian perturbation theories any reasonable asumption for large
superclusters and voids to be more or less standard phenomenon in the visible Universe, leads
inevitably to the AT/T prediction levels on degreea of arc capable for current detection. Ik brings
a very great optimism to obtain large scale primordial perturbation spectrum directly from the
observations with a high degree of accuracy.

The current situation with AT/T is well known. For our case of Gaussian PCPs we may
directly relate our scalar ¢ on the last acattering surface at recombination with the map of the
temperature anisotropies on the selestial sphere & = fi{f, 7). Endeed, let us decompose the latter
in spherical functions:

560 = Cawtin(69) (16)
Then, after simple calculations, the temperature correlation function takes the following form:
O(a) = (G- ) a)) = TXAT/T)Reon), (162)

where fi;7i; = cosa, Fi(cosa) are the Legandre polinomials, {...} is the average over the field
state, and

2
(F), = 5= T o)
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- Qenerally, there are three main sources of the primordial temperature anisotropies: these due
to fluctuations of the gravitational potential, matter density and velocity perturbations. For the
vanishing pressure they may be reduced to the following expression taken at recombination:

S5 = 3a(3) + b, = 5, (164)

The first term (Sachs-Wolf effect) dominates for a > 1°({ > 100 A~ Mpc) which yields the
direct connection between C'(a) and the PCP spectrum g

dk dk
o =2 [TaRM), Ola)= 555 [ Tabh(48) (165)
where J; are the Bessel functions, § = 24in §.

The moet important nowadays is the COBE detection for @ ~ 10° evidencing the consistency
with the HZ-spectrum on very large scales, { ~ 1000 A~ Mpc:

Al Bl ~ k", a=4105, (166)

where §2 = (14 2)~? [ $£A} is the mean square perturbation of density.

As for the LSS data, we have many independent indications for existence of the large scale
structures up to a typical scale Ipg = 100 — 150h~1Mpc. The most important data come from
the Great Attractor (z < 0.03}, distributions of clusters of galaxies (z £ 0.1) and pencil beam
galactic surveys (2 < 0.3). It is now on agenda to test ever deeper samples, e.g., radiogalaxies
and active galactic nuclei {AGNs), quasars (QS0s), obsorption (L, CIV) and emission (21 cm)
clouds, X-ray clusters and others, to see how far these large structures extend in the past and
when they form. I would like to dwell upon the evolutionary aspects of LS5 formation and, in
particular, on zome promts for the spectrum coming from quasars.

5.3. Formation of Large Scale Structure and Dark Matter Models

For many years we have observed a tragic story on two fundamentsl models consisting of hot or
cold dark matter to govern the evolution of gravitational potential in the Universe. The crucial

" teat which resulted in rejecting both of them was the LSS: if HDM proved to be helpless in galaxy
origin (since lack of power on megaparsec scale) then CDM could not account for the common
existence of large voids and superciuster (since the lack of power on scales € (10,100)4™1 Mpc
when normalized by galaxy spatial distribution).
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The other interesting descrepancy between these different scale ranges came from chservations
of the total matter density [, governing their dynamics: there we have two group of experiment
resulting in different conclusions where the consensus ia atill poesible.

The first experiment deals with megaparsec scales — galaxy halos, groups and X-ray clusters, -
I < ip (the dynamical scale in the Universe Ip ~ 10h~" Mpc, which is the mean pasa of a galaxy
for the current Hubble time, is just the scale of the richest clusters). The assumption on the virial
equilibrium yields a low dynamical mass forming the structure on small scales: {, ~ 0.2 —-0.3.
Ancther important observation is large fraction of baryons in X-ray clusters reaching somehow
~25% in I € 3Mpc:

M
ﬁl ~02, {167)

which also confirme the low matter density involved dynamically in megapearsec scales (eince
0 < 0.1 due to the primordial nucleasynthesis and My/M, = (/1], for the dynamical scale).

