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Chapter 23

Introduction

In these lectures [ will present a review of some distinct approaches to describe the
global structure of the spacetime. I will limit our analysis to Einstein’s General
Relativity a3 a theory of gravity. We will concentrate our discussion to the standard
approach (FRW cosmologies) and to specific difficulties of it. Some proposals of
solutions to these drawbacks of the standard model will be analysed. Although the
present course should be considered as a continuation of my previous lectures on

earlier Brazilian Schools of Cosmology it is organized in a self-contained form.
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Chapter 24

The Cosmic Fluid

In the Old Standard Cosmological Maodel [1, 4] the distribution of energy in the
Universe is represented by an Ideal Gas. This high degree of simplification was one

of the main causes of its success and, in the same way, the origin of its difficulties.

This description, although the Universe is not taken as a static structure, is
therefore devoid of a true evolution: its entropy is constant, its homogeneity property
has a primordial origin; and above all this, it has a singular origin, a “date of birth ™.
During all the time in which this model dominated the cosmological scene this
oversimplified scheme was not considered to cause a further theoretical discomfort.
This was due to its success to provide a framework that made understandable certain
astronomical data. The very fact that in this model the Universe starts from a very
hot singular origin could be at the basis of an explanation both for the abundance
of the observed chemical elements at large and for the necessary conditions for a
global thermodynamical equilibrium. We will come back to these generic questions

later on.
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1 The Ideal Gas

The energy-momentum tensor of an Ideal Gas is represented by:

This is the source of the spacetime curvature which is to be identified to a
homogeneous and isotropic Friedmann geometry. In terms of the co-moving coordi-
nates, the element of length is taken as

ds? = di* — ANt)dx® + 0*(d6* + sin’0dip%)] @)

The function ¢ depends only on the variable x and the dependence on the cosrmical
time is concentrated on the function A(t), known as the radius of the Universe. The
acalar of curvature R is given by

3)

-
R=6[A A c]
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in which € measures the curvature of the 3-space. Calling ®)R the corresponding
Ricci scalar for the 3-geometry, we find:

2 oy
GR= - l2or+ o? —1) (4

that is
143
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Note that &’ = %



The evolution of this model is controlled by two equations:

» The conservation of energy.

e Raychaudhuri’s equation.

Let us go into the details. The fundamental equation that describes the gravita-
tional process is provided by Einstein’s General Relativity (GR), which relates the
properties of matter distribution to the curvature of spacetime:

1 .
R — ERQJW = _anv (5)

From this original form it follows the identity that generalizes in curved

space the law of the conservation of energy:

T, =0 (6)

Let us now consider the kinematics. We define the projector A, that is
generated in the rest-space H of the comoving observer characterized by the four-

velocity V, through the expression:

h.uv = Qup — Van (7)

From this definition the basic properties follow:
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There is no nongravitational force acting on the fluid. Then it follows that

its acceleration vanishes. That is

et =V, =0

The conservation of the norm of the four-vector V# yields the orthogonality of a#
and V¥, The hypothesis of isotropy of the fluid is nothing but the condition of
vanishing of the shear, defined by the symmetric part, in the rest-space H, of the
derivative of the velocity, that is

1

30!;0,5

Oap = R*(ahg) Vs —

The quantity @ ie called the expansion and it constitutes the divergence of
the velocity:

§=v+,
From this definition it follows that the properties of the shear tensor are;

& gymmetry: &,, = &y
o trace-free: g ¢ =10
o it belongs to H, that is, it is orthogonal to V, : o, V* =0
Besides the above hypothesis which we have attributed to the Old Standard

Model there is one more that allows us to say that the model is vorticity-free, The

vorticity tensor is the anti-symmetric complement of the shear, defined by:



Wag = k"[,hm*vm

The vorticity has the corresponding properties:

e anti-symmetry : wy, = —w,,

+ orthogonality: w, V* =10

The vanishing of the vorticity allows the definition of a global time (some-
times called the cosmical time). In the beginning of modern Cosmology the so
called Cosmological Principle was set up, which has precisely the motivation to
permit the stablishing of a global separation of the spacetime into space plus time
by the assumption of the existence of a three-dimensional spatial hypersurface .
This surface separates the world into two complementary parts which we call F (for
‘future’) and P (for ‘past’). The world lines of all existing matter are orthogonal
to . We can thus use the proper time of the matier as the label to describe the

evolutionary history of the Universe.
The kinematical quantities defined above are nothing but the irreducible
parts of the derivative of the velocity field. Indeed, we can write in general:

