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Chapter 30

Introduction

The organizers of the 7th Brazilian School of Cosmology and Gravitation asked me
to give five lectures on perturbations in the expanding universe. This is a very
wide field, so I have had to restrict to some topics. I have chosen the generation and
evolution of scalar perturbations which are closely related to the observed large scale
structure in the universe. Probably scalar perturbations are generated during an
early stage of cosmological evolution. The structure of our universe is surely formed
by gravitational instability from small perturbations. It seems the best explanation
that the simple scalar perturbations surviving from the earliest cosmological stages
are the seeds of large scale structure. However, also orientable field structures,
textures, could be generated during the cosmological evolution and influence the
large scale structure formation. In the following I will not discuss this possibility.
I also do not discuss tensorial perturbations, the gravitational waves. However,
their contribution to the microwave background fluctuations could be important, so
that lower amplitudes of the scalar perturbations would follow from the measured
amplitudes of the temperature fluctuations.

Throughout the lectures I have worked within the spatially flat Einstein-de
Sitter cosmological model. Inflation predicts that the density parameter is close to

one and recent observations on very large scales seem to confirm this prediction.
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Due to the observed abundance of light elements and the theory of cosmological
nucleosynthesis the baryon density is only a small fraction of the mean cosmological
density which is dominated by the density of invisible weak interacting massive
particles. Structure formation tells us that these particles must be probably cold.
The lightest of the supersymmetric partners of the fermions could be stable and
form the cold dark matter, another candidate would be the axions. So the scenario
of structure formation in a cold dark matter dominated Einstein-de Sitter universe
could be called the standard model which explains many aspects of the observed

structure in the universe quite well.

In i:he first section of this article, I discuss the evolution of the homogeneous
isotropic background cosmological model including an early inflationary stage. In
the second section I introduce the Newtonian theory of linear gravitational instabili-
ties. Inside of the Hubble radius the Newtonian theory is sufficient for describing the
evolution of perturbations in the expanding universe. As a first step for describing
nonlinear evolution, the Zeldovich approximation is presented in the third section.
In the fourth section I turn to the relativistic theory of perturbations, where the
choice of the gauge is important for understanding the physical meaning of the per-
turbations. The following section describes the generation of perturbations during
the inflationary stage of the cosmological evolution. The sixth section is devoted to
the observation of perturbations in the universe. Discussing the large scale structure
of the universe one can directly relate the microphysics of the early cosmological evo-
lution to the observational results. By this way one can come to conclusions about
the mechanisms of inflation. I finish with a more speculative section which briefly
shows how an observed excess of large scale structure can be explained by a special

inflationary model.

There are some excellent textbooks about cosmology and large scale struc-
ture: The Early Universe - Facts and Fiction (Borner 1988), The Early Universe
(Kolb and Turner 1990), Particle Physics and Inflationary Cosmology (Linde 1990),
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The Large-Scale Structure of the Universe (Peebles 1980), The Structure and Evolu-
tion of the Universe (Zeldovich and Novikov 1975). Preparing these lectures I have
used these textbooks and the review articles of Efstathiou (1990) and Mukhanov
et al. (1992). I have used also parts of my papers and especially the literature
cited therein. Therefore, the list of references is by no means complete and also not

representative.
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Chapter 31

Cosmological models

The aim of cosmology is to understand the origin and evolution of the uni-
verse. Observational cosmology is concerned with the determination of such general
cosmological parameters as the Hubble constant, the age of the universe, the decel-

“eration parameter, the density parameter, the cosmological constant. But observa-
tions show us also that the matter in the universe is not distributed homogeneously
but clumps into structures from small up to the largest observable scales. More-
over, besides the qualitative description of large scale structure also more and more
quantitative results were found during the last decade. Therefore, theoretical pre-
dictions of correlations lengths, temperature fluctuations, characteristic lengths and

velocities can be directly compared with observations.

Observations indicate an evolution of the universe starting from an ex-
tremely high density and temperature. The era, where the density was higher than
ppi = 10%83gcm ™2 and the temperature was higher than Tp; = 10'° GeV is called the
Planck era, during which quantum gravity effects are believed to be very important.
It is a matter of fact that the standard hot big bang cosmology satisfactorily ac-
counts for the Hubble expansion, the cosmic microwave background radiation, and
the cosmological (primordial) nucleosynthesis. However, the standard cosmology
fails to account for a number of fundamental cosmological problems, these are the
horizon, flatness, homogeneity, and isotropy problems. Moreover, it cannot explain
the origin of the primordial cosmological perturbations which lead to the formation
of structure in the almost homogeneous early universe. The origin of all these prob-
lems is the standard assumption of decelerated expansion throughout the whole age

of the universe due to positive energy density and nonnegative pressure. The model
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of the inflationary universe proposed by Guth (1981) (for recent reviews see e. g.
Borner (1988), Linde (1990) and Gottlober et al. (1992)) solves these problems. Its
essential success lies in the possibility of providing a causal mechanism for obtaining
small density fluctuations (and maybe gravitational waves) of the order 10~* on the

horizon of the observed Friedmann universe.

Modern cosmology began with Friedmann’s discovery that General Relativ-
ity predicts the expanding universe. This result was later on confirmed by Hubble’s
observation of the approximately linear relation between the radial velocities of
galaxies and their distances. Obviously, the long-range force of gravity plays the
deciding role in cosmology. Contrary to the electromagnetic interaction it can not
be compensated by negative charges. The first attempt to describe a homogeneous,
infinite universe by Newton’s gravity law led to the known paradox of a divergent
gravitational potential in the case of a finite mean matter density. This paradox
was removed by Einstein’s General Relativity. In order to solve Einstein’s equations
one has to make assumptions on the metric. In the simplest case, in cosmology
these assumptions are formulated in the cosmological principle. This principle is
the hypothesis that the universe is spatially homogeneous and isotropic. Obviously,
the planets, stars, galaxies and systems of galaxies are far away from a homogeneous
and isotropic matter distribution. Qur intuitive ideas of homogeneity and isotropy
are mainly based on the observation of the highly isotropic background radiation
from which we deduce a homogeneous and isotropic distribution of matter at the

time of recombination.

In the following sections of this report we will consider the mechanisms which
produce the observed structure starting from the initially nearly homogeneous dis-
tribution of matter. For the consideration of cosmological evolution the universe
can be assumed to be homogeneous and isotropic. In the language of mathematics
this means that the three-dimensional space is maximal symmetric. Consequently,

it is a space of constant curvature. In the four-dimensional space-time the scalar
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curvature of this three-dimensional space is in general time dependent. The com-
ponents go; of the metric tensor must vanish, because otherwise a direction would
be preferred. (Greek indices run from 0 to 3, Latin indices run from 1 to 3.) For
the component goo one gets goo = 1 by an appropriate choice of the time coordinate
(synchronisation). That means, that the cosmological principle leads to a drastic
simplification: The four-dimensional space-time can be described by the Robertson-
Walker line element

dr?
1—kr?

ds? = dt* - a*(t) { + r?(d¥? + sin’ z9d<p2)} . (1)
Here a(t) denotes the scale factor and k£ = 0,41 is a constant. We have assumed
that the velocity of light is ¢ = 1. The scalar curvature of the three-dimensional
space is ®)P = 6ka~2. Therefore, the constant k¥ determines the type of the spatial
curvature. The case k = 0 corresponds to a flat three-dimensional space (Einstein-de
Sitter universe), k = +1 is a closed space with the finite volume 27243, and k = —1
is a space with negative curvature. For the line element (1) the Einstein equations
of General Relativity

1
Gag = Rag - §Rg°"3 = SWGTag (2)

are reduced to one equation for the scale factor a(t). In order to obtain this equation

we compute the components of the Ricci tensor in the metric (1):

Ry = —32, 3)
Ry =— [g +2 (g)2 + %-’;] ik 4)

The mixed components Ry; vanish identically. The Ricci scalar reads

R=—6[g+(é)z+‘%]. ®)

a
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In the homogeneous isotropic universe the matter must be described by scalar quan-
tities which depend only on time. The energy-momentum tensor must have the same

form as that of an ideal fluid in the rest frame,
Tap = (E + P)uau,; — Pgap, (6)

where u° = 1 and «' = 0. The quantity ¢ is the energy density of the matter, P
is the pressure. Then the 0-0-component of Einstein’s equations is the Friedmann
equation

€)'+ 5=

and combining it with the trace equation one has

é 4G

- =——(+3P). 8

2 Tl +ap) ®)
It is characteristic for this equation that it does not allow a static solution except
for € + 3P = 0. With € + 3P > 0 an expanding universe (@ > 0) must have started
its expansion in a singular state (a = 0) with formally divergent energy density
(¢ = 00). From the Bianchi identity it follows that the divergence of the energy-
momentum tensor must be zero (Tf;[, = 0). This condition leads to the equation of
motion of the matter

€ a

e+P _3;’ ©)

which is of course already contained in the equations (7) and (8). Knowing a relation
between the pressure P and the energy density € - the equation of state P(¢) - eq.
(9) can be integrated, and it defines the energy density as function of the scale factor
a(t). Note, that in general the equation of state contains the temperature T as a
second state variable. For our considerations the temperature specifies only the form
of the relation P(e) (see eq. (10)).
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On the one hand we can see baryonic matter in the present universe —
namely all the objects which emit the observed radiation and the indirectly seen
dark matter (for example interstellar dust). On the other hand, there exists besides
the radiation from the stellar type objects a photon gas distributed with high accu-
racy homogeneously and isotropically, namely the microwave background radiation.
Moreover, probably there exist also dark nonbaryonic matter. From the viewpoint
of cosmology the baryonic matter in the universe can be assumed to be concentrated
in “particles” the inner structure of which is most of the time unimportant for the
dynamics of the cosmological evolution. Such “particles” would be the galaxies,
which move relatively to the cosmological rest frame with velocities which are small
in comparison to the speed of light (v ~ 1073). Therefore, the ratio of the kinetic
energy density to the rest mass density is of the order 1078, i.e., the energy density
equals the mass density of baryonic matter. These “particles” interact only gravi-
tationally, the ratio of the pressure of the “gas” of this “particles” to the rest mass
density is of the same order of magnitude (10~8), i.e., the pressure can be neglected

and the baryonic matter is described as dust-like matter with P = 0.

In the present universe the energy density of the observed radiation can be
neglected in comparison to the mean density of the baryonic matter. Therefore,
radiation does not influence the present dynamics of the cosmological evolution. I
the universe has the critical density as predicted by the inflationary cosmological
models, the present universe is dominated by nonbaryonic dark matter which obeys
also the equation of state P = 0. Therefore, from eq. (9) one has ca® = const.,
where ¢ is the total energy density of the baryonic and dark matter. Then the
Friedmann equation (7) can be solved to find the time dependence a(t). For the
most interesting case of an Einstein-de Sitter model with a flat three-dimensional
space (k = 0) we have a power law expansion, a(t) o« t¥/3. More general, for a linear

equation of state

P=(y-1), 05452, ' (109)
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one obtains from eq. (9) ea®’ = const. and for the Einstein-de Sitter model we have
a(t) « * and s = 2/(37), where v # 0. Expressions for the time dependence of the
scale factor in spatially open and closed models can be given in parametric form. In

every case, we obtain a finite age of the universe,
tp = flap)H, ", (11)

where we use the classical parameters of the cosmological models, the present Hubble
parameter H, = (t,)/a(t,), and the deceleration parameter ¢, = —a(t,)a(ty)/a*(t,).
Both parameters are only known with very limited accuracy. Therefore, we write
H, =100 h x km s~* Mpc™! with the possible range 0.55 k= 1. The deceleration
parameter g, is only known to be positive and certainly not much larger than 1.
The function f(g,) is a monotonically decreasing function of ¢, with f(0) = 1 and
£(0.5) = s = 2/3, the latter originates from the power law 12/3 of the dust model in

the Einstein-de Sitter universe.