The other experiment deals with LSS and argues the consistency with eq. {3, o« 1. There are
two principal argumentsa there:

* the existence of subclusters in the majority of galaxy clusters (which confirma that the
clusters are just forming today which is possible only in the Universe with dynamical density
close to the critical one); and

+ the large bulk coherence velocities obviously of the cosmological origin, thus allowing for
the reconstruction of the total density contrast (and as a consequence, after comparing it with
the distribution of galaxies, the consistency with the "standard” model £, = 1 and the biasing
factor b21).

Finally, a poesible reconciliation between the experiments on small and large acales is as
follows: some fraction of dark matier in the Universe is distributed on large acales and does not
enter the galaxy haloe and groups. What are the possible models? They are purely theoretical
today. The most frequently discussed now are that with mixed dark matter (hot+cold, with
the hot particles like massive neutrinos with a few eV restmass and the corresponding density
parameter £, € (0.2 — 0.4)), and the mode) with non-zero A-term (8 € (0.5 - 0.7)). For both
cases, the cold particles form the dynamical structure beginning from small scales while on the
large scale there is additional contribution coming from light neutrines or vacuum density (the
background A-term), respectively. A very sceptical point concerning these and other cosmological
models considered today as possible candidates for the real Universe, is as follows: all they are
multi-parameter and thus non-fundamental models, which differs them drastically from the purely
hot or purely cold dark matter models. I there something very important which we miss in our
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discussion on the formation of the Universe siructure? May be. I can only conclude here in
saying than none of the models under discussion meets all the requireinents of observations. Say,
regarding the two previous examples, for A # 0 models one can expect a large fraction of old
(relaxed) galaxy clusters and lensed quasars as well as relatively amall bulk velocities, whereas
the hot-+cold models require H, < 60km 2" Mpc~' and a too small abundance of X-ray clusters
and high-redshift quasars.

In such a situation, the observational verifications become extreemely important. The princi-
pal tests is LSS of the Universe.

All currently discussed models of cosmological structure formation are aimed to fit the obser-
vational data at z =0 . So, one cannot in principal separate them without going to the evolution
at medium and high redshifts where the models begin demonstrating their essential difference.
Let me show briefly a recent progress in our understanding of how and what quasars — the most
dramatic evolutionary systema known today —— may tell us on the history of LSS formation and
help in building up the true cosmological model (Komberg & Lukash 1934).

There are two basic "objects” on large scales {{ > Ip} which are essentially quasilinear:
enhanced and de-enhanced density regions. As for the local Great Attractor {GA), by distant
GA we understand a patch of enhanced total density, zcaled in any dimension from larger than
richest cluster sise and up to ~ Irg. The opposite construction is void (Great Repulsor), a
patch of decreased total density. Both notions — (GAs and voids - are still expanding like the
Universe (the density variation may consist ~ 10 — 40% on scale ~ 100hA~'Mpc) which differ
them drastically from the objects just collapsed or collapsing at least in one direction (the latier
direction size being < 10A~! Mpe) — galactic clusters, filaments and walls.

There are two sieps on the way to relate quasar groups (QGs) and GAs:

» Clusters, where they are concenirated (the superclusters), trace the mass density enbhance-
menta;

* Cluatets of distant clusters contain (at least some) QGs.

The first point is confimed today in the nearby region where peculiar velocity measurements
are done, and by the alignment of the cluster dipole with microwave background dipole . As for
the second point, there are few observational indications:

1) Constructing the QSO correlation functions and comparison with clusters-cluster correlation
function;

2) Similatity between distributions of cluster pairs and wide QSO pairs;
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3) Direct investigations of the QS0 environments.

The QSO correlation function displaying strong QSO clustering at r < 104~ Mpc, a weaker
clumping at ~ 20 — 50A~ Mpe, and the absence of correlations for r > 150A™Mpe, evolves
explicitely growing to smaller redshifts: for z = 0 it looks like the clumped distribution of
galaxies whereas for z > 2 the Q503 seem to be randomly distributed: § ~ (1 + z)~*, with
a ~ 2 consistent with the linear perturbation law. When taking this into account, the QSO
correlation radius approximated by z = 0 approaches that of clusters, r, ~ 16 — 20A™ Mpc .
As far as the wide QSO paire are concerned (A8 < 1.5°, Avfe ~ 1077} the QS0s are mostly
associated with different clusters there, which is supported by the similarity of their distribution
with the cluater pairs.