1
Visp = oup + i + auVp + J0hus (8)

In the very particular case which we are considering (the Old Standard
cosmological model) we set:

Vi = %ah,.. )

We are thus prepared to consider the two fundamential equations that control the

dynamics of this simplified Cosmology.
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2 The Conservation of Energy

Let us come back to equation (6). Contracting it with V, yields:

™ =0 (10)

Using the expression for the Ideal Gas (1) we obtain:

p+{p+p)8=0 (11)

in which we have used the expression (9); a dot means derivative projected along
the velocity field.

3 Raychaudhuri’s Equation

We start from the definition of the spacetime curvature. Thus, we set:

Vaisry — Vorms = RaearV* (12)

Multiplying by V7: .

(f’;v:ﬂ) + Vanv;s = Raep,VVY

Contracting indices to arrive at a scalar equation gives:
1

9+ 3e’ = R, V*V* (13)

Using Einstein’s equations we can rewrite eq.(13) in the form:



.1 1
0+ 56’ +5(p+3p)=0 (14)

In the Standard framework the pressure p is provided by some additional
hypothesis concerning its thermodynamical behaviour. It is usually accepted that

there exists a simple relation between p and the density of energy p, e.g.

p=Ap, (15)

mwhich0 < A<l

The equations of evolution of p and @ are written in the form of a Dynamical
System, e.g.:

p=F(p,9) (16)

0 = G(p,0) (17)

This aystem will be completely equivalent to Einstein’s GR, equations if we

just add to them the constraint (no time derivative):

- =0 (18)

We remark that this constraint is preserved throughout the entire evolution
due to the above Dynamical System. At this point, the Old Standard Model starts
a systematic procedure of trying to find exact solutions of this set of equations. For
each solution a specific cosmological geometry is obtained. Before going into this,
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however, one should explore a little of the elegant form of the Dynamical System

and try to examine some generic properties shared by the various classes of solution.
Exercise 1. Analyse the phase space of the system (16)-(17).

Consider the case in which the relation provided by eq.(15) holds. The

dynamical system is

p=—(p+p)O=F (19)

é=—%9’—%(p+3p)EG‘ (20)

The equilibrium points (that is, the extrema of both equations) are given by
the simultaneous zeros of the functions F and . In the present example the only
finite equilibrium point is the origin (g, 8) = (0,0). We recognize that this point

represents the flat empty Minkowski Universe.

There are three distinct sectors, according to the value of the 3-curvature

(see picture 1).
Exercise 2. The introduction of a negative cosmological constant(A).

The modified equations are:

6=—26"— 3(p+3p) - A (21)

p=—(p+p)@ (22)

The parabola that separates the distinct sectors assumes the form:



/7N

Figure 1: Graph & x p

p-gb -5 -A= (23)

The singular point is no more the Minkowski vacuum but it becomes the
deSitter vacuum: {p,0) = (_H-%A’ 0). Plot the corresponding graph.

4 Equilibrium Thermodynamics of the Ideal Gas

The fundamental law of thermodynamical equilibrium sets

TdS = dE + pudV. (24)

The conservation of the entropy in an expanding Universe follows from a
direct application of this expression and the eq.(11) of the energy conservation. In
the case of electromagnetic radiation a standard use of the equilibrium Thermody-
namics yields for some relevant quantities the following expressions, which we leave

for the reader to obtain.
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The energy density:

x
p= ET‘- (25)
The pressure:
1
P= 5‘0' (26)
The total number of photons:
2 @V
= SCOVT. (27)
The frec-energy:
Fo-Xyra (28)
=~2Av .
The total entropy:
4F
S = - (29)
Evolution of the number density of photons n = &:
A+n@ =0 (30}

In the next chapter we shall zee how these expressions are modified in the
case the coupling of electromagnetic field with Gravity does not follow strictly the

Equivalence Principle (e.g., the non minimal coupling).
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5 The Deformed Friedmann Universe

In this section we will consider some examples of viscous fluids. There are various
mechanisms that have been examined which induces viscosity. In the eatly 60’s it was
[5] proposed that the interaction of neutrino with matter at very dense regime could
be treated as a viscous fluid endowed with an additional (non-thermodynamical)
part of the pressure. Some authors (see [6] for instance) argued that the creation of
particles by the gravitational field can induce viscous effects. In general we represent

these situationa by setting

P=Pu+tr (31)

Besides, non-isotropic components can appear, inducing the non-vanishing of the

anisotropic pressure II,,.

