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Figure 1: The COBE satellite and its 3 experiments after Boggess et
al., 1994).

In the beginning of time there was nothing:
Neither sand, nor sea, nor cooling surf;
There was no Earth, nor upper heaven,

No blade of grass - Only the Great Void.

Véluspé (The Sybil’s Prophecy)
(Icelandic Eddic Poem)

®Proceedings of the VII Brazilian Summer School of Cosmology and Gravitation (Rio de Janeiro,
August 1993)
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Summary

In this series of lectures I adopt the point of view that we make observa-
tions in.order to map the structure of the Universe, rather than simply to determine
its size, age and density. Since the discovery of the Cosmic Relict Radiation in
1965 and the establishment of the Hot Big Bang Theory, theorists have been build-
ing models for the origin and evolution of cosmic structure on scales from galaxies
to the largest superclusters of galaxies and beyond. We are now in a position to
confront those models with observation and it is this I wish to discuss.

The ability to tackle these issues observationally has come as a con-
sequence of key developments in instrumentation, the establishment of numerous
4-meter class telescopes and the launching of key satellite-borne experiments like
IRAS, COBE and now the Hubble Space Telescope. This has resulted in an abun-
dance of data probing to enormous distances and looking back to very early times.
The question is what to make of it all.

We are helped in this task by the ability to run ever more powerful
computer simulations of the evolving Universe. This in turn opens up new avenues
of research, which in turn stimulates more observational projects. It is this aspect
of the subject that I wish to present: what do we expect on the basis of our models
and how do we go about measuring it?

Observational Cosmology is no longer simply a search for two numbers
that will fix the size and age of the Universe. Cosmology is today one of the fastest
expanding branches of physics with a future that can look well into the next century.
It is my hope that these lectures will show that while we have made substantial
progress in our understanding of cosmic structure, there is still a long way to go and
there are many exciting discoveries ahead.

1 Introduction

1.1 The Scope of the Present Review

Since the discovery of the cosmic microwave background radiation in 1965, Cosmol-
ogy has become a major branch of physics in its own right. The issues that were
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discussed prior to that time are no less interesting now than they were then, but
the focus of the subject has changed considerably during the past three decades.
We are, of course, still interested in describing the parameters of the cosmological
models derived from Einstein’s theory of General Relativity that best fit the Uni-
verse as a whole. But while these parameters (the “deceleration parameter”, the
“cosmological constant”, and so on) are important, the focus of attention has moved
towards understanding the details of the structure that is found in the Universe on
various scales.

This structure manifests itself in the form of galaxies, clusters of galaxies
and still larger aggregations of luminous material. The last 40 years have seen
tremendous progress in acquiring data about these structures. This data comes
from all wavebands, from the radio to the X- ray regions of the electromagnetic
spectrum. When all this data is put together we get a remarkably coherent view of
the evolution of our Universe. It is this view that I wish to describe in this article.

It is perhaps true to say that contemporary Cosmology is driven by obser-
vational data rather than by theories, as in the past. Today we have the capability of
subjecting many theories and ideas to the test of direct observation. However, while
Cosmology is today a branch of the physical sciences, it is rather special in that we
have only one instance of the Universe to study and we cannot perform experiments
on it! We can only build models and compare the results with observations. This
means that models for the Universe play a central role in understanding cosmology
and interpreting data.

It is impossible to cover all but a part of observational cosmology in
a short series of lectures. The choice of the subject matter is biased by my own
interest and by the fact that the participants in the school generally have a math-
ematical physics background, rather than an astronomy background. The lectures
lean heavily towards those aspects of observational cosmology that are closely related
to theoretical models of the Universe. -

1.2 Books, Reviews and Papers

There are now a number of excellent up-to-date texts discussing cosmology, the
“Bible” of the subject being Peebles’ latest. book Principles of Physical Cosmology
(Peebles, 1993). That book is the 700-page successor to the earlier edition Physical
Cosmology (Peebles, 1971), which is still worth a read despite its great age. Kolb
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and Turner’s excellent book, The Early Universe (Kolb and Turner, 1990) focuses
more on the physics of the earliest phases of the cosmic expansion.

Peebles’ Large Scale Structure of the Universe (Peebles, 1980) is a more
technical treatise focusing on the origin and evolution of large scale cosmic structures
and is essential reading for anyone proposing to research this field. The recently
published book Structure Formation in the Universe by Padmanabhan (1993) is an
excellent overview of the subject.’

The large number of Summer and Winter Schools that focus on various
aspects of cosmology often provide excellent reviews. In particular I would mention
Observational and Physical Cosmology (Sanchez et al., 1992), New Insights into the
Universe (Martinez et al., 1992) and the Summer School held in Edinburgh in 1989
Physics of the Early Universe (Peacock et al., 1990)).

‘This is not intended as a Review Article, and so I will not be exhaustive
in citing all papers relevant to a given issue; that would make the Bibliography
impossibly long and not that useful to a person needing an introduction to the
subject. So I have tried to focus on citing early articles to give ideas their appropriate
historical credit, and some of the more recent papers through which a reader can
get into the literature.

1.3 Abbreviations, Prejudices etc.

Throughout this article I shall use a distance scale corresponding to a present value
of the Hubble constant Hy = 100k km.s 'Mpc~! and the reader can substitute
her/his own favourite value for h. I will stick as close to the so-called “standard
mode]” as possible, which means I will have relatively little to say about the infamous
yet entirely useful Cosmological Constant.

I shall endeavour to use “Universe” whenever I mean the place where
we live, and “universe” for a model of the Universe. Similarly, “the Galaxy” is the
“galaxy” where we are situated. I shall try to avoid abbreviations, but the following
bits of jargon are frequently encountered and may slip into the text: “CDM” for
“Cold Dark Matter”, “HDM” for “Hot Dark Matter”, “LSSU” for Peebles’ book
“The Large Scale Structure of the Universe”, “MWB” for “Microwave Background”
and “CBR” for the “Cosmic Background Radiation”. Generally MWB and CBR are
used interchangeably, despite the fact that there are many background radiations
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that are not in the microwave band (such as the X-ray background, but that would be
an “XRB” !). I will studiously avoid “GA” for “Great Attractor”. Perhaps the most
important abbreviation is “FLRW” for the names Friedmann, Lemaitre, Robertson
and Walker - the discoverers of the metric that solves Einstein’s Equations and
describes the Universe in which we live over most of its history. This is frequently
and unfortunately abbreviated to “FRW” or even just “RW”.

As a prejudice I will do my best to avoid using General Relativity except
where necessary. The standard cosmological model is homogeneous and isotropic
and there are perfectly adequate Newtonian analogues which I can use for almost
all purposes. General Relativity is essential for deriving results that concern light
propagation and there I will confine myself to quoting results without proof, pro-
viding motivation wherever possible. Observational astronomy has its own peculiar
jargon, the worst aspect of which is perhaps the notion of measuring brightness
in magnitudes. There is a short Appendix describing briefly this somewhat id-
iosyncratic way in which optical astronomers measure the apparent and intrinsic
brightness of astronomical objects.

Finally, I have borrowed freely from many of the above mentioned Books
and Reviews (including my own) and from the articles that have appeared in the
literature.
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Chapter 38

A Brief History

The discovery that our Universe is expanding, with the immediate interpretation
that the Universe began a finite time in our past, must rank as one of the most
startling and profound discoveries ever made. The development of large telescopes
in the latter half of the nineteenth century coupled with the technological advances
in photography enabled astronomers to look beyond our Solar System, and even
beyond our Galaxy. At first, the debate was whether these faint nebulae did or did
not lie beyond our own Milky Way. The story of the Shapely-Curtis debate, an
interplay between scientific argument and personal prejudice, is beautifully told by
Sandage in the Hubble Atlas of Galaxies (Sandage, 1961). The great debate took
place in 1920, but it was not until 1925 that Hubble settled the issue once and for all
(Hubble, 1925). Once it was established that these nebulae were extragalactic, and
were probably at enormous hitherto uncontemplated distances, the way was opened
up to probe the motions of the galaxies and so to map out the Universe.

1 Cosmic Expansion

The first published list of galaxy redshifts was that of Slipher (1915). Most of the
velocities in the list were large and positive and this led astronomers of the time
to add a so-called “K-term” to the solution for the motion of the Sun relative to
distant stars and nebulae. Remember, at that time astronomers were not even sure
whether these objects were extragalactic, so it would have been difficult to reach
any profound conclusions.



Slipher expanded the list and the extended data set of 41 velocities was
published by Eddington in §70 of his book Mathematical Theory of Relativity (Ed-
dington, 1925). It is certainly significant that this section of Eddington’s book is
on “de Sitter’s Spherical World”, since this reflects the general scientific reaction to
this data set. If these objects were to be outside our Galaxy, this was at the time
the only available explanation of the recession phenomenon.! Eddington noted in
his text the preponderance of positive (receding) velocities, but evidently hesitated
to draw the correct conclusion. It was in fact Wirth (1922) who first suggested
that this K-term might be a function of distance from the sun. Wirth came to
this conclusion by noting that the galaxies of smaller diameter tended to have the
greater radial velocities. Following up on this, Lundmark (1924) plotted a redshift
magnitude diagram for this sample, but found no convincing trend.

By 1925 it was known that the galaxies were systems not unlike our own
Galaxy, lying far beyond the limits of our own System. The quest for radial veloc-
ities of fainter galaxies was continued by Humason who provided the largest radial
velocity known at the time (Humason, 1929). The paper immediately following Hu-
mason’s in the journal was Hubble’s (1929) confirmation of the existence of the a
redshift-distance effect that now bears his name. Hubble did not however conclude
that the effect was due to a general expansion of the system of galaxies.

Astronomers at the time were still focused on notions of gravitational
redshifts or the so-called “de Sitter effect” that had been derived as consequences
of Einstein’s General Relativity. Hubble was evidently unaware of the solutions of
Friedman and Lemaitre and in his 1929 paper attributed the relationship to the “de
Sitter effect”. In the year before Hubble’s “discovery”, Robertson (1928) had already
suggested that this was in fact a redshift-distance relationship and had provided a
theoretical explanation for the phenomenon. We would certainly be justified in
calling the relationship “Robertson’s Law”. Humason (1931) pushed the redshift-
magnitude relation to far greater depths, but it was not until the famous paper of
Humason (1936) that the relationship was referred to as the Hubble Diagram.?

Taken with Hubble’s earlier realization that the Universe was homoge-

It is perhaps surprising that nobody seems to have suggested that the expansion might be
the result of a vast Galactic Explosion in the recent past. Much later, in the 1960’s, the Quasars
were found to have very large redshifts. This gave rise to the redshift controversy in which one
suggestion for the origin of the large Quasar redshifts was a vast Galactic Explosion.

2The discussion about whether redshifts were indeed of cosmological origin raged on into the
early 1970’s. Although few today doubt the interpretation in terms of cosmic expansion it is
nevertheless important to find observational evidence for this notion. See section 5.
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nous and isotropic on the largest scales his telescopes could probe, this led to the
logical conclusion that the Universe was “born” only a finite time in our past. This
must rank as one of the most dramatic conclusions in the history of science.

It was so startling a discovery that there was some reticence in embrac-
ing it within the framework of modern physics, and indeed several theories were
put forward to avoid this “natural” conclusion. The argument that ensued was a
remarkable battle between two theories: the “Big Bang Theory” which expressed a
creationist view of the Universe and the “Steady State theory” which denied that
view by postulating that matter was continually being created in the space between
the galaxies.

As more data was acquired, evidence was presented supporting first one
side and then the other. The tendency was certainly for the data to support increas-
ingly the creationist view that the Universe did begin a finite time in our past, but
it was not until 1965 that the issue was finally resolved beyond all possible doubt
with the discovery by Penzias and Wilson of the radiation left over from the birth
of the Universe: the Cosmic Microwave background Radiation.

In order to appreciate fully the role played by observational astronomy
in this quest for understanding, it is worthwhile recalling a few highlights of that
debate.

2 Big Bang vs. Steady State

Only fifty years ago we saw the Universe only through the visible light radiated
by the stars in galaxies. By present standards, astronomers then saw only a small
neighbourhood of the Universe, yet they were able to discover the cosmic expansion
and establish models of the Universe in terms of Einstein’s Theory of Relativity. The
Universe looked homogeneous and isotropic on the very largest scales, and seemed
to conform to some models formulated earlier by Friedmann and by Lemaitre.

The fact of the cosmic expansion led to the natural conclusion that the
Universe began a finite time in our past - the Universe began with a “Big Bang”.
A number of cosmologists finding this philosophically displeasing put forward al-
ternatives that sought to avoid this singularity. There were attempts to avoid the
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singularity both within the context of Einstein’s theory®, and by suitably modifying
the theory. Among the latter approaches was the significant “Steady State” theory
of Hoyle (1948) and Bondi and Gold (1948},

The Steady State theory avoided the singularity by postulating creation
of matter at just the right rate to compensate the decrease in the density of the
Universe due to the expansion. The theory thus substituted continuous creation (by
some unexplained process) for instantaneous creation (by an equally unexplained
process). The beauty of the Steady State theory was that it required that -the
Universe looked the same from all places and at all times. The theory also made
specific predictions about the relationship between the steady stale expansion rate
and the amount of material in the Universe.

These two divergent views of the Universe polarised the cosmological and
philosophical communities and it was not until the early 1950’s that observational
data was brought to bear on deciding the issue. Whereas the galaxy data in the
optical wavebands could offer no strong reason to support either view, it was the
data from the new radio telescopes that provided the hint that the Steady State
theory faced a serious problem. This new data, taken at face value, was claimed
to show that distant radio sources were more numercus than nearby ones. The
Universe could thus not be in a steady state.

The interpretation of the radio source counts was a controversy that raged
for over a decade. The issue was still being argued when in the early 1960’s distant
objects known as “quasars”{QS0’s for short) were first identified. These were the
most distant objects knowa at that time and as more of these were discovered it
became evident that they too seemed to be more numerous in the past. However,
QS80’s were a mystery - it was entirely conceivable at that time that the radial
velocities of these objects did not reflect their true distances and so their discovery
was not a decisive factor in establishing the Big Bang theory as the most likely
model describing the Universe.

The breakthrough came in 1965 with the announcement by Penzias and
Wilson (1965) of the discovery of a Cosmic Microwave Background Radiation field
which was interpreted by Dicke, Peebles, Roll and Wilkinson (1965) as being the
relict radiation left over from the Big Bang.

At that peint in time, all argument stopped. The hot Big Bang the-

3We now know that all solutions of the classical Einstein equationa for cosmological models
containing “physical” matter have a singularity
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Figure 1: The spectrum of the Cosmic Microwave Background Ra-
diation based on only 9 minuies of data. The points are the actual
measurements.

ory had been experimentally established as the correct 1nterpreta.t10n of the cosmic
expansion discovered 30 years ea.rhe{ by Hubble. Today, no serlous cosmolog;lst
would doubt this interpretation. Coamology made the transition from p]nlosophy
to become one of the paradigms of modern physics. Physical Cosmology was born.

3 The Renaissance i_n Cosmology

The discovery by Penzias and Wilson in 1965 of the relict radiation marked a turning
point in Cosmology as a branch of the physical sciences. Not only did it establish
once and for all that the Universe did begin with a hot big bang, buf it has in
addition provided a mechanism for probing those earlier moments of cosmic hmtory
which otherwise would have been inaccessible to observation. The Cosmic Microwave
Background carries information to us frum a time when the Universe was merely
a million years of age. Its accurate Planckian Spectrum (see figure 1)) and large
scale isotropy establishea the notion that the Universe was in the past very closely
homogenecus and isotropic, and that the Universe had a hot singular origin., We
shall see that there is currently no viable alternative explanation other than that
this is the left over radiation from a hot big bang.
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Figure 2: FIRAS measurement of Cosmic Microwave Background Tem-
perature, This yields a temperature of 2.736 + 0.010 (from Mather et
al., 1993)

The COBE satellite was launched on November 18th., 1989 into an al-
most polar Earth orbit with an altitude of some 900 km. It carried on board several
experiments working at far infrared and microwave wavelengths, these experiments
were labelled “DMR”, “FIRAS” and “DIRBE”. These abbreviations stand for Differ-
ential Microwave Radiometer, Far InfraRed Absolute Spectrophotometer and Diffuse
InfraRed Background Experiment.

The temperature of the Cosmic Microwave Background Radiation has
now been determined very accurately by the FIRAS experiment on board the COBE
space craft. Figure 2 shows temperatures measured at various frequencies by FIRAS.
The best fit temperature for the FIRAS data is (Mather et al., 1994)

T =2.7364+0.010 95% confidence level (1)

This is one probably the most accurately determined number in cosmology today.
Whereas we do not know the cosmic mass density to within a factor of 10, we do
know the radiation field density to a fraction of a percent!

COBE’s other great achievement was to detect for the first time very
small amplitude anisotropies in the angular distribution of the microwave back-
ground radiation temperature. The anisotropies detected revealed the existence of
structures on very large scale - on the order of a gigaparsec - at a time when the
Universe was a mere million years old. The discovery of these fluctuations with
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approximately the expected amplitude is remarkable confirmation both of our un-
derlying cosmological model and the idea we have to explain the origin of cosmic
structures.
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Chapter 39

Cosmology - a quick overview

1 Looking into the distance is looking into the
past

The finite speed of light means that as we look to ever greater distances, we are
also looking further into the past. This phenomenon allows us direct access to the
past history of the Universe and so allows us to test directly hypotheses about the
evolution of cosmic structure. With large optical telescopes we can see back to
the time when galaxies and clusters of galaxies were forming, and with microwave
detectors we can see back to a time long before that when the Universe was almost
homogeneous.

The present age of the Universe is thought to be somewhere in the range
10-20 billions years. Galaxies formed when the universe was only a few billion years
old, and the microwave receivers are seeing back to a time when the Universe was
merely a few million years old. We have direct evidence for the nature of the Universe
over a considerable fraction of its history.

There is another important phenomenon that is associated with the fact
that we are looking into the past: this is the “red shift” of the light from distant
objects. Historically, it was noticed that the spectral lines in the spectra of the more
distant galaxies were shifted towards longer wavelengths relative to the same lines
in the spectra of their nearer counterparts. The redshift was interpreted by Hubble
as being due to the Doppler Shift and he concluded from his data that the more
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distant objects were receding from us at greater speeds than the nearby ones, thus
giving rise to a greater red-ward shift of the spectral lines.

An astronomer observing a spectral line having a wavelength g in the
laboratory would observe the same line in the spectrum of a distant galaxy at a
wavelength Ag,. The “redshift” 2z of the galaxy is then defined as

_ Aobl

2= -1 (1)

For small z (z < 1) this is interpreted as being due a recession velocity

V=cz (2)

and Hubble’s observation that the more distant galaxies displayed the greater red-
shifts is expressed as

V=cz=HD 3)

where D is the distance to the galaxy. The constant of proportionality Hy measures
the local expansion rate of the universe.

H, is called the “Hubble Constant” and is traditionally measured in
units of km.s 'Mpc~! since distances are measured in Megaparsecs and velocities
are measured in kilometres per second. This is not a particularly convenient unit of
measurement, it is more useful to give the inverse Hubble constant, Hy!, in units
of time. For small z, the “look-back time” is approximately tjookack =% 2/ Hp.

2 The Universe was more Homogeneous in the
Past

Today, the Universe we see is homogenous and isotropic on the largest scales, but
is far from homogenous on scales smaller that clusters of galaxies. We have direct
evidence for this from observations of the distribution of galaxies to the limits that
our telescopes can see, and more recently from observations of the microwave back-
ground radiation which tell us what the Universe was like on large scales when it
was only a million years old.
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We can see and study galaxies out to a redshift of 0.5 - 1.0, which repre-
sents a substantial fraction of the past history of the Universe. Over that lookback
time, the distribution of galaxies in the Universe is certainly no more lumpy than it
is today, and the evidence is that it was in fact less lumpy.

We can see quasars to much greater distances than galaxies and they
do not seem to be strongly clustered. However, they do not provide unambiguous
evidence for the large scale homogeneity of the Universe since we do not really know
how these objects are related to galaxies or clusters of galaxies.

On the basis of our understanding of the origin of the light elements we
know that the Universe was probably homogeneous on very small scales at the time
when these elements were formed: a few minutes after the big bang. Of course
this is a model dependent statement and it is conceivable that we might be able to
construct inhomogeneous models that produce the correct element abundances.

3 Cosmological Models

It is thought that for most of its history the evolution of the universe has been
controlled by the force of gravity. This means that models for the evolution of the
Universe are to be found among the solutions to the Einstein Field equations. Ob-
servation indicates that over most of its lifetime the Universe has been homogeneous
and isotropic on the largest scales, and thus it is to be expected that the class of ho-
mogeneous and isotropic solutions of the Einstein Equations discovered by Friedman
and Lemaitre provide the appropriate description of the Universe in the large’.

In order to know which of these Friedman-Lemaitre solutions is the one
describing the Universe we live in, we have to know the equation of state describing
the material in the Universe. This is a question of cosmic physics that was largely
resolved by the discovery of the cosmic microwave background radiation in 1965.
This discovery fixes the amount of radiation present in the Universe at present and
at all times in the past. Curiously, we do not know the amount of baryonic matter
in the Universe - we can only know the amount luminous baryonic matter and have
to infer the total amount from indirect observations. This is the main uncertainty
in fixing the appropriate Friedman-Lemaitre model.

11t is interesting to note that there was hardly any observational evidence for homogeneity and
isotropy at the time these solutions were proposed!
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Can we be sure that we are in fact using the right equations and that we
have the correct physics? Could we have made some basic assumption that would
invalidate our picture? ? Clearly, we can never be certain. It is important to bear
in mind that we are seeking the simplest cosmological theories that are consistent
with the observed data. It may well be possible to construct quite complex models
that agree with what we see, but these would have relatively little aethsetic appeal
in the face of a simpler model that does the same thing.

Since we have no other Universe to study other than the one in which we
live, can do no more than ask that our models be well motivated by existing physical
theories. In this sense we can never be sure that we know the “truth” about our
Universe - we can only be assured that we are capable of understanding what we see.
If our simple models make predictions that are subsequently verified by observation,
then so much the better. So, in a sense, our models for the Universe are supposed
to fit the facts and cause us to make further observations to validate the model.

4 The Standard Model

This is not the place to review the details of the evolutionary history of the so-called
Standard Model for the Universe. It is however essential to give an overview of the
key features of this history in order to see the observations in context. What should
be emphasised is that we are no longer talking about evidence for the hot big bang,
that is now on such a firm footing that it is hard to imagine any sensible alternative.
We are now at the stage of filling in the details: seeking to explain the details of the
model by putting forward theories for the evolution of the chemical elements, the
formation of galaxies and other phenomena with observable consequences.

In the so-called “Standard Model” the Universe has for all its history been
homogeneous and isotropic on the largest scales. The model is therefore described
mathematically by one of the simplest exact solutions to the Einstein Equations:
the Friedman- Lemaitre Solution.

The evidence of the relict radiation left over from the Big Bang and our
understanding of the nucleosynthesis of the light elements tells us that the Universe
was hotter in the past than now. We therefore talk of the “Hot Big Bang” theory

?We might wonder for example whether magnetic fields could be playing a key role, or more
fundamentally, whether there is another long-range force of which we have no knowledge.
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for the Universe.