Today’s observations diaplay that bright Q50s at z > 0.5 are frequently associated with
young clusters while thoee at z < 0.5 fteem to be found in poor systems like galactic groups.
It gives us a guess that distant quasars may form in merging and interacting galaxies. These
merging effects, supplying accreating material (to massive black hole) just well enough for the
QSO burning, can really exist in young protoclusters which are still in process of the first coliaps
and first contraflows’ origin, i.e., well before the cluster virialization and X-ray gas appearing.
Taking into account that the first violent crossings (caustics) of the cobmic primordial medinm
must certainly form in the central regions of preclusters, we may relate the majority of quasars
at z ~ 2.5 with the epoch of subcluster formation. Of course, not every QSO we do associate
with young clusters. There were few generations of Q50s depending on the physical reason which
provided for the formation of the accreating gaa disk. It is the dense caustics with high merging
activity of host QSO galaxies that we associate with a typical cluster mass. The lesser mass
collaps could not be so powerful to ensure high gas densities, while the larger masses collapeed
later in the medium with much smaller fraction of the gas {tranafering to stars) already totally
ionized .

If s0, then two important topics are on the agenda:

* It is possible to find distant GAs by groups and pairs of Q50s in scale of few dozens of Mpc
{lga < 100h~1 Mpc).

» Relationship between the epochs of cluster formation {z ~ 2 — 3) and (GAs' appearing
(= < 2) prompts the true model of large scale structure formation.

Today we have information on the dosen of QGs. One of the most famous ia the group at
z = 1.1 (Crampton, Cowley & Hartiwick, 1989) consisting of 23 QS0s within ~ 60A~Mpc. All
QG are found for z < 2, they are not seen at larger redshifts though the spatial number density
of Q50s grows sharply up to z ~ 2.5 . It is interesting to note that the number of wide observable
QS0 pairs seems to decay beyond 3 > 2, as well,
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if GA structures really disappear at z > 1 and cluster formation epoch lies in broad interval
centred at zhy ~ 2.5, we have the following straightforward estimate for the spectrum of Gaussian
primordial density perturbations § = §p/p within the dynamical scale range { € 10— 100A™" Mpe:

AL~ K, =150 (168)

I predicts the correlation function of the dynamical mass £{r) ~ r~7, which means that
clusters are created in clumps in regions overdensed by GA-scale perfurbations.

Such a flat spectra bring about the following conclusions.

(i) Clusters today should be far developed and concentrated where GAs are — clusters trace the
tnass in dense regions — while sparse young clusters might be found nearby voids. {The formation
titne of galaxy clusters is strongly modulated by GA-acale perturbations).

(ii} If the majority of the first clusters gives birth to bright Q50s broadly peaked at 5 ~2-3
and appears in GA-peaks, then the mean separation between distant quasara ahould correlate
with Irs at z ~ 2.5 , which is actually in good agreement with chservations.

{iii) The Gaussian flat spectra (168} create by 2 < 1 a great variety of coherent structures
(the hierarchies of walls, filaments, voids and GAs) produced by the broadscale perturbations
with nearly equal amplitudes in { € 10 — 100A~*Mpc. Note, that such structures form in the
gravitating matter and do not require biasing type hypotheses.

{iv) Since galaxies form beforc clusterstheir first generation is not modulated by GA-
perturbations, However, merging and generating processes for galaxies going most active in
dense regions, lead to the successive generations of bright galaxies namely at GA locations. The
test could be a search of dwarf galaxies in voids.

{¥) Obviously, spectra (168) are more flat than that in standard CDM (the latter anticipates
A} ~ K27 in the scale range, cf. alao eq. (166)). They can be realised in hybrid hot-+cold dark
mattier models with ~ 30% of the totsl mass in form of the neutrino-like particles with restmass
~2—TeV .