6 Stokesian Fluid

We call a fluid Stokesian if the general pressure (the isotropic and the anisotropic
parts) is a functional only of the dilatation tensor' 8% defined by
1

G}Eaj+3

84

We leave the analysis of the anisotropic pressure to a subsequent section.
The introduction of viscosity in the framework of homogeneous and isotropic geom-
etry changes drastically some properties of the standard FRW Universe.

!Some authors have generalized this terminalogy by calling Stokesian any fluid that has a
functional dependence between its kinematical (shear, expansion and acceleration) and dynamical
parts (general pressure and heat flux).
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Example L.
In the isotropic case the pressure is a function of the expansion uniquely

P = pu + F(B)

A simple example: the quadratic case. We set:

p=p—ab—£6° (32)

In this case the functions F and G (cf. eq.(16) and (17) are:

F=—(p+p)©+ab®+ p6° (33)
=L 3 la.3.e+3s0
G= 3P~ 3P 39 +2a9+2ﬂe (34)

The singular points of the system are
o P, =(81,0m) = (0,0)
o P = (82,m) = (-3, 163)
7 Non-Perfect Fluids

The generalization of the equations of motion of all quantities associated to the fluid

will be presented later on (see section 2).
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8 The Expansion Equation

6+ %92 +0f —w? - au = RuVIV* (35)

9 The Shear Equation

hawbeu*” + 3lan = 5* = o%lhap

1 . 2 .
+ a.a5 — Ehaphﬁy [¢* + a"*] + geﬂ'ag
+ Gaut®p — woivg

= Rcuﬂvvtvy s %Rgvvuvvhaﬁ (36)

10 The Vorticity Equation

KR, — SRR 0y — ) +
2

300 +0™0,® — g, = 0 37

In the above expressions I used the definitions:
% = g,,0"

2 — v
W = wyw

T

W = S wegV,

1
2
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Chapter 25

Light Propagation

The great majority of all our information on the Universe comes by electromagnetic
means. Thus, we must be aware of any eventual misinterpretation of the data due
to a theoretical prejudice. The question to which we would like to have a direct

answer is: how do the electromagnetic waves behave in a curved spacetime?

1 Electromagnetic Waves

The propagation of the electromagnetic effects can be described through the exam
of the geometric optics approximation. In order to study this we must know the
effective interaction between electromagnetic and gravitational fields. We review
briefly here the state of art of such a coupling.

The interaction between Gravity and any field can be of two types:

s Minimal

¢ Non Minimal
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The minimal coupling states that the interaction is a true local procedure
and does not involve any function of the curvature of the spacetime. In order
to achieve this coupling one has to proceed as in the flat spacetime, using Maxwell
equations and changing simple derivatives into covariant ones. The minimal coupling

can thus be considered as the statement of validity of the Equivalence Principle in

latu sensu.

The Non Minimal coupling can be defined by oposition. The Lagrangean of
the interaction depends not only on the electromagnetic field but also on a functional

of the curvature. We write the action 5 in the form:

S = j V=gLldi(z).

2 Minimal Coupling

The above prescription allows the immediate knowledge of the Lagrangean. We

have:

1 1
L= _ZF”‘.’F” = —ZFwFagg”g"” . (1

It then follows the generalized Maxwell equation:

Fw, =0 (2)

#

3 Non-Minimal Coupling

One of the main criticisms against the dependence of the interaction on the curvature

rests on the apparent high degree of arbitrarity it contains, once there ia not a
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unique way to implement such coupling. We shall see however that, as far as our
interest keeps limited to Cosmology, this arbitrarity is reduced to an acceptable
level. Although we will not consider here the other important case of the influence
of the gravitational field in the neighborhood of a star, it seems worth to comment

that a similar reduction occurs in this sitnation.