This relict radiation carries information from a time in the past when the

Universe was less than a million years old to the present. We see this radiation as
the “Cosmic Microwave Background Radiation”, and by examining its properties,
its spectrum and its angular distribution, we can get direct evidence of the state of
the Universe at that early time. The microwave background radiation is therefore a
primary tool for understanding the evolution of our Universe.

5 The Success of the Standard Model

The successes of the standard model described above can be listed as follows:

a)

b)

g)

The Universe is observed to be homogeneous and isotropic
on the largest scales.

The expansion follows a linear velocity - distance law (the
“Hubble Law™) out to reasonably large distances.

The microwave background radiation field was predicted as
the relict radiation left over from a hot big bang.

The spectrum of the microwave background radiation is
accurately Planckian.

The microwave background radiation is isotropic to almost
one part in a million.

The oldest known stellar systems are no older than the
inferred age of the Universe.

The hot big bang explains the origin of the elements Helium
and Deuterium.

Taken at face value, (b) indicates that the Universe was denser in the

past than it is now. (a) says that the Universe is homogeneous and isotropic now
and (e) tells us that this was so in the distant past. The mere existence of the
radiation, observation (c), and its Planckian spectrum, observation (d), tells us
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that the universe was hotter and denser in the past than now. It is impossible
to understand the microwave background radiation in any other terms. We are
inevitably led to the conclusion that the Universe expanded homogeneously and
isotropically from a hot and dense state a finite time in our past.

The key piece of evidence that the Universe was denser in the past than
now lies in the observed spectrum of the microwave background radiation: it is ac-
curately Planckian. It is almost impossible to understand the accurately Planckian
nature of a radiation field of this intensity without invoking the idea that the radia-
tion field was once in thermodynamic equilibrium with matter at a high temperature
and certainly at a far higher density than today.

Observation (f) about the ages confirms that picture: we should certainly
see no systems older than the inferred age of the Universe, and it is a nice coincidence
that the ages attributed to the oldest systems are consistent with this view of the
Universe. Of course, this “confirmation” is predicated on the assumption that we
understand the formation of galaxies and their stars. It is therefore not surprising
that the formation of galaxies is one of the key problems of modern theoretical
cosmology.

To avoid this conclusion that the Universe started with a Hot Big Bang,
we would have to adopt a “Continuous Matter Creation” theory in which matter is
continually being created to fill up the gaps left by the cosmic expansion. It would
be difficult to account for the existence of the microwave background radiation and
its spectrum in such a model. However, observation (f) would be surprising in a
Continuous Creation theory where there is no reason for objects not to be indefinitely

old.

One of the primary observational supports for the hot big bang theory is
the explanation of the observed abundances of the light elements *He and D. These
elements, along with 3He, and "Li are synthesised in the first minutes of the big bang,
and it is possible to make rather precise calculations of the expected primordial
abundances of these elements in various cosmological models. The observed Helium
abundance is very close the primordial abundance. This is fortunate since most of
the helium in the Universe is thought to have originated in the big bang - the only
suggestions for alternative sites of formation of this quantity of Helium are rather
exotic. Thus the Helium abundance provides a direct and unambiguous test of our
cosmological paradigm. The evidence from Deuterium is less direct since it is a
rather fragile element that is easily destroyed in stars and converted to *He. Proper
interpretation of the Deuterium abundance requires models for Galactic evolution,
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Eveat T (Kelvin) | t (seconds)

Planck Time Start of classical era 1032 10~
GUT phase transition Baryongenesis 10% 10-%
Nucleosynthesis He, D, Li formed 10° 102

Recombination End of Fireball 103 10'3
First Stars and Galaxies H, formed 102 10%
Clusters of Galaxies, QSO’s 10 107
Here we are 3 108

Table 1: Approximate Calendar of Events

but when this is done we can estimate the primordial nucleosynthesis contribution
to the Deuterium abundance.

6 Calendar of Events

The history of the Universe is characterised by a hot big bang some 10'° years in our
past, followed by an expansion during which the material in the Universe cools down
to its present value. Several events and eras are distinguished during this history,
these are summarized in Table 1.

The content of the Universe at any instant of time is determined by the
temperature and density. At early times it is dominated by exotic particle species,
but within a few minutes after the big bang we have a mixture of hot baryons and
photons at temperatures of billions of degrees. The temperatures then are so high
that the baryonic material is ionised. It remains so until over a million years have
elapsed and then we have the so- called “recombination” event® after which the
material in the Universe is almost neutral.

The period before the decoupling of matter and radiation is referred to
as the “fireball phase” It is a period where the radiation pressure dominates the

3This is an unfortunate name in the sense that the Universe is becoming neutral for the first
time in its history. We can alternatively talk of the “decoupling epoch”
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equation of state of the material. During the early part of the fireball phase the
radiation component is so dense that it even dominates the gravitational deceleration
of the cosmic expansion.

The period after decoupling is referred to as the “neutral period” of
expansion, and it is during this time that an inhomogeneities in density can grow
under the influence of gravity to form the first bound systems: galaxies and stars.
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Chapter 40

Observational Cosmology

Observational cosmology was once regarded as “the Search for Two Numbers”.
These two numbers: the Hubble Constant Hy (the value for the present rate of
expansion of the Universe) and the deceleration parameter, go (the rate at which
this expansion is slowing down due to the influence of gravity) are indeed important
descriptors of the overall scale and content of the Universe, but they are only one
part of contemporary observational cosmology.

We see structure in the Universe on all scales and have much to learn
about the nature and evolution of that structure. There are many projects today
mapping that structure on all scales. An interesting by-product of studying that
structure is to constrain the parameters Hy and go.

This is perhaps the place to mention what some may regard as the “third”
number describing the Universe: Einstein’s Cosmological Constant. Einstein’s the-
ory of General Relativity in its simplest form provides a fine description of gravita-
tional physics, having satisfied all the tests to which it has been subjected so far.
However, the equations themselves may not be the “ultimate” description: there
may be extra terms in the equations that we are unable to measure. The cosmolog-
ical constant is one such term, and, as its name implies, the test for the presence
(or otherwise) of this term in the Einstein equations should ultimately come from
observations of the Universe on the largest observable scales. Today we can impose
some rather weak upper limits on the size of this term.
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Name Description Reference

Zwicky Bright Galaxies m < 15.5 (No Zwicky (1957-61)
redshifts)

Lick Counts of Galaxies in small cells down | Shane and Wirtanen (1967)
tom~ 18

Uppsala Diameter selected galaxies from ESO | Nilson (1973)
SKy Survey

APM 2 million galaxies on the southern sky | Maddox et al (1990)
UK Schmidt survey

Abell Rich Galaxy clusters in Northern Abell (1958)
Hemisphere

ACO Rich Galaxy clusters in Southern Abell et al., 1989)
Hemisphere

Table 1: Galaxy and Cluster Surveys having no redshifts. The list is far from
exhaustive and is merely intended as a guide to some major catalogues.

1 Projected Sky Surveys

Creating catalogues of the sky positions of astronomical objects has been a principal
goal of astronomers over many centuries (even millennia). However, the first cata-
logues specifically devoted to extragalactic objects did not come until the “Reference
Catalog of Bright Galaxies” of de Vaucouleurs and de Vaucouleurs (1964) and the
“Zwicky Catalogue” compiled at Caltech on the basis of Palomar Sky Survey plates
by Zwicky (1961). It was in fact the Palomar Sky Survey that gave rise to the first
systematic view that the distribution of galaxies was clustered and gave rise to the
identification and classification of galaxy clusters by Abell (1958).

The surveys of the distribution of galaxies on the sky lead to a deeper un-
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derstanding of the fact discovered by Hubble, Shapely and others that galaxies were
clustered. The quantification of this clustering in terms of the clustering correlation
functions has enabled us to speculate on the origin of clustering. Since that time,
there have been numerous surveys of the sky at a variety of wavelengths, giving rise
to a diversity of catalogues that were later to serve as the basis for three-dimensional
redshift surveys.

Currently, the largest catalogue of optically selected objects is the “APM
Survey” (Maddox et al., 1990) which is based on digitalized scans of the UK Schmidt
survey of the southern sky. This catalogue contains some 2 million galaxies down
to the around magnitude 20. The largest catalogues of infrared selected galaxies
are based the IRAS catalogue of objects found in the survey undertaken by the
IRAS satellite. This catalogue has a great advantage in providing uniform all-sky
coverage, including galaxies rather closer to the plane of the Milky Way than optical
surveys can reach. However, it is biased by not including elliptical galaxies (these
are not strong infrared sources), and it must be noted that only a small fraction of
non-elliptical galaxies are IRAS galaxies. The absence of ellipticals means that rich
galaxy clusters are not well represented in the catalog.

2 Redshift Surveys

Redshift surveys have been the primary source of information about the large scale
structure of the Universe, and it will not be long before the number of galaxies having
measured redshifts is 100,000. The redshift surveys must start with a catalogue of
objects selected according to some criterion: the galaxies may be selected from an
optical catalogue, from the optical identifications of, say, an infrared catalogue, or
even from optical identifications of objects in catalogues of X-ray or radio sources.
For a long time the “CfA Redshift Catalogue™ (also known as “ZCAT”) compiled
by Huchra et al., (1983) was the principle redshift catalogue used in the analysis of
large scale spatial structure. This catalogue was simply a compilation of redshifts
that existed in the literature, and was far from homogeneous either in terms of the
selection of objects or their distribution on the sky. It was used because it was
generally available.

It was not until the work of de Lapparent et al. (1986) (the “CfA” or “de
Lapparent Slice”) that we had enough redshifts in a sufficiently deep survey that
we could properly see the large scale structure of the Universe. The slice was just
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by <17.15.

Name Description Reference

RC2 Second Reference Catalog of Bright de Vaucouleurs et al. (1976)
Galaxies m < 13

RSA Revised Shapely-Ames Catalogue of Sandage and Tammann
nearby Galaxies (1981)

ZCAT North Zwicky Center for Astrophysics | Huchra et al. (1983)
Redshift Survey

Seven Sample of ~ 400 Elliptical Galaxies Lynden-Bell et al. (1988)

Samurai Dressler et al. (1991)

SSRS Southern Sky Redshift Survey da Costa et al. (1991)
(Diameter Selected)

CfA Slice | de Lapparent’s Survey of a strip of sky | de Lapparent et al. (1986)
centered on Coma cluster.

Pencil Redshift survey in Deep Narrow-Angle | Broadhurst et al. (1990)

Beam cones

QDOT Redshift survey of galaxies selected Saunders et al. (1991)
from IRAS catalog. 1 galaxy in 6
has a redshift

IRAS Redshift Survey of Galaxies selected | Strauss et al. (1992)
from IRAS database. Full sky
coverage except Galactic Plane

DARS Durham-Stromlo Redshift survey of Metcalf et al. (1989)
small area of sky down to
my = 16.8

Stromlo- Redshift Survey of 1 in 20 Galaxies Loveday et al. (1992)

APM taken from APM survey with

Table 2: Galaxy Redshift Surveys. The list is far from exhaustive, in some cases the
data has been made publically available by the authors.
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Figure 1: The de Lapparent Slice: a redshift survey of a 6° wide
band of sky including the Coma cluster and other rich clusters. This
picture revealed the bubble-like structure of the Universe for the first
time. (After de Lapparent et al. 1985).

that: a band of sky containing at its center the Coma Cluster (see figure 1). What
this survey revealed for the first time was the filamentary and bubble-like structure
in the distribution of galaxies.! Further slices were added to this first slice (Geller
and Huchra, 1989) revealing an even larger structure: the “Great Wall”. The data
for the first slice is publicly available, but not the data from the subsequent slices.

For some time redshift surveys were restricted to small areas of sky (the
Durham Deep Redshift Survey (Metcalf et al., 1989; Hale- Sutton et al., 1989),
or even “pencil beams” (Broadhurst et al., 1990). More recently we have been
able to get redshift samples covering large solid angles. An APM “Bright Galaxy
Catalogue” containing all galaxies brighter than b; < 16.5 was constructed from
the APM catalogue and a subsample of 1787 of these had their redshifts measured
(Loveday et al., 1992a,b). The IRASbased galaxy catalogues cover the whole sky
(including areas hitherto obscured by the Milky Way) and have been the subject of
numerous redshift studies starting with Strauss et al. (1990) and Lawrance et al.
(1991), and more recently by Fisher et al. (1993). The IRAS based catalogues are
however sparse galaxy samples in the sense that only a small fraction of all galaxies

1This structure was predicted by Zel’dovich and his group on the basis of their “pancake”
model of structure formation. However, despite this amazing picture, the Pancake Theory fell
into disfavour on various other grounds. (No one criticism was responsible for the demise of this
theory.)
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are represented in the catalogue.

3 Cosmography: Mapping the Universe

Modern Observational Cosmology has moved away from this traditionalist approach
of trying to describe the Universe in terms of a parametrised Friedmann-Lemaitre
cosmological model. We now have the capability of observing the Universe in many
wavebands spanning most of the electromagnetic spectrum and the sky has been
surveyed and mapped in most wavebands. Whereas in 1956 there were on the order
of 100 redshifts for galaxies, with the maximum around 0.46, today we have tens
of thousands of redshifts of galaxies, radio sources and quasars going almost to a

redshift of 5.

The early view of the Universe was essentially a two-dimensional one:
we saw the distribution of galaxies projected on the sky. Mapping the Universe in
redshift space has provided a third dimension, albeit one that is slightly confused
by a mix of radial velocities due to the overall cosmic expansion, and “peculiar”
velocities induced in the motions of galaxies by fluctuations in the gravitational
field (the clustering). Exploring the relationship between the velocity distribution
and the observed inhomogeneity in the galaxy distribution has provided a vital tool
in this evolving picture and is today one of the center-pieces of observational and
theoretical cosmology.

It is now possible, under some fairly general assumptions, to use these
redshift surveys to reconstruct a three-dimensional picture of the Universe. Not
only can we provide a plausible map of the three-dimensional space distribution of
galaxies, but we can also estimate the components of the galaxy peculiar velocities
transverse to our line of sight.

New tools appear to study the Universe. Not only do we cover diverse
wavebands, but we can study cosmic structures through their influence on the light
that passes through them from more distant galaxies. These “gravitational lenses”
are potentially a powerful way to probe the distribution of all gravitating matter,
luminous and nonluminous.
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4 The Microwave Background Radiation

The Cosmic Microwave Background Radiation not only provides the key evidence
supporting our picture of the Universe, it also provides us with a tool to explore the
details of the initial conditions for galaxy formation. When we look at the Cosmic
Microwave Background Radiation we are looking back at the Universe when it was
on the order of a million years old. At that time there were no stars or galaxies as
we know them now, nor even any large scale structures. All that we could see then
are the embryonic precursors of the present structures.

These embryonic structures nevertheless leave a detectable imprint on
the angular distribution of Cosmic Microwave Background Radiation. The radiation
field has some very low amplitude structure which we can use to probe the nature
of the inhomogeneity of the Universe at those early times. The effect is very small
and roughly consistent with our naive theories of how the structure today must have
looked at recombination. Exploring the anisotropy of the radiation field will be one
of the most powerful tools we have for understanding the details of the birth of
cosmic structure.

That program started with the COBE satellite which first successfully
detected these anisotropies on angular scales of several degrees. These scales corre-
spond to structures far larger than any we have as yet detected by direct observation
of the galaxy distribution. Subsequent experiments, both ground based and balloon
borne, will probe this structure down to smaller angular scales, looking directly at
the precursors of galaxies and galaxy clusters.

5 Telescopes and Satellites

Progress in understanding our Universe has been strongly linked to the development
of telescopes and their detectors. When Hubble had free use of the largest telescopes
on Earth, the 100” in the 1930’s and the 200" in the 1950’s, he made substantial
advances in mapping the Universe. He established the extragalactic distance scale
(Lundmark, 19xx, Hubble, 19xx), the expansion of the universe (Slipher, 19xx, Hub-
ble, 19xx) and noted both the large scale homogeneity and isotropy of the universe.
He also noted departures from this homogeneity - he discovered the clustering of
galaxies, describing the counts in cells distribution as being approximately lognor-
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mal. The 1950’s saw the appearance of larger redshift surveys (Humason, Mayall
and Sandage) and the start of the program to fix the scale of the Universe.

In these early days of observational cosmology the primary detector was
the photographic plate. Deep photographs or spectra were acquired with exposures
lasting many hours (or even days). The primary limitation on our ability to probe
the Universe came from the limitation in our ability to detect photouns.

Today there are many “4-meter” class telescopes. These are equipped
with extremely sensitive detectors that essentially measure a single photon! (The
200” Hale telescope with such equipment is still one of the most powerful telescopes
on Earth, despite its great age.) The move towards the end of this century is
towards building 8 and 10-meter telescopes: we have the 10m KECK telescope sited
on Hawaii already working, and the European Southern Observatory (ESO) VLT,
an array of 8m telescopes, is due to start work in the mid-1990’s.

From the ground we are limited to wavelengths transmitted by the at-
mosphere and those images are degraded by atmospheric turbulence. Although in
the infrared we can try to work in some narrow bands where the atmosphere is less
opaque or we can try to correct for atmospheric instability by using active optics, the
best solution is to put telescopes high in the atmosphere (borne aloft by balloons)
or in space. This allows us access to wavebands not accessible from the ground
(Ultra-violet, Infrared, X-rays), and even in the visual waveband we have far higher
image resolution than can be achieved from Earth.

The COBE satellite started a new direction in observational cosmology
by providing direct evidence for the conditions at the time of recombination before
any substantial cosmic structures had formed. Eventually there will be a “COBE II”
that will explore the whole sky with greater sensitivity and higher angular resolution
than COBE itself, but in the meantime most of the data on the structure of the
Cosmic Background Radiation field will come from balloon-borne equipment, or
telescopes placed at the South Pole. Such experiments as have been performed
already have added substantially to the first evidence provided by COBE by going
to higher angular resolutions and greater sensitivity.

Space Observatories are not limited to the optical wavebands: they can
usefully cover all wavebands from the radio wavelengths to hard X-rays and even
gamma rays. In this article the focus is on cosmology and large scale structure,
rather than specific classes of objects. To date the impact of the COBE and IRAS
satellites has been outstanding and we will soon have results from the important
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ROSAT satellite that will surely affect our view on how galaxy clusters have evolved.
We are now starting to get data from the Hubble Space Telescope which will give
us a direct view of galaxy evolution in the relatively recent past.
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as the Universe expands. We have normalized all lengths relative to their present
day value and so the present value of a(t) is a(to) = 1.

The Einstein equations (or their Newtonian equivalent) in the simple
case of homogeneous and isotropic dust models give the differential equation for the
scale factor in terms of the total mass density p:

1d%a 1nG
— = 2
a di? 3’/ )
This is supplemented by an equation expressing the conservation of matter:
dp _a
3=, = 3
o H3:p=0 ()
which is equivalent to
p(t) = poa™® (4)

Note that equation (2) is not valid if there is any substantial pressure due to the
matter in the universe, and in that case we would also need to modify equation (3.
However, for simplicity we shall only discuss the Universe at the present time and
in its recent past when equations (2)-(4) are thought to be a good approximation.

The Hubble Parameter is defined as
(5)

H=2=
a

Wy |

and is a function of time. H describes the rate of expansion of the Universe and has
units of inverse time. It is experimentally measured as a velocity increment per unit
distance since it describes the expansion through the relationship between velocity
and distance: [ = Hl, or in more familiar notation v = Hr.

We define the redshift to a galaxy at distance [ to be

1

When we look at a distant galaxy we are looking at it as it was in the past (because
of the finite light travel time). At the time we are seeing it, the scale factor a(t) was
smaller than the present value (ap = 1). It can easily be shown that the recession
velocity we measure from the shift in the spectral lines is just cz, in other words,
the quantities z appearing in equations (1) and (6) are the same thing.
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1.2 Important quantities: Hy, 2y, p.

At this point it is convenient to introduce some fundamental definitions. Hubble’s
expansion law states that the recession velocity of a galaxy is proportional to its
distance from the observer, in other words Iy o< ly. The constant of proportionality
(the cosmic expansion rate) is the present value of the Hubble parameter:

Ho=lo_ o (™

Hp, the present value of the Hubble Parameter, is usually called “Hubble’s Con-
stant”.

There is an important value of the density, p., that can be derived from
the Hubble parameter (the Hubble parameter has dimensions [time]~!). This is
the density such that a uniform self-gravitating sphere of density p. isotropically
expanding at rate H has equal kinetic and gravitational potential energies:

3H?
Pe=2:G (8)

Since H is a function of time, then so is p.

We can measure the density of the Universe in terms of p. by introducing
the density parameter §):

a=L£ )

Note that §} also depends on time and we shall denote the present day value of §) by
Q9. There may be a mixture of different type of matter in the universe that make
up the total density p. We may think, for example, of baryons, photons and perhaps
some exotic elementary particles. Each of these individually has a density that can
be normalized relative to p., thus each species has its own ). We will, for example,
denote the contribution of Baryonic material to the total cosmic density by Qp.

The density p. has a special significance. A universe whose density is
pc(t) when its expansion rate is H is referred to as an Einstein de Sitter universe.
This model clearly has (} = 1 at all times. The expansion rate of such a universe is
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fixed by the density. Model universes that are denser than p. = 3H%/87G when their
expansion rate is H will stop expanding and contract down to a future singularity.
Models that are less dense will expand forever. The 2 = 1 universe is a limiting
case dividing two classes of behaviour and that is why the parametrization of the
density in terms of p, is so useful. The behaviour of the various model universes as
a function of Q can be seen by looking at the dynamical equation for the expansion
factor a(t).

Equations (2) and (4) for a(t) can be shown to integrate to

s\ 2
(2) = QoH2a™ — H}(Qo — 1)a™? (10)

a

The integration constants have been derived using the boundary conditions that
a(t) = 0as t — 0, (¢/a)o = Ho and that the present density of matter is po = Qop..
We can recall that the first term on the right hand side comes from the gravitational
effect of the cosmic mass distribution, while the second term appeared as a constant
of integration whose value was determined by the initial conditions for the expansion.
This second term is referred to as the “curvature term” because of the way it arises
in the cosmological solution to the Einstein equations.

The standard textbooks referred to above give the solutions of this equa-
tion for general values of Qq. It is sufficient here to note that the cases 2 = 0,1
simplify the right hand side of this equation and the solution is then particularly
simple

a(t) £ Q=1
a(t)yoct Q=0 (11)

In the case g = 0 the scale factor grows linearly with time and we describe this as
undecelerrated expansion: the first term on the right of equation (10), the gravita-
tional term, has no effect.

Equation (10) gives the Hubble expansion rate as a function of time, and
replacing the scale factors with redshifts it can be written as

a

H = (z) = Hy [0(1+2)° + (R0 — 1)(1 +2)?]. (12)

The terms on the right hand side are of equal magnitude at a redshift
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This is the redshift at which an open (2 < 1) universe makes the transition to
undecelerrated expansion.

Associated with the curvature term in equation (12) is a length scale

Ry = cH7'|1 — Q| 3(1 + 2)! (14)

cHy |1 — Qo|~% can be called “the (present) curvature radius” of the model. In
the case {}o = 1 the curvature radius is infinite and we speak of the “flat model
universe”. On the other hand if ) << 1 this term will today make the dominant
contribution to the expansion rate.