The photon gas practically does not interact with the baryonic matter in
the present universe. Therefore, the radiation component also fulfils eq. (9) and
€raa@? = comnst.. Since the energy density of the radiation decreases faster than
that of the dust-like matter, one can deduce the existence of the radiation domi-
nated stage of the cosmological evolution in the past. Then we have an equation of
state (10) with v = 4/3. Approximately at the transition time from the radiation
dominated universe to the dust universe the cosmic matter becomes transparent.
In this moment the decreasing energy density of the background photons becomes
too small to ionize the continuously recombining atoms. During the recombina-
tion era the background photons are scattered for the last time. Informations on
the spectrum and the isotropy of the microwave background concern this era. To
summarize, the standard model of the cosmological evolution asserts that starting
with an initial singularity with formal infinite temperature and energy density the
homogeneous and isotropic universe expands and cools, where the energy density of

the initially dominating radiation decreases faster than that of the baryonic matter,
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and the universe becomes matter dominated. For a detailed account of physical pro-
cesses in the standard model see, e.g., Weinberg (1972), or Zeldovich and Novikov
(1975/1983).

This standard cosmological model is supported by the observation of the
Hubble flow of galaxies and the 3 K background radiation. The main problem
of the standard model is the existence of the initial singularity, which is a quite
general property of cosmological models in General Relativity. First of all it hints
at a breakdown of Einstein’s General Relativity in the limit of strong gravitational
fields. Moreover, the following two properties of the universe can be understood
in the framework of the standard model only as special properties of the initial

singularity:

e At present the observed mean density is close to that of the flat Einstein-de
Sitter model, i.e., the density parameter & = /e, is close to unity (e, =
3H?/(8x@) is the critical density of the spatially flat Einstein-de Sitter model,
H(t) = a/a is the time-dependent Hubble parameter). From the Friedmann
equation (7) it follows that Q(¢) — 1 = k/a®. In models with k = +1 the
quantity |Q(t) — 1| increases with time. From the presently observed small
value of |2 — 1] it follows that, for example, at Planck time [Q — 1|p1,< 1070,
The exact limit depends on the details of the model. This problem is called

flatness problem.

o The distance traversed by signals during the time interval £, —¢, in a space-time

described by the line element (1) is

1 dr todt!
d = a(tl) ./,-o (—IW = a(tl)/to ;('E. (12)

Since there is a finite time from the moment of singularity ¢, = 0, eq. (12)
defines a particle horizon (Rindler 1956). For a power law of the expansion,

a(t) o t* with s < 1, one gets dy = a(t) fg dt'/a(t') = /(1 — s). Only events
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inside this horizon can influence a given point in the space-time. On the other
hand the observed high isotropy of the background radiation tells us, that
at the moment of recombination the universe was homogeneous and isotropic
over distances much larger than the horizon. This problem is called horizon
problem. Note, that even if dy(t) diverges for s > 1, the temporal Hubble
radius H~! determines the maximal length which can be influenced by physical
processes during a certain time interval 7 = (t; —¢,). This led to the notion of
the *horizon’ H~! as a causality bound on coherent processes being of influence

in the early universe.

The existence and the smallness of the horizon (12) represents the main
obstacle for theories of the origin of structures in the universe. For example, the
horizon at the epoch of recombination corresponds to a comoving scale of presently
100 Mpc. There are structures in the universe as planets, stars, galaxies and galaxy
clusters up to the largest superclusters and voids, ranging up to this scale. According
to the standard model with a power law of the scale factor a(t), no causal origin for

them seems possible operating in the early evolution of the universe.

The inflationary models are characterized by an early stage of accelerated ex-
pansion due to an effective negative pressure (cp. eq.(8)). The inflationary scenario
solves not only the horizon and flatness problem but delivers also the primordial
perturbations for structure formation. The origin of density fluctuations (and grav-
itational waves) are quantum fluctuations of the inflation driving field becoming
enlarged to macroscopic scales and growing beyond the cosmological horizon. The
inflationary models differ in having different driving mechanisms for inflation and

in solving the graceful exit problem.

Driving mechanisms could be renormalization corrections to gravity (Starobin-
sky 1980) or scalar fields as in the “old” (Guth 1981), “new” (Linde 1982, Albrecht
and Steinhardt 1982), “chaotic” (Linde 1983), “extended” (La and Steinhardt 1989)
or “natural” (Adams et al. 1993) inflation. The end of inflation is reached in the
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simplest inflationary models if ¢ — 0, V(¢o) = 0. Then via scalar field oscillations
and corresponding oscillations in the metrical perturbations particles will be cre-
ated the interaction of which leads to the hot universe. Another exit is the sudden
end of inflation due to rolling in another direction in the twodimensional potential
(“waterfall”). Note that the same behaviour may lead under certain conditions to
double inflation (Gottlober et al. 1991, Amendola et al. 1991). Also a soft first
order phase transition may end the inflation.

For the following discussion of the cosmological perturbations we will illus-
trate the basic ideas of inflation driven by a scalar field with a potential V(). The
time evolution of the scale factor a(t) of a Robertson-Walker metric (1.1) with the
curvature k can be obtained by solving the Friedmann equation (1.7). In the sim-
plest case of de Sitter inflation a constant vacuum energy density € = py dominates
the r.h.s of this equation, and for spatially flat models we find an exponentially

rising scale factor,
a = agexp(Ht), H =a/a = const. (13)

A natural generalisation of the exponential expansion law is a slowly varying energy
density in eq. (1.7), |é|/e < H, which leads to a quasi-de Sitter stage with an almost
constant Hubble parameter, |[H| < H?. It was Guth’s (1981) insight that this stage

may solve the problems mentioned above if it lasts long enough (at least 60 e-0 of
a(t)).

At first we take the energy density of a coherent scalar field with some
potential V(¢) in the Friedmann equation,

1,
e= 15+ V(o). (14)
and the field equation of the scalar field,

$+3Hp+V'(p) =0, (15)
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where V() = dV/dg¢. Under the condition of a slowly changing scalar field we can
neglect the kinetic energy in eq. (14) and the second time derivative in eq. (15).
Then the e-fold expansion of spatially flat models is given by the rate of change of
the scalar field,

_ . V(@)
ln——; —87rG d V’() (16)

Simple models employ potentials V = m2<p2 /2 or V = Ayp*/4 for which the integral
in eq. (16) can be solved 0. For the massive scalar field the time behaviour of the

scale factor is given 0 by
2
In 2 = Hy(t — to) — —=—(t — to)? 17)
ao ) 6

This exponential expansion was first noticed by Parker and Fulling (1973) in a
numerical solution of a bouncing spatially closed model. It was then derived analyt-
ically by Starobinsky (1978) and discussed by Linde (1983) as the simplest example
of an inflationary model which leads to a natural end of inflation if | H| is of the order
of H? and scalar field oscillation cause oscillations around the average behaviour of
the scale factor a(t) o t*/2 (known as solution for dust-like matter). The coupling
to other physical fields besides the inflaton field causes particle creation and the
transition of the dust-like to a radiation dominated Friedmann-model. From the
inflationary models with a high temperature phase transition this process is called
reheating since at this time, after the supercooling stage during the exponential
expansion again a high temperature is reached (for details see Linde (1990)).

As a natural extension of this model one can consider several noninteracting
scalar fields as source of gravitation (Starobinsky 1985, Polarski and Starobinsky
1992). Then the energy density is given by

e=2 (%951 + V..(%)) (18)

and each of the scalar fields ¢, fulfils the equation of motion (15). The exponentially

increasing scale factor during the quasi-de Sitter stage is given by
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‘/n(‘ﬁn) ~
Vian) 2P (19)

nZ =—81rGZ/%

a,

Depending on the path in the corresponding phase space the combined action of two
(or more) scalar fields may lead to double (or multiple) inflation. A first inflationary
stage could be also driven by vacuum polarisation effects. Describing these effects
with a higher order term in the gravitational Lagrangian the resulting theory is
conformal equivalent to General Relativity with a scalar field as source. Within the
higher order theory a scalar field as source may lead to double inflation (Gottlober
et al. 1991).

If consecutive inflationary stages exist between which the universe expands
according to the Friedmann law then the scale invariance of the de Sitter stage is
broken (by introduction of a typical length into the theory — the horizon at the
moment of transition from one inflation to the other). Due to the second inflation
this broken scale invariance could be mapped on observable scales of the universe.
Observing the perturbation spectrum at different scales one can obtain informations
about the early inflationary stage of the universe (Gottlober and Miicket 1993,
Gottlober et al. 1993).
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Chapter 32

The linear theory of gravitational
instabilities in Newtonian theory

The problem of gravitational instability of a homogeneous static medium
against small perturbations of the hydrodynamical equilibrium was considered for
the first time by Jeans (1902). Within the framework of General Relativity Lifshitz
(1946) calculated the evolution of small fluctuations in an expanding Friedmann
universe. Bonnor (1957) obtained the corresponding results in Newtonian cosmol-
ogy. The problem has been extensively treated in many standard monographs in
cosmology (Zeldovich and Novikov 1975/1983, Weinberg 1972, Peebles 1980). Here
we want to describe briefly the solution of the problem within Newtonian theory.
We can use Newtonian theory in Friedmann cosmology if the sizes of the perturba-
tions are much smaller than the horizon. Due to the predictions of the inflationary

scenario we assume in the following that the universe is spatially flat.

The actual state of the homogeneous matter distribution in the universe
should be determined by the mean density g(t), the pressure P(t), the scale factor
a(t) (which describes the expansion), the entropy S(t), and the expansion velocity
H(t) = afa, i.e., the Hubble parameter. In spatially flat universe these quantities
are connected by the following equations (cp. eq. 7 and 9)

0+3H(e+ P)=0, 1)

8 Ge, )

H? =
3



P = P(e,5)- 3)

For an adiabatically expanding universe the entropy S is approximately
constant (after reheating) and the pressure is a function of the density only, i.e.,
P = P(g). The perturbations of the equilibrium solution are determined by the
perturbed particle velocities w with respect to the local Hubble flow, i.e., to the
peculiar velocities w — Hz, by the perturbations of the density p, the gravitational
potential ¢ and, depending on the special kind of perturbations, of the entropy S.
Neglecting entropy perturbations, the ansatz for the perturbed quantities should

have the following form:

e=2(1+9) (4)
u=He+w, {5)
p=0¢+9, (6)
P=Pit)=P+ %%@6, (7

where dP/dp = b? is the sound velocity with respect to the unperturbed medium.
The unperturbated quantities g, P, and @ depend only on time. The proper velocity

u is the sum of the uniform Hubble flow Hz and the peculiar velocity w.
The perturbed quantities depend, in general, on the spatial coordinates, too.
Therefore, they must satisfy the complete set of hydrodynamical equations, i.e., the

equation of continuity, Euler’s equations, and the Poisson equation must be fulfilled.

do _
?a—t' + V(Qu) =0, (8)
ou 1
Tl (uV)u + ;VP +Vyp =0, 9)
Ay = 4rGo. (10)

Inserting egs. (5)-(7) we find
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g+Vw+HzV5+5Vw+wV5=0, (11)
’ %1':1 + H(zV)w + Hw + b*V§ + V@ + (wV)w — b*6Vé = 0, (12)

A® = 4G . (13)

Following the arguments of the classical stability analysis and the principles of the
perturbation theory, the nonlinear terms with respect to the perturbation quanti-
ties can be neglected in comparison with the linear ones while the fluctuations are
sufficiently small. This conclusion concerns the last two terms in eqs. (11) and (12).