{vi) As COBE indicates the consistency with HZ spectrum at very large scales (see eq. (166)),
then the turn from the flat part (168) to HZ asymptotic should happen at superclusier scale
~ 150h~! Mpc, which is obviously a real feature of the primordial spectrum (contrary to the case
of galaxy clusters to be the consequence of current dynamical time).

Summarising, we can say that available data back the following two conjectures.
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* QGs indicate the paiches of enhanced matier density (distant GAs), they render in lgg ~
10 — 100A*Mpc and extend for 5 < sz < 2.

* Majority of diatant Q5On is associated with the epoch of galaxy group and cluster formation,
z< 3.

Both points are selfconsistent if and only if QSOs belonging to QGs were crested not far before
the time where given QG is observed, which is also consistent with a relatively short lifetime of
medium and bright Q50s. It means that firet young clusters and associated QSOs at z > zp5
appear more or leas random in apace (GA perturbations are small yet). On the contrary, the
next clusters and related QSOs stemming at z < zzs are born already in groups {i.e. they are
clumped by the GA density peaks).

Certainly, both points lead to the important conclusion that the part of the primordial spec-
trum between the dynamical scale (~ 105~ Mpc} and the coberence length (~ 100— 1504~ Mpc)
is nearly flat (see eq. (168)). So, if HZ perturbation spectrum or anything close to it really ex-
ists on larger scales then the change in the spectrum shape must take place just at the scale
Ity ~ 100 — 150%—* Mpc which is obviously a *signature of the God" requiring its explanation in
physics of the very early Universe.

8. Conclusion

Aa we have seen, still in the absence of high energy physics, we may successfully develop the
theory of VEU on purely cosmological grounds and come to important conclusions about the
apectium of PCPs capable of current testing by observations. On the other hand, we are very
cloge today to recover the postrecombination PCP spectrum directly from the observations, both
AT/T and LSS, and thus to reconstruct the true cosmological model and make the exciting link
to VETU physics. Both confronting branches — theory sund observations — develop fruitfully and
make us hope to find in the nearest future the principal answers on the evolutionary model of the
Very Early Universe.

This work was supported by the Russian Foundation for Fundamental Research and partly
by COSMIOM (the " cosmomicrophysics™).
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APPPENDIX A
Here we obtain the Lagrangian I(®) (see eqa. (26)).

Asuming that eqs. (25) are exact ones, all the auxiliary quantities are expanded to the second
order in ¢ and A™:

1 . X 1 | S :
$w = 5 (8(papas™) - (b)) = wl)(x — X'+ guv' - wivsh™),

1, 6w

— pl9), Y )] E — =
5L =g — s + T4+ 3l

- mig) =
= iy — vy 4 Pxv + x?’(ﬁ" -1+ %m" — g h® — %m’u’)
bga = hat hakly 1nl) = e Lot
573 = 3Y=9) (b+ htH + 3%)
TY = (R + b — B+ APREs + AR + BT = (hndDY),
6T, = 3(h+ MR

§R = g*§Ry — W R,

SRa = (8T )a — (5Th)p + (STL)ST, — (6TF ) (6T )s
where 8f = f — f19), v=g/wl?, 4 = ¢;fwl} T% are the Christoffel symbols,
The substitution to eq. {20} yields:

(£ - 3R) /o) = I - SR 4 21+ 2h)GD~
—TEY — H(n'Nf)y + 0l ) 4 5%+ 19,
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8 = S0+ IRUSATS - gM6TL) + nhiy,

L = %nw(unr‘ +3(877 — 1) - 2viiut + vey-
—mv? + 2ox) + (5~ R - 1)+
g™ — B — Lpp).
If background metric satisfies the classical equations,

P TP =0, (nlu); +nlNied =g,

then the substitution to L{*) gives eq. (26). Note, that the linear terms in ¢ and A™* (see eq.
(20)) prove to be zero since the background equations are met.