1.3 The Hubble Parameter h

Determining the Hubble constant, Hy, requires that we have a way of getting the
distance to galaxies independently of their redshifts. The history of determining the
extragalactic distance scale is in itself a fascinating subject (Rowan-Robinson, 1986)
and even today there is considerable uncertainty. There seems to be two distinct
bodies of opinion, one clustering its estimates of Hy around 50 km.s 'Mpc~? and the
other around 80 km.s™*Mpc™?, the lastest results from the Hubble Space telescope
favouring the lower value (Saha et al. 1994). We shall absorb this ignorance into a
“Hubble parameter” h defined so that

Hy = 100k km.s 'Mpc™? (15)

So all distances quoted will contain the quantity h, and the reader is invited to
substitute her/his favourite value.

It is probably safer in practise to use radial velocity to express distances.
This reflects the Hubble law and so when we say a galaxy is at a distance of
30h~! Mpc. we could equally well say it is at a distance of 3000 km.s~!. This is
fine, but it may look a bit strange to say that a void has a diameter of 5000 km. g1
or to say that the galaxy clustering correlation function drops to unity on a scale of
500 km.s™ 1.
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The present value of the Hubble Constant, Hp, and the density parame-
ter, §p, together determine the present age of the universe. In the case of an 2 < 1
universe:

S 2L g (2
to = HO [(1 — QO) Qo (1 _ Q0)3/2 cosh (Qo 1)] 5 Qo < 1. (16)

There are two important limits of this equation: 5 = 0 and §}y = 1:

to —-)Ho—l, ﬂo—vﬂ,

— 2H51, Qo — 1.

It is certain that there should not be any objects older than this in the Universe, so
determining ages is an important way of constraining the values of Hy and Q. It
seems that the oldest known stellar systems for which we can determine ages have
ages in excess of 16 Gyr. (Sandage and Cacciari, 1990). If we accept this value,
then we see that an (}y = 1 universe is always too young unless Hj is considerably
lower than any of the values so far put forward. An open universe with {1y < 0.1
can work provided Hp is at the lower end of the suggested range of values.

What are we to make of this? That neither age determinations of star
clusters nor the extragalactic distance scale can be relied on, with the latter probably
being the most uncertain. Introducing a cosmological constant would of course help.

A useful equation relates the age of the Universe £(z) at a given redshift
z given the present cosmological parameters §}, Ho:

0 dz
Hot(z) = L (1—-{-—;)2_1—\/7——(_): (17)

The cases € = 0,1 can of course be expressed analytically. This equation is im-
portant in calculating how many years after the Big Bang we see a galaxy, QSO or
whatever, and given the present age of the Universe ¢y what the lookback time to
that object is. A useful fitting formula for the lookback time to a redshift z in a
Universe characterised by present Hubble constant Hy and density parameter § is

tlaakback jad H%-‘ [1 —_— (1 + z)—f]
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_ 106
e—1+29

The formula is correct for the two cases (g = 0, 1.

1.4 qg, 2 and A

The central task of classical cosmology was to determine the cosmic expansion rate,
H, and the deceleration parameter qo:

Ho=%, g=-H21 (‘P“) (18)
. ‘

Gg Qo W

Hy was seen as the slope of the velocity-distance relationship and go as the deviation
from the linear Hubble law, its curvature, due to the gravitational deceleration of
the cosmic expansion.

It is easy to see from equation (2) that the deceleration parameter go and
the density parameter Yo are essentially the same thing:

Qo = 2(]0 (19)

However, this is only true under circumstances where equation (2) is true, and in
particular if the cosmological constant A = 0.

If we allow the cosmological constant into the equations, equation (2)
becomes

- Pt (20)

Substituting equations (2)and the definition of © (equations (8) and (9)) into this
last equation we get

dJo = %Qo + A (21)
A =A/3HZ.

This relationship between € and go holds only as long as equations (2) or (20) are
valid; that is, provided there is no cosmic pressure. The Einstein de Sitter universe
has go = 1 (since A = 0 and Qo = 1).
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1.5 Dark Matter

The luminous matter itself accounts for only (.., ~ 0.005h2 (Faber and Gallagher,
1979). This was discovered long ago to be insufficient to account for either the flat
rotation curves of disk galaxies (the dark massive halo problem, Rubin (1988)), or for
the velocity dispersions of groups and clusters of galaxies (the virial mass discrepancy
problem, Zwicky (1933)). It later became apparent from cosmic nucleosynthesis
arguments that the baryonic density of the universe was substantially higher than
the density inferred from the luminous material.

Cosmic nucleosynthesis sets strong bounds on the amount of baryonic
material in the Universe (Boesgard and Steigman, 1985; Pagel 1991a,b). Standard
Big Bang nucleosynthesis implies that

0.011 < Qgh? < 0.026 (22)

where Qg is the contribution of baryons to the total mass density. (See chapter 4
of the Kolb and Turner (1990) book for an excellent discussion of this). There is a
need already here to have ten times as much mass in the baryonic dark matter as is
accounted by the luminous mass in galaxies. There is “dark (nonluminous) baryonic
material” in some form or other, perhaps warm gas, or even very low luminosity
stars. The amount of baryonic dark matter inferred from nucleosynthesis appears
to be just about enough to explain the cluster virial mass discrepancy problem in
most clusters of galaxies. However, this would not be sufficient to make 0 = 1.
The question as to whether {2y # 1 is a central issue of cosmology which would take
an entire review all by itself.

Direct determinations of §y are frustrated by the fact that €}y describes
the quantity of gravitating matter in the universe, whereas we only see the luminous
material which is but a fraction of the total mass density. If the luminosity density
were everywhere proportional to the mass density, this would not prove a problem
since it would only be necessary to discover what the scaling factor is. However, it
is evident that the mass and light are distributed differently on different scales and
some other hypothesis is needed.

The simplest hypothesis of this kind is that the fluctuations in mass
density about the mean are proportional to the fluctuations in light density. The
constant of proportionality is referred to as the biasing parameter and it is denoted
by the symbol b. We shall encounter this frequently in what follows (see section 5).
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Note that the constancy of the biasing parameter is merely a simplifying hypothesis,
the actual situation could be far more complicated.

1.6 The Standard CDM Model

If there is a “standard model” in cosmology which serves as a reference point to test
our understanding, it is the so-called “CDM Model”. The model is motivated by the
wish to have an Einstein de Sitter Universe (2 = 1.0) and yet have only a fraction
of the total mass density, {15, consistent with the data (cf equation (22) in the form
of baryonic material. There are many candidates for what constitutes the missing
non-baryonic material: but in the CDM model it is postulated that this is a massive
non-interacting particle such as the axion. Since the dark matter dominates the
mass density, it is the dominant source of fluctuations in the gravitational potential:
after the recombination of the the cosmic plasma, the baryons fall into the dark
matter potential wells to form galaxies and clusters of galaxies.

The motivation for the standard CDM model comes from the theory of
cosmic inflation which, in its simplest forms, requires that = 1.00.... The inflation-
ary theory also makes predictions about the nature and amplitude of the fluctuations
that give rise to cosmic structure. The models therefore has the advantage of being
well specified. See Kolb and Turner for details.

The detailed consequences of the CDM model were explored in a series
of papers by Davis, Efstathiou, Frenk and White (“DEFW?”) in the late 1980’s (see
for example Frenk et al., 1990). These papers used numerical simulations to explore
the model and so allow detailed comparison with observational data on large scale
structure. There is a growing opinion that these models do not produce enough
large scale structure, though that problem could be fixed at the cost of producing
problems in the details of the small scale galaxy formation process. Whatever the
long term outcome however, the work be DEFW forms one of the conerstones of
modern cosmology.
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2 Photons

2.1 The redshift

Why should a photon travelling across a homogeneous and isotropic universe from
a distant galaxy towards us suffer a redshift? Why is that redshift related to the
expansion factor between emission and reception? The short answer is “because
solving for the motion of photons in the FRW metric shows that there is a redshift”.

The following description is a little more informative and shows how to
attribute the redshift to the fact that the galaxy from which the photon was emitted
was moving relative to the observer who detects it. This relative motion of source
and observer is of course a consequence of the cosmic expansion. When looking at
the relative motion, we have to remember that the observer receives the photon at
a time later than the time at which it was emitted.

E O/

at

Figure 1: The cosmological redshift

Consider two neighbouring observers, O and E whose world lines are
depicted in the space-time diagram in figure 1. The photon travels from E, reaching
O a time 6t later. The photon has travelled a distance cét and so, according to
Hubble’s Law, if the expansion rate is denoted by H = a/a the relative velocity of
O and E is just év = cbt(a/a). The Doppler shift due to the motion of O relative
to E results in a shift in frequency

v = v(t + 6t) — u(t) = —V% = —u&t%. (23)
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This leads immediately to
v(t) x a? (24)

describing the shift in frequency with the expansion factor a(t). If we define the red-
shift z such that 1+ z is the relative frequency shift between emission and reception,
we have

VE Ao ao

(25)

where a(t) is the scale factor of the time of emission, and ag is the present (observer)
scale factor.

2.2 Temperatures

Consider a distribution of photons, and for simplicity suppose that the directions of
motion of the photons are randomly and isotropically distributed. Suppose further
that the number of photons per unit frequency is given by the function n(v). We
define the thermodynamic temperature of this set of photons by the equation

_ 1 [vig(¥)[1 +n(v)ldv
M= g (26)

This somewhat intimidating equation describes the temperature of a distribution of
test electrons in equilibrium with the radiation field. For the specific case where the
photon distribution is the Planck Law

1

n(v) = (27
e’;% -1
and it can be verified by direct substitution and integration that _
T, = To. (28)

In other words, the temperature Ty appearing in the Planck Law (27) is just equi-
librium temperature of the radiation field.! A well known result seen from a slightly
different point of view.

1 We shall see later, in section 3.1, why this particular distribution arises in a plasma of photons
and electrons.
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During some phases of the cosmic expansion cosmic background photons
are neither created nor destroyed. They are simply scattered if there are any free
electrons around, and redshifted by the cosmic expansion. The frequencies change
like v ox (1 + z), and so from equation (27) the temperature assigned to the Photon
distribution must change like

To o (1 + 2) (29)

If physical processes intervene to change n(v), or to create photons, the Planck Law
is not preserved and this result is no longer necessarily true.

2.3 Photon density

The spatial density of photons in a Planckian distribution at temperature T is
8= Vidv

=3 =
S J o

(30)

(This follows because there are »*dvd}/c® modes of a given polarisation per unit
volume moving into a solid angle dQ}. There are 47 steradians in a sphere and there
are 2 polarisations). Doing the integral and putting in the numbers we have

KT\ °
n, = 60.4 (769) ~ 400 cm.™® (31)

if we use T = 2.736 K. We notice that
n, x To o (14 2)° (32)
and so since a coexpanding volume scales as (1 + z)~3, the number of photons per

unit co-expanding volume is conserved with the expansion. This is of course just as
it should be since scattering neither creates nor destroys photons.

Since the number of baryons in a co-expanding volume is also conserved
(ng o (1 4+ 2)3), the photon to baryon ratio is a constant:

21~ 35 x 107(QA2)! (33)
ng

There are far more photons in any volume than there are baryons!
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3 The Expansion

Let us focus attention on a particular spherical volume of radius R, expanding with
the Universe. If the volume contains baryonic particles having density ng, then at
times when the baryon number is conserved we must have

np X R_3 (34)

at all times. (The assumption of homogeneity tells us that particles can neither
leave nor enter this volume).

The present baryonic density of the Universe is known only approxi-
mately - we have relatively poor estimates of how many baryons we cannot see. We
represent our ignorance of this quantity by writing

np(today) = 2 x 10~*QphZcm.”3 (33)

where ) is called the “cosmic baryon density parameter”.

If the volume contains radiation the situation is little different since at
times when photons are neither being created nor destroyed the number of photons
in the volume also remains constant and the photon number density n., falls off as

n, oc B73. (36)

In principle, we can measure n, and n, at the present day. To do that we need

the relationship between the photon number density and the temperature of the
radiation field:

8x vidy kTo\®
n, = ? Wf =604 (F) (37)

(Note that n., o< T2 o (1 + 2)? and so the number of photons per unit coexpanding
volume is indeed conserved). Using the radiation field temperature T = 2.736 K
determined from the COBE satellite data we find

n, =400 cm.”® (38)
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We note that today the ratio of photons to baryons is

s= "1 =35 x 10"(Qgh%)* (39)
np

From the point of view of numbers, the photons are the dominant species of particle,
vastly outnumbering the baryons.

The parameter s is a constant of nature and is of great importance to
cosmology - if the value of s had been different the Universe today might look rather
different. Once we know 2 we will have the value of s, or alternatively we might be
able to determine s from other phenomena and so determine Qp indirectly. s is not
a fundamental constant in the same way that the fine structure constant is - it is not
a part of any physical laws. In principle s should be explained as a consequence of
some fundamental theory of the Big Bang or the physical processes that take place
shortly thereafter.

3.1 The FireBall Phase

Once the light elements have formed at redshift z ~ 10° the Universe expands and
cools until it becomes largely neutral at a redshift 2 ~ 10°. The cosmic plasma
during this period of time is characterised by being completely ionised, and the
pressure is dominated by Compton scattering of the cosmic background photons off
the free electrons:

p= -;-czT4 + ngkT (40)

The first term is the radiation pressure (a is the radiation constant) and the second is
the gas pressure (k is the Boltzmann constant). The ratio of these terms is aT3/3knp
and during this period is independent of time and large: it is on the order of the
number of photons per baryon, which we saw in equation (33) was ~ 108.

The scattering time for photons is

tCompton = oTn.C (41)

where
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2 2
or = %" (me c2) =6.65 x 1072 cm.? (42)

is the Thomson cross section and n, is the free electron number density.? During
the fireball phase the ionisation is complete and so this timescale is very short in
comparison with the cosmic expansion timescale.

In general, the spectrum of the photons is governed two processes: the
Compton scattering between electrons and photons and the free-free absorption and
emission of photons by electron pair scattering (Bremsstrahlung). The equation
describing this process is the Kompaneets equation, which we can write down sym-

bolically as
3 (3) et (5)
at at Compton at Bremsstrahlung

In equilibrium, these process balance to produce the Planck spectrum (27. In the
fireball phase of the Universe these processes are very rapid when compared with
the cosmic expansion timescale. This means that the photons and electrons can
rapidly come into thermal equilibrium and can relax rapidly towards the Planck
distribution. The fireball provides the mechanism for establishing the accurately
Planckian distribution of the microwave background radiation that is observed today
(cf. figure 1).

The best data on the accuracy of the Planck Law comes from the COBE
satellite (see figure 2). However, we can combine the best data over all wavelengths
at which the background radiation field has 'been measured to verify the Planck
law over a longer baseline in frequency (figure 2). Combining data from different
experiments is of course dangerous since they have different systematic errors. The
limits on the distortion parameters have been calculated for this data set.

This is a very important point: the accuracy of the Planckian fit to the
data demands that the Universe was far denser in the past than it is now. Any

2The Thomson cross section describes the scattering of light off electrons in the limit where the
wavelength of the light is longer than the Compton wavelength h/m.c of the electron. At higher
frequencies the cross section falls below the Thomson cross-section because of quantum effects,
and then we speak of Compton Scattering. The usage of the names “Compton” and “Thomson”
Scattering is frequently mixed up and Peebles (1993) has even resorted to calling the process
Compton-Thomson Scattering!
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Figure 2: Measurement of Cosmic Microwave Background Temperature
made by a number of experiments covering a broad range of frequencies.
The dotted line corresponds to the FIRAS data. (From Mather et al.,
1993)

theory of the Universe that sought to revive ideas that the Universe did not start
from a hot dense phase would have to face the problem of explaining why the cosmic
background radiation is so accurately Planckian.

The rate of free-free absorption and emission can be calculated to be

tyr ~ 1.4 x 10%(Qph®)T%/? 5. (44)

and so the Planck law must be established during periods when this is less than the
cosmic expansion timescale, t.z,. This happens when t < 10*°T~% ., of when

TPlunckLuul >2x 108 K (45)

If for some reason the spectrum of the radiation were perturbed substantially after
that time, we would see today deviations from the Planck spectrum. This argument
can be turned around and we can use the observed accuracy with which the Planck
law fits the data to constrain the thermal history of the Universe.
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Figure 3: Recombination of the primeval plasma in various cosmological
models, the curves are labelled with the values of (7, Qg ). Also shown
is the “visibility function” - the contribution to the optical depth seen
from the present day. (After Jones and Wyse, 1985).

3.2 Recombination

The recombination of the primeval plasma is an important process, since the manner
in which the recombination takes place largely determines what we see when we
study the cosmic microwave background radiation in detail. Basically, as we look
back into the past using the microwave background radiation, we are looking into a
fog of electrons. Unless there has been a re-ionisation of the cosmic plasma since the
recombination, the free electron density is so low that we can see back to a redshift
of around z,—; =~ 1000. At that point, the Universe is still fairly neutral with an
ionisation of a few parts in a thousand. As an ionised gas cools down the particles,
ions and electrons, in the gas slow down. Eventually the gas becomes neutral since
collisions between ions or between electrons and ions can no longer maintain the
level of ionisation. In a simple hydrogen plasma this neutralisation would occur
when the temperature falls to around 10%K. It is therefore not surprising that the
Universe should recombine. However, the process is somewhat more complicated
than this because the photons in the cosmic radiation field vastly outnumber the
baryons. Even below 10K there are enough energetic photons around to maintain
the level of ionisation close to unity until the temperature has dropped further to
around 4000 K. At that point the Universe rapidly becomes almost neutral.
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The ionisation histories for several cosmological models are shown in
figure (3 (Jones and Wyse, 1985). The ionisation never drops to zero and the residual
ionisation depends on both the total 27 and the baryonic 25 for the model. For a
given {1, the residual ionisation is simply proportional to Qp.

Also shown in this figure is the visibility function describing how far back
a present day observer can see: in other words where the last scattering surface is.
The optical depth of the universe to Thomson scattering between the present day
and a redshift z at which the age of the Universe was t is:

(t) = /‘: orne(t)cdt (46)

where or is the Thomson cross section and n.(t) is the ionisation history as a
function of time. If we take the simplest case where the ionisation is unity at all
times, then n.(t) = n.Qp(1 + 2)3, where n. denotes the present Einstein de Sitter
density.

Converting time to redshift, we find that in the general case when the
ionisation history is z.(z):

() = or(n0p)o(@rh?)#3.806 x 10 [ stz (s)ds @7)

Here n. is the Einstein de Sitter critical density, and so n.p is the present day
baryonic density in the model.

Consider the case where there is no re-ionisation of the cosmic plasma
since the recombination time. The probability that a photon is received from an
interval of redshift dz is then

P(z)dz ox e j—:dz (48)

This is called the visibility function and is illustrated in figure (3). It is interesting
that the visibility function is almost totally independent of either Q7 or Q. The
lack of Q25 dependence comes from the fact that the residual ionisation is inversely
proportional to g, thus effectively cancelling the 25 term in front of the integral
in (47). The visibility function also lies well into the post-recombination era and
is fairly narrow. It has its maximum at z,, ~ 1067 and is well approximated by a
Gaussian of redshift width o, ~ 80.
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So when the COBE satellite looks at the last scattering surface, it is
essentially looking back to a narrow band of redshifts around z ~ 1000, at which
time the Universe is almost neutral.

3.3 The Post Recombination Era

The post-recombination era is the time up to the present when the evolution of
the Universe, and the structure within it, is controlled by the force of gravity. The
pressure is due to the thermal motions of the particles, and has negligible influence
on motions on cosmic scales. Thus we believe that the structure we see today has
grown out of the gravitational amplification of small amplitude inhomogeneities that
were present during the fireball phase. The observation of inhomogeneities on the
last scattering surface by the COBE satellite provides direct support for this notion:
the observed inhomogeneities have rather small amplitude, but the amplitude is
nevertheless large enough to account for the present observed structure.®

The fact that gravitation is the dominant force means that we can model
the Universe using a computer to solve for the relative motions of particles moving
under their mutual gravitational attraction. While this is a time consuming process,
it is very straightforward and has played a major role in our understanding of the
evolution of large scale cosmic structure.

3As we shall see later, the scale of the inhomogeneities observed by COBE is considerably
larger than the scales where we can observe and measure large scale structure, so a hypothesis is
needed relating the inhomogeneities on various scales. This is the hypothetical Power Spectrum of
inhomogeneities.
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Chapter 42

Classical Tests

Once large telescopes became available and photographic plates became sensitive
enough to take pictures and spectra of fainter galaxies, the quest to discover the
parameters of the cosmological model that best describes our Universe was on. The
idea was to use the galaxies as tracers of the cosmic mass density and to use them
to map the Universe in depth. On local scales the Universe looks Euclidean, but the
hope was that going to large redshifts (approaching unity) would yield the parameter
values. It is perhaps disappointing in retrospect that many decades of effort have
not really brought us definitive values for these parameters.

This failure is not that surprising: the Universe has been evolving even
in the relatively recent past and the intrinsic properties of the galaxies differ with
look-back time, or distance. Without understanding that evolution we cannot hope
to easily untangle the mixed effects of geometry and galaxy evolution. However, the
situation is not hopeless since there are possibilities of better understanding galaxy
evolution, and this is the purpose of much ongoing research.

1 Number - Redshift counts

A redshift survey covering some part of the sky consists of giving the redshift to
all objects of a given type in the survey region. If the objects did not change with
time and were distributed the same way at all distances, then in a universe with
Euclidean Geometry, the number of objects seen per unit redshift interval would be
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proportional to the volume and the number of objects per interval of redshift dz
would simply increase with redshift (ie. distance) as 22dz.

The geometry of the Universe is not Euclidean, and since galaxies evolve
with time their local number density, n,y(z) is not independent of redshift. It is in
fact possible to write down in closed form the formula for the number of objects
seen in each redshift interval dz, taking account of the geometry of the Friedmann
Universe and of the fact that the number of sources evolves with time. The number
of sources dN; per unit redshift dz and per unit solid angle d) is

dN, _ oz |30z + (3600 — D(VTF Tz — 1))
aq = Ma(2)(eHs ')z ENTE ROy e vy (1)

(Here, the d© on the left hand side represents an element of solid angle, and is not
to be confused with the density parameter!) The small z < 1 limit is the first part
of this formula:

% =ny(z)(cH;')?2*dz 2«1 (2
This can easily be verified by considering the (Euclidean) volume of a spherical cap
of depth dz at a distance D = Hylcz.

It was felt originally that this would provide a good way of measuring
the density parameter Q. However, this relationship has not yet provided a satis-
factory basis for getting at the value of . The paper of Loh and Spillar (1986)
is an interesting attempt to exploit this relationship. They used a galaxy survey to
determine approximate redshifts for ~ 1000 galaxies out to a redshift of z ~ 1. On
the basis of this survey, they look at the redshift-volume relationship and conclude
that o = 0.9 £ 0.3 if A = 0. Caditz and Petrosian (1989) however, argued that
the luminosity function history assumed by Loh and Spillar is not consistent with
their data. Taking this into account, Caditz and Petrosian derive £y = 0.2 with
considerable uncertainty due to such things as incompleteness of the sample. Yoshii
and Takahara (1989) make a detailed model for the luminosity evolution based on
merger driven evolution and discuss the problems associated with such methods of
getting at Q.

Whereas applying this equation to real data is relatively straightforward
in theory, in practise it is not so easy. The Universe consists of objects of diverse
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types and so identifying the counterparts of local objects at great distances can be
very difficult. This is made more difficult still because of the effect of the cosmo-
logical redshift on the light we detect from objects at different distances. A given
detector measures the light coming from the bluer wavelength part of the spectrum
of the more distant objects. It is perhaps for this reason that the QSO’s have not
yielded any significant estimators for the density parameter {Jy, despite the existence
of large numbers of redshifts.