There are seven possible candidates for the interacting Lagrangean:

Ly = RA A* 3
Ly = R, A*4* 4
Ls = RF, F™ | (5)
Ly= RF F™ (6)
Ls = R, F*F," (7
Le = Rupu FOPFH (8)
Ly = P F3F,, 9)

Let us make some comments on them. L, and f; are not gauge invariant.
Although this is not a sound criterion, as far as cosmological processes are concerned,
to eliminate these Lagrangeans, we will not consider them further on in this section.
The reason is simple: we are interested here in electromagnetic disturbances and
these Lagrangeans do not affect the propagation of the waves, as we shall see. Be-
gides, we will not consider expressions L4 and L; either. The reason is the assumed
hypothesis that the actual interaction does not violate the flat space property of
parity conservation of Electromagnetisin. We note, however, that this is a further

hypothesis that does not have an experimental support.
We are then left with L, L; and Lg.

In a Friedmannian background geometry we can reduce these possibilities
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further. Indeed, once the metric is conformally flat, that is the Weyl conformal
tensor W,g,, vanishes, the curvature can be written in terms of the contracted
quantities B,;. We have:

1
Rapw = 5|Routps + Bovgou — Ravgpn — Rouga]

- %Rgaﬂw (10)

It then follows that Lg can be written in terms of L3 and Fs.

4 Electromagnetic Disturbances

We can now turn our attention to the analysis of the evolution of generic electro-
magnetic shock waves in an arbitrary curved spacetime. We will follow the so-called
Hadamard method which we will describe now very briefly. The reader interested
in further information may consult the references quoted in the bibliography, in
patticular the work by Hadamard [7].

Let X be a surface characterized by discontinuities of certains derivatives of

the electromagnetic potential A,. We represent the equation of this surface by
B(x) =0
We are not concerned here with gravitational waves, and thus we can consider that

the metric and its derivatives of any desired order are continuous through ¥. We
represent the discontinuity of any quantity F through ¥ by the symbol

[Fls = _lim (P(a*) - F(z"))
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We can distinguish different types of processes according to the order of the
lowest derivative which is discontinuous. We will call it of first order if the field itself
is discontinuous; and second order if the field is continuous but its first derivative is

discontinuous. Let us examine here the second order discontinuity.

Following Hadamard we set:

[Ah]z =0
[Aruly =0
[Arly = PAKLK,), + K(92K,) 0
+ K (oru + XaK,) (11)

In the above formula we used the assumed continuity of the metric to replace a

covariant derivative (;) by a simple derivative (,), that is:

[A,\;,.]B = [Ax.u]::

The vector K, is the normal to I, that is,

K,=v,9® (12)

5 Minimal Waves

Let us use the equation of motion (2) to calculate the evolution of the electromag-
netic disturbances. From the above discontinuity of the potential it follows that the

field is continuous and its first derivative gives

[Fuv.ﬂ]z = (PnKuKa - tp.,K,,K,
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The discontinuity of (2) gives:

QDHK”K)' —(,O)K2=0 (13)

That is, either , is proportional to the propagation vector or K, is a null
vector. The formula of discontinuity of F,, gives that in the first case there is no
real disturbance, once the proportionality of ¢, and the wave vector K, is nothing

but a simple gauge that can always be eliminated,

It then follows that
K, K,g* =0 (14)
Using this result back into (13) it yields that the discontinuity vector g, is orthogonal
to K,

pul =0 (15)

Using egs.(12),(14) gives that the vector K, satisfies the equation of geodesics:

K, K =0 (16)

or, calling s the affine parameter on the curve tangent to K, we can set equivalently:

DK#
Ds =0

Let us define a null complex vector m,, orthogonal to K. This can be accomplished
in terms of normalized spacelike vectors e, and f,, both orthogonals to K,,. We set

1 ;
m, = ﬁ(% +ify) (17)
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We require further that

eue = fuf* =1

and also that
e KV = fK¥ =e,f"=0

We will propagate this base of vectors such that it is preserved along the wave vector,

that is we choose:

e _Dpr
Ds ~ Ds =
From what we have learned we can write
VI, i
ou= (e, 1, 08)