After these terms have been omitted, the egs. (11) and (12) obtain the form

64+ Vw+ HeVé =0, (14)

w+ H(zV)w + Hw + 8*Vé+ VO = 0. (15)

The unperturbed quantities H, 5, and P should be determined by help of the eqgs.
(1) - (7). The universe homogeneously in the average can be realized by density
perturbations satisfying periodic boundary conditions. The perturbations can be

decomposed into Fourier components,

5=25ke.’kz, w=zwke‘kz, (p:Zq,ke;kz’ (16)
k k k

where A = 2r/k is the length of the wave vector and the 6, wy, and ®; are functions
depending only on time t. Using the decomposition (16), the equations (13-15)

obtain the following form:

b + ikw =0, (17)

wi + Hwi + ikb25k +tk®, =0, (18)
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—k2® = 4w G pby. (19)

Note, that in the linear approximation the spatial distribution of the den-
sity fluctuations is phase shifted with respect to the velocity distribution by —= /2.
We have taken into consideration that the length as well as all distances between
particles in an expanding universe are growing with time proportional to the scale
factor a(t). The equations (17)-(19) show that for each mode k the same equations
are valid. Resolving (17) with regard to w) we compute the time derivative w; and
substitute these quantities in (18) by the obtained expressions. By the help of (19)

we substitute @, in (18) and we get for each mode k the equation
x4+ 2Hb, + £20,6, = 0, (20)
with
Oy = bV — 4xGg/k? (21)

Let us consider for a moment the static case (i.e., a(t) = const. and H = 0), which

was discussed by Jeans (1902). We find
& o etl” (22)

with g = const. and 7! = £(~k?6)"/2. For a static background the equation (22)
describes the time evolution of the instability. The sign of the expression under the
square root defines whether the solution is stable and small perturbations lead to
small oscillations around the equilibrium state (=2 < 0) or becomes unstable (7=2 >
0) and formally the 6, will grow up unlimited. Also in an expanding background the
sign of ©; decides about stability or instability of the considered hydrodynamical
state of the medium against perturbations of the typical length A = 27 /k (Jeans
criterion).

If at some instant of time the configuration is unstable against perturbations
with A; then it is unstable against all perturbations of coherence lengths A; > A,

too. For very large A, i.e., in the limiting case k — 0, it follows



437

bk + 2Hb), — 47Gpby = 0. (23)

Note, that this equation is fulfilled generally if pressure can be neglected (b = P = 0).
The scale factor of an Einstein-de Sitter universe filled with dust increases like

a(t) o t*/3, and we obtain from (23) for the decaying and the growing modes
St and 6 o t25, (24)

In the expanding background the linear perturbations grow as a power-law, i.e.,

much slowlier than in the static case (22).

We will now consider a universe which contains mainly relativistic particles.
These particles are smoothly distributed with g, o a™* because any density per-
turbation would be erased. Then the expansion of the background in eq. (23) is
described by
8

3 Gar(1+6), (25)

H*=
where we have introduced the relation ¢ = p,,/p, between the density of nonrela-
tivistic and of relativistic (i.e. radiation) matter. Then £ o a and we can transform
eq. (23) to

24+ 3¢ 36 0
261+¢) " 2u0+6 7

where 8, denotes déx/d¢é. The solution for the growing mode of the nonrelativistic

Y+ 8 — (26)

matter is now
b o 1+ 3€/2. (27)

Thus fluctuations of the nonrelativistic matter do not grow if the evolution of the
universe is dominated by relativistic particles (£ < 1).

Let us return to the Jeans criterion. For a fixed background density it exists
a critical coherence length A; (the Jeans length), which separates the stable region
(A < Ay) from the unstable region (A > Aj).
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Ay = b(-G—é) = bty. (28)
If the scale size of the perturbation 0 the Jeans length gravity becomes important
and the pressure can be neglected. For very small perturbations only the pressure
gradient is important. These perturbations oscillate as acoustic waves. The quantity
t; is of the order of the free-fall-time of a homogeneous spherical matter distribution.
It is also of the order of magnitude of the time interval during which a spatially flat
universe has been expanded from ¢ = oo to p = g. Hence, the Jeans length is nearly
equal to the distance which a sound signal is spreading during a time interval of the
order of the free-fall-time. These results remain also valid in an expanding universe
with decreasing mean density.

In a homogeneous medium the Jeans length defines a mass enclosed in a

cube of length \;, the Jeans mass
A\ 2

Both the Jeans length A; and the density g depend on time. The Jeans length
increases with the free-fall-time, but the sound velocity decreases during the cos-
mological expansion. It depends on the relation of matter and pressure. Before
recombination electrons and photons are tightly coupled by Thomson scattering.
Thus, matter and radiation act as a single fluid. If the temperature T is smaller
than the mass of the baryons the pressure of the baryons can be neglected. Hence,
P = P44 = €rqaf3. Sufficiently far before the recombination era the radiation dom-
inates over the matter density. Thus, matter density can be also neglected and
b = ¢/v3. The energy density of the radiation decreases faster than the energy
density of matter and at the time ¢t = ¢,, both are equal. Thus, the matter density

also influences the sound velocity.

The entropy per baryon is defined by the number of photons per baryon.

Hence, the entropy perturbations can be written in the form
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where we have assumed adiabatic perturbations. Taking into account € = €,q4 +

6€ma: We obtain for the sound velocity

c 1

2 —— e e
b= 31 +3€mat/(4erad).

(31)

At t < t,, the sound velocity is constant (b = c/+/3), the Jeans length
increases with time according to (28) and the scale factor is @ o t'/2. Thus, the
Jeans length A; (28) grows like

Mmdoaox(l+2)72 (32)

The Jeans length is of the order of the horizon ct. The Jeans mass depends on the
matter density (without radiation). If today the mean matter density is go then the
corresponding mean density at time t characterized by the cosmological redshift »
is given by 7 = go(1 + 2)® and

Ay

M;=p (7)3 x (1+2)73, (33)

Throughout the radiation dominated epoch the Jeans mass increased with time and
reached its maximum value at the transition to the matter dominated universe %.,.

When matter becomes important (¢ >> t.,) the velocity of sound decreases

2c 2 Erad
P (F) S oa 4
3) o ¢ (34)
Now the scale factor grows like @ o< t*/3. Thus, the Jeans mass is
A\ 3
My=2p (—%) s const. (35)

The Jeans mass was .remaining constant until the recombination (for = 1 the
transition to the matter dominated universe takes place before recombination). The

maximum Jeans mass is of the order of magnitude



M1 = MJ'mﬂz ~ 1017M@. (36)

That means that the perturbations on scales smaller than the scales corresponding

to superclusters oscillate.

Immediately after the recombination epoch the pressure of the neutral gas
becomes dominant. The adiabatic sound speed of the monoatomic gas is

be (ﬂ)’ (31)

3m,

At recombination (T' = 3000K) the Jeans mass decreases by several orders of mag-

nitude to
M2 ~2- 106M@. (38)

It is in this moment of the order of the mass of globular clusters.

Taking into consideration the dissipative processes before and throughout
the recombination era one can derive a further characteristic mass (Silk 1968). The
photons are coupled to electrons by Thomson scattering, but the photons and elec-
trons are not perfectly coupled. Due to the imperfect coupling perturbations on
small scales are damped. This photon viscosity leads to dissipation of all adiabatic
fluctuations on mass scales smaller than M3. Let us derive an order-of-magnitude
estimate of this mass. The mean free time for Thomson scattering is tr = 1/(orn.c),
where o is the Thomson cross section and n. is the electron density. The photons
perform random walks. The diffusion time for a distance A is ta55 = A?/(c%tr). If
this time is smaller than the expansion time the sound waves of wavelength A can
be damped by photon diffusion before recombination. Thus, at recombination the
damping length is

Ao = (S} (39)

OTTNe

and the mass within a volume of Ap is
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M3 ~ 1012M®. (40)

Note, that this is only a rough estimate of the damping scale. For the exact calcu-
lations one has to solve numerically the Boltzmann equation which leads to a little

bit larger mass (e.g. Peebles 1981).

Let us mention also the possibility of entropy fluctuations. Their evolution
during the radiation era defines a further characteristic mass. Entropy fluctuations
are isothermal ones and are defined by a local fluctuation of the baryon-to-photon
ratio. They are remaining constant until the recombination epoch. With respect to
the matter density, instability occurs but does not grow essentially. The growth is
suppressed by the “friction” of the moving matter against radiation. As a conse-
quence, the initial spectrum of entropy fluctuations remains almost unchanged up to
recombination. Only those fluctuations with coherence lengths smaller than a criti-
cal one will be damped out entirely. The mass corresponding to this critical length
is the lower mass limit M, ~ 15Mg. Note, that this limit is much smaller than
the Silk mass (40). Therefore, in principle, they could lead to small scale structures

shortly after recombination.

Fluctuations with smaller mass content have been smeared out until the
recombination. Hence, four mass scales are at hand which characterize the dominant
processes up to recombination. For detailed discussion of the damping of fluctuations
in the universe see e.g. Weinberg (1972), Zeldovich and Novikov (1975), Peebles
(1980), Bérner (1988), Efstathiou (1990).

We have derived the equations under the simplifying supposition that the
cosmological medium as a mixture of various kinds of matter can be described by one
equation of state only. Actually, the cosmic medium is a multi-component medium,
the components of which should be described in principle by different equations of
state. According to its actual equations of state the perturbations of each component

exhibit different time behaviours. Density perturbations occurring in the compo-
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nents over a fixed coherence length are interacting gravitationally. This implies
certain consequences for the instability behaviour of the perturbations belonging to
the single components. It is a matter of fact that galaxies and clusters of galax-
ies contain matter that is hidden from direct observation, the dark matter. From
nucleosynthesis it follows that this material cannot be composed only of baryons.
Candidates for the dark matter component in the universe are the neutrino of finite

rest mass (HDM) or more massive weakly interacting particles (CDM).

The linear theory of density perturbations in an universe containing a neu-
trino component and baryonic matter has been analyzed by Wasserman (1981). The
influence of the components relative motion upon the gravitational instability was
investigated in the Newtonian limit by Polyachenko and Fridman (1981) and Gr-
ishchuk and Zeldovich (1981). Fargion (1983) and Soloveva and Nurgaliev (1985)
have treated the corresponding problems for a multi-component medium in the
expanding universe. In Newtonian approximation they obtained asymptotic expres-
sions for the solutions as k — 0 and k and a(t) are the quantities introduced above.
Assuming an equation of state P; and a sound velocity b2 = dP;/dp; Fargion (1983)
and Soloveva and Starobinsky (1985) established exact solutions for the evolution of
small density perturbations in a two-component medium against the background of
an expanding Friedmann model. A systematic approach to the exact solutions for
the evolution of small density perturbations of a two-component medium against the
background of an expanding Friedmann universe in the Newtonian approximation

is given by Mathai et al. 1988 (see also Gottlober et al. 1990).