There is hope, however, that this relationship may prove useful when
applied to deep redshift surveys of galaxies or extremely distant clusters of galaxies.
The unknown evolution of these objects is the central problem to be tackled, so if
nothing else this line of research will tell us about galaxy and cluster evolution.

2 Angular Diameters

2.1 The general formula

The angular diameter subtended by a face-on galaxy of (proper) diameter L located
oriented perpendicular to the line of sight at redshift z is given by the formula

_ L [ 1203(1+ 2)° ]
T zeHy' |30z + (300 — 1)(vI + Doz — 1) ]

3)

Q is the current value of the density parameter. At small z < 1 this is simply

0= Z:-I% [1 + 2(Q0 + g) + 0(22)] z< 1L 4)

This makes perfect sense since zc = V is the recession velocity of the galaxy and
VHg! is therefore its Hubble distance, D. The angular diameter in the small z limit
reduces to L/D.

2.2 Large redshifts

The angular diameter equation (3) cannot be derived from any simple trick with
Newtonian theory - it is a consequence of General Relativity. Indeed, the equation
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has some bizarre properties. If o = 1 the function 8(z) has a minimum at 2, = 5/4.
Galaxies of a fixed proper diameter subtend larger angular size as their distances
increase beyond that redshift'. For large z > 1 equation (3) reduces to

Lz

which increases with z for fixed L.

We notice another curious and useful result from this asymptotic formula:
a measuring rod whose proper length expands with the Universe has fixed angular
diameter at very high redshift. The angular subtended by a rod of length d =
do(1 + 2)7! is just

0(do) = ("°) radians 23> 1. (6)

cHy!

A useful special case of this is the angle subtended by a co- expanding rod of present
day length 1 Mpc.:

6(1Mpc.) ~ %Qoh arcmin. (N
and this is independent of redshift.

2.3 Other important scales

A region that “came within its horizon” at a redshift z has a scale today of

Iy ~ 2¢H;! (Qz)_% (8)

and so, using the previous formula, subtends an angle

1This is often “explained” as being a consequence of the focusing of the cone of light rays
containing the object by the material internal to the cone. It is alternatively possible to see this
as being a consequence of the fact that owing to the expansion the object was closer to us than it
is now, and so the object would have iooked bigger.
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Oy(z) ~ (%9) radian 9

Thus in an ¢ = 1 universe, a causally connected region at recombination (z, =
1000) subtends and angle of ~ 2°.

Another interesting scale in open universe ({2 < 1) is the curvature scale
R} defined above in equation (14). At great redshifts z > Qg this scale subtends
an angle

0y ~ %Qo(l — Q)% radians (10)

If Q9 = 0.1 — 0.2 this is just in the range of angular scales measured by the COBE
satellite.

3 The Magnitude-Redshift Relation

Hubble’s expansion law was a relationship between the apparent magnitude m of a
galaxy and its redshift z. We can, in a given FriedmannLemaitre cosmological model
calculate what this relationship ought to be for galaxies of intrinsic luminosity L. It
can be shown that the apparent brightness ! is related to the intrinsic luminosity L

by

_ L (Hoy’ (30 2
= Ax ( ) [%Qoz + (3% — 1)\/(1 + Q0‘3)] w

and for not too distant galaxies (2 < 1), this simplifies to

1—-5(@)2[1“%90—1)”...] (12)

4r \ ¢z

This expression is also exact in the limits 3o = 0 and Qy = 1. The first terms are
simply the standard r~2 inverse square law, the correction due to the §}y term is due
to the deceleration of the expansion.
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Astronomers measure brightness on a logarithmic scale known as the
magnitude scale®>. So, up to a calibration constant that depends on the spectral
band being used, the magnitude of an object of luminosity [ is

m = —2.5log,o | + constant. (13)

Galaxy brightness is quoted in magnitudes, and faint objects have large positive
values of m (galaxies down to magnitude 20 to 21 can be identified on a UK Schmidt
plate). The same magnitude scale can be used to measure the intrinsic luminosity
L. We do this in a slightly round-about way by referring to the brightness the object
would have were it situated at a distance of 10 parsecs; we call this the absolute
magnitude, M of the object. Since the apparent brightness falls off inversely as the
square of the distance, the apparent magnitude m of an object of absolute magnitude
M at a distance of Dype Mpc. is simply

m =M + 25 + 5log,q Dmpc (14)
(thus if D = 10pc = 10~° Mpc., we have M — m = 0). The quantity m — M is
called the distance modulus and is measured in magnitudes.

In terms of magnitudes, equation 11 becomes

m=5log [Qig (%Qoz + (%Qo - 1)[\/Z1 + Qo2) — 1])] + constant (15)

where the constant depends on the type of object selected and the spectral pass
band of the observations. In practise, we do not attempt to calculate the constant,
but merely fit a curve through the data points leaving the normalization arbitrary.

In astronomical units and at modest redshifts (z < 1) this is
m =M + 25— 5log,o Ho + 5log,gcz + 1.086(1 — go)z + ..., (16)
where m is the apparent magnitude of a galaxy of absolute magnitude M seen
at a redshift 2. (Technically, these are the luminosities or magnitudes integrated

over the whole spectrum of the emitted light. If the measurements are done in a
restricted spectral band, then other terms come into this relationship, these are the

2See Appendix A
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so-called K-correction terms). This expresses the Hubble Law directly in terms of a
magnitude-redshift relationship.

Note that any intrinsic evolution of the quantity L (or the absolute mag-
nitude M) will introduce non-geometric effects into the relationship and so confuse
the determination of {23. We can approximate this by assuming that the luminosity
evolves as

L(t) = Lo[1 + aft — to)] (17)

when expressed as a function of lookback time t — ¢;. Relating lookback time to
redshift then yields

I=Z{;—(—Ig)z[1+(qo—1)z—aHo'lz+...]. (18)

showing an extra linear dependence on z. Thus if this relationship is used to measure
g, the (unknown) evolutionary correction biases )y downward by aHy L

Unfortunately, the program of measuring the curvature of the Hubble
Law directly has not provided any strong constraints on 2. This is largely because
the curvature of the relationship is influenced by non geometric effects (galaxy lu-
minosities evolve with time in an unknown way) and because there is considerable
scatter in the magnitude-redshift diagram. Indeed, the tendency today is to use
the Hubble diagram and the number-magnitude relationship together to determine
the evolutionary history of galaxies! (See Guideroni and Rocca- Volmerange, 1990;
Rocca-Volmerange and Guideroni, 1990).

4 Number - Magnitude counts

It was the evolution of the number counts with distance that provided the first clue
for an evolutionary universe, as opposed to a Steady State universe. The number
magnitude relationship provides an alternative probe of cosmological models and
galaxy evolution and has generated a great deal of interest since we can now survey
galaxies down to extremely faint magnitudes in many wavebands. In recent years
we have seen faint galaxy counts by Tyson (1988) and by Jones et al. (1991) and
Metcalf et al. (1991). The latter surveys penetrate to B-magnitudes B < 25. The
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Figure 1: b-magnitude counts compiled by Glazebrook et al. (1994).
from various authors. The curves show the predicted counts in two
no-evolution cosmological model having ¢ = 0.1,1.0.

interpretation of such counts and the galaxy evolution models that are used have
been discussed by Koo (1990} and by Guideroni and Rocca- Volmerange (1990). The
B-band data and the expectations from cosmological models in which the galaxies do
not evolve in time is shown in figure (1) taken from the recent study of Glazebrook
et al. (1994). It seems that the present data in the R and B bands can be largely
understood in terms of current models of galactic evolution.

However, Cowie (1991) and more recently Glazebrook et al. (1994) have
presented some infrared K-band counts of galaxies which confuse the situation some-
what by appearing to be consistent with cosmological models in which galaxies do
not evolve. ((Alternatively we could demand a non-zero cosmological constant).

5 Surface Brightness tests

It is important to test our claim that the redshift in the spectra of galaxies is due
the Doppler Effect in an expanding Universe and not simply a consequence of some
other effect such as the so-called tired light effect in which photons redshift as they
travel across the Universe, losing energy by some as yet unknown process. The
possibility of testing this directly has been known for a long time (Tolman, 1930):
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the surface brightness of objects would fall off as (1+2)™* in an expanding Universe,
but only as (1 + 2)™! if there were no expansion.® In terms of observable quantities
this test amounts to fitting either of the two curves

p(z) = 10log(1 + z) + constant, FRW Universe
#(z) = 2.51log(1 + z) + constant  Einstein Static Universe

to measurements of the surface brightness p of a sample of standard objects.

This simple test is unfortunately not quite as straightforward as one
would like. The first problem is to find “standard objects” whose intrinsic surface
brightness is the same. But even to measure the surface brightness requires that
we define some intrinsic diameter that can be recognised at all distances for these
standard objects. Even after doing that we have the problems of correcting for the
fact of observing different wavebands at different redshifts, and of taking account of
any evolutionary effects!

The attempt to select standard objects and define their proper “metric
size” goes back many years. Brightest cluster galaxies have been frequently used for
this purpose on the grounds that they are likely to be standard objects. The use
of the “Petrosian Radius” (Petrosian, 1977) for this purpose has been discussed at
length by Sandage and Perelmutter (1991). Since it is thought that these galaxies
might have been built from the merging of other objects in the general cluster
potential we should worry about possible evolutionary effects.

Another approach is not try to identify and use a “standard” galaxy, but
rather to use all galaxies of a given type (such as luminous early-type galaxies),
making corrections for the intrinsic variations of the properties of the galaxies with,
say, luminosity. This is possible because it now seems that the properties of such
galaxies define a so-called “fundamental plane”. The basic proposition to do this is
due to Kjargaard et al. (1993).

3For an excellent review of testing the expansion hypothesis sece Moles (1991) who discusses the
Einstein Static Universe from this point of view.
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Chapter 43

Galaxy Clustering

1 The Galaxy Distribution

It is usual to make the assumption that the distribution of luminous matter in the
Universe reflects the distribution of matter in general, both luminous and nonlumi-
nous. If this were not the case, then understanding the nature of the Universe would
be extremely difficult: if we could not trace the matter distribution by virtue of its
luminosity we would have to infer it indirectly. We could in this worst-case scenario,
attempt to trace the gravitational field of the matter by virtue of the velocity fields
it drives, or by virtue of its gravitational lensing effects on the appearance and dis-
tribution of background objects. However, in interpreting such observations, we are
always be biased by the fact that we are still using the luminous material as a probe.

There are good reasons to begin with the assumption that light traces
mass. However, we do not have to go as far in this assumption as to say they
are directly proportional on all scales. We can reasonably hope that our data will
eventually reveal the relationship between the light and mass distributions, if there
is indeed such a relationship.

We are able via observations to map out two aspects of the galaxy dis-
tribution: its density and its velocity field. Because our best-guess distances are
based on the Hubble Law, which makes use of the velocities, these two aspects of
the galaxy distribution are somewhat intertwined and have to be separated. This
can be done on the basis of simple models relating densities and velocities, or by
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measuring the galaxy distances by some means other than the redshift. We shall
discuss this important are of research later.

2 Two-Point Correlation Function

The two-point clustering correlation function has been the mainstay of clustering
studies for over 20 years. Its importance in cosmology has been fully discussed
by Peebles (LSSU: 1980). The 2-point correlation function as used in astrophysics
describes one way in which the actual distribution of galaxies deviates from a sim-
ple Poisson distribution. There are other descriptors like three point correlation
functions, topological genus and so on.

There are two sorts of 2-point function. One describing the clustering
as projected on the sky, thus describing the angular distribution of galaxies in a
typical galaxy catalogue. This is called the angular 2-point correlation function and
is generally denoted by w(8). The other describes the clustering in space and is called
the spatial 2-point correlation function. We frequently omit the word “spatial”. The
(spatial) 2-point correlation function is generally denoted by £(r).

In order to provide a mathematical definition of the correlation function
we will only consider the spatial 2-point function, the definition of the angular
function follows similarly.

Consider a given galaxy in a homogeneous Poisson-distributed sample of
galaxies, then the probability of finding another galaxy in a small element of volume
8V at a distance r would be §P = n6V, where n is the mean number density of
galaxies. If the sample is clustered then the probability will be different and will be
expressible as

8P = n[l + £(r)|6V (1)

for some function £(r) satisfying the conditions

E(l’) Z —17
{(r)—0, [r| =0 (2)

The first condition is essential since probabilities are positive, and the second is
required in order that a mean density exist for the sample.
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It is customary to make the assumption that the two point function is
isotropic: it depends only on the distance between two points and not the direction
of the line joining them:

{(r) =&(r) ®3)

This is a reasonable but untested hypothesis.!

2.1 Calculating correlation functions

In practice, the correlation function is estimated simply by counting the number of
pairs within volumes around galaxies in the sample, and comparing that with the
number that would be expected on the basis of a Poisson distributed sample having
the same total population. There are subtleties however due to the fact that galaxies
lying near the boundary of the sample volume have their neighbours censored by
the bounding volume.

One method discussed by Rivolo (1986) is to use the estimator

N N(r
14€0) = 7 2 s @

=1

where N is the total number of galaxies in the sample and n is their number density.
N;i(r) is the number of galaxies lying in a shell of thickness ér from the ith galaxy,
and Vj(r) is the volume of the shell lying within the sample volume. (So N;(r) is
being compared with nV(r), the Poisson-expected number lying in the shell). Note
that n is usually taken to be the sample mean, but if there is an alternative (and
better) way of estimating the mean density, the alternative should be used.

An alternative strategy to calculating £(r) for a catalogue of N galaxies
is to put down NRg points at random in the survey volume compare the number
of pairs of galaxies ngg(r) having separation r with the fiumber of pairs npg(r)
consisting of a random point and a galaxy, separated by the same r:

1+£(r) = :fff%%f (5)

!Note that we are talking about Statistical Isotropy, so this equation implies nothing about the
overall pattern of clustering.
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(Davies et al. 1988).

The two point correlation function for the distribution of galaxies has a
roughly power law behaviour on scales R < 10h~! Mpc., with a slope of —1.77:

r\-177 3
r) = (r_) ) r < 10h™" Mpc.
)
ro ~ 5h~' Mpc. (6)

This is frequently referred to as “the 1.8 power law” and was discovered indepen-
dently by Totsuji and Kihara (1969) and Peebles (1974).

What happens beyond 10A~! Mpc. is somewhat contentious. It cer-
tainly falls below the power law behaviour, but it is not even clear whether it
falls to negative values at any scale where it is measurable. What is notable is
that the two-point correlation function is of negligible amplitude on those scales
(R ~ 20h~! Mpc.) where the structure revealed in the redshift surveys (de Lappar-
ent, Geller and Huchra, 1986) is most dramatic (see figure 1). (If there were enough
galaxies that we could determine the values of {(r) on these scales, its precise shape
would indeed contain information about the large scale clustering. We are however
constrained by sample discreteness.)

It should be remarked that the low amplitude of the two-point function
on these large scales is consistent with the fact that the universe, if smoothed over
such scales, would show little structure. We see the structure by virtue of what is
happening on the small scales and in particular how the small scale structures relate
to one another. The inadequacy of the 2-point function in describing what is seen
on the largest scales has motivated people to look at other ways of describing the
large scale structure.

2.2 A couple of examples

As a first simple illustration to see how the two-point correlation function works
consider a “Swiss Cheese” model in which inhomogeneities are generated in a uni-
form distribution of points by shrinking a randomly placed sphere of radius Ry to
radius R < Ry (see figure 1). Suppose the original sphere of radius Ry contained
N points. In order to estimate the number of pairs of points having separation
8, consider a sphere of radius s placed randomly within the (shrunken) sphere of
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Figure 1: Swiss Cheese model: a single cluster made by shrinking the
matter in a sphere of radius Ry to radius R.

radius R. The number of particles within this sphere is N(s/R)? (the ratio of the
volumes). The number of pairs is thus ~ N%(s/R)®. The volume of radius R can
hold (R/s)? such spheres, and so the number of pairs having separation s < R is
~ (R/s)3.N*(S/R)® ~ N2(s/R)3. If these particles had been distributed in the
original sphere of radius Ry, the number of pairs would have been ~ N?(s/R,)?, by
the same argument. By definition, the two-point correlation function for the Swiss
Cheese is then

Lt (o)~ NIBE RS

W ~ ﬁ’ s < Ra Swiss cheese (7)

This elementary example shows that ¢(r) measures density enhancement. By ex-
tending the calculation further, it is easy to see that on scales s > R where we
removed particles, £(r) goes negative.

Now let us go to a more realistic example. Consider an ensemble of
nonoverlapping spheres having a range of sizes r that depend on the cluster oc-
cupancy n (see figure 2). Suppose further that the number density of clusters of
occupancy n is ng and that

ng=An"?  r=Bn® (8)
If each sphere of particles is regarded as a cluster, these relations describe the cluster

population: we have so many spheres of occupancy n and radius r. For this model
it can be shown using arguments similar to the Swiss Cheese example that



Figure 2: Clusters of different sizes having different populations, n.
Both the cluster population and the cluster radius have power law de-
pendence on n

E(s) o 873741, (9)

with the conditions that § > 0 and 8 > 2 — 3a (so & has to be small or else 8
goes negative). This model illustrates that we can tune ¢ and § in more than one
way to get £(s) o< s718. The two- point correlation function alone is not enough to
characterise the details of the clustering.?

2.3 Clustering in Projection

The earliest measurements of the two pint galaxy correlation function were done
using the projected positions of galaxies on the sky. The then-available all-sky cat-
alogues, the de Vaucouleurs Catalog of Bright Galaxies and the Zwicky Catalogue,
provided samples of a few thousand galaxies down to a modest depth, while the
Lick Catalogue of Shane and Wirtanen (1967) provided a larger but less uniform
sample going to greater depth (Seldner et al., 1977). The situation today has im-
proved considerably because of the APM survey of Galaxies on UK Schnmidt plates
covering the southern sky. The two-point correlation function w(#) obtained at var-
ious depths in that catalogue is shown in figure 3. The left hand panel shows the
measured w(f) for each depth. The right hand panel renormalises these to the same

2This model is a simple fractal. It is not rich enough in structure to mimic the real clustering
in the Universe (Martinez and Jones, 1990).
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Figure 3: The sky-projected 2-dimensional galaxy-galaxy correlation
function for the APM catalogue. The left panel shows the correlations
as a function of sample depth, and these are renormalised and super-
posed in the right hand panel. (After Efstathiou et al., 1992).

effective depth using the assumption that the Universe is homogeneous (cf. equa-
tion (12)). The remarkable fit of these curves on top of one another is convincing
evidence for the homogeneity of the Universe out to the maximum depth of the
catalogue.

w(0) shows the famous power law behaviour on small angular scales:

w(d) < 0", 4= 175 (10)

with a break away from this power law on larger angular scales. The nature of this
break is very important since it reflects the existence and properties of clustering on
large scales ( > 20h~! Mpc.). This determination of the projected two-point cor-
relation function is of considerable importance since it clearly shows a considerable

amount of structure at large angular scales: more in fact than can be tolerated by
the standard CDM model.
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2.4 Limber’s Formula and Depth Scaling

A sky projected catalogue is created by selecting objects from a statistically homoge-
neous and isotropic spatial distribution of galaxies according to some rule: we might
for example choose all galaxies that are brighter than some apparent magnitude.
There is then a precise mathematical relationship between the spatial correlation
function £(r) of the underlying galaxy distribution and the angular correlation func-
tion w(#) of a galaxy catalogue drawn from that distribution according to the given
selection procedure. This relationship is called Limber’s Formula after its discoverer
Limber (1958). We do not need to go into the details of this rather complex formula
bere?, it is described in great detail in Peebles’ two books LSSU (§§50-52) and PCII
(equations 7.30 et seq.). Note that in general we can measure w(f) rather easily and
we wish to get at £(r): thus we have to solve an inverse problem (Fall and Tremaine,
1977).

The selection function plays a key role in this relationship. For a cata-
logue that is selected according to apparent brightness this function expresses the
probability that a galaxy at a given distance will be bright enough to be included
in the catalogue. This in turn is controlled by the galaxy luminosity function that
tells us how many galaxies there are of a given apparent brightness. Thus deducing
the spatial two-point correlation function from the projected function using Lim-
ber’s equation requires that the intrinsic brightness of the galaxies be independent
of their location, and that we have a known universal luminosity function for the
sample.

We can make a consistency check on these hypotheses by looking at
the scaling properties of the projected two-point function. If we select subsamples
of different limiting brightness from our catalogue we should find that samples of
different depth obey the scaling relation

w(6) = D' w(D0) (12)

3For completeness, Limber’s Formula in the simple case @ =1 is

Jo dyy*v(y)? [2, dub(v/(w? + (zy)?)
U5 duwv(w)]?
(LSSU §51). The selection function (u) is the probability that a galaxy at distance u will be

in the catalogue, and is simply an integral over the luminosity function. (¥(u) can usefully be
normalized so that the numerator is unity.)

w(d) = (11)
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Figure 4: The 3-dimensional galaxy-galaxy correlation function for the
Stromlo-APM catalogue. The dotted line is the prediction of a standard
CDM model, normalised appropriately at 84~ Mpc., the lack of large
scale clustering is evident. This could be solved by “tilting” the initial
spectrum of fluctuations in the model. (After Loveday et al., 1992).

This equation is hardly surprising: it simply says that a deeper sample will look
identical to a shallow sample, except that all the angular scales will be rescaled by
the ratio of the distances of the samples. This scaling relation is thus a direct test
of the homogeneity of the clustering in the Universe out to the maximum depth of
the catalogue.

2.5 Clustering from redshift surveys

Redshift surveys are clearly a good way at measuring the clustering correlation
function in three dimensions, the redshift does after all give an estimator of the
distance to each object within the sample. However, the situation is not quite that
simple. Firstly, redshift surveys rarely have more than a few thousand objects, so
the error bars are not as small as we might like. Secondly, and more importantly, the
redshift does not represent the distance accurately: there is a component of peculiar
velocity which is correlated with the very density fluctuations that we are trying
to characterise. When we deproject a sky-projected survey, we make assumptions
about the statistical isotropy of the peculiar velocity field. But the issue of the radial
component of the peculiar velocity is not relevant.

We can turn this argument around and argue that it is important to
compare the deprojected 2-dimensional correlation function with the 3-dimensional
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correlation function as this will give us a direct handle on the peculiar velocity field.

2.6 Cluster-cluster correlation function

The clusters of galaxies trace out the distribution of luminous matter in the Uni-
verse, and it is through these that we identify and catalogue galaxy clusters. It
might be thought then that the clusters would follow the same clustering pattern as
the galaxies that define them. However, this is not so: the clusters of galaxies as cat-
alogued by Abell (1958) and by Abell, Corwin and Olowin (1989) show a correlation
function that has almost the same slope as the correlation function of galaxies, but
a considerably greater amplitude. This fact was discovered independently by Klypin
and Khopylov (1983) and Bahcall and Soneira (1983)). For the Edinburgh-Milano
cluster redshift survey (Collins et al., 1992)

r ~2.140.3
belr) = (16.4 £4.0h1 Mpc.) (13)

Another survey of clusters identified in the APM catalogue of galaxies by Dalton
et al. (1992) shows a slightly lower normalization. Figure 5 summarises the results

10
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Figure 5: The cluster-cluster correlation function for a variety of sam-

ples. The points connected by straight line segments are from the
Edinburgh-Milan cluster survey (after Collins et al., 1993).

from a variety of surveys (each denoted by a different symbols) and the dashed line
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represents the fit to the rich cluster-cluster correlation function found originally by
Bahcall and Soneria (1983). What is evident from the correlation function shown
in figure 5 for clusters in the Milano-Edinburgh survey, is that the amplitude of
the cluster-cluster function is some 3-4 times the amplitude of the galaxy-galaxy
function. '

Some part of the scatter in the figure i1s due to the fact that the cluster
samples are based on clusters identified by different criteria. Comparing the cluster-
ing correlation function for clusters of different richness shows a trend: richer galaxy
clusters are more correlated than poorer ones (see Bahcall and West, 1992).