APPENDIX B

Here we derive general relations between g-scalar and the perturbations in arbitrary reference
frame,

Let ua decompose perturbations (25) aver the irreducible representations of potential type in
general Friedmann model with the metric gy and 4velocity u';

vr=X+ %(C + D),
hi = Yea + Zga + (Cugluy + Diaa,y (169)
where 4-tensor e = 2u;uy, — gu has Euclidean signature and subbrackets mean the symmetriza-
tion. Functions X, Y, 2,0, D are coeflicients of the linear decomposition. X,Y and Z are gange

invariant 4-scalars. € and I are arbitrary functions specifying the gauge feedom of perturbations
in eqs. (25) (see eqe. (28, 20))

f.' = %’(Cun + D..'}.

The Einstein linear equations can be decomposed as a 4-tensor over the irreducible represen-
tations as well:
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B — 2Rty + hoia + (7 — eYhuact
+e+ P)(ﬁ(ﬂ_, — L)eq + duguy) — Qovga) =
= Eey + Fga + (Tuga + Ja =0,

where

E=Y} -4BYp' 4 (p— e+ 4(H + B))Y +
+(e + pYR(8™" — 1) + 2(4H + ¥)X),

F=Z34(p—Z —4H(Yp' + HY — (¢ +P)X),
I= Yy + BY — (e +p}X),

J=2Z
and % = w i {wX)! - (Y + Z)/2. Here, the auxiliary relations
1 1,
uip = HPu = S H(gn —ea), H =34,

and some other background formulae were used.
From J = 0 we bave '5:
Z=0 (170)
From I = F = 0 the following relation between X and Y acalars is obtained:
Y+ HY = (e+p)X. (171)
For the spatially flat model (K = 0) g-scalar is given by the linear superpositions of the gauge

invariant functions:
15The scalar J is generally connacted to the anisotropic premure which is sero for p-field
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g=—(Y +2HX) (172)

Obviously, it is the real 4-scalar (as well a8 X and ¥} independent of any reference frame.

The inverse transformations foliow from eqs. (171, 172):
H
X=3T-3h ¥Y=—7P (173)

where P = farygdt, v=—H/H.

From E = 0 we have the key equation {cf. eq. (39))'%:
a8 %= AP. (174)

The rest is to prescribe the potentials € and I} for different ganges.

Projecting eqs. {169) on the Friedmann reference system we have for an arbitray gauge:

v=X+%F, ho =Y + F,

hﬂ = %*F: ": = A&: + Bﬁa {175}

where F = C+D, ¢ = a(D/a*}4+ F, A= HF-Y, B= —D/a’. So, the most general definition
of g-scalar in terma of 3-potentials ia the following (cf. eq. (34))

g=A-2Hv. (176)
For the orthogonal gauge (¥ = 0):
C =2a(aB), D=-d'B, F=d'B. (1M

The next examples specify the function B in egs. (177).
W Pynciions {¢+ p)it and (e -+ p)X should be excluded from F with help of eq. (171).
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For the synchronous gauge (A, = ¢ =0):
B=a'Q-aP, Q= f yqdt. o (173_5)
For the comoving gauge (v = ¢ = 0):

B= :q-?;; —-a™P. (178b)

For the Newtonian gauge B =+ = 0 (cf. eqs.(51, 52, 53)).
APPENDIX C

One can easily verify that eqs. (42) are just the linear expansion terms of the exact sclution
di
ds” = d8® — aPeep(2ragg)dadc?, T = f 5 (179)

where the function a = aft} can be found aa follows:

_l_ll 8 2_2 ]
H’—3£ 91\}’3, A_34¢,,

y_ 1 1,2, 8
= §(e+p)+§)\[c.
For ¢ — 0, we have the Karner asymptotic:
a® = At, g.p ~ diag{t™), {180)

where Kagner exponents (p +pz +p3 = p} + 75 + p} = 1) are obviously related to the eigen values
of matrix a.g:

det(aas — Aap) =0, As = A(pa — 1/3).

Eqs. (179) describe solution for the Bianchi type I model with comoving space. The infinite
scale vortex and gravitational-wave perturbations lead also to egs. (179). Note, that the infinite
scale perturbations although causing the expansion anisotropy (shear}, do not perturb the spatial
curvature and density perturbations {§c = u, = 0). It happens only in spatially flat Friedmann
models.
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