Chapter 33

The Zeldovich approximation

Already the linear theory of instability evolution yields important results,
e.g. the characteristic evolution time can be determined with sufficient accuracy.
Indeed, the linear stage of instability growth takes the main part of the whole time
evolution. On the other hand, at this point we cannot yet say anything about the
nonlinear evolution stages. However, the situation is not so hopeless as it seems
at first sight. The nonlinear phase and, if it exists, the final stage of condensing
objects can be investigated by help of methods which give a qualitative answer on

the question for further evolution, i.e., after § & 1. There are mainly three methods:

o One can try to find the critical or singular points of the solutions, respectively,
of the corresponding differential equations, and to look for asymptotic repre-
sentations near these points without the knowledge of the explicit solutions.
The mentioned critical points are distinguished among others because in their
environment the qualitatively, physically significant modifications in the be-
haviour of the corresponding solutions take place. Hence this method, if it
can be applied, is especially suitable to understand the qualitative behaviour

of some systems or processes.

¢ In some cases it is possible to find an approximation method by means of
which the solutions obtained in linear approximation can be extrapolated to
the nonlinear stage. Such a method allows to describe the transition to the
nonlinear behaviour. The further application to later stages may be restricted

by the method itself.

e Special suppositions about geometry and initial conditions can lead to exact



solutions. Especially, this concerns perturbations with spherical symmetry. In

this case the influence of neighbouring perturbations vanishes.

Although the three approaches seem to be very different, naturally they are con-
nected. Especially this becomes evident for considerations concerning the behaviour
of dustlike matter, i.e., collisionless matter, (P = 0). It has been already mentioned
above, that matter with P = 0 represents a special case, which is for a number of
equations of state an asymptotic one. The case P = 0 describes the purely gravita-
tional interaction between the particles and the kinematical properties determined
by the initial conditions imposed on the particles at some instant of time. It is
a quite realistic description while the particle number density is sufficient small,
respectively, the gravitational interaction dominates over the other ones for some
time. Of course, this cannot be a suitable approximation if one wishes to describe
the eventually occurring new state of stable equilibrium between pressure forces and
gravitation. Such state is usually accompanied by a transition to a new equation of

state.

The method sketched above under the first point goes back to the ideas
of Poincaré (1889) and Bendixson (1901). It can be considered as the analysis of
the trajectory of the state vector throughout the phase space of the system under
investigation. This analysis ,i.e., general properties, classification and methods,
has been well elaborated at the present time. The methods presuppose in most
cases the possibility to define those terms as phase space and related ones for the
system under consideration. This might be a considerable restriction in some cases
of problems. The analysis leads to the determination of the equilibrium states (i.e.,
the stationary points) of the system and to an investigation of the stability character
of these points. Mathematically this is equivalent to the qualitative analysis of a
system of ordinary nonlinear differential equations. For dynamical systems powerful

methods of investigation are well elaborated (e.g. Bogoyavlenski 1985).

In addition, if a system is depending on a number of parameters then it
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might happen that for certain parameter values the system degenerates and goes
over into a qualitatively new behaviour. The states of degeneration or, with other
words, the singular states of a system decide between different regions of states
wherein the system alters continuously with changing parameters. Similarly to the
qualitative analysis of the stationary points of ordinary differential equations, these

states of degeneration or singular points can be classified, too.

A typical singularity (degeneration) for the propagation of perturbations is
the formation of so-called caustics. For such propagation phenomena the time t
itself plays the role of a parameter. During time evolution all “parameter values”
will be entered automatically. In particular, the 0 of caustics is>a. quite general

phenomenon in a collisionless medium. All transformations

r =z + vo(z)t, (1)

which transmit a particle from an initial position z into the position r(z,t), after
some time t; lead to singularities like caustics if vo(z) # const., i.e., the initial
velocity field is a function of the particle position. If the initial density is equal to
oo(x) at t = 0 then it alters with time being a function g(z,t). In the neighbourhood

of the particle z the density can be computed as
o(z,t) = 00J 7 (0r/0z) = go/ (1 + vo(z)t), @

where J(8r/8z) denotes the Jacobian of the transformation (1). In the direction
defined by the negative gradient vj(z) < 0 an instant of time ¢ = ¢, exists at which
1+ v)(z)t; = 0 and the density becomes infinite. This characterizes the moment at
which particles are concentrated in the neighbourhood of z (infinitely close to z).
A caustic forms at z. At the distance ¢ apart from the caustic the density is of the

order of magnitude e~/

. For the higher dimensional cases this property will be
conserved. Only the dimension of the surfaces at which the density becomes infinite

changes correspondingly.
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These results remain also valid in the case if a field of forces with potential
character is present and the distribution of the initial particle velocities is potential-
like. In this case the description of the singularity of the transformation (1) is
equivalent to the determination of the corresponding caustics. This is the subject
of the theory of the Lagrangian singularities.

The above mentioned suppositions concerning the origin of caustics are ful-
filled for the evolution of adiabatic density perturbations in the universe. This ap-
proach was developed and applied to the problem of the extrapolation of the linear
theory into the nonlinear stage by Zeldovich (1970). The perturbation amplitudes
of density become of the order unity if the linear dimensions of perturbation regions
are already essentially smaller than the Hubble radius ¢t and much smaller than
the curvature radius of the expanding universe. Therefore, the Newtonian physics

is entirely sufficient to describe the evolution of instabilities.

The idea is to write the Eulerian coordinate r as function of the comoving
coordinate 8, where this transformation describes the perturbations starting from
an smooth initial distribution (see Arnold et al. 1982). For the undisturbed solution

of an expanding Friedmann universe we can write

r = a(t)s, 3)

where the scale factor a(t) is normalized in such a manner that at some instant of
time ¢ the unperturbed position of the particle is determined by s = =(t,), i.e.,

a(to) = 1. Assuming background perturbations one is led to the ansatz
r =a(t)s+ F(s,t). (4)
In the case of small growing fluctuations F(s,t) can be written as the product
F(s,t) = b(t)x(s), (5)

because for P = 0 each increasing density perturbation grows proportional to the

initial fluctuation, i.e., § o b(t)x(r/a). Equations (4) and (5) are of the type of the
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transformation (1). The velocity field of adiabatic density perturbations is potential-
like (rot u = 0). Because of

dr

w=d—t

— Hr x x(8), (6)

it follows rot x = 0. From the linear approach #(t) is a known function, namely
b(t) o a(t)bo(t). The approximation consists in the application of the equations (5)
and (4) with the known functions a(t) and b(t) to the nonlinear stage.

The density evolution depending on time t can be computed straightforward.
To this aim one has to compute the transformation of the volume of a mass element

according to (2). Equation (4) represents a coordinate transformation s — r, and
it is valid

dV, ~ dV,J(0r [Ds), (1)

where J(Or/0x) = J denotes as above the Jacobian of the transformation (4).
Hence, it is

dm dm

_am -1 _ a3
0=y dV,J poa®J (®)

Let us assume, that the mean density is = goa® and expand the Jacobian
to first order. We find

bp b
? = —;st 9)
With an initial perturbation
ik .
x(8) = Zk: FA" exp(iks) (10)

and the growing mode in an Einstein-de Sitter universe

2 b= (1)
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the linear perturbation is

%Q = (t/to)2/3z Ay exp(iks). (12)
k

Zeldovich’s great insight was to point out that (3) does not only describe the

linear theory but might also provide a first approximation to nonlinear behaviour of
bo/e.

The Jacobian has the explicit form

14 28z b oz, b oz

a 88 a 883 a 8s3

-3 = bdzy bdzy bdzz
a J(a‘l‘/a&) - a 38 1 + a 33y a sy (13)

b8z, b0z3 q 4 bozs

a 98y a 38y a 38y

Because of rot x = 0, it exists a transformation diagonalizing the matrix connected

with (13) for each fluid element. Therefore, it can be written

_ o
N (TR P TWY W .

The quantities A; are functions depending only on the coordinate s and on b/a =

f(t). The quantities Ay, Az, and A; give the deformation with respect to the main
axes of the tensor of deformation 7, = 9z;/0s;. They are functions of the tensor
components 7;;. In general, it is A\; # Ay # A3 and it exists a largest value A,z
= max (A;). If Anar > 0 the quantity Amarb/a increases with time until it reaches
the value unity. At this instant ¢ becomes infinite for the particle corresponding to
the coordinate s. The infinite spatial density occurs because of a one-dimensional
0 in the direction of A.,;. In the result, at this position an extremely flat particle
configuration forms which is comparable with a “pancake”. A caustic has been
formed. The surface density remains finite (a finite mass is distributed over a finite
surface). This circumstance serves as the main argument in favour of applying this

approximation up to the occurrence of the caustic. Indeed, the pancake causes
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a finite gravitational field. Hence the error due to the further application of the

approximation remains finite even in the extreme case p — oo.

The advantage of this approach consists in the fact that the procedure uses
as the starting point the exact results of the linear stage, i.e., the approach is asymp-
totically exact. On the other hand it describes the transition to the nonlinear stage
and represents a sufficient good é,pproximation and qualitatively right description
of the behaviour in the nonlinear regime (Doroshkevich and Shandarin 1974), i.e.,
the one-dimensional character of the collapse with crossing particle trajectories and
the formation of an extremely flat matter configuration with very large density. In
addition, the obtained solution is exact for perturbations depending only on one

Cartesian coordinate (Zeldovich 1970).

The theory of the formation of “pancakes” in the expanding universe has
been comprehensively worked out (Shandarin et al. 1983) as well as the further
development of the singularities of the transformation (1). The motions in the
medium lead to further pancakes . The firstly originated ones change their form
and should interact. For the analysis of all formations and possible growth the
complicated mathematical apparatus of the theory of the Lagrangian singularities
is necessary (Arnold 1980).

During the further evolution singularities occur with different orders of mag-

nitude with respect to the density. The density near the various singularity types

behaves on the surface of the caustics as e~'/2, along singular lines and knots as e~%/3

=3/4 or €~1. The corresponding analysis and a comparison with the large-scale

matter distribution was carried out by Doroshkevich et al. (1983).

or €

The above described theory of the formation of singularities in the matter
distribution like caustics concerns perturbations in dust-like matter or perturbations
with sufficient large wave length. More realistic matter leads to the formation of
shock waves in the pancake region. By comparison with the observations the occur-

ring pancakes will be preferently identified with the superclusters of galaxies, i.e.,
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actually with the large-scale matter configurations. For those configurations the
applied approximation can be justified at best. The process of structure formation
does not end with the formation of pancakes. Objects on smaller mass scales can
appear due to fragmentation of the pancakes. For this the driving mechanisms are
gravitational and thermal instabilities in the heated gas between the shock fronts of
the pancake. After the formation of the caustics, respectively of the pancakes, the
velocities of the latter ones surely deviates from the corresponding Hubble veloci-
ties. Possibly it also exists a velocity field for the pancake distribution which differs
from the Hubble flow. Taking into account the gravitational interaction between

the pancakes this should lead to clustering during the further evolution.

The described mechanism of the formation of pancakes leads to further con-
sequences. The transformation (1), respectiv;aly the transformations (4) and (5),
causes not only the occurrence of caustics, i.e., a matter concentration in certain
regions, but also an evacuation of space regions large wmp&ed to the regions of
matter concentration. From (2) we get formally for the region with vy(z) > 0 that
the density tends to zero for t — oo. The originally almost homogeneous matter
distribution goes over to a distribution with vanishing density in almost all of the
space and to some rare space regions with highly contracted matter. Considering
only inertial motion during time evolution the caustics are decaying and will form
again at other places. Correspondingly, for the “empty” regions some temporary
matter inflow takes place. Taking into consideration the gravitational interaction
the highly inhomogeneous matter distribution (concentration on caustics and empty

regions) will become stable.