There has been much discussion about how to explain this result, and
whether or not the numerical simulations show this. When running a numerical
model with a given set of initial conditions it is necessary to evolve the model until
both the velocity dispersions of the objects in the model and the clustering ampli-
tude are correct (if possible!). The velocity dispersion depends on the mass density
fluctuation amplitude: as this grows the peculiar velocities also grow. Fortunately
there is a free parameter which allows us to adjust the amount of clustering we see
at the time when the velocity dispersion is correct - the bias parameter b. This pa-
rameter fixes the ratio of the mass density and light fluctuations (see section 5 and
essentially determines which of the particles in the simulation are to be regarded as
luminous from the point of view of identifying and measuring clustering.

Typically, to explain the level of cluster-cluster correlation needs a bias
parameter b = 2.0 — 2.5 in the standard CDM model. Of course, the outstanding
question remains as to what such a value for the bias parameter would mean in
terms of the physical processes responsible for galaxy formation.

2.7 The two-power-law model

There has been much discussion of the notion that the clustering of galaxies should
be discussed not in terms of the 2-point correlation function £(r), but in terms of
the quantity 1 + £(r) (Guzzo et al., 1991). The proposed fit (taking redshift space
distortion into account) is

rm 4 ~1.8 r<3.5h7! Mpc.
1+£(r) = {r"" 722 0.8, 3.5h™! Mpc. < r <20h™' Mpc. (14)
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This simple equation can always be regarded as a reasonable fitting formula for £(r).
The question really is whether there is any physical basis for preferring the quantity
1 4+ £(r) and so for believing that this form has any real significance. In the linear
regime where £(r) < 1 it is clear that we should be looking at the fluctuations in the
density, not the density field itself, and so £(r) is the quantity that makes physical
sense. In that case the power law fit to 1+&(r) is simply fortuitous. In the nonlinear
regime it hardly matters since we have no theory for strongly nonlinear evolution.
Generally, we compare with N-body models and we can measure whatever quantity
we like.

3 High Order Correlations

The two-point correlation function measures the clustering of galaxies taken two
at a time. While this is an important descriptor of the deviation from a Poisson
distribution it does not by any means contain all the information about the clustering
- many different clustering models can have identical two-point correlation functions.
The natural way of proceeding is then to go to higher order correlation functions
or to find alternative descriptors of the clustering which are sensitive to particular
features.

3.1 Some definitions

Let us consider a discrete distribution of points. If the density of points is fi, then
the probability of finding a point inside a randomly placed volume element dV is
just

dP; = adV (15)

We can write the joint probability of finding a point in each of two randomly selected
volume elements dV; and dV; having separation R;; as

dPg = ﬁz[l + fz(rlz)]d‘/ld‘/g (16)

The function &;(r) is called the two point correlation function. This is identical to
the function defined in equation (1): it follows by combining equations (15) and (1)
to get the probability of finding points in two randomly chosen volume elements.
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The definition of the 3-point function follows similarly, but with an im-
portant subtlety: the 3-point function is defined as an excess probability of finding
a given configuration of three points, over and above our expectations based on the
1- and 2- point functions. Thus we write the probability of finding three particles
in a triangle whose sides are ry3, ro3 and r3; as

dP; = 231 + &3(r12) + &2(r2a) + Ea(ra1) + €3(r1, T2, 13)|dVidVadVa 1

The 2-point terms represent the contribution from the pairwise distribution. In a
statistically homogeneous clustered distribution of points, the 3-point function &3
depends on the shape of the triangle as well as its size. The shape of the triangle is
generally parametrised by two variable such as an angle and the ratio of the lengths
of the sides defining that angle. )

Going to four point functions, we use a definition that involves four points
and we must be careful to remove the direct contributions from the 2- and 3- point
functions. This then involves a combinatorial problem in counting all the relevant
pairs and triples.

3.2 Scaling Relations

When the three point function was measured, it was realised that there is a relation-
ship between the 2-point and 3-point functions. If we consider a triangle of three
galaxies placed at points ry,r;,r3 and denote the distance between the vertices ¢, j
of the triangle by r;;, then

é3(r1,r2,r3) = Qléa(r12)€a(r2a) + €a(ras)ba(ran) + &a(r31)éa(r12)] (18)

and for all shapes of triangles tested within a given survey @ has the same value.
The value of @ is however less certain and estimates from different surveys cover a
considerable range

Q~06-1.0 (19)
The fit appears to be valid on scales of up to a few megaparsecs (r < 2h~! Mpc.)

where the 2-point function certainly has a power law form, and there is evidence
that it is still valid over considerably larger scales where the clustering is linear.



Tt will be noticed that equation (18) contains only products of pairs of
two-point functions. By virtue of the definition (17) it could not contain terms linear
in £, but it might have contained a term proportional to &x(riada(raa)fa(rai). The
evidence is that there is no such contribution. If there were such a contribution it
would dominate over the products of pairs of £; functions on the smallest scales.

There is evidence that the 4-point function can also be expressed as a
sum of products of 2-point functions taken three at a time, and this has lead to the
suggestion that in general the J-point function can be written as

J=1
Ealrr,wars) = 3 QY TT Galras) (20)
ad

graphs

This somewhat unwieldy notation is simply a way of denoting the sum over all pairs
of points, counted in an appropriate way. The first sum over all graphs refers to
the graphs that can made up from all the sets of J — 1 edges connecting the J
points. The product refers to the product of the values of the 2-point functions for
that particular graph. The coefficients @ are to be determined from the data, and
perhaps from some theory.

We see simple power law scaling for the 2-point function (£a(r), o 77)
and for the 3-point function (£3(r)  r~27) for a given shape of triangle. Given
the hierarchy expressed through equation (20) it is not unreasonable to expect this
scaling behaviour to continue on to all order of correlation functions with:

E1(r1, ey ra) = ATIE (A, L, Ara), (21)

It is important to notice that the power of the scale factor that appears, (J — 1}y,
tells us that the hierarchy is determined by one scaling index: 7. The consequences
of such a scaling hierarchy have been extensively analyzed by Balian and Schaeffer
(19839).

4 Counts in Cells

In the previous section, we saw that the clustering is to be described by a hierarchy
of correlation functions. On small scales where the 2-point correlation function is
large, the high order correlation functions dominate the character of the clustering.



We do not know these, and caonot reliably calculate them. Moreover, if we knew
what they were it would not help much with getting an intuitive grasp of how the
clustering should look.

This leads us to consider other measures of the clustering that directly
attack the guestion of the appearance of the galaxy distribution, and the*Hope'is
that such descriptors are somehow linked to the dynamical processes that caused
the clustering. This is hardly the place to delve into thiz complex subject, so I shall

focus on one such measure: the counts-in-cells distribution.

T

4.1 Counts and Moments

To be specific, let us focus attention on a distribution of particles having 2 density
n. Suppose that we analyze counts in a the sample volume that is divided into M
cubic cells of equal size [ and volume V = . If the cells are simply labelled by and
index i, we can attach an occupation number N; to the ith cell and compute the
mean and variance of N;: '

v
var(N) = 3‘71_—1 Zl;(n.- — Ny (22)

The variance of the counts in the cells is directly related to the 2-point
correlation function for the sample

var(N) = N[1 + N&(V)] (23)

where

GV)=ob =gz [ dradviay, (24

Thus we can use the counts in cells to estimate this integral over the correlation



570

function. 4 To this end we note that the expectation value of N is

<N>=nV (26)
and the quantity
1 M ca o
= i— N -N 27
S= 77 L= ) 21)
has expectation value
< S >=n?V¥?} (28)

(This follows from equations (23) and (22)).

We can generalize this procedure to the higher moments of the cell counts
and the averages over the higher order correlation functions. If we write

&H(V) = %/VEJ(rI,...,rJ)drl...er (29)

then it can be shown that these are related to the moments < (An)’ > by the
hierarchy of equations

<n> =N
<(An)?> =N*§+ N
<(An)®> = N6 +3N*6+ N
< (An)*> = N4+ 6N38 + TN?6 + N + 3 < (An)? >? (30)

(Peebles, LSSU). In principle these equations can be used to test the scaling of the
various order correlation functions and their possible scaling relationships.

Since £(r) is related to the Power Spectrum, we can equally write this as an integral over the
Power Spectrum P(k):

() = 51% /o * P(kYWy (k)k2dk, (25)

the function Wy (z) being the window function corresponding the choice of volume V.
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In practise we have to take care of selection functions when using magni-
tude limited samples, and we have to take care of the sample boundaries. There are
also considerable problems in interpreting this in redshift space where the deviations
from uniform Hubble flow are correlated with the density fluctuations. Determining
the correlation functions from these cell counts is not entirely straightforward!

4.2 Scaling the variance

Measuring the two-point correlation function on large scales is difficult because the
amplitude is small and there is a technical (though not insuperable) problem in
determining the normalisation relative to which the “excess” counts are measured.
Another way of looking at the large scale structure is to use the variance of the
counts in cells as just described. The results for the APM bright galaxy survey are

N\
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Figure 6: The variance of counts in cells as a function of cell size for
the Stromlo-APM catalogue (after Loveday et al., 1992).

shown in figure 6 (this is formally equivalent to the spatial 2-point function from the
same survey show in figure 4). The counts on scales in excess of 30 — 502! Mpc.
are clearly in the so-called linear regime, the variance is substantially smaller than
unity. Thus it is straightforward to compare the predictions of N-body models based
on a given input power spectrum P(k) using equation (25).

In making this comparison, we need a spectral shape, an amplitude and

a bias parameter. Given the spectral shape, the COBE observation of large scale

fluctuations fixes the amplitude, and since it is generally believed that the spectrum

has the classical Harrison-Zel’dovich form on these large scales that leaves only one
free fitting parameter: the bias b.



572

4.3 Higher Moments

The volume averaged higher order correlation functions (equation (29)) have been
the subject of several recent investigations, both theoretical (eg. Bernardeau, 1992)
and observational (eg. Gaztanaga, 1994). In the simple scaling hierarchy, the quan-
tities Qs = £;/&] ! are of importance since they should be independent of scale.
The analogous quantities for the averaged correlation functions (29) are
SV = &
WV)=55 J>2 (31)
2

The volume is usually taken as a sphere, weighting all points within the sphere
equally (ie: a “top-hat window”). This equation has been the subject of numerous
tests, from the point of view both of the observed galaxy distribution and N-Body
simulations. The quantities S; can be calculated analytically within the quasi-
nonlinear gravitational instability picture (Bernardeau, 1992).

The case J = 3 is called the skewness ratio of the distribution:

&(V) _<(x; V)P >
zi(V)  b(x; V)P

53(V) = (32)

where

s(x;V) = % / 8(x + r)Wy (r)dr (33)

is the quasi-linear regime density fluctuation field smoothed over the window V.
Looked at this way, we see that S3(V) is a measure of the skewness of the density
fluctuations relative to their variance. For a power law power spectrum of Gaussian
initial fluctuations, quasi-linear perturbation theory yields

4
S3(R) = 37 —(n+3), P(k)oxk® (34)
and this is independent of scale (Juskiewicz and Bouchet, 1991). It is not scale

independent for a general spectrum such as a CDM initial spectrum, and so some
care has to be taken when making comparisons between theory and observation.
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Gaztanaga (1994) has made an extensive analysis of the distribution of
galaxies in the APM survey, and is able to deproject the results to obtain estimates
of S for values of J = 1,...,9, covering a range of length scales from 0.5A~! Mpc. to
~ 10A~! Mpc. depending on the value of J. On the largest scales (R > 7Th~! Mpc.:

SAPM — 316 +£0.14
SAPM — 20.6 + 2.6
SAPM — 180 + 34 (35)

The value of S5 fits equation (34) for n = —1 which seems appropriate for this range
of scales, and the values of S3 and S, are consistent with numerical models for the
same n = —1. This is at least encouraging for the gravitational instability picture
for structure formation. The results are remarkable in particular because they make
no assumptions about how the light distribution traces the mass distribution. The
theoretical estimates of the S; are based simply on gravitational instability and so
the relationship (34) that is derived concerns the mass distribution. Yet what is
measured from the APM survey concerns the luminosity distribution.

In N-Body models the scaling relation (31) can be tested for a variety of
initial conditions. This has been undertaken by Lucchin et al. (1993) for scale-free
Gaussian initial conditions having power spectra P(k) o k™ withn = —3,..., +1, for
the moments up to J = 5. For the cases n = —1,0,+1 where the analysis is most
reliable, they do indeed find scaling laws of the form £; oc & in close agreement
with equation (31). However, there do seem to be small but systematic deviations
in that their measured scaling slope: p is manifestly different from J — 1.

4.4 The lognormal and other distributions

Looking at the moments of the cell count distribution is interesting because of
their close relationship with the higher order correlation functions. However, it
still remains to discover what the actual distribution of cell counts is on various
scales. There is certainly enough data in the large sky- projected catalogues to get
at the distribution projected on the sky, but this falls somewhat short of determining
the true spatial distribution.

There have been several suggestions on this point. Historically, Hubble
(1934) suggested that the projected galaxy counts followed the lognormal distribu-
tion
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1 (log N — log N)?
PLN(N) = \/-2;6N €xp ‘_—_ﬁ—. (36)
where the variance o is
o® = 2(log N —log N) (37)

Arguments were first given by Coles and Jones (1991) why one might expect such
a distribution on the basis of a pseudo- nonlinear theory. The underlying driving
force behind this model is that the peculiar velocity distribution remains remarkably
Gaussian even during the nonlinear phases of evolution. Why that should be so
remains rather a mystery. In any case, the subsequent attempts to verify this both
in terms of the data and in terms of theoretical models of large scale clustering have
proved surprisingly successful considering the simplicity of the distribution (Kofman
et al., 1994).

Jones et al. (1993) derived the lognormal distribution for the strongly
nonlinear regime on the basis of the measured scaling properties of the moments of
the galaxy distribution and presented some scaling rules for the parameters of the
distribution as a function of cell size. These predictions have not yet been verified
in any detail.

Saslaw and Hamilton (1984) have argued for a distribution function

Psu(N) = w [N(1 = 8)+ Ng|" ™ - tFa-prensl (38)

I have called their b parameter 8 in order to avoid confusion with the bias parameter.
This parameter is interpreted as being the ratio of gravitational correlation energy
to the kinetic energy in peculiar motions. It appears that this distribution fits the
particle distribution in N-body models rather well, provided 3 is scale-dependent,
and it also seems to fit well with the data in projected galaxy catalogues (Sheth et
al., 1994).
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Chapter 44

Deviations from the Standard
Model

1 Modelling the Universe

1.1 Gravitation as the Dominant Force

We believe that for most of its history the Universe has been dominated on large
scales by the force of gravity. Gravitation has been the force responsible for organ-
ising the material into the large structures we see, and into the galaxies and clusters
of galaxies. The details of galaxy formation, however, are more complex because it
is obvious that complex gas-dynamical processes have played a key role: we see gas
and stars in galaxies today.

So, as long as we restrict out attention to scales larger than galaxies we
should be able to generate models for the origin of the large scale structure we see
today using only the theory of gravitation.

This raises two questions: (a) do we have to use Einstein’s Theory of
General Relativity, or can we get away with Newtonian gravitation? and (b) can we
solve the problem on a computer? The first question is one of complexity: Einstein’s
equations are difficult enough to handle even in the case of homogeneous cosmolog-
ical models. What hope could we have of dealing with inhomogeneous models? The
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second question faces the fact that the basic equations, whether Newtonian or Ein-
steinian, are likely to be very difficult to handle and so the computer may be an
essential tool.

First, as regards Einstein’s theory there is no doubt that we should use
this theory if at all possible. However, there are formidable difficulties in using this
approach even on a computer and so we should be gratified that most problems can
be attacked with the simpler Newtonian theory of gravitation. The conditions under
which Newtonian theory should provide a good approximation to the evolution of a
self-gravitating system like the Universe are relatively clear.

1.2 N-Body Simulations

Although it is in principle possible to model the Universe as an expanding gas using
the equations of gadynamics, the demands on computer time to do that are generally
too great to warrant this approach. Hence it has been customary to exploit the fact
that the Universe is dominated by the force of gravity and replace the continuous
mass distribution by a “gas” of self-gravitating particles. The hope is that this will
represent a good approximation at least to the formation of large scale structure,
and that at some future time we can modify the particle interactions to mimic
gasdynamic behaviour on smaller scales. Modelling the Universe on a computer is
not at all a recent idea, it goes back to the early work of Aarseth in the mid-1970’s.

One of the key problems facing attempts to model the Universe numer-
ically is to make the link between the idealised point masses in the model and
the objects we see - the galaxies. Ideally we should like to improve our models,
painting more physics on top of the simple selfgravitating agglomeration of parti-
cles. However, that physics does not come cheaply since it involves at least adding
gas dynamical processes to the simulations and to go the whole way would involve
adding some model for the star formation process too. Failing that we introduce the
convenient notion of “biasing” in order to relate the mass and the light distributions
in our models (see section 5).

It is customary to follow the evolution of N-Body models in comoving
coordinates: a coordinate system that expands with the background universe.

x= o (1)
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where a(t) is the scale factor at time ¢ for the chosen cosmological model (equation
(10). In these coordinates the overall size of the simulation appears constant, the
expansion has been taken out, but can easily be put back just by multiplying all
length scales by a(t). In such coordinates, the momentum of a particle and its rate
of change can be written

dp = —-mVp. v (2)

where m is the particle mass and ¢ is the fluctuating part of the gravitational
potential, given by Poisson’s equation in the comoving coordinate system:

V?p = 4nGa’[p(x) — p(t)] = 4xGp(t)a’8(x, )
5(x, ) = P01 p(x,t)

o ©

In this equation, G is the gravitational constant as usual, and p is the mean density
of the universe.

The problem boils down to how to solve the Poisson equation. The
earliest attempts to do this took the direct approach and find the force on a given
particle as the sum of thé forces exerted by all other particles. With N particles
this meant that the computing time increased as N? and this provided an important
limitation on the number of particles that could usefully be used.

One way to improve on the direct interaction approach is to use the
hierarchical “Tree Algorithms” (Barnes and Hut, 1986). These algorithms recognize
that the contributions to the force on a given particle from the more distant particles
can be approximated using multipole expansions. In order to systematise this,
the particles are grouped into a hierarchy that has the structure of a tree. In
this way the groups of particles making different contributions to the force can be
rapidly identified. This results in a substantial improvement in performance for large
numbers of particles and the speed of the method increases with N log N rather than

N2,

A simple alternative is to use a Fourier series to solve the Poisson equa-
tion, thereby benefitting from the use of the Fast Fourier Transform algorithm. The
principle is simple: the Fourier transform of equation (3) is
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(k) = 47era

8(k) (4)

where 4 denotes the Fourier transform of the function u. If a function is defined on
N grid points, its Fourier transform can be calculated in Nlog N operations, and
so the potential is computed in far fewer than the N? operations required in doing
a direct double sum over all particles.

Implementing this is straightforward: we introduce a three dimensional
mesh covering the density distribution and calculate the potential at the mesh points.
We have to remember that the particles can lie anywhere within the mesh, but the
potential is evaluated on the grid points. To do this' one writes equation (3) in
terms of the particle representation of the simulated density field. Assume that the
N particles are placed in a cubic box of side L, then

V3¢ = 4rGn(x,t) = 47G imé(a)(x - %) — M M= f:m-
- ] - e t L3 ’ - paet 3
$(x) = ap(x,1) (5)

One can then write the Fourier representation of the density field n(x) and the
potential ¢(x) as

n(x) = %—5 Z npe
¥
#(x) = Li % e

k=22 (qx,qz,qa) G €2+ (6)

The triples (¢1, g2, ¢3) are all triples of positive integers. The gravitational potential
is then simply

B(x) = ~4"G PIPIRL B )

Jj= lk;éo

The term k # 0 (the “DC component”) is excluded since the mean density has been
subtracted to create the fluctuating density field.

!Here I simply follow the paper by Hernquist et al., (1991)
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This sum is easy to perform, and there are several sophisticated tech-
niques that can make evaluating the sum more efficient (eg: Hernquist et al. 1991).
Once the potential has been calculated the particles can then be moved for a short
timestep and the process begun over again.

This kind of N-Body scheme is referred to as a “PM Code” (Particle-
Mesh): the particles move around on the mesh used for providing the grid points
at which the potential is calculated. Details in the potential and density field that
are finer than the mesh are not resolved and this is the inherent limitation of this
approach. There are various modifications to this simple PM scheme, combining the
PM scheme on large scales with direct particle-particle interactions on the smaller
scales (“P®M), though the improvement comes with a price in paid in terms of
computation time.

When assessing the relative merits of the various schemes for performing
N-Body integrations it is important to bear in mind any differences in boundary
conditions. By their very nature the Fourier methods have periodic boundary con-
ditions. This means that the contributions from very large scales is neglected and
also that the mean density of the box is the mean density of the Universe. Thus is
not easy to model an overdense or underdense region with such a code. The direct
particle codes generally have a vacuum outside of the boundary, and so the geome-
try of the simulations is spherical. Having vacuum on the outside of the simulation
sphere is also unrealistic. It is also important to remember that in the direct parti-
cle methods the potential is often smoothed on small scales so as to avoid spending
computational effort on close encounters. This “softening” of the potential can have
serious effects on the small scale behaviour of the models.

The largest simulations to date are probably those of Gelb (1992) in
which there are 256 particles.

2 Small Deviations

2.1 Linear Perturbations

We have already written down the definitions of the fluctuating component of the
density field (equation 3):
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§(x,t) = ”;’(‘;)‘) Y ®)

Here, x represents spatial position in a coordinate system co-expanding with the
background cosmological model, ie: x = r/a(t) where a(t) is the background scale
factor. By doing perturbation theory we can derive an equation for the growth
of §(x,t). This growth rate depends on the equation of state of the matter, and in
general on the scale of the perturbation®. In the simple case of a dust (zero pressure)
Universe, which is appropriate to the situation after the epoch of recombination,

5+ 2%5 —arp(t)s (|6 < 1) ©)

The general solution of this takes the form
6(x,t) = A(x)Di(t) + B(x)Ds(t) (10)

where D;(t) and D(t) are linearly independent functions that depend on the pa-
rameters of the cosmological model. In the specific case of an Einstein de Sitter
Universe:

5(t) = At} + Bt (11)

where A, B are independent of time, but depend on spatial position and are deter-
mined by the initial conditions. Note that this solution becomes unbounded both in
the past and in the future, and so the approximation breaks down at these extremes.

It is generally argued (and with good reason) that the decaying B-term
in equation (11) (or by convention the D, term in the general equation (10)) must
be exactly zero, otherwise the Universe would not have been homogeneous in the
past. This has some rather important implications.