The quantity J is called the amplitude of the disturbance and ¥ is the
polarization. The first order Hadamard equations are conditions that are imposed
on the behaviour of the electromagnetic discontinuity to be valid on the surface I.
It only remains to set up the equations describing the evolution of these quantities.
This is provided by the compatibility requirement that the derivative of eq.(2) must
be continuous through . We then have

[ ) =0 (19)

Using the expressions of the discontinuity of the field we have:
wu(K?), — (¢"K.) K, + (puK") oK,
+ up K"K, — (0" K,) K,
- KK, - Xu K"K K,
=0 (20)
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This equation will provide us with the evelution of both the amplitude of the dis-
turbance J and the polarization W. For this let us firstly multiply eq.(20) by ¢*.
We obtain:

(#*0uK")a =0 (21)

that is

(JKG);G =0 (22)

This is the classical expression for the conservation of the number of photons. Ii is

convenient for subsequent reference to define the associated quantity @* by setting:

¢ = %(e“*m‘“I — e ) {23)
The properties
P =10
and
PPy = ~J

then follow. Multiplying eq.(20) by ¢* yields:

Dy

D = 0 (24)
Thiz means that the minimal interaction between gravitational and electromagnetic
fields is not able to modify the wave polarization. From what we have demonstrated

here we can say that this kind of interaction is characterized by the properties:
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o The waves propagate through the null geodesics of the background geometry;

¢ The polarization vector iz perpendicular to the wave vector and is parallel-

propagated along the waves;

® The photon number is conserved.
We recognize here the important phenomenon of the red-shift induced by

the expansion of the Universe.

Exetcise. Show that the wave frequency is modified by the time variation of
the radius of the Universe. {See [1]; [8]).

6 Non-Minimal Waves

We are interested here in examining the propagation of the electromagnetic waves
in a Friedmann-like geometry. From what we have learned previously it is enough

to concentrate our analysis into Ly and Ly,
Let us consider Lagrangean Lj (we leave L to the reader). We set

L= —%F'WF,W + %RFWF;.I» (25)

This Lagrangean yields the equation of motion:

F*y = MRF¥),. (26)

We take the same case as before and consider just the second order discon-

tinuity given by (11).
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From eq.(26) we obtain

(1= AR)(erK? — p, K Ky) =0, (27)

once there is no discontinuity in the field F,,. We arrive then at the same equations
for the disturbances on I than in the previous case, that is the set given by eqa.(14),
(15). We must turn now to the description of the evolution of this perturbation.
Following the same procedure as above we take the derivative of (26) and then

analyse its discontinuity. We obtain:

(L= AR)F* yp — AP R, — AR F¥ , — AR, F** = 0. (28)

The discontinuity of this equation, due to the presence of the scalar of curva-
ture's derivative, contains three new different terms. The term on R, is multiplied
by the divergence of F*. Its discontinuity vanishes on mass shell. There is no
contribution coming from the last term on second derivatives of R too, due to the

basic condition of second order discontinuity. We are then left with

(1= AR) [ (K™ — (¢ K. ) Ky
+ (PuK" )oKy + (0un K*)K, — (0" K)o
— K"K, — X, K"K, K| — AR (9, K"
—¢'K,)K, =0 (29)

From here on we proceed exactly as in the case of minimal coupling. We
multiply first by ¢, and then by ¢,. We obtain, respectively:

[(1-2R)e*k*] =0 (30)

e
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2|2
‘I_-I;

We can summarize these calculations by stating that the net effect of the nonminimal
coupling of electromagnetic disturbances and gravity characterized by Lagrangean
L3 leads to the following consequences:

» The waves propagate through the null geodesics of the background geometry;

s The polarization vector is perpendicular to the wave vector and is parallel-

propagated along the waves;

e The photon number is not conserved.

Thus, unless we are able to observe the effects of the variation of the photon
number in an expanding Universe, there ia no way of deciding between the above
two forms of coupling, as far as the electromagnetic field is treated as a test-field,

without taking into account its perturbation on the background geometry.

This result entails immediately the question: how to treat this mechanism
of variation of the photon number? We will examine this phenomenon in the next

section.

Comment. The consequences of the interaction controlled by L3 cannot be
ohserved in the