In order to study the formation of galaxies and clusters of galaxies a non-
linear theory of gravitational clustering is necessary. The best description of this
complex evolution is provided by n-body calculations. During the last two decades a
lot of different codes were developed which describe the gravitational clustering (see

e.g. Hockney and Eastwood 1988). Several authors compared the results of n-body
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calculations with the Zeldovich approximation. The Zeldovich approximation de-
scribes the qualitative behaviour correctly, but the motion of particles is not stopped
in the (formal) singularity. Improvements of the Zeldovich approximation take into
account viscosity which suppresses particles crossing (Burger’s approximation). For
an recent review of the Zeldovich approximation and its extensions see Shandarin
and Zeldovich (1989). Higher order corrections to the Zeldovich approximation were
discussed by Buchert (1992).
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Chapter 34

The relativistic theory of
perturbations

In section 1 we have discussed homogeneous isotropic cosmological models,
where all quantities depend only on time. In section 2 we have investigated the
evolution of one single mode of perturbation within Newtonian theory. Now we
will consider small perturbations of the metric tensor and the matter and describe
their evolution within General Relativity. We shall start with a general discussion
of the problem of describing perturbations in an invariant way and then turn to the
evolution of classical perturbations during inflation where they can be connected to

quantum fluctuations.

The background model is the homogeneous isotropic Friedmann universe.
Within this section we will specify to the flat Robertson-Walker background metric
with k£ = 0, because curvature terms may be important only at the very beginning

of inflation. We write the metric as

ds? = (Fop + 89ap)dz>dz?, (1)

where §,; is the background metric tensor of eq. (1) with ¥ = 0. The small
perturbation of the metric §g,4 are coupled to small perturbations of the matter.
The general problem which arises is that of the physical interpretation of the
perturbations. To this end one has to define a specific hypersurface of simultane-
ity. Only observers within the horizon can exchange signals and consequently define
a physical hypersurface of simultaneity. Choosing a hypersurface of simultaneity

without physical constraints (for example outside the horizon) one can always reach
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that the perturbation vanishes in that specific coordinate system. Under a transfor-

mation
3% = 2% + £(z), (2
where the {%(z) are small quantities, the metric changes to
Gap(z) = gop(2) ~ 2£(aip); ®3)

where () denotes symmetrization. An arbitrary scalar quantity f(z) changes as

flo) = fle) -2 (@

Let us consider, for example, a scalar field ¢(z) = $(t) + 6p(z) which changes to
@(z) = B(t) — €(=)B(t) + b(=). (5)

By an appropriate choice of £°(z) one obtains an unperturbated field ¢(z) = B(t).
Therefore, to distinguish between physically relevant perturbations and pure coor-
dinate effects one has to construct gauge-invariant quantities which describe the
perturbations. At first, let us introduce the conformal time dnp = a~'dt. Thus, the

background metric of the Einstein-de Sitter model reads

ds? = Gopdz®dz?
= a?(n)(dn® — birdz'dz") (6)

According to their behaviour under coordinate transformations in the back-
ground metric we distinguish between scalar, vector, and tensor perturbations.
Within the spatial flat metric of the Einstein-de Sitter model we can construct these
perturbations in the following way (in spatially curved metrics one has to use the
corresponding covariant derivatives). Scalar metric perturbations are constructed
by the four scalar functions f, b, g, and e, which are functions of the four space-time

coordinates
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2f —b;
(scalar) _ 2 "
69;;.; =a (71) ( —b'.' 2(95.7: _ C,ik) )1 (7)

where “” means the partial spatial derivative.Vector perturbations are constructed

from the divergence free vectors S; and F;
(vector) _ _ _2¢ 0 —St'
89w =—a'(n) ( =8 Fip + Fi; ) ()

Tensor perturbations are described by the tensor ki, from which the scalar

(trace) and vectorial parts are extracted. Thus,
00
(tensor) _ _ 2
69“,, ==—a ('7) ( 0 hik )v (9)

where (ki = b} =0).

Scalar metric perturbations can be connected with the perturbations of the
energy density or to perturbations of a scalar field. Tensor metric perturbations
are gravitational waves. Gravitational waves can be created during the inflationary
stage and they may be important in understanding the fluctuations of the microwave
background (Steinhardt et al. 1993). Scalar perturbations created during the infla-
tionary stage are believed to be the basic ingredient for the formation of structure.
Therefore, we will concentrate in the following only on scalar perturbations (for

a complete treatment of gauge-invariant cosmological perturbations, see Bardeen

1980)

Generally, the transformation (2) does not preserve the type of perturbations
(but tensorial perturbations are invariant under these transformations). The scalar
nature of perturbations is preserved if the conformal time and the spatial coordinates

transform like

£°=1q=9+(z),
&= 2t 4 6%, (10)
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where £%(z) and ¢ are independent functions. The metric changes according to (3).
Thus,
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where a’ = da/dn. Following Bardeen (1980) we can construct the following gauge

invariant variables:
Bp=f—2((b-e)ay
aa, : N
Sy =—g+ ;(b —é). (12)

Note, that any combination of these variables is again gauge invariant.

Within a particular gauge the gauge-dependent quantities as the scalar field
perturbation (or energy density perturbations in general) have their physical sense
by comparing them with gauge-independent quantities introduced above. Within
the horizon they have, of course, their sense also by comparing them directly with
well defined physical measurable quantities. For example, describing perturbations
outside the horizon within a fixed gauge and connecting these perturbations to the
physical perturbations generated by physical mechanisms inside the horizon these
perturbations have a well defined physical sense and pure gauge solutions can be
excluded. Let us now consider two often used gauges, the synchronous gauge and

the longitudinal gauge.

Setting f = b = 0 we achieve the synchronous gauge égo, = 0 which was
widely discussed by Lifshitz (1946) (see also Landau and Lifshitz 1979). In their

notation the perturbated metric reads

ds? = dt® — az(t) (6.‘1, + /\(t)P.'k + ﬂ(t)Q;k) d:l:"d:l:k, (13)
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where the Py and Qi are constructed from a scalar function Q which is directly
connected with the perturbation in the density. The synchronous gauge leaves a
residual gauge freedom with

e=00), €= f

t dt/ ;

= + C¥(r). (14)
For a growing mode of scalar perturbations (which is only of physical interest), the
gauge freedom (14) may be used to represent the perturbed metric in the following

simple approximate form
ds? = dt* — a*(t)(1 + h(z))bindz'dz*. (15)

For a scale of perturbations A well outside the Hubble radius H~! corrections to
6g*™* are of the order h(1/H))?. This particular gauge (defined for the growing
mode only) was called by Starobinsky (1982) ultra-synchronous. It has no remaining
gauge-freedom, so that h(z) is a gauge-invariant quantity.

An other often used gauge is the longitudinal gauge 8goo = 29, bg0; = 0,
and 8gix = 2¥a®(t)6;x. Then the perturbated metric reads

ds? = (14 20)dt* — a*(t)(1 — 2W)6;dz’ de*. (16)

The quantity @ is the gravitational potential, whereas ¥ describes the intrinsic
curvature (the unperturbated background model has vanishing curvature). Setting
b =e = 0 we find in this gauge # = &4 and ¥ = — Py, where &, and oy
are the gauge-invariant perturbations defined in (12). Contrary to the synchronous
gauge there is no remaining gauge freedom in the longitudinal gauge. Indeed, by
the condition b = ¢ = 0 we conclude from (11) that £ and £° are uniquely fixed.
If the metric perturbations are assumed to be bounded at spatial infinity, then
® = V¥ for the system under consideration. This follows from the nondiagonal
spatial component of the perturbations of the Ricci tensor (eq. (20), note that the
nondiagonal spatial perturbations of the energy momentum tensor vanish). In that

case the scalar perturbations are described by only one free function.
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Well outside the horizon, there is a simple relation between the quantities

h(z) (eq. (15)) and @ = ¥ (eq. (16)).

&=—= h+—-h/ adt! 17

In the following we will use the longitudinal gauge. Using (16) we calculate

the perturbations of the Ricci tensor:

6Roo=3s"lf+6%ip+3gq'ﬁ+M (18)
SRy = — (¥ + aa® + 6ad ¥ + (2da +46%)(@ + ¥) + a®A¥) 6

+¥— P (19)
§Ro; =2 (w,o.- + §¢,;) . (20)

Thus, the perturbation to the Ricci scalar is

6R=6W +2A0 — 4A¥ — 2RO + 6H® + 24H Y (21)

On the right hand side of Einstein’s equations we have to insert the perturbations
of the energy-momentum tensor. If the universe is dominated by hydrodynamical
matter we use eq. (6). The perturbations of the energy-momentum tensor 6T# can
be expressed in terms of the perturbations of the energy density é¢, of the pressure
§P and of the velocity §u;. We obtain

6T9 = be, (22)
6T} = —8F 6P, (23)
= (€ + P)bu,. . (24)

As in section 2 we neglect the pressure of the baryons and assume adiabatic pertur-
bations according to eq. (30). Therefore, the sound velocity b is given by eq. (31).
From the absence of nondiagonal spatial perturbations in the energy-momentum

tensor eq.(24) we conclude
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b=V (25)

Thus, the first order correction to the Friedmann equation (i.e. to the (00)-component

of the field equation) are
AP -3H® —3H*® = 4xGée (26)

The 0i- and the i=k components lead to

(@ + H®) . =4xG(e + P)bu;, (27)
®+4HS +2H® + 3H*® = 4xG6P , (28)
= 4nGh be. (29)

Combining these equations we find
@+ (4 +30°)HD + (2H + 3H*(1 + b)) & — b’ Ad = 0. (30)

With the quantity w = P/e = v —1 (eq. (10)) the velocity of sound (eq. (31) is
b* = 4w/(3(1 + w)). Then the term in front of & in eq. (30) is

w(3w—1)

2H + 3H*(1 4 ) rep (31)

(From eqs. (30) and (31) we conclude that & = const is the solution for the matter
dominated universe. In the radiation dominated universe it is the solution for modes

outside the horizon where the spatial derivatives can be neglected. Finally we find
from eq. (26)

= —2& = const. (32)

o

Introducing the quantity ¢

2H'0+ o

(=3 1+w

+& (33)
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and assuming adiabatic perturbations on scales larger than the Hubble radius eq.

(30) can be rewritten in the form (Lyth 1985)
(=0 (34)

Thus, ¢ is a conserved quantity. At the moment of transition from the radiation
to matter dominated universe w changes from 1/3 to 0. Thus, the constant pertur-
bations of the radiation dominated stage decrease at t = ., by a factor 9/10 and

remain again constant up to horizon crossing.
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Chapter 35

The generation of perturbations
during inflation

During the quasi de Sitter stage the energy density is dominated by the
energy density of the field which drives inflation. As discussed in section 1 this
is in the simplest case a scalar field. In order to investigate perturbations during
the inflationary stage we have to consider the perturbation 8¢ of the density of the
coherent scalar field (14) which is given by the perturbation §¢(z) of the scalar field.