2.2 Peculiar Velocity Fields

The gravitational effects of the density fluctuations will be associated with deviations
from uniform Hubble flow. Recalling that the comoving coordinate x of a particle

2gee Stefan Gottlober’s lectures in this volume for a detailed discussion
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at position r is given by r = a(t)x, we can write the velocity of the particle as
u = I = ax+ax. Since the Hubble expansion at place r is vy = (d¢/a)r = ax we see
that the deviation from uniform Hubble expansion in these comoving x-coordinates
is just

v(x,t) = a(t)x (12)

This fluctuating component of the velocity field is given by the continuity equation

Vv= —a(t)%f— = —a%& (13)

where we have written equation (10) as § = A(x)D(t) for the no-growing-mode case.

If we assume that the fluctuating velocity field is irrotational, then it is
the gradient of a velocity potential: v = —Vx® and equation (13) is just the Poisson
equation whose solution in this case can be written

f(Q)H y—Xx 8(
4r J fy—xP

y)d’y (14)

v(ix)=a

The function f(€2) depends on the cosmological model. What is interesting to note
about this equation is that the velocity field is strongly correlated with the density
fluctuations: indeed we can determine either one from the other. This can be used
as a tool to map the Universe, an important point that we shall return to later.

2.3 Shear and Vorticity

The result expressed in equation (14) depends on a couple of assumptions: firstly
that only the growing mode be present and secondly that the velocity field be irro-
tational. It is entirely reasonable to assume that the decaying mode perturbation is
in fact zero, but what about the irrotational flow assumption?

Equation (13) is an equation for only one derivative of the velocity field.
There are 9 derivatives Gv;/0z; and this equation merely states the value of the
trace of this tensor (the so-called dilatation). Where do the other 8 derivatives
come from? Looked at another way, if we write the velocity firled as the gradient of
a potential, v = V@, we can write equation 13) as



582

Ve = —a%& (15)

and we have an equation for only one of the 9 independent components 8*®/dz;0z;.
How do we determine the other components?

In linear theory these other components are in fact determined by the
boundary conditions at the initial time: they do not depend on the growth of the
density perturbations and they merely follow the cosmic expansion, conserving an-
gular momentum. In linear theory they are independent of the gravitational field
because the gravitational force is derived from a potential. A consequence of this
is the decay of primordial vorticity: any vorticity that existed say at the time of
recombination would have been far greater in the past, thus violating the small per-
turbation assumptions upon which the model is predicated. Thus we assume there
was no primordial vorticity for much the same reason that we assume there was no
decaying mode in the perturbations. This was a subject of great debate in the late
1960’s and early 1970’s (Jones, 1976).

The situation with the shear is a little more complex since shear is gen-
erated by gravitational forces in the nonlinear regime: shear generation is a second
order effect. So while we could easily argue that there is no primordial shear, we
have to admit the possibility that shear is generated through gravitational tidal
fields. This process is in fact thought to be the origin of galactic spin. However, it
is not given by equation(14) which is an equation valid only in the linear regime.

3 Random Fields

The distribution of matter in the Unvierse does indeed show structure, but this
structure is painted on an otherwise random density field. The question is how
to best describe this situation: we need a mathematical description for a spatially
random density distribution.

3.1 Specifying the Fluctuations

The cosmic density field at some time p(x) can been decomposed into its mean value
po, which is independent of position, plus a fluctuation:



p(x) = po + 6p(x)
<ép(x)> =0 (16)

The angular bracket here denotes the simple spatial average. The relative density
fluctuation can then be defined as

8(x) = % (17)

which is a dimensionless random (scalar) function of position.> Specifying a random
function of position is a technically difficult problem that is the subject of numerous
texts, so here it will suffice to take a heuristic approach.

There are several ways of describing §(x). One way is statistically: we
can specify the joint probability P(8,,6,...,6n) of finding values §; = §(x;) of the
density fluctuations at the points x;, = 1, ..., N. This joint probability distribution
may in turn be specified in terms of its statistical moments, one of which is the
important two-point correlation function telling us how, on average, the density
fluctuations at points a dsitance r apart are related:

C(r) = §(x)6(x+r) (18)

The overbar denotes the probability average. For a function F(éi,...,8y) defined at
N points, this is given in terms of the joint probability distribution P(éy,...,8n) by

F= / F(61,., 68)P (81, ., 63)db; . .. dé. (19)

This probability average is an average over independent realizations of the random
process 6(x). If the value of the probability distribution P(6i,...,6x) depends only
on the relative configuration of the points, but not on their spatial location, the
random process §(x) is said to be spatially homogeneous. In this case we might be
tempted to say that the probability average (19) is the same as the spatial average

Jim = [ P60+ y), .. 600+ ¥)iy (20)

3Note that from the point of view of General Relativity §(x) is not a proper scalar: it depends
on the coordinate system being used. In particular we could use space-like hypersurfaces where
6(x) = 0 everywhere!



584

However, this conclusion depends on the existence of the limit and its not depending
on the shape of the volume V: this is a very deep question rooted in ergodic theory.

The correlation function (18) must satisfy

Irﬂgnm C(r)=0
C(r)=C(-r)
C(r) <C(0) (21)

and in particular there must exist a positive function P(k) such that

C(r) = / P(k)e**dk. (22)

This function is called the Spectral Density or Power Spectrum of the random process
8(x). Obviously not all functions C(r) can be correlation functions. If in addition

C(r)=C(r) (23)

the random process §(x) is said to be isotropic.

3.2 Fourier representation

An alternative way of specifying a random field is via its Fourier representation.
Essentially, we try to represent the random function as a sum of independent sine-
waves in much the same way as we would represent an ordinary (non-stochastic)
function in terms of its Fourier integral or a Fourier series. However, if the random
field 6(x) is statistically homogeneous,the integral

[ 18601 (24)

taken over all of space need not be bounded and the usual Fourier representation
will not work. This leads us to consider a function §(x, V) defined on a finite volume
V such that

§(x) = 8(x), xeV
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=0, xgV. (25)

The Fourier integral of this function exists:

Ak, V) = 217 [ 8, V)e*ax (26)

where the integral is taken over all space. The problems arise because the limit of
this integral as V — oo diverges. This means that strictly speaking we cannot write

a(k) = 5713 [ 8(x, V)exax
5(x) = [ e™Xa(k)dk ‘ @7)

as a Fourier transform pair, since the first of these integrals does not exist. Nev-
ertheless, these two equations are commonly seen in the literature.® Note that the
amplitudes a(k) are complex numbers.

3.3 The Power Spectrum

The Fourier transform of the correlation function C(r) must exist and it is positive
(see equation (22) - if this were not the case the function C(r) would not be the
correlation function of a stationary random process). Let us allow ourselves to be
less than rigorous and accept equations (27) as being meaningful. The function
a(k) is then a random function of position in k space, and we can talk about the

4It may be of interest to give the formally correct version of these equations. If we consider an
elemental volume dk of k-space we can define a quantity denoted as dZ(k) by

= gl [ (C ) (P (P

We have written this out relative to a specific choice of coordinate system in which x has coordinates
(21, 2, z3). The inverse of this integral exists and can be written as:

8(x) = / X X4z (x) (29)

where the integration is over all wavenumber space and the integral is to be regarded as a stochastic
Fourier-Stieltjes integral. These equations are the formally correct versions of equations (27).
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correlations between the amplitudes @ at two different values of k. It turns out that
the amplitudes for different values of k are statistically independent, and so we can
simply write

< a*(k)a(K) >= P(k)s®(k — k). (30)

(In this context, §®)(x) is the Dirac delta function in three dimensions.) This is
just the reason we do Fourier analysis of ordinary (non-stochastic) functions: the
functions are resolved into independent components.

It is this statistical independence of the amplitudes for different wave-
numbers that makes the Fourier representation of the density fluctuation field so
useful: it means that the statistical properties of these amplitudes is described by a
single function - their variance. It is an important theorem that the function P(k)
in equation (30) is the same function appearing in the Fourier representation of the
correlation function, equation (22): it is the spectral density, or power spectrum, of
the process §(x). *

We have seen that the mean square of the amplitudes is given as a func-
tion of frequency by the power spectrum. However, to do anything useful we need
to specify their underlying statistical distribution. Certainly the most convenient
assumption is that these amplitudes are selected from a Gaussian distribution whose
variance is given by the power spectrum. Remember that the amplitudes are com-
plex numbers (they arise out of a Fourier transform). The relationship between the
real and imaginary part of the amplitude is called the phase. If we write the com-
plex amplitude a(k) in angular coordinates in the complex plane a(k) = la(k)|e®,

5Note that P(k) is indeed a density: it is the contribution of modes of wavenumber k, per unit
volume of wavenumber space, to the total variance of the random process §(x). This can be seen
by noting that equation (22) for zero lag r is just

5@ = / P(k)dk. (31)

The left hand side is the variance of the random process 6(x) and so we see that P(k) is the
contribution to this variance from wavenumbers in the interval [k, k + dk]. Note that P(k)dk is
dimensionless. If the power spectrum depends on the wavenumber k, and not on the direction of
the vector k, we can write

P(k)dk = 47k*P(k)dk = 4xk*P(k)dInk. (32)

So in the rather usual case when the power spectrum depends only on the magnitude of the
wavevector, 4rk3P(k) is the contribution to the variance of the fluctuations per unit logarithmic
interval of k.
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then under the assumption that the real and imaginary parts of the amplitudes are
Gaussian, the modulus |a(k)| is Rayleigh- distributed and the phase 8 is uniformly
distributed.

3.4 ¢(r), P(k), variances and so on.

The fact that the power spectrum and the correlation function are a Fourier trans-
form pair means that we can talk in either language: it is generally a matter of
taste. If the random process is homogeneous and isotropic:

P(k) = g [ E) e = o [T )

sinkr ,

rédr (33)

The inverse form is easily calculated and is left as an exercise. The variance of the
fluctuations per unit logarithmic interval of k (see equation (32) is then

AX(k) = 4 P(k) = —k3 [ e )’“”l b . (34)

If {(r) o r~7 then A(k) o k7.

3.5 Normalization

In order to compare numerical models with the observed Universe, we have to stop
the evolution of the numerical model at some appropriate time that can be regarded
as “today”. The variance of the galaxy counts on a scale of 82~! Mpc. is observed
to be unity, and so if the galaxies really traced the mass distribution, we could
use this observation to stop the N-Body model: “run until the variance of the
density fluctuations on a scale of 8h~! Mpc. reached unity”. However, galaxies do
not necessarily trace the mass, and so we need an assumption to relate the observed
fluctuations in galaxy number density to the (unobservable) fluctuations in the mass
density. For simplicity, I shall confine the rest of this section to a discussion of the
case () = 1.0.

The hypothesis that is generally adopted is that the variance in the fluc-
tuations in the mass density are proportional to the variance of the fluctuations in
the galaxy density. Symbolically:



= =pf (35)

The constant of proportionality b is called the bias factor, we shall discuss the
motivation for this model in more detail in section 5. Since on scales of 84~ Mpc.
the lefthand side is unity, our models have to be stopped when

(‘s—”) =1 a=1 (36)
P ]/ gh-1 Mpec. b

We shall see how to specify the variance of the density fluctuations in terms of the
power spectrum below (see equation (39) below). Although this is straightforward
in principle, in practise the situation is a little more complicated. The normalisation
is done using the power spectrum of the initial conditions scaled to the present using
linear theory, rather than the power spectrum at a given time in the simulations.

4 The Spectrum of Fluctuations

4.1 Windows and Spectra

Physically, we can measure neither the value of the density fluctuations, §(x), at a
point nor the associated the Fourier amplitude a(k). Because our instruments have
finite resolution we always measure an average of §(x) relative to some measurement
window. In general physics problems, this measurement window has a response
that varies as a function of distance from the point of measurement, the specific
dependence being a characteristic of the measurement apparatus.

The simplest window function is the hard sphere with which we measure
with equal weight all values of the field within a specific radius R, and nothing
outside of that radius. This is the so-called top hat window. We can imagine putting
spheres of radius R down at random places in the sample volume and recording the
mass M enclosed in every sphere. There will be a mean mass < M > for this sample
and the variance of the mass is

- -

oM
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It can be shown that this is expressible in terms of the power spectrum of the process

§(x) as

(6M ) / W2(kR)P(k)dk. (38)

where the window function W is given by

W(kR) = ~—=(sinkR — kRcoskR). (39)

(’vR)3

This window function is just the Fourier transform of a uniform spherical volume,
appropriately normalised. W(kR) is proportional to the Bessel Function j;(kR): it
is positive until Ky ~ 2r/R and then oscillates. Hence the main contribution to
the integral (38) comes from low frequency wavenumbers k& < 2r/R. The higher
frequencies all oscillate within the top-hat volume and so their contributions cancel.

If we take a simple power law power spectrum

P x k" (40)

then it is clear that the integral (38) can be estimated as

sM\?
M\ gp-(n+3)
( 7 ) R (41)

and expressing the mass contained in the top-hat as M oc R® we have in the standard
“sloppy” notation for the variance:

(‘;’f ) ~ M-3} (42)

This is a useful way of thinking of the random density field associated with a power-
law power spectrum of index n. The variance in the density fluctuations averaged
over spheres containing a mas ~ M falls of as M—("*3}/6, Note that in the special
case n = 0 (white noise fluctuations) we have opy x M -1, this corresponds to the
familiar “v/N” fluctuations.
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4.2 The Harrison-Zel’dovich Spectrum

The power spectrum of density fluctuations in the Universe is determined by the
physical processes that generated them - this is one of the outstanding problems
concerning the physics of the earliest stages of the cosmic expansion. In the absence
of any generally accepted theory, it is generally assumed that the power spectrum
of the fluctuations depends only the magnitude of the wavevector k and not its
direction, and furthermore we generally assume a power law form

P(k) o k* (43)

for some index n (the “spectral index”. A special case of this is the Harrison-
Zel’dovich spectrum which has the form

P(k) x k (44)

There are various reasons why such a simple power law form might be expected on
the basis of inflation theories for the origin of primordial fluctuations. This form of
the spectrum is distinguished physically by the fact that the potential fluctuations
associated with such density perturbations all have the same amplitude, independent
of the mass scale. In this sense, the Harrison-Zel’dovich spectrum is truly scale-
independent and is characterised by one number: the amplitude of the potential
fluctuations.

If we use the Harrison Zeldovich spectrum (44) in equation (42) for the
mass fluctuations we find that

—61-%{— o M2 Harrison- Zel’dovich (45)

The fluctuation in the gravitational potential associated with this mass fluctuation
is
oM M M

§¢ x GT ~ GYE ~ G.M™¥3 M*? . constant (46)

independent of M. (The last step follows because M o« R3). The fluctuations in the
gravitational potential in a density distribution described by the Harrison Zel’dovich
(n = +1) power spectrum are independent of scale.
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Figure 1: Power Spectrum of galaxy clustering as determined from the
CfA Redshift Survey. The two lines represent standard CDM models
having different normalizations. No one model can fit the entire range

of scales. (After Vogely et al., 1992)

This is an important feature of the Harrison-Zel’dovich spectrum. This
is the spectrum that is “predicted” by many (though not all) inflationary theories
for the very early Universe. This scale independent amplitude must be a constant
of nature that is to be determined from the theories. It determines the epoch at
which structure in the Universe formed.®

4.3 The observed power spectrum

Comparing the Harrison Zel’dovich spectrum with observation is not that easy. Ob-
serving the n = 1 part of the spectrum involves going to enormous scales, and the
only realistic hope here is to measure the spectrum on those scales via the spectrum
of microwave background fluctuations. Determining the spectrum on smaller scales
can be done from galaxy surveys: (figure 1) shows an example of this and the com-
parison with some models. To make this comparison it is necessary for the models

SPower law spectra have divergences either on large scales or on small scales if they extend over
infinite range. The n = 1 spectrum has the unique property of doing violence to the geometry of
space-time on both large and small scales!
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to say something about the galaxy formation process in order to relate fluctuations
in the galaxy distribution to fluctuations in the mass distribution (biasing). Hence
it is only possible to check the Harrison Zeldovich spectrum for consistency on these
scales.

Figure 1 shows the data and compares with tthe predictions of a stan-
dard Cold Dark Matter cosmological model. What is clear is that, relative to this
model, there is a lot of power on large scales (small k). If the models are scaled
to fit the small (nonlinear) scales, they have too little power on large scales. Con-
versely, if the fit is adjusted to the largest scales we have a problem on galaxy scales.
The excess power in the projected two-point angular correlation function from the
APM survey (Maddox et al., 1990) is further evidence for this. Most importantly,
the quadrupole component of the Microwave Background anisotropy indicates more
power on large scales than is consistent with a standard CDM model normalised to
a scale of 84~! Mpc. The simplest way of dealing with this problem is to abandon
the idea that n = 1 and make n somewhat lower. This is referred to as tilting the
power spectrum.

However, given our ignorance of the galaxy formation process, it is ar-
guable that the large scales should be fitted with the Harrison Zel’dovich spectrum
and that we should not be too bothered about a factor two or so disagreement in
the small scale amplitudes.

4.4 Evolution of the spectrum

Perturbations stop growing under the influence of gravitation when they enter the
horizon during the fireball phase of the cosmic expansion. Moreover, the Harrison-
Zel’dovich spectrum is such that all perturbations enter the horizon with the same
amplitude. Thus the variance of the amplitude of the density fluctuations is scale
independent for that range of scales such that the perturbations enter the horizon
during the fireball phase.

What this means is that, for an initially Harrison Zel’dovich spectrum,
the spectrum of fluctuations that emerges from the fireball at recombination has
constant amplitude on small scales, and the primordial spectrum on large scales.
This is described by a Transfer Function T(k) which maps the primordial P(k) x k

spectrum into the postrecombination spectrum:
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EP(k) = A (&)4 T?(k)

1
T*(z) = 27 47
N (1 + [az + (bz)3/2 + (ca:)’]") ! )

The value of the amplitude A is fixed by the normalisation of the present day fluctu-
ations in mass density on scales of 84! Mpc. (cf. equation (36)). The equation for
T(k) is a fitting formula and in the case of the standard Cold Dark Matter model
with Qp = 1 the coefficients have the values

a=6.4~h"" Mpc. b=23.0h"! Mpc. c¢=1.7h""! Mpc. v=1.13 (48)

(Bond and Efstathiou, 1984; there are several other variants on this formula in the
literature). The central issue about this formula is that for small scales (large k)
T?(k) o k=* and so k*P(k) ~ constant, whereas on large scales (small k) T?(k) ~ 1
and P(k) ~ k as per the Harrison Zel’dovich spectrum.

5 Biasing

5.1 Relating Mass and Light

We do not know the relationship between the distribution of light in the Universe
as traced by luminous galaxies and the distribution of mass. It would be perverse
indeed if they were not related: we would then have dark clusters and the peculiar
motions of galaxies relative to the Hubble flow would not be related to the density
field as determined from the galaxies themselves. Of course, we might eventually
hope to check observationally for the existence of substantial amounts of nonlumi-
nous gravitating material: we might use gravitational lensing to do that.

Failing any direct link between the distributions of luminous matter and
the mass distribution, we are forced to postulate a relationship that might be checked
a posteriori. The conventional assumption is that the fluctuations in the light distri-
bution are proportional to the fAuctuations in the mass distribution. Symbolically:

_a
b= (49)
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b is called “the bias parameter”. Here ! represents the luminosity density and p
represents the mass density. In fact, our catalogues provide us with galaxy counts
and we like to think about the mass distribution, so this last equation is frequently
written

_ (6N/N)gat

b= "M

(50)

where N is the galaxy number in a given volume and M is the mass in that volume.
These last two equations are simply a rephrasing of equation (35).

5.2 Biasing mechanisms

There are many possible reasons why b might not be unity (see Dekel and Rees,
1987). Galaxy formation (the creation of luminous systems) may be a phenomenon
that is nonlinearly related to the local density fluctuations, the efficiency of galaxy
formation may depend on environment through nongravitational effects such as the
photoionisation of the pregalactic intergalactic medium by QSO’s, or other non-
gravitational forces may control the galaxy formation process. Once we know more
about the way in which galaxies formed we should be able to predict a value for b,
but that seems to be some way off.

We have seen that N-Body models must be adjusted so that they give the
correct mean deviation from the Hubble flow when the clustering in the model has
grown to a level corresponding to what is observed (equation (36)). This adjustment
is justified by the fact that the clustering in the model refers to the clustering in
the mass distribution, not the clustering of the light distribution - the models have
nothing to say about light. In order to make that link in these models we introduce a
naive “light formation model” using a single scale-independent value of b such that
when the model has the “correct” non-Hubble motions, it also has the “correct”
amount of clustering on all scales.”

A simple recipe for applying biasing to N-Body models is threshold bias-
ing in which only those density fluctuations having amplitudes greater than a certain
threshold value on some scale will lead to the formation of luminous material. For

It is not of course necessarily the case that there exists such a b in any given model. It is
simply fortunate that for those models of cosmic structure evolution of primary interest we can in
fact do this. Maybe galaxy formation is not so perverse after all!
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convenience, this prescription is applied to the starting conditions in the N-Body
model while the density fluctuations on all scales are still linear. This process is
illustrated schematically in figure 2 where we show the distribution of density fluc-
tuation amplitude along a line. The distribution has been smoothed to the scale
on which the bias is to be applied, and the points of interest are the peaks where
the density fluctuations rise above some threshold. These are the putative sites of
formation of the galaxies which we will use to compute the galaxy clustering once
the model has been evolved.

The threshold for this biasing is given in terms of the variance of the
fluctuations, o, in the starting conditions:

Sbias = bo (51)

This notion was introduced in a very important paper by Kaiser (1986)® who showed
that in linear theory the clustering correlation function of the points above the
threshold was simply related to the correlation function of the underlying random
process by

Ebinsed(r) = €76V 1, ~B%(r) (B> 1) (52)

The higher the threshold relative to the variance, the rarer is the galaxy formation
process and the more clustered are the objects that form. Threshold biasing boosts
the correlations.? This simple idea is certainly very attractive. Not only does it solve
a problem in N-Body models by providing another free parameter which can be tuned
to related velocity fields and clustering, but it has some rather nice consequences
for galaxy formation. Elliptical galaxies are more clustered than spirals and are
found mainly within rich clusters of galaxies. This might be explained by saying
that different values of the bias threshold lead to different types of galaxy. Indeed,
the suggested values for the standard CDM models were (Frenk et al., 1990)

bspirats = 1.5 bEitipticats = 2.0 (53)

Since the higher threshold is more likely to be achieved where there is some un-
derlying larger scale clustering (see figure 2) this suggested a natural reason why

8Kaiser, in this paper and in discussions leading up to it, was probably the first person to
suggest the need for biasing and to make the idea explicit in terms of threshold biasing.

%A lot of work was done in the late 1980’s discussing different biasing prescriptions (“peak
biasing” for example). Many papers appeared on the statistics of thresholded density distributions
and peaks in random fields, the “classical” paper being that of Bardeen et al. (1986), now known
simply as “BBKS”.
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Figure 2: Threshold biasing in a 1-dimensional random field

ellipticals should be found more often in clusters than spirals. Of course, there is no
mechanism here, but that is seen as a problem of the details of the galaxy formation
process.

5.3 Measuring b (or b/Q°%F)

In practise we would replace §1/1 by the variance of the luminosity distribution oy(r)
on some given scale and §p/p by the variance of the mass density on the same scale,
om(r):

_ alr)

b, = ()’ (54)

As a first approximation we could assume that b is a universal constant, though we
would not be surprised if eventually it were found to be scale dependent. In a worse
case we might envisage that b depends on position as well as scale.