Thus, the perturbation of the 00-component of the energy-momentum tensor is
P dav
be = §Tpo = pbp — <p2¢ + E(;&P (1)
The perturbations of the other components of the energy-momentum tensor read

. . 4V
6Ty = (v:’d’ — ¢bp + @&p) bir 2

6Toi = P - 3

Inserting the perturbations into the equations of General Relativity one finds

the first order correction to the Friedmann equation in the form

a. a\? 4r dv
w320 -3(2) 0= 2" [—¢?0 + 65+ 2
A 3“ 3(0) d M}n( @ ¢+¢6cp+d‘P6¢) (4)
The 0i-component gives
b+ 26- 2 ssp) =0 (5)
a M},‘P )=

and the non-diagonal spatial components of the gravitational field equations read
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(&~ ¥)u=0. (6)
Finally, we find from the equation of motion of the scalar field (15)
&V ; s av
(D+d—(p2) 5tp—(¢+3§p)<p—2¢d—v;. )

Let us now Fourier transform the scalar quantities @, ¥, and é¢. Due to
the homogeneous background a separation into time and spatial dependent parts
in the perturbation equations is possible. During inflation scalar spatial harmonics
are simple plane waves, because curvature can be neglected. Following the notation
in most of the literature we now omit the index of the Fourier components &, ¥y,
and é¢,. That means, the quantities &(t), ¥(t) and é¢(t) now depend only on
time. The equations (4 - 6) simplify by the condition & = ¥ coming from eq. (6).
Therefore, scalar perturbations are described in this case by only one independent

gauge-invariant gravitational potential.

In the equations (4, 7) the A-operator must be replaced by —k?/a?, which
is the inverse physical wave length of the considered perturbation Appy, = 27k 1a.
During inflation the scale factor a(t) increases exponentially. At first sight, the de-
ciding role of the relation Aphy,/Anor = Ha/k is clear: completely different solutions
of the perturbation equations can be expected in the short wave limit (k/aH > 1)
and the long wave limit (k/aH < 1). This makes clear the sense of the physical
horizon Ay,r = H™1. Note, that during the de Sitter stage, H ! is equal to the event
horizon, whereas within a pure Friedmann universe H~! is approximately equal to
the particle horizon. Therefore, if one says that in the inflationary models perturba-
tions can “leave the horizon” during inflation and “reenter it” during the Friedmann
stage, then one has in mind that physical horizon H~1. Of course, each cosmological
model has only one well defined 0 horizon,

t dt/
o a

®)

lHo,za

which can be “crossed” only once.
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Combining the perturbation equations (4) and (7) we find the wave equation
; AN ) 5 2\
¢+(H-2“—.’)¢+(2H-2ﬁH+—,)q>=o 9)

@ ¢ a

of the gravitational potential &. Note, that this equation does not contain 0 the
potential V(i) of the scalar field. Introducing the quantity ¢ (Lyth 1985)
_2H'¢+ @

C3l+w

+ & (10)
we can rewrite eq. (9) in the following form
StH+w)+ a0 ’ (11)
2 a?

where w = pfe = —1 — 2H/(3H?). In eq. (9, 11) the term k?/a® decreases during
inflation exponentially. Far outside the horizon k/(aH) < 1 the last term can be
neglected. Thus ¢ is a conserved quantity on those scales.

Let us solve eq. (9) within the short wave limit, k*/a® > H? 3> H. Then
after a transformation to conformal time dn = dt/a eq.(9) describes oscillations
& « ¢*7 and in WKB-approximation damped oscillations, which read in the original
time

etk [ dtja

a

P x

(12)

(From eq. (5) it can be seen, that the perturbation of the scalar field 6¢ also show

damped oscillations.

In the long wave limit of the quasi-de Sitter stage k2/a? < H?(| & |<| H® |)

the potential @ is a slowly increasing function,

& o H2. (13)

Due to the exponentially increasing scale factor the transition from one

approximate solution to the other is very fast. Therefore, the constant in eq. (13)
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can be determined by matching eq. (13) to eq. (12) at Hy = k/a. The gravitational
potential @ increases proportional to H~? up to the end of inflation. Then the scalar
field ¢ oscillates with the characteristic frequency w 0 the minimum of the potential
V(®) (w depends on the specific shape of the potential, for example, w = m if
V(®) = im?é?). Thﬁs, H ~ H? ~ w?* and in first approximation & = const.
Small oscillations with frequency w are superimposed. The value of & after inflation
can be determined by matching (12) and (13) at horizon crossing. Therefore, the
perturbations & after inflation strongly depend on the amplitudes of the oscillations
described by eq. (12). Due to the oscillations they depend also on the phase in the
moment of transition to the regime (13). These phases are assumed to be distributed

at random. Thus, (#) = 0 and (®?) describes the perturbation completely.

In order to determine {®#?) in dependence on the wave number k we have
to take into consideration how the constant in the short wave limit (12) depends
on the wave number k. Due to the 0i-component of the perturbation equation the
gravitational potential @ is directly coupled to the perturbation of the scalar field ¢
(eq- (5)). The basic idea in determining the perturbation spectrum is now that the
inevitable quantum fluctuations of the scalar field 6 within the quasi-de Sitter stage
have well defined amplitudes. These amplitudes and consequently the constant in
eq. (12) can be calculated straightforward (see Mukhanov et al. (1992) for a general

discussion of quantum fluctuations and their connection to classical perturbations).

So let us quantize the scalar field in the curved space time as described by
Birrel and Davies (1982). The scalar field operator 6 can be represented in the

form
-~ 1 A - *
6(p = W/dak[dek + azuk], (14)

where a; and &t are the usual annihilation and creation operators and

up = Xk(ﬂ)eikz.
a

(15)
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Let us solve the Klein-Gordon equation in the flat background metric using confor-
mal time, ds? = a*(n)(dn? —dr' ?). Let us further consider in first approximation the
limit k2/a? > dV/dyp, i.e. we treat 8¢ as a massless scalar field and assume that the
Hubble parameter is constant (de Sitter universe). Then the solution of the wave

equation reads

3

u = —(1/2) Hy (xn) 2H{) (kn), (16)

where Hé%(kn) denotes the Hankel function

N N e L

T
The short and long wave limits of the solution (16) are

up = (2k)"Y2Hye ", kn — oo, (18)
up = Hk™1(2k)71/2, kn — 0, (19)

respectively. The solutions (19) and (19) correspond to the two limiting cases of
a physical wave length much smaller than the horizon (M, < H™') and much
larger than the horizon (Apays 3> H™'). Since Aphy, = 27a/k is an exponentially
increasing function the transition from one limit to the other is very rapid. The

constant factors in eq. (16) were introduced to normalize the scalar product
(up, up) = —i / wdi ulds = 63k — k) (20)

We calculate the vacuum expectation value (§y?) from the u;

an _ 1 Phphys H?
6 = oo [ 1011 P8 = s [ S22 (14 2) . @)

(2”)3 phys

The first term in eq.(21) leads to the usual vacuum expectation value in the Min-

kowski space (H = 0). It must be removed by renormalization. However, the second
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term is typical for the 0 stage. It diverges but remains finite in the quasi-de Sitter

stage of the inflationary scenario. This term is connected to the metrical 0.

Comparing eq. (21) with the Fourier transform of the classical perturbation

of the scalar field used above we conclude that
H2
—_ 2y .
(6‘Pk) - 01 (6¢k) - 2k3° (22)
where H must be taken at the moment of horizon crossing a = k/H. Finally we
have to determine via eq. (5) the dependence of the gravitational potential on the

wave number k. We find
(®%k®) = const —I-P—- , (23)
o] k

where the quantity in the r.h.s. should be taken in the moment of the first Hubble
radius crossing, too. Its dependence on k is very weak, so that the well known
approximately flat (Harrison-Zeldovich) spectrum arises. No physical process can
change this spectrum during the further evolution outside the horizon. The first
quantitatively correct expressions for these perturbations were presented indepen-
dently by Hawking (1982), Starobinsky (1982) and Guth and Pi (1982). The per-
turbations described can be considered as random Gaussian classical variables with

zero average and dispersion given by eq. (23) (e. g. Starobinsky 1988a).

In more complicated models, the perturbation spectrum has to be deter-
mined numerically. For models with two inflationary stages driven by a scalar field
and higher order corrections to the gravitational Lagrangian double inflation may
occur. In this case, an additional length scale in the perturbation spectrum arises
(see section 7). An approximate spectrum was calculated for double inflation driven
by two scalar fields (Polarski and Starobinsky 1992).
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Chapter 36

Observing perturbations in the
universe

On every map of the galaxy distribution we can see that galaxies form struc-
tures in the universe. These structures have been studied by means of the correlation
function. The two-point correlation function of galaxies is defined by the joint prob-

ability of finding a galaxy in both the volumes dV; and dV; at separation ry;

dP = n:[l + {(r12)|dVadVa, (1)

where n, is the mean number density of galaxies. Empirically the galaxy correlation
function is found to be

=(2)" @)

g

where the correlation radius of spiral galaxies is r, = 5~ Mpc. This relation
holds true in the region 1 Mpc < r < 20 Mpc. A similar functional form, but with
different correlation radii, is found for correlations of elliptical galaxies and clusters
of galaxies (for a review see Bahcall 1988). To compare theoretical predictions with
the observations we have to connect the correlation function (and other observational

data) to the cosmological perturbations.

A first step is to specify the nature of these perturbations. As in section 1,

we describe the spatially variable density field by means of the function 6(z,t)
p(z,t) = p(t) (1 + 6(=,1)) @3)

and Fourier transform it:
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§(=z,t) = % 8 exp(ikz) (4)

Usually it is assumed that the phases of the density perturbations are ran-
domly distributed and the density fluctuation obey Gaussian statistics. The proba-
bility function is given by

1 63
dP = —ﬁ?exp( % 2) d:Sk (5)

where o? is the variance of the density field. Then all statistical properties of the

density field are described by one function, the power spectrum
P(k) = (| & I") (6)

On the other hand the correlation function ¢é(r) and the power spectrum

form a Fourier transform pair (cp. Peebles 1980 for a detailed derivation):

(16 1) = 55 [ ey Q)

£(r) = (7‘;? / PEP(K)e*T. @)

Since the power spectrum depends only on k one can integrate the angular

part
) = 5 [ dRKP(RYiolkr), ©)

where jo(kr) = sin(kr)/(kr) is the zeroth order spherical Bessel function. The
density fluctuations can be characterized by their rms (root mean square) value
(| 6(=,t) |?). Note, that {| 6(z,t) |} = 0 by definition. The rms values are connected

with the power spectrum by

(18(21) P) = o [ @RP(R). (10)

" @)
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Gaussian random fields are a very special class of distributions. Their prop-
erties can be studied knowing the power spectrum (6) (for a comprehensive discus-
sion see Bardeen et al. 1986). Most authors believe that during inflation pertur-
bations with Gaussian statistics are created. Non-Gaussian perturbations may be
created in some nonstandard inflationary scenarios or by topological defects in the
early universe. From observations non-Gaussian density perturbations are still al-
lowed (Luo and Schramm 1993), but there is no physical reason to choose a special
non-Gaussian density perturbation for the description of the cosmological matter
distribution. Therefore, we will concentrate in the following only on Gaussian per-
turbations. ’

The next step is to choice the spectrum of perturbations. In the simple
cosmological models no fundamental length exists. Therefore, the first choice of the

spectrum would be a featureless power spectrum
| 6% loc k™. (11)

However, recent observations show that there must be more power on larger
scales. One explanation for this observational fact may be the existence of a char-
acteristic scale in the primordial perturbation spectrum as mention in the previous

section.

Harrison (1970) and Zeldovich (1972) have argued that the density fluctua-
tions averaged over the scale A ~ ¢t are fixed

()™ a

with € < 1. Assuming a scale free spectrum (11) the variance of the density fluctu-

ations (10) at horizon scale a(t)z; = ct is

(@)oo
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Multiplying with the solution for the growing mode eq. (24) for wavelength
which crosses the horizon at t > t., we find finally ((6p/p)?) o t4/3-("+3)/3, Thus,
only if the exponent in the power spectrum (11) is n = 1, the variance of the density
field is scale independent at the Hubble radius ct in accordance with eq. (12). This

spectrum is called Harrison-Zeldovich spectrum.

Finally we have to specify the type of the perturbations. We distinguish

() -4(%) "
p rad 3 P / matter

6Pmattcr # Oy 6Prad =0 (15)

adiabatic perturbations

isothermal perturbations

and isocurvature perturbations

6pmutter + 6Prad =0. (16)

As already mentioned adiabatic fluctuations are a natural result of an early
inflationary stage in the cosmological evolution. However, under special circum-
stances it is possible to generate also entropy perturbations with a scale invariant
spectrum. As an example one could consider an universe which contains radiation
including relativistic matter and axions. At tgcp the axions acquire masses which
leads (in the simple model) to fluctuations in the axion density. Due to energy con-
servation these fluctuations must be compensated by fluctuations in the radiation

and relativistic matter (for details see Efstathiou and Bond (1986)).

Often it is useful to calculate the variance of mass within a certain volume.
With the function ¢(r) we can select the volume. The most common selection

functions are the top-hat’ type

¢=1 at r<R,
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¢=0 at r>R, (17)
and the Gaussian type
2
é(r) ox exp (-51—{2—) . (18)
Averaging the fluctuation M — pr® we find the variance of mass

<(57M)2> = [ ErP(R) | WK I, (19)

where W (k) is the window function

W(k) — f(;” dr 7‘2¢(7‘)j0(k1')

GO 0
For the sharp top-hat window (17) it is given by
W (k) = % / " dr r2jo(kr) = ——[sin(kR) — kR cos(kR)] (21)
b (kR)
whereas for the Gaussian window it is
W(k) = %-I—;; /Ooo dr rjo(kr) exp (—%) = exp (—(—k-;ﬁz-) . (22)

The window functions decrease 0 if kR 3> 1. Thus in the Fourier rep-
resentation they filter out the high frequencies corresponding to scales inside the
considered volume. That means by calculating the mass fluctuations we do not take

into account any substructures.

The cosmic microwave background radiation was detected by Penzias and
Wilson (1965). In the standard model of a hot Friedmann universe the temperature
of this black body radiation is independent of the direction of the measurement,
but from a theoretical point of view one could expect that due to the seeds of the

today observed large scale structure small fluctuations must be imprinted on the
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isotropic radiation. More than 25 years later these primordial perturbations could

be detected (Smoot et al. 1992).

The anisotropies of the temperature of the microwave background radiation
AT/T are a direct test of the primordial fluctuations in the linear regime. Never-
theless, the result depends also crucially on the evolution of the fluctuations before
recombination and on the recombination physics. This evolution is influenced by
the composition of matter. In this section we are mainly interested in the influence
of the primordial perturbation spectrum on the microwave background temperature
fluctuations. Therefore, we will consider only the case that the nonbaryonic dark
matter consists of heavy (m > 1 GeV) weakly interacting particles (CDM model).

The fluctuations of the microwave background temperature can be repre-
sented as a sum of the Sachs-Wolfe effect, the Doppler effect, and the contribution
coming from non-simultaneous recombination. A general gauge-invariant represen-

tations is (Traschen and Eardley 1986)
ég‘_ _ ATsw + ATDO’ Ap.,

T - T T T,
1 fm 47 7 5LV
= —'2‘ a (h‘w'() —2ho,,"‘)k k dﬂ +
Nrec

; 1 {ée
: ] e n ) 2
(vrade + 4 ( € )rad) _— ( 3)

where the perturbations of the metric are k, = h,,/a?, k, denotes the four-momen-
tum of the photon and e; a spatial unit vector in the direction of the light ray, along
which the integrand is to be evaluated. Radiation and baryons are coupled up to
recombination and have the velocity v,qq, fluctuations 8,44 of the energy density of
the radiation lead to recombination at different moments. The three mechanisms
included into eq.(23) are responsible for the microwave background fluctuations at
different angular scales. In the case of a flat perturbation spectrum the Sachs-
Wolfe effect leads to approximately constant temperature fluctuations at angular

scales larger than 2° (this corresponds to 400A™! Mpc). With decreasing scales, the
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Doppler effect becomes important first and the perturbations in the radiation energy

density later.

Let us now connect the fluctuations in the background temperature to the
perturbation spectrum eq. (6). We are mainly interested in large scale perturbations
which are influenced only by the primordial perturbation spectrum, i.e. P(k) = Ak
for the Harrison-Zeldovich spectrum. Therefore, we take into account only the
Sachs-Wolfe effect in eq. (23). In the spatial flat model the integrand in eq. (23)
tends to zero so that the result depends only on the perturbation at the source (the
contribution from the potential at the place of the observer is omitted). Thus the
temperature fluctuation is given alone by the gravitational redshift of the photons

which leave the potential perturbation inside which they were last scattered.

The temperature pattern on the sky can be naturally expressed in terms of

the normalized spherical harmonics Yin, (6, ¢),

AT
T = Z aim Yim (0, ). (24)
Im

Predictions for the multipole moments in eq.(24) can be made by taking the Fourier
component of eq. (23), projecting out a given multipole and integrating over the
wave vector. The mean square expectation values C; of the coefficients a;,, define a
power spectrum. (One has to take into account that the cross terms vanish due to
the é-correlations of the perturbations.) The result is (Peebles 1982)

H* [ dk

Ci= @) =gz )y &

P(k)ji (kr), (25)

where r = 2¢/H. For the Harrison-Zeldovich spectrum the integral is

HY (odz , AH*

Ci=srdile 2O = T

(26)

where A denotes the normalisation constant of the power spectrum. This constant

can be determined from measurements of large scale temperature fluctuations as



474

done by COBE. The functions C; are related to the temperature autocorrelation

function £r(8) by
a0 = (6 )

- 41 S(21-+ 1)Ci(eos0), (27)

where @ denotes the angle between 71 and 77. The rms temperature fluctuations
are

&r(0) = 2(21 +1)Ci. (28)

l>2

In order to confront the theoretical predictions with observations one has to
take into account the special configuration of the experiment. Let us consider a two-
beam experiment which measures the mean-square temperature difference between
the two beams of width 8, and of separation angle §. Then the theoretical expected

rms value is

s =((22) )

_ {(T(z)-T(z+0)(T(z+86,)—T(z+6,+80))

(1?)
= 2£(0,) - £(0 + 6,) — £(6 - 0,), (29)
which reduces for 8, = 0 to
o7 = 2(¢r(0) — ér(6))- (30)

For two Gaussian beamns Bond et al. (1991) have proposed to express o%(0,,0) as

= g >(21 +1)Ci[1 — Pi(cos 8)] exp(—62P%). a

>2

More general filter functions fi(0) for various experiments are shown in Bond et al.

(1991) and Efstathiou (1991), where the expected rms amplitudes are given by
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ok = o= (& + 1CA(O). (32)
2% i>2

Like the spatial window functions introduced above, these functions £1(0) filter out
the multipole range which is effectively measured by the experiment under consid-

eration.

During inflation also gravitational waves may be generated. In the large scale
limit these primordial gravitational waves lead to corrections in the temperature
fluctuations if the index of the perturbation spectrum is n # 1 (Crittenden et al.
1993).

An accurate computation of temperature fluctuations on all scales requires
a numerical solution of the collisional Boltzmann equation for the photons (Peebles
and Yu 1970, Bond and Efstathiou 1984). However, intermediate angular scales can
be well described also by approximation formulas(Starobinsky 1988b, Starobinsky
and Sahni 1984). This method was used to calculate the temperature fluctuations re-
sulting from primordial perturbation spectra with broken scale invariance (Gottlober
and Miicket 1993).

Once we have determined the normalisation constant in the spectrum P(k),
we can calculate properties of the linear density and velocity fields in the universe.
To do this we have to specify also the exponent in the simple scale free spectra
P(k) o k. On the other hand, we have shown in the previous section how primordial
fluctuations of the potential are created during the inflationary stage. These fluctu-
ations are coupled to density fluctuations. In the second section we have discussed
the growing modes of perturbations and characteristic scales. In linear perturbation
theory, these modes evolve independently. Thus, we can define a: transfer function

T(k) which connects the spectra at different moments of time.

Starting with the Poisson equation

A® = —4xGa?*5p, (33)
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where A® = —k?& and using the relation between the mean density of the Einstein-

de Sitter universe and the Hubble parameter we find (cp eq. (6)

P(k) = (9%K%). (34)

9 (H/ ?

Thus, we get P(k) « k according to eq. (23). As mentioned above, P(k) has to be

multiplied by a transfer function which describes the evolution of the spectrum,
P(k,to) = T*(k)P(k,1,). (35)

The transfer function is generally normalized to give T(k) = 1 for k — 0. The
calculations of the transfer function are based on numerical integrations of the per-
turbation equations. They depend on the type of the fluctuation and the composition
of matter in the universe. The linear transfer function has been 0 by several au-
thors (e.g. Peebles 1982, Bond and Efstathiou 1984, Bardeen et al. 1986, Holtzman
1989). Let us assume that the present matter density in the universe is dominated
by weakly interacting massive particles with masses greater than 1 GeV, so that
they can be considered as nonrelativistic during the time under consideration. Then
we can give qualitative arguments for the behaviour of the transfer function on very
large and on very small scales. While the scale of the fluctuations is greater than
the Hubble radius ¢t no physical effect can change the spectrum. When the per-
turbations enter the Hubble radius the baryons together with the photons begin to
oscillate. During the radiation dominated era the amplitudes of the perturbations in
the CDM component are effectively frozen according to eq.(27). When the universe
becomes matter dominated these perturbations grow once again according to eq.
(24). After recombination the baryons are decoupled from the photons and fall into
the CDM fluctuations. Therefore, the transfer function contains one characteristic
length, the Hubble radius at the time of the transition from radiation dominated to

matter dominated evolution of the universe. Today this corresponds to

Aeq & 10572 Mpc. (36)



477

On larger scales which enter the Hubble radius in the matter dominated epoch
the initial perturbation spectrum is not changed. Smaller scales are frozen after
crossing the horizon up to t.,. However, scales outside the horizon still grow oc n?
up to kn = 1. Thus, we conclude that the spectrum P(k) changes at approximately
k., by an exponent of minus 4. Therefore, the asymptotic behaviour of the spectrum
is
Pk)xk, k—0,
P(k) < k73, k — oo. (37)
(38)

These qualitative considerations are confirmed by numerical simulations.
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Chapter 37

Beyond the standard model

The large scale structure of the universe has its origin in small perturbations
of the density of matter, which are created during an early stage of cosmological
evolution. These perturbations are assumed to be Gaussian. Thus, they can be
described completely by a power spectrum P(k). Inflation provides a quite simple
mechanism for producing perturbations in a causal way by quantum fluctuations.
Due to the exponential expansion, these perturbations are inflated to those large
scales characteristic for the evolution of cosmic structures. It became clear that in
the simplest inflationary models Gaussian perturbations with a Harrison-Zeldovich
spectrum are created. The amplitudes of these perturbations can be calculated

straightforwardly (see section 5).

The inflationary cosmological models predict a density parameter . =
1. On the other hand, by cosmological nucleosynthesis the density of baryons is
restricted to be 0.01 < Q,, < 0.12 for 0.4 < b < 1 (Walker et al. 1991). Recent
observations have shown that ,, may be of the order of unity as inflation predicts
(Rowan-Robinson et al. 1990, Strauss et al. 1992). Assuming Q. = 1, most of the
matter in the universe must be invisible nonbaryonic matter. This matter consists
of weakly interacting massive particles. Depending on the mass of these particles
(which defines the moment when they became nonrelativistic) the dark matter is
called hot (HDM) or cold (CDM).