From the point of view of observation we might be able to determine
ai(r) from galaxy counts and o,,(r) from the dynamics of the non-Hubble flow of the
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galaxies. In this case we fix on some convenient scale where we can reasonably relate
the non-Hubble flow to the local mass density. Conventionally we pick 82~! Mpec.
for this scale since the variance of the luminosity density averaged over spheres of
radius 84~! Mpc. thought to be about unity and therefore nominally in the so-called
“linear regime”.1?

There is a subtle point here: the variance 0;(8k~' Mpc.) refers to the
variance in real space - not redshift space. So determining this requires a model
of the distortion of the real space by the nonHubble redshifts. If we do the job
statistically, we can apply the correction due to Kaiser (1987):

290.6 191.2
2 (acd ———— ——n.
"'(')'(Ha n t5E

r

Jotut) (55)

relating the variance of the luminosity in real space to what is observed in redshift
space. It should be emphasised that this is a linear theory result and so we would
not want to apply it to scales where o; were greater than unity.

In hindsight, it might in fact have been wiser to take a larger scale where linearity is more
certain.
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Chapter 45

Peculiar Velocity Fields

The point of making a redshift survey is to locate the galaxies in space. This allows
a direct determination of the spatial correlations of galaxies and in addition allows
us to make a deeper study of the galaxy motions relative to the matter distribution,
hopefully pointing a finger at the value of Q.

The first approximation to the spatial distance of a galaxy along the line
of sight is simply to use the Hubble Expansion Law. Because galaxies have non-
Hubble velocity components, this simple reconstruction of the three-dimensional
distribution is distorted by the addition of a velocity component that correlates
with the local density. This can be seen in the de Lapparent slice picture shown in
figure 1: there is a strong radial pattern in the distribution of the points.

Several techniques have been devised for improving on this. One obvious
strategy is to use additional information about the distances to the galaxies, such as
a redshift independent distance indicator. That does not solve the problem since the
inaccuracies of in distance indicators preclude making a non distorted map directly.
The alternative method is to use the fact that peculiar velocities and densities are
correlated to reconstruct a map that is dynamically self-consistent.
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1 The Velocity-Density relationship

It can be shown (see Peebles, LSSU equations (8.2) and (14.2)) that in linear theory
the relationship between the peculiar velocity field v and the fluctuating gravita-
tional force g is

2
= 3Hapa® M

v
where, by virtue of the perturbed Poisson equation, the fluctuating force g is related
to the distribution of relative density fluctuations §(x) = ép/p:

() = Ga()t. [ s 8(x,1) X @

Note that equation (1) is perfectly simple: if o = 1 then 2/3Hp is just the age of
the Universe, and so this equation simply says v = gt.

The mass density fluctuations 8p/p are supposed to be related to the
fluctuations én/n in the observed galaxy density via the bias parameter b:

p 6n=b6_p

el @)
Obviously b could be a function of the local density, b = b(n), or even worse it might
not be a universal function. At this first exploratory stage the simplest assumption
to make is that b = constant, and to try and determine this constant as yet another
one of the constants of cosmology. The iteration method decribed below allows b to
be one of the parameters involved in making the fit and so & (in fact 52-%¢) can be
determined self-consistently. If it should turn out that the data analysis gives rise
to inconsistencies with prior expectations based on models, then this is obviously
the first place to look for a resolution of the problems.

So what we observe is
2 Q% X' —x bn(x) ,
3H, b J—xP n x )

v

Note that there is a normalization factor Q3%/b to be fitted when relating the vari-
ations in the luminosity with the peculiar velocities. Note also that decreasing b
increases v, for a given luminosity distribution.
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The upshot of this is that methods for determining {}y that compare
velocity fields with density fluctuations in fact only determine Qob~%/3, and we need
to get b from somewhere else (usually a theoretical prejudice based on an N- body
model!).

It is worth making some comments about applying equation (4) to data.
The integral should involve the entire universe, but in practise only the survey
volume can be used. There is also a problem that arises when the density field
becomes nonlinear, the velocity field can then become triple valued (due to shell
crossing). Hence the velocity field prediction will not be as good as the density field
prediction in such a method.

The relation (4) between velocity and density fluctuations can be inverted
to express the density fluctuations in terms of the density field

WS H §=-V.v (5)

If redshift independent distances are available we have a direct estimate of v and
hence of V.v. These can then be used to produce a consistent map of the density
field via a relationship like (5), which in turn can lead to a reassessment of the
peculiar velocities and so on. The map can be iterated in just the same way as
before, only this time we go the other way around and use the peculiar velocity field
to deduce the density field.

2 IRAS and other redshift surveys

If we have no independent distance estimators to individual galaxies we have to
use the observed density distribution together with a dynamical model to estimate
the peculiar velocities that are consistent with the inferred density. The peculiar
velocities can then be subtracted from the observed radial velocities to give a better
impression of the density field. The process can then be cycled until convergence is
obtained. We can start the process off with a redshift survey to make a first estimate
of the local density fluctuations on the assumption the redshift reflects true distance.

The two surveys based on IRAS use slightly different selection criteria
for finding galaxies in the IRAS catalogue. The Strauss et al. (1992) survey uses all
nonstellar objects having a 60um flux greater than 1.9 Jansky, yielding a sample of
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over 2500 objects out to a distance corresponding to a redshift of ~ 3000 km.s™".

The QDOT survey (Saunders et al., 1990) selects 1 galaxy randomly out of 6 down
to a flux limit of 0.6 Jansky, giving a sample of more than 2000 galaxies out to a
distance corresponding to a redshift of ~ 7000 km.s™!.

Because of the far infrared nature of the IRAS survey, elliptical and
earlytype galaxies are absent from the surveys, and hence the surveys do not contain
most of the galaxies in rich galaxy clusters like Coma. Nonetheless, they do appear to
trace the known features in the universe. Accordingly, a correction has to be applied
to take account of the missing galaxies when reconstructing the galaxy density field.
This correction comes over and above any correction for the bias factor.

3 Surveys with independent distance estimates

If we have redshift independent distance estimates, then we can avoid the step of
deducing the peculiar velocity field from the apparent density inhomogeneities. This
approach is called the “POTENT” method and has been used taken by Bertschinger
and Dekel and their collaborators (Bertschinger et al., 1990). We shall describe this
at some length below.

Redshift independent distance estimates can come either from Fisher-
Tully type relationships relating the peak rotational velocities of disk galaxies to
their absolute magnitude in some waveband, or from the so-called D, — o rela-
tionships relating the central velocity dispersions of elliptical galaxies to the actual
diameter of a particular isophote in the galaxy light distribution. The root mean
square errors of these techniques are 15% and 21% respectively, and this gives rise
to quite large distance errors. The analysis therefore has to be done rather carefully.

This process has a number of advantages. The velocity field divergence is
a direct measure of the mass distribution, and so what lies outside the data volume
is not relevant. The data sample does not even have to be complete, where we have
data we can rebuild the density field. However, there is the serious disadvantage that
redshift independent distances are not available for large numbers of galaxies and
so the sampling of the universe is necessarily sparser than we would like. Currently,
a sample of around 1000 galaxies has been used.

Comparison between the results from these two approaches is very in-
teresting. If the assumptions underlying the methods are correct, there should be
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substantial agreement between the reconstructed maps of the universe. In particu-
lar, we shall be interested in comparing the bias parameters b (or the bias functions
b(n)) derived from the two methods.

4 The problem and the POTENT solution

The galaxy redshift surveys for which there are velocity independent distance es-
timates for the sample galaxies have revealed substantial deviations from uniform
Hubble flow. There might be, because of the uncertainty in the distance estimation
procedure, some room for scepticism. However, the fact that we already observe a
“large” velocity for the Local Group relative to the microwave background radiation
and that different samples yield consistent results encourages us to go on and ask
the question “what is the cosmological implication of these deviations?”.

The first studies of the deviations showed large scale coherence in the pe-
culiar (ie: non-Hubble) component of the velocity field. In particular they showed
evidence for the so-called “Great Attractor” in the direction of the Hydra-Centaurus
clusters of galaxies. These early studies relied either on the use of the radial com-
ponent of the peculiar velocity, or on the fitting of a specific model for the Great
Attractor and its environment (Lynden-Bell et al. 1988). While such models give
an indication of what the Great Attractor is, one is left with a very large parameter
space of possible models none of which has an a priori dynamical justification.

This model-fitting situation has been dramatically improved by the dis-
covery of Bertschinger and Dekel (1989) that one could, on the basis of a few rea-
sonable assumptions, reconstruct the entire three dimensional velocity field given
only the radial peculiar velocity data for a sample of galaxies. Moreover, the sam-
ple does not have to be a complete sample (though where there are most galaxies
the reconstruction of the cosmic flow field is obviously most reliable). Bertschinger,
Dekel, Dressler and Faber, in a recent series of papers, have applied the technique
to a compendium of redshift samples that allow the universe to be mapped out to
a distance of 6000 km.s.”!.

This discovery has given new impetus to radial velocity surveys and to
getting velocity independent distance estimates for individual galaxies.
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5 Reconstructing the 3-d Flow

5.1 The comoving coordinate q-space

In Zel’dovich’s approximation for the growth of large scale structure ! the position
r = a(t)x) of a particle that started off at comoving coordinate q is given by an
equation of the form:

x(t) = q+ B(t)V5(q)
(ﬂ = (t/to)5 fOI’ Qo = 1) (6)

Here, the function of position S(q is to be thought of as a function specifying
the initial perturbations in the distribution of matter (see below). This equation
resembles the familiar equation x = Xp + ut describing a particle moving with
velocity u under no forces. This resemblance is more than a coincidence and reflects
the very nature of the Zel’dovich approximation.

The density fluctuations are given in terms of S by

6p _ 8250
7 Poa

(7)

and in the case (0 = 1 this grows as ¥/, the familiar perturbation theory result.
From equation (6) it can be shown that the peculiar velocity of a particle that was
initially at q is given by

a~‘>'o(q)

= a(t)A(t)—5— (8

In other words, the present peculiar velocity field v is expressxble as the gradient
of a function BS expressed in comoving coordinates: V = = a(t)Vq(BS). Since we
do not in fact observe the position of a galaxy in g-space, we would have to make
a transformation from q-space to the r- space of our observations. Formally this
corresponds to going from a Lagrangian description of the large scale flow to an Eu-
lerian description. It turns out that we should make this transformation iteratively,
as we shall see below.

!See the lectures of Stephan Gottlobber in this volume for details.
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5.2 The three-dimensional velocity field

In the above approximation the peculiar velocity is the gradient of a velocity poten-
tial ®, and so we can write

V = -Vq%(q).
®(q,t) = —afS(q, to)- (9)

There is a formal solution to this equation giving ® in terms of a line integral of V:

(q) — 9(0) = /(;’v.dl (10)

The integral can be taken over any path from O to g, and in particular a radial path
in the comoving coordinate q-space. This particular choice of path involves only the
radial component of the velocity. In g-space spherical polar coordinates (g, 6, ¢):

8(a) = [ %(,8,4)dd" (1)

We have set the potential equal to zero at the origin since we don’t need its value,
only its derivatives. Having got ® at all points we can then determine the three-
dimensional velocity field from it by doing

V = —Vqd(q). (12)

The projection of this velocity along the line of sight is the contribution of the pe-
culiar velocity to the observed recession velocity. Thus we can improve our estimate
of the true distance to the galaxy.

We seem to have got something for nothing! In fact it was not for free.
The price we had to pay was the assumption that the velocity field was derivable
from a potential.

5.3 Getting to grips with physical space

Given a galaxy with radial velocity cz and velocity independent distance estimate
r, the peculiar radial velocity is
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Vi = ¢z — Hyr. (13)

In principle, one could just plug this into the integral on the right hand side of
equation for ®, get ® and differentiate to get V. This is unfortunately not so easy
because this last equation refers to quantities measured in the present physical space,
not the comoving coordinate space demanded by the equations (5).

It could of course be argued that we walked into a trap by starting off
with the Zel’dovich approximation, which is a Lagrangian description of what goes
on, rather than an Eulerian description.

The preceding discussion is that it all takes place in the comoving co-
ordinate g-space. We don’t know what this looks like until we know the relation
between the present location and velocities of galaxies and the initial conditions. It
is just this relationship that is expressed by the Zel’dovich approximation (6). So
the situation is somewhat circular, we have to guess what the q-space looks like,
calculate where the galaxies ought to be today, and then correct our guess.

5.4 Real Data: sparseness and noise problems

So far, everything has been theoretical, dealing with continuous fields. These fields
are, however, sampled at discrete points where observed galaxies happen to lie. The
data is also very noisy in the sense that the error bars on the distance estimators
are relatively large.

The galaxy sample comes from a number of quite different catalogues.
Within a sphere of radius 8000 km.s.”? there are around 500 E/SO galaxies taken
from the “S7” survey, from surveys of individual southern hemisphere clusters and
from a survey of the great attractor region. In addition to that there are some 200 S
galaxies coming from galaxy cluster surveys. Within a sphere of radius 3000 km.s.™!
there are around 200 nearby field spirals distributed over the whole sky.

The distance estimators are different for the various subsamples, but
generally have an accuracy of around 20%. This can give rise to errors in the
peculiar radial velocity estimate for a single galaxy of 1000 km.s.™! or more.

The way this problem is handled is to smooth the data over large scales,
and to use maximum likelihood to estimate the bulk flow within spherical Gaussian
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windows.

6 Dipole Motion

We can determine our motion relative to the frame of reference defined by distant
galaxies quite simply: the galaxies at a given distance from us should show a dipole
distribution of velocities cantered on the apex of our motion. This requires however
that we know something about the distance of the galaxies that is independent of
the redshift. This raises difficulties in defining the galaxy sample and then getting
to the answer: a story that now goes back almost twenty years.

The ultimate measure of the direction of our motion is that given by the
dipole component of the cosmic microwave background radiation field (see section
5. In principle, any sample of distant objects that traces the mass distribution fairly
should converge to this velocity and direction as the sample gets deeper. This is the
issue of dipole convergence.

It is also to be expected that different samples should converge on the
same values. Thus the dipole motion determined from a sample of optically selected
galaxies should be the same as the dipole motion determines from a sample of IRAS
selected galaxies. If there were any disagreement this might indicate that the galaxies
in these two samples are not equivalent tracers of the mass distribution (Lahav et
al, 1988).2 Of course before jumping to such a conclusion we have to eliminate other
possible sources of discrepancy arising from differences in the sample selection. In
the case of comparing the dipole determined from an optical sample and from an
IRAS sample it has to be remembered that the optical galaxy sample requires a
considerable correction for Galactic absorption, whereas the IRAS sample does not.

The requirement that the IRAS dipole agree with the microwave back-
ground dipole provides an estimator of the bias factor

90.6
p= brras

=0.6+0.2 (14)

(Nusser and Davis, 1993). This value, and the reconstructed velocity field are seen
to be in agreement with the POTENT analysis of Dekel et al. (1994), and with

?In this regard, it would be interesting to see whether the very rich Hercules cluster complex is
better represented in the IRAS survey than the Coma cluster.
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values based on the QDOT survey. The general conclusion reached by Freudling et
al. (1994) is that to a depth of some 8000 km.s™! the dipole directions for various
optical and infrared surveys agree within the errors, and that the bias factor for
the optical and infrared catalogues are equal. Within that volume, however, the
dipole direction lies some 20° — 30° away from the microwave background dipole.
Convergence has not been achieved within these samples.



Chapter 46

The Microwave Background
Spectrum

The job of the FIRAS experiment on board the COBE satellite COBE was to make
absolute measurements of the temperature of the sky at inverse wavelengths ranging
approximately from 2 cm.™ to 20 cm.?. Because FIRAS was to make an absolute
measurement it lived in a liquid Helium cryostat cooled to 1.5 K, and this meant that
the lifetime of the experiment was limited to the lifetime of the on-board coolant.

1 The Spectrum

The COBE satellite FIRAS experiment determined that the spectrum of the Cosmic
Microwave Background radiation fits a Planck Law with remarkable accuracy (see
figure 2). We have already commented (see section 3.1) that this implies that the
spectrum must have been set up at very early times. The question now arises as
to whether we can use the accuracy of the Planck Law fit to constrain the possible
thermal histories of the Cosmic Expansion. This leads us to calculate the Spectral
Distortions that arise in various models where energy has been injected into the
cosmic plasma at various times through various mechanisms such as primordial
cosmic turbulence or the decay of exotic unstable elementary particles.

We distinguish two key epochs during the expansion of the universe. The
first of these is the time before which any injected energy can be redistributed and
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the Planck Law maintained. This occurs at redshift z;, ~ 3 x 10%. After that, we
have a period during which thermal equilibrium can be maintained, but not the
Planck Law form of the spectrum. This period ends at a redshift that is denoted
by 2, after which the there can be no equilibrium: photons can wander around in
frequency space, but there are no effective absorption and emission process to drive
an equilibrium. Calculations show that z, ~ 10°.

The history of calculating spectral distortions goes back almost to the
discovery of the Cosmic Microwave background Radiation itself with the pioneering
papers of Zel’dovich and Sunyaev (1969), Zel’dovich, Illarionov and Sunyaev (1972)
and the numerical investigations of Chan and Jones (1975, 1976). In view of the
great importance of this subject it is worthwhile going into a little detail explaining
how these distortions arise and how they are calculated.

Before going into some details of these distortions, it is worth remember-
ing a problem that arises when we compare observations of a limited wavelength
range of a distorted spectrum. The theory asks us to compare the data with
what would have been the spectrum had there not been a distortion. We can-
not know what would have been, and so the evaluation of the data must be made
self-consistently on the basis of the part of the spectrum that is observed. This is
non-trivial, especially if we observe only high frequencies (as in the FIRAS experi-
ment). Figure 1 illustrates a distorted spectrum and the way in which the compar-
ison with an undistorted spectrum having the same Rayleigh-Jeans temperature is
made.

2 the y parameter

The equilibrium between photons and free electrons is a solution of the full Kompa-
neets equation, but as recognised long ago by Zel’dovich and Sunyaev this solution
is more general than the Planck Law - it is a Bose-Einstein-like distribution!:

1Elementary Particles whose spin is an even multiple of h/2 (ie: photons and nuclei with even
mass numbers) obey Bose-Einstein statistics:

_ g(e)de
n(e)de = Y (1)
where g(¢)de is the number of possible particle states in the energy range ¢ to ¢ + de. u is the
chemical potential and for photons p = 0 leading directly to the Planck Law.
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Figure 1: Photon spectrum interacting with hot electron gas at the
time of maximum distortion. The figure on the left shows the distorted
spectrum relative to the original Planck spectrum. The figure on the

right shows how the Rayleigh-Jeans temperatures are compared (after
Chan and Jones, 1975a).

1(0) = [oxp (s + (@) 1) @)

where

#(z) = po exp (—%3) @)

and z¢p is the frequency where the Compton and Bremsstrahlung processes balance:
photons are Compton scattered to higher frequencies as fast as they are created by
the free- free process. xcp moves to higher frequencies with time.

What this distribution describes is the competition between the brems-
strahlung process which is efficient at creating photons at low frequencies and the
Compton process which causes photons to diffuse to higher frequencies. The resul-
tant spectrum is illustrated in figure 1. At low frequencies the spectrum is Planck-
like, but with temperature T, since the electrons and photons are in equilibrium at
those frequencies. At higher frequencies the photon distribution has been shifted
and looks like a diluted black body. The detailed shape of the spectrum depends

on the function u(z), which is itself a consequence of the thermal history of the
Universe.

The difficulty in matching this to the observations arises because the
“shoulder” appears at very low frequencies where the spectrum is difficult to measure
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accurately (figure 2). However, by fitting the data to a Bose- Einstein distribution
with p as a free parameter, we are essentially able to constrain the value of the
parameter g appearing in equation (2).

3 The y-parameter

If the spectrum evolves only through the process of Compton Scattering, the Kom-
paneets equation (equation 43 for the photon distribution 7(v) becomes quite simple:

_ kKT.\ 1 0 on
dnt—nearc(ﬂ)z,az (a +n+n)] (4)

where o, is the Thomson cross-section T, is the electron temperature and where we
have nondimensionalised the frequency with the usual substitution

hv
T=T (5)

The important step is to define what is essentially a new time variable y by

y= [ B KT - T°)n,mdt (6)

The low-frequency limit of equation (4) then becomes a simple diffusion equation:

317__1_2_ +On
= 152 ( 3) z 1. )

This has an analytic solution in this low frequency regime which can be expressed
in terms of the deviation Ay in the spectrum at a given frequency relative the
unperturbed Planck spectrum 7o at the same frequency:

An e*+1
77;— —1[6’-—1 ] ®)

mo = (e =1)7" 9)
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It is in fact better to solve these equations on a computer since then we are not
restricted to the small z (low frequency) limit: understanding the COBE FIRAS
data requires a better approximation or a numerical solution. This was in fact done

a long time ago by Chan and Jones (1975, 1976), and figure 2 shows examples of
(highly!) distorted spectra.
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Figure 2: Simulations of (highly) Compton-distorted Cosmic Microwave
background Radiation spectra. Note that most of the effect is in the
short-wavelength part of the spectrum and that the simple linear ap-
proximation does not work there (after Chan and Jones, 1976).

4 COBE constraints on y and pu

The COBE limits on these distortions are (Mather et al., 1994)

lyl < 2.5 x 107
lu] < 3.3 x 1074 (10)

These are 95% confidence level upper limits. They are apparently derived by fitting
the original Zeldovich and Sunyaev formula (equation (8) to the data, rather than
a full solution of the Kompaneets equation.
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From the point of view of the thermal history of the Universe, these upper
limits tell us that there was no great departure from the standard model, at least
prior to recombination. However, there are numerous possible sources of distortion
away from the Planck Spectrum and there are also possible additional contributions
to the radiation flux particularly at the higher frequencies.

In order to improve our understanding of the constraints imposed by the
spectral measurements we need two things: we need to go to lower frequencies with
greater accuracy (see figure 2) and we need information on the angular variations
of the spectrum at different places on the sky. (FIRAS has already provided some
information on spatial variations by allowing y and u to be determined on a pixel-
to-pixel basis.
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Chapter 47

The Microwave Background
Fluctuations

The Differential Microwave Radiometer (“DMR”) on board COBE consisted of two
identical microwave horns pointing in directions 60° apart on the sky, measuring
the temperature difference between two the two horns at each of three frequencies:
31.5 GHz., 53 GHz. and 90 GHz. (9.6, 5.7 and 3.3 mm wavelength). The middle
frequency was presumably selected because this is the frequency where the contri-
bution to the signal from the Galaxy is minimised. The satellite rotated about its
own axis at 0.8 rpm., and so the entire sky was covered with these difference mea-
surements during the orbital motion of the satellite about the Earth and the Earth
about the Sun. The resultant map was broken into 6144 pixels of 2.8° angular size.

Analysis of the data is a highly complex problem because of the need to
identify, calibrate and remove a large number of systematic errors that arise in the
experiments. In addition to experimental errors, results have to be corrected for the
non- cosmic contributions to the radiation field from the plane of the Ecliptic and
from our Galaxy. The Galactic radiation has an overall quadrupole distribution, but
also has a lot of structure in smaller angular scales. This has to be modelled and
subtracted. The fact that the DMR observes at three separate frequencies means
that the Galactic contribution can be subtracted by virtue of the fact that the
spectrum of emission from the Galaxy is quite different from the Cosmic Background
Radiation spectrum at these frequencies. The principle is easy, but the execution is
far from straightforward!
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1 Measuring Multipoles etc.

The job of the DMR experiment is to look for departures from isotropy on all angular
scales. The best way of quantifying these deviations (or putting limits on them) is
through spherical harmonic analysis.

If in a direction q on the sky we measure a temperature AT above the
mean all-sky temperature T, we can write the angular dependence of AT as

AT(q)=T(q)-T = Zaam im(Q)- (1)

,m

Given a map of the sky T(q), we can find the coefficients a;, by doing spherical
harmonic analysis. We have to be careful of the fact that not all of the sky may be
mapped: this is a technically complicated process that we cannot go into here. We
can then calculate the amplitude of the I'® spherical harmonic

-y fol ®

The I = 2 harmonic is referred to as the RMS quadrupole and is often denoted by

Qrma = AT2 (3)

In general it may be more useful to work with the correlation function
of the radiation distribution on the sky which can be written in terms of the ain:

Cc(6) = i 2(21 + 1)Cy Pi(cos 0)

l
== 3 ol @

We will have more to say about C(8) below, since this is a quantity that can be
predicted directly from theory. One important aspect of the correlation function
C(0) is that it relates directly to estimates of the temperature fluctuations from
beam switching experiments. For 2- and 3-beam experiments:
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= 92[C(0) - C(a)]
= 518C(0) ~ 4C() + C(20) ()

where o is the beam throw. These methods have the advantage of minimising
atmospheric contributions to the fluctuations. The 3-beam technique also eliminates
the dipole contribution to the fluctuations and so is frequently used.

2 The Sachs-Wolfe Effect

In 1967, Sachs and Wolfe wrote a remarkable paper (Sachs and Wolfe, 1967) predict-
ing that when our instruments were sensitive enough we would observe angular fluc-
tuations in the microwave background radiation. Nobody doubted the importance
of their result, but it was to be 25 years for COBE was to detect these fluctuations.

The reason we should see temperature anisotropies is obvious in hind-
sight: the Universe was probably inhomogeneous on the last scattering surface from
which we are receiving the microwave background photons. (If it were not, we would
have to find a relatively recent source for the fluctuations that gave rise to galaxies
and clusters of galaxies.) The inhomogeneities are of several types. We may have
intrinsic temperature fluctuations on this surface due to the presence of initially
adiabatic density fluctuations. There will also be fluctuations in the gravitational
potential due to the presence of any inhomogeneities. The matter that last scat-
tered the photons in our direction may have had some “peculiar” velocity relative
to the cosmic background. Finally, the photons may have passed through some
time-dependent potential wells on its way to us: this would give rise to fluctuations
in the observed temperature as a consequence of the gravitational redshift.!

In general we can write the observed temperature fluctuations as being
due to three terms:
AT 6T

T T

1 2 now a¢
et sl a0 (®)

! Note that stationary potential wells make no contribution since the photons fall into and climb
out of the same potential with no net redshift.
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The subscript LS implies that these terms are to be evaluated on the last scattering
surface. The last term in equation (6) is known as the “Rees-Sciama effect” and
is generally small. The other two terms are not necessarily independent, and they
depend in detail on the nature of the matter and of the fluctuations in the universe at
the time of last scattering. Thus for adiabatic perturbations there would be a close
link between the local density fluctuation and the local temperature fluctuations in
the sense that the slightly denser regions of the Universe would be slightly hotter.

This last equation is often seen written in the form

AT _ 1ép,
T ~ 4p,

1

3c?

2 frow g
Ls n-vigs + e ./;,S -(Tf(x(t)’t)dt M

LS

where the “Doppler term” n.v|rs writes out explicity, in a specific coordinate system
at recombination, the contribution to the temperature fluctuation from the fact that
the last scatters may be in motion relative to that coordinate system. The vector n is
the direction to the observer. The local temperature fluctuation has been expressed
in terms of the local rest-frame radiation density fluctuation 6p./p,amma. A factor
1 has appeared dividing the potential fluctuation, we shall come back to that.

The Sachs-Wolfe effect concerns the contribution from the potential fluc-
tuations, and is the dominant one for lare scales. For the special case of initially
adiabatic density fluctuations, the Sachs-Wolfe contribution can be simply written
as

AT 1
& = 5al6lis — dlo] ®)

In other words, the temperature fluctuations are directly proportional the fluctua-
tions in the gravitational potential. The two terms ¢rs and ¢ represent the poten-
tial fluctuations at the last scattering surface and at the observer. Thus the effect is
the potential difference between the observer and the last scattering surface. How-
ever, when it comes to looking at the angular distribution, the contribution from the
observer is independent of direction and is absorbed into the isotropic component
of the temperature measurement.

There have been several discussions as to where the factor “}” comes
from in this case of adiabatic fluctuations. One’s naive expectation may have been
simply AT/T ~ ¢. Peebles (LSSU) explained it as being the “logical” value with
a correction of —%d) due to the fact that the cosmic expansion is time-dilated. In
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the relativistic treatment of Sachs and Wolfe this factor appears because for very
large scale adiabatic perturbations, the fluctuations in the temperature are —%q}/ .
When this is put in equation (6) this gives the } factor.

It is worth noting that the gravitational potential fluctuations on super-
horizon scales are the solution of the Poisson equation V2¢ = 47rGé6p. This implies
that for these scales [ > Iy, the horizon scale at the epoch of last scattering

(1

With a power spectrum of density fluctuations P(k) ox k™ we have root mean square
density fluctuations varying with scale as ép/p oc I-"*+3)/2 (cf. equation (41). From
this

AT 1(1-n)

——~12

(10)

The Harrison Zeldovich spectrum (n = 1) thus has temperature fluctuations that
are independent of scale. (This is hardly surprising since the potential fluctuations
are scale invariant for this spectrum (see section 4.2).

1t is interesting to note that if Q # 1, then equation (9) ceases to apply
above the curvature scale where gravity is dynamically unimportant. This may
provide an important way of directly estimating the density parameter when the
large angular scale fluctuations of the microwave background temperature have been
mapped out. The actual behaviour on such scales is difficult to calculate and there
are some technical problems that remain to be solved.

3 Comparing with theory

The key issue now is to take a cosmogonic theory and predict what, according to
that theory, we should observe in the microwave sky. The problem arises because
the theory talks in terms of random density and temperature functions, whereas we
observe only one realization of such a process.
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3.0.1 What a theory can predict

The expected temperature fluctuations can be computed from a theory for the initial
perturbations. Given a theory, we can predict the temperature fluctuations over the
sky and express this as a sum over independent spherical harmonic components:

AT(q)=T(q)-T= IE amYim(Q)- (11)

In this context, the a;, are random variables ta.kell from some distribution that
comes from the model. Because of the definition of T' being the mean temperature
averaged over the sky, the mean of each of the aim is zero.

Equations (1) and (11) are not the same. In the first equation, the a;m
take on particular values that describe our sky and the instruments we used to
observe it. In the second case they are a realization of some random process that is
a consequence of the particular theory we are looking at.

3.0.2 Expressing it in terms of angles

Theory provides the statistical properties of the a;, appearing in equation (11).
The means (ie: the expectation values) of the a;, are zero. Given a theory we can
calculate the expectation values of the mean square ajp:

C[ =a la,m|2 Z a,m (12)

m=~{

(Both the notations C; and a} are seen in the literature). For a given theory we
can calculate the C;. If we prefer to talk about fluctuations on particular angular
scales instead of the spherical harmonic content of fluctuations, we can use the
transformation

c() = 4—1; S(21 + 1)CiPi(cos0) (13)

where Pj(cos 8) is the usual Legendre polynomial of order I.
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3.0.3 The instrumental response

In order to use the observations to test a theory we must compute what a given
experiment would measure according to this theory: we need to put the detector
into the equation. The simplest thing to do is to characterise an experiment by its
instrumental response function, W;. The W tell us how sensitive the experiment
is to each value of I, and in principle we know the W, if we have the details of
the instrumental sensitivity as a function of angular scale.? For a simple Gaussian
beam of full-width-half-maximum 8wy, we need to introduce a window function
Wi ~ exp(—(1 + 3)%62/2) with 0, = 0.4250rwmm:

c(0) = ﬁ;(zt + 1)WECiPi(cos) (14)

The situation for COBE is a little more complex: we have W;(COBE) ~ 0 for | > 20:
COBE is not sensitive to fluctuations on a smaller angular scale than about 2.5°.

The rms temperature fluctuation (C(0)) measured by this instrument for
the theory whose C; have been calculated is then:

AT\? 2041
(&) =2 g WG (15)
expt

There is another important detail to take care of when predicting what
a given experiment should measure: the way in which the measurements are made.
Most experiments do not map the sky, but aim to measure C(8) directly by com-
paring the temperatures measured at many pairs of spots separated by a distance
0 on the sky. Such difference measurements are referred to as beam-switching ex-
periments, and these obviously cannot detect a contribution from the I = 2 dipole
component of the fluctuations. The theoretical contribution of the { = 2 term must
therefore be removed from predictions of what this kind of experiment will measure.
Some experiments compare points taken three at a time, and the situation is still
more complicated.

%1t is often useful to note that the characteristic angular scale corresponding to a particular
value of ! is 6; ~ 3500/! arc minutes.
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3.0.4 Relating density and temperature fluctuations

Since the Sachs-Wolfe effect arises out of potential fluctuations, which are them-
selves related to density fluctuations, it should be possible to write down directly
the spectrum of temperature fluctuations in terms of the spectrum of density fluc-
tuations. This has been done for a large number of theories of initial fluctuations
in various cosmological models (see for example Peebles, 1982 for the details of the
standard calculation).

If the density fluctuations are characterised by a power spectrum P(k),
it can be shown that on very large scales where the Sachs-Wolfe effect dominates
and is not modified by optical depth effects, the coefficients a; in equation (11) are
given by

QoHZ\® [ P(k) 5 [ 2k
— a2 = 0 2
Ci=a; = 41r( 52 ) ¥ 0\t &Ek. (16)
The angular correlation function is®
QoH2\? [ P(k)sin kRH : 4c . (0
C(a) = ( ) / dak RH = msm '2— (17)

Note that Ry is the comoving distance at recombination subtending an angle 6 (see
equation (6)).

4 Simple theoretical models

The simplest theoretical model is to calculate the fluctuations in the microwave sky
arising from a spectrum of adiabatic density fluctuations having a primordial power
spectrum

P(k) = AK" ' (18)

31t should be remembered that, in an open Universe, the equation for C(#) only hold for 8 < 64,
the angle subtended by the curvature radius Ry (see equation (10). This is because the Fourier
representation in plane waves becomes invalid on such scales.
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where n = 1 for the Harrison-Zeldovich initial spectrum. Going through the calcu-
lation it is found that

4A T(3—n)T(1+ 251)
B =PI+ 5Y)

larf? =

(19)

This 1s a somewhat intimidating formula: the I'-functions are not very intuitive!
However, there are some useful and important limiting cases:

1

—0- 2 —
n=0: el =84rmE ey
=1- 2
n=1: lai]? = = 0+ 1) (20)
In the large [ limit we thus have
PCi — constant, l— 00, n=0 (21)
C; — constant, I—o00, n=1 (22)

Translating from ! to angular scales f using equation 13) we then have
that at small angular scales

% x §20-7) (23)

Following common practise, we have used the symbol AT/T to denote the rms value
of the temperature fluctuations. We have not folded in an instrumental response, so
this represents the measurements from perfect equipment. The interesting thing is
that for the n = 1 Harrison Zel’dovich Spectrum the amplitude of the temperature
fluctuations is scale independent. Conversely, from observational multiple angu-
lar scales we can hope to determine n from direct observation, or indeed test the
proposed form of the primordial power spectrum.

5 Cosmic Dipole

The first anisotropy to be detected in the microwave background radiation was the
Dipole component. This is interpreted as being due to the motion of the Earth
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with a velocity v relative to the frame in which the cosmic microwave background
radiation is isotropic. The apparent temperature over the sky in a direction making
an angle 6 with the apex of this motion is then

i-er (24)

1- %cosﬁ

~ Tosr [1 +2 0080] (25)

Tots = ToBR

where in the second of these equations we have ignored terms in (v/c)?. Two years
of DMR data (Bennett et al., 1994) yield a dipole amplitude

AT gipote = 3.363 £ 0.024 mK (26)

towards Galactic Coordinates

I = 264.4° +0.2°
b= +48.1° £ 0.4° @7

The uncertainty arises in part from systematic experimental errors and from the
need to fit the contributions from the Zodiacal Light and from our Galaxy. The
final vector reflects a combination of the motion of the Solar System about the
Galaxy, the motion of the Galaxy within the Local Group and the velocity of the
Local Group relative to whatever larger structure exist and have an influence on the
motion of the Local System of galaxies. We will return to the interpretation of this
later.

It is interesting that this dipole component has been detected by FIRAS
while measuring the temperature of the Cosmic Microwave Background (Fixsen
et al., 1994). FIRAS has sufficient accuracy in determining the spectrum of the
radiation field that directional variations in the spectrum can be measured. The
result of this analysis gives results that are consistent with the DMR results and
have errors of only 0.5° in both ! and b.

6 The Quadrupole Component

The quadrupole component of the distribution of the Cosmic background Radia-
tion over the sky is of utmost importance in cosmology. It’s value is not contam-
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inated, as is the dipole, by uncertainties in our motion. Thus the detection of a
quadrupole component is a direct observation of deviations from cosmic homogene-
ity and isotropy at the early times when the Cosmic Background Radiation was last
scattered.

However, there is substantial difficulty in removing the quadrupole con-
tributions from Galactic radiation; this requires an accurate model for Galactic
emission. (The details are given in the fascinating paper by Bennett et al., 1994).

The quadrupole is defined by 5 coefficients describing the quadrupole
component of temperature distribution on the sky. The values of these coefficients
depend on the coordinate system used, and in particular relative to Galactic coor-
dinates:

Q(l,b) = QI%(I& sin?b — 1) + Q;sin2bcos !
+Q3sin 2bsin I + Q4 cos? bcos 2! + Qs cos® bsin 21 (28)

The RMS quadrupole amplitude (see equation (3)) is independent of the angular
coordinates used and is

e = 15 31+ @+ Q3+ Q1+ ) (29)

There is in addition to this a nontrivial contribution arising from the second order
Doppler effect (the second order expansion of equation (24). This amounts to a
contribution to Qrm, of 1.2 uK. The measured cosmic quadrupole from two years
of the COBE DMR experiment is

Qrme =643 pK (30)

where the error bar is a 68% confidence level.

The quadrupole arises out of the Sachs-Wolfe effect and can be in prin-
ciple be calculated explicitly for an given cosmological model and spectrum of fluc-
tuations. For the standard CDM model with a Harrison-Zel’dovich initial spectrum
‘P(k) = Bk, the quadrupole is

5 \? (Ho\?
Qrme =T (57) (32) %675+ @)
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Figure 1: The correlation function of COBE DMR temperature fluc-
tuations after two years of data (from Bennett et al., 1994). This is
in fact the cross-correlation between the dipole subtracted maps at 53
GHz and 90 GHz. The shaded region is an n = 1 model normalised to
the quadrupole amplitude.

where Ty = 2.736 K is the background radiation temperature, and Hp and )
are the present Hubble constant and cosmic density parameter. Thus the COBE
measurement of @Q,n, provides the normalisation of the power spectrum.

This is a very important point. Once the power spectrum normalisation
is known, we can compare the structures that we see on smaller scales (< 50 —
100A~! Mpc.) with the predictions of numerical models using that spectrum. The
comparison is, however, not entirely straightforward: when we observe structure in
order to make this comparison, we observe the light distribution, not the matter
distribution. Our comparison therefore brings in the bias parameter. The situation
is shown in figure 1) where we see a direct estimate of the power spectrum from the
data, and compare with models having the “COBE normalisation”.
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7 Degree scale anisotropies

On angular scales of several degrees, the Sachs-Wolfe effect dominates the anisotropies.
COBE’s angular resolution is around 10°. This means that COBE is seeing features
on the last scattering surface which in an £ = 1 universe correspond to a linear
scale today of some 300h~' Mpc.. The scale is a factor @' larger in an open uni-
verse. The data from the COBE satellite is depicted in figure 1 where wee see direct
evidence for structures on scales > 300(%%)™" Mpc..

The expected correlation function of the temperature fluctuations for
primeval curvature perturbations is given in terms of the power spectrum of the
fluctuations by equation (17). The prediction of the standard CDM scenario (with
an initial Harrison Zel’dovich power spectrum and a normalization chosen to fit the
measured quadrupole) are shown as the hatched region in the figure. We clearly
see evidence of fluctuations: that is one of the triumphs of the COBE experiment.
Whether any particular theories are ruled out is a matter for future calculations.
Experiments that measure microwave background fluctuations on smaller angular
scales than COBE will undoubtedly help the situation, but they are more sensitive
to the Doppler terms in equation (7) and so the interpretation becomes more model
dependent.

The program from now on, then, is to map the sky at various angular
scales and fit the measured correlations to the entire zoo of cosmological models and
theories of large scale structure formation. We will be imposing constraints on the
power spectrum index, perhaps on the value of 2, and we may even be able to say
whether we live in a Universe dominated by cold dark matter, mixed dark matter,
or hot dark matter.

8 The Future of Cosmology?

This article, despite its length, has merely introduced a selection of topics in obser-
vational cosmology that are of current interest. The selection is biased by my own
interests and many important subjects have been passed over, or simply not been
mentioned. There has, for example, been no' discussion of nucleosynthesis and how
one goes about testing model predictions for the primordial abundances. Nothing
has been said about observations of galaxy clusters and the clues they will certainly
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provide to the history of structure formation. Nothing has been said about the use
of gravitational lenses as probes of the matter distribution and nothing has been
said about quasars, the most distant objects we see in our Universe. Cosmology is
an large and active branch of theoretical and experimental physics: it is certainly
too large to present in one section of a book.

I do hope however that I have demonstrated that observational cosmology
is an active field. I hope I have demonstrated its close relationship with theory and
its reliance on the latest technology for doing observations. The theory provides a
driving force to acquire data, and in turn that data is interpreted in the light of
models. That these models are naive is of course a problem, and that is the reason
that we see a continual push towards generating ever better models.

The successes we have seen since the discovery of the Microwave back-
ground radiation are numerous. We have verified that its spectrum is Planckian,
and that it is highly isotropic, but not totally isotropic. The discovery of significant
anisotropies is surely one of the great discoveries of twentieth century physics, and
the further exploration of these anisotropies will command a lot of effort from ex-
perimental teams. Mapping out the anisotropy of the microwave background at a
variety of wavelengths and over a substantial range of angular scales will tell us a
lot about our Universe and this is evidently among the top priorities for cosmology
research.

Measuring distance of galaxies is a complex task that has not been dis-
cussed here. The ability to get the distances to individual galaxies with a precision
of better than 20% (and hopefully even 10%) will provide an important dynamical
map of the Universe. Techniques are available to decode that data and make a map
of the spatial distribution of galaxies and their peculiar velocities. This may be the
best route to getting at the density parameter. It is certainly important as a tool
for evaluating our numerical models and seeing whether we really do understand the
formation of large scale structure.

Today, our understanding of large scale structure is predicated on the
notion that the inhomogeneities in the matter distribution have been driven by the
force of gravity acting on low-amplitude primordial inhomogeneities. Of course that
may only be part of the story: gasdynamic processes have certainly played a role on
galaxy scales, and probably on cluster scales. It is even conceivable that magnetic
fields may have played an important role in shaping galaxies and in controlling the
star formation process.
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A Magnitudes and all that.

Since this is a series of lectures on Observational cosmology, it is impossible to avoid
discussing the apparent brightness of objects such as stars and galaxies and thereby
encountering one of astronomy’s major idiosyncrasies - the magnitude scale. Ever
since the time of Ptolemy, the brightness of stars have been measured relative to
one another on a logarithmic scale.

The observed energy flux is always related to some particular waveband
where an observation is made. The total brightness of a source integrated over
that waveband is measured by optical astronomers in units of ergs.cm.”?sec.” and
translated into magnitudes. The notion of a magnitude was formalised by Pogson
(1856). Two sources of brightness f; and f, are said to have magnitudes m; and
m, related by

m; —mg = —2.5 logm% (32)
2

Thus the magnitude scale is established once a standard has been set.
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Life is a little more complicated than that: we do not in fact observe
the flux integrated over all wavelengths. Observations are always restricted to some
specific waveband determined by the observing instrument and its detector. If f())
denotes the energy flux measured in a filter centred at wavelength A and having a
passband of width A}, then the Flux Density is given by

S(A) = IZ’\A)ergs.cm.‘zsec._IHz"1 (33)

The total flux is the integral of this flux density over all wavelengths. The zero
points of the magnitude scale has been defined for specific filter sets. For example,
in a particular filters known as the “visual band” centred on 5500 A we have

log,o S(A) = —0.4my — 8.42. (34)

and in this system the Sun has apparent magnitude my(®) = —26.77.

Optical astronomers, then, measure the flux density per unit wavelength
in units of ergs.cm.”?sec.”'Hz~! while radio astronomers measure flux density per
unit frequency in measuring units of wattm=2Hz™!. For convenience, radio as-
tronomers translate their flux density measurements into flux units (f.u.), where

1f.u. = 10-wattm~2Hz'.

B Peculiar velocities - homogeneous background

In section 2.2 we discussed the motion of particles whose motion is driven by the
fluctuations in the gravitational potential. A particle moving in an otherwise homo-
geneous universe moves quite differently and it is instructive to study this case.

The peculiar velocity of a particle is its the velocity relative to an observer
whose own motion is precisely comoving in the background. This is depicted in figure
2 where we see the space-time path of a particle relative to the world lines of two
observers who are comoving in the background. (This diagram is identical to figure
1 except that the passing particle has a velocity that is less than the speed of light.)

The observer on the world line O looks at the Galaxy G at a time and
place when a freely moving particle P passes the same place. The velocity the
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Figure 2: The Decay of peculiar Velocities. The Observer at O looks
at the freely moving particle P moving relative to a (comoving) galaxy

G.

particle has when it passes G is the velocity v it had when it passed O, less the
expansion velocity of O relative to P:

ot + 6t) = v(t) — Z—v(t)&t. (35)

This is simply the expression of the fact that the particle P moves under “no forces”
with “constant velocity”. The Observer O therefore measures a velocity difference
v(t + 6t) — v(t), whose time dependence is governed by

ldv_ & (36)

Thus we have

vexalt (37)

which is the law for the decay of the peculiar velocity of a freely moving particle.
Note that this result is false if any forces act on the particle, which is the case when
its peculiar motion is driven by gravitational forces arising from inhomogeneities in
the Universe.

To go on to understand motion of a particle against an inhomogeneous
background requires that we take account of the acceleration of the particle due
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to the inhomogeneities in the mass distribution. To this end we want to rewrite
equation (36) as

dv

a
r7 + il -Vé (38)

where ¢ is the fluctuating part of the gravitational potential, that is, the part of the
potential that is the result of the fluctuations 6p in the mass density.

V24 = 4xGpyb, 6= -‘;ﬁ. (39)

The solution of this is

$(x) = gp / %d"x’ (40)

where the integral is taken over the whole of space.

We need to solve equation (38) for the peculiar velocity, and to do this
we need to know something about the time dependence of the fluctuating potential
6¢. We notice from equation (39) that V?¢ scales with time in the same way as
ép/p, that is as the scale factor a.
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