Assuming a Harrison-Zeldovich spectrum of perturbations, and introducing
a biasing parameter b, the CDM model was able to describe very successfully the
formation of structure up to scales of approximately 20 Mpc. Most of cosmologists

have considered the CDM model as the standard model of structure formation.
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However, resent observations on larger scales indicate more power than predicted
by this model. In particular, the Mach number test of Ostriker and Suto (1990),
the large-scale clustering analysis of Efstathiou et al. (1990a) and Loveday et al.
(1992) and the observed angular correlation function of the deep APM galaxy survey
(Maddox et al. 1990) disagree with the standard CDM model. Note that "more
power” on large scales means that more structures are observed than predicted if
the biasing parameter is fixed and the perturbation spectrum is normalized at 8
Mpc. Normalizing the spectrum at very large scales by the COBE measurement of
the quadrupole of the cosmic microwave background fluctuations one should keep
in mind that observations on small scales show less power than predicted by the
theory.

The transfer function T'(k) describes the evolution of the primordial pertur-
bation spectrum (see section 6). Within the CDM model the spectrum exhibits the
limiting behaviour P(k)  k at k¥ — 0 and P(k) ox k™3 at k — co. The maximum
of P(k) defines a characteristic scale, which is related to the Hubble radius at the
moment of the transition from radiation dominated to matter dominated evolution
of the universe. The exact behaviour of P(k) near the maximum must be calculated
numerically. For the CDM model the corresponding transfer function was calculated
by Bond and Efstathiou (1984). The observations mentioned above indicate that
one more characteristic scale exists in the power spectrum P(k). This scale divides

the part with more structure from that with less structure.

There are several possibilities for modelling such a scale. Obviously, one
can introduce it either for the primordial perturbation spectrum or for the transfer
function. In the first case one has to consider more complicated inflationary models,
whereas in the second case one has to introduce an additional component of the
dark matter. There are attempts to fit the observational data by models with
mixed dark matter (MDM). The best fit of observational data is reached in this

model if approximately 70% of the nonbaryonic dark matter consists of very heavy
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weak interacting particles (CDM) and approximately 30% consists of one species of
massive neutrinos (HDM) (Klypin et al. 1993, Jing et al. 1994 ). Another widely
discussed possibility is to introduce a cosmological constant so that Q + A =1 (e.g.
Efstathiou et al. 1990b). We will discuss in this section a model which leads to
a primordial perturbation spectrum of Harrison-Zeldovich type only in the limit of
very large and very small scales. At intermediate scales it shows a break. By an
appropriate choice of the parameters of the model, the break lies on observable scales
(Gottlober et al. 1993).

It is well known that both vacuum polarisation effects and a scalar field may
lead to inflationary stages in the evolution of the early universe. The combined
action of these effects may lead to two consecutive inflationary stages. Following
thé treatment of Gottléber et al. (1991), we shall discuss here a cosmological model
including vacuum polarisation effects which are described by an additional R%-term
in the gravitational action and a coherent massive scalar field. Thus we start with
the Lagrangian

1 1

1
—_— (= 2 = W 02,2
L= 3=l R+6MQR)+2(<P,M¢ m?p?), (1)

where 1/(6M?) is a coupling constant, R denotes the Ricci scalar and ¢ the scalar
field with the mass m. Both masses are assumed to satisfy the conditions M < mpy,
m L mpy.

The question of whether the consecutive inflationary stages are separated
by an intermediate stage of power law expansion is crucial for the existence of a
break in the spectrum. In the model described by the Lagrangian eq.(1), the case of
two really disconnected inflationary stages takes place only if the mass of the scalar
particles is small in comparison with the inverse coupling constant, i.e. m < M,
and if vacuum polarisation dominates initially, i.e. the energy density of the scalar
field is small compared to the Hubble parameter during the first stage of inflation.
Otherwise the combined action of the scalar field and vacuum polarisation leads to

a single quasi-de Sitter stage with a quasi-flat perturbation spectrum.



482

The variation of the Lagrangian eq.(1) leads to the generalized Friedmann

equation
H? 4+ —(2HH H? + 6H?H) = ¢* + m?p?, (2)
and to the equation of motion of the scalar field

@+3Hp+m?p=0. 3)

Inflationary stages driven solely by the R? term or the massive scalar field
are characterized by the conditions |H| < H? and |3| < H|@|. Then eqgs. (2)-(3)
become simply and can be integrated. The solution has the following parametric

form where the role of the parameter is played by the scalar field itself (M # m+/2):

M3 [m? 2 M2/m2_2
-m(E) () ) W
t—ty = -3/ d H(‘P) (5)

2 H2 H2
m(a/a,)=3“’12"’ +3-

(6)

where a;, H; and z; denote the values of a, H and z at the moment ¢ = #; when
inflation begins (Hy 3> M, m; z; > 1).

To calculate the spectrum of perturbations we take into account small scalar
perturbations of the metric of the Einstein-de Sitter model (see eq. 16). The per-
turbations of the scalar field are denoted by 6 = ¢ — (°), and the perturbations
of the Ricci scalar by 6R = R — R, where ¢(? and R are the solutions of the
background equations. We decompose the perturbations and the potentials in plane
waves (8@ = S exp(ikr) etc.).

By linearization of the field equations we find

SR+ 3HSR + (K*/a® + M*)SR = (20M®)(—R + 6(¢* — 2m??)) + (& + 3¥)R
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+12M*(p6p — $* @ — 2m’pbyp), (7)
6R = 6W + 2(k*/a®)(2¥ — &) + 12(H + 2H*) &
+6H® +24H ¥, (8)
&=V -6R/(R-3M?), 9)
6p + 3H6p + (K*/a® + m?)bp = (P + 3¥)¢ — 2mPp® (10)
3¢bp = (1 — R/3M?)(¥ + H ®)
+(6R - &R — HSR)/6M?. (11)

The indices for the k-modes of the perturbations are omitted. The solutions of the
linear perturbation equations (7-11) show damped oscillations. Following the general
description of section 5 we calculate the amplitudes of these oscillations depending
on the wave number k. Then one has to solve the equations (7-11) assuming in the
short-wave limit damped oscillations with these amplitudes, i.e. m /a for ¢
and \/ 192xG(1 — 3M?/R)/2k M H/a for §R. Performing the numerical integrations

for different values of the wave number k and taking the mean over the phases one

finds the perturbation spectrum

sszy _ [ Allog(32)]" + Bllog(R))°, k <k
(2k*%) = {Bllog(%)lf’, " kS k (12)

The constants in eq.(12) are related to the masses m and M in eq.(1). They must
be determined by observations.

The perturbations of the density lead to temperature fluctuations of the
microwave background radiation. First positive measurements of the CMB fluctua-
tions were obtained in the COBE experiment (Smooth et al. 1992). The predicted
variance of the COBE experiment 6Z(0rwaum) can be expressed as

o2 (Brwam) = i 2(21 + 1)Ciexp(~1(1 + 1)8?), (13)

>2

where 8, = Orwnam/2v/1In 4 is the angle characterizing the smearing due to the finite
beam size. With the measured /02(10°) = 1.1 x 107%(1 £ 0.17) the normalization
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constant in the spectrum &; is determined. The COBE result fixes the power at
very large scale, i.e. it fixes the value of A in eq. (12), which depends mainly on the
coupling parameter in eq. (1).

Provided the power spectrum is given by the spectrum of potential pertur-
bations and the transfer function (see eq. (6)), then the variance o of the mass
fluctuation (6M/M)? in a sphere of radius R can be calculated (eq. (19) and (21).
Thus o3 is the variance of the general mass-density distribution. However the galaxy
distribution, i.e. the distribution of the visible matter, might not follow the general
mass-density field. It is more probable that the galaxies have been formed only at the
peaks of the mass-density. Therefore, a common bias factor for correction between

the variance o2 and the variance of the galaxy distribution must be introduced,
o}(r) = blad(r). (14)
From observations it follows that o3(8h~! Mpc) =1. Thus,
05(8h™"Mpc) = b, (15)

i.e. we define the bias factor using the COBE normalized spectrum. The bias
factors for various spectra depends mainly on the power of the spectrum on smaller
scales. Therefore, assuming a bias factor of approximately 2, as indicated by other

observations, the parameter B in eq. (12) will be restricted.

However, one should note that that the bias factor should not be taken too
seriously as distinguishing evidence for or against a model. There are indications
that the bias factor depends on the kind of objects under consideration (optical
galaxies, IRAS galaxies, clusters of galaxies). However, spectra are certainly not
satisfactory if they lead to b > 3. Besides the bias factor, consideration of peculiar
bulk velocities and the Mach number may serve as criteria for distinguishing between

various initial perturbation spectra (cp. Gottlober et al. 1993).

The most powerful test of different spectra is the counts-in-cell analysis.
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Let us compare the predicted mass variances o(!) at the scale ! with the counts-in-
cells analysis of large scale clustering in the newly completed Stromlo-APM galaxy
redshift survey (Loveday et al., 1992). The o(l) is related to the two-point galaxy

correlation function according to
) =55 J,_, drmdvid; (16)
V2 Jv=p
and in terms of the density perturbation spectrum P(k) it can be written
D) =5 / P(E)K* W, (kl)dk (17)

where

sm(f\/:z:2 + 23 4 23)
T2 + 27 4 22

Wi(6) s/ dx/ dy/ dz(1 — z)(1 - y)(1 - 2) (18)

is the appropriate window function. Comparing the variances calculated with three
different power spectra (i. e. different parameters in eq. (12)) one tests the spectra

over a wide range of k values.
Finally one can calculate the excess-power introduced by Wright et al. 1992.
By definition, the excess power

o(25h""Mpc)

BP =38 s

(19)
is equal to unity for the flat standard CDM model. It is obvious that EP does not
depend on the normalization of the spectrum and it might give some indication on
the shape of the initial spectrum. From observations it follows that EP = 1.34+0.15
(Wright et al. 1992).

On the basis of different spectra we have compared theoretical predictions
with observational data (for more details see Gottlober et al. 1993). The best
fit to the observations is reached if the spectrum has a break at approximately

7 Mpc and a height of the step A = 3. This corresponds to the parameters k;
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= 0.1, k; = ¢%°, A = 788, B = 60.6, and ¥ = 0.5 and # = 0.66 in eq. (12).
The biasing parameter introduced for giving o(82~! Mpc) = 1 is b = 2.7. The
perturbation spectrum P(k) = kf%(k)T(k) in this parametric form coincides very
well with numerical solution for P(k). A spectrum with a higher step (A = 5)
would lead to similar features as the MDM and Q + A models. However, the models
with values A > 4 are ruled out mainly by the tests including large scale bulk flow
velocity observations. Thus the latter will certainly lead to a crucial test in future.
The parameter space allowing for fitting all considered observational data includes
also models with a break at a scale slightly less than 7 Mpc. For those models
the biasing parameter ranges about 2.5, which is in better agreement with recent
calculations (see e.g. Gelb 1994). Due to the 1.5¢0 errors in the COBE data the
remaining parameter space for the fit is effectively larger than here obtained. On
the other hand there is some correlation between the step height in the spectra and
the break scale. Therefore, the permitted region in the parameter space remains very
tight. Further observations, e.g. measurements of the anisotropy of the microwave
background radiation at small angular scales, could become a crucial test for the

models going beyond the standard model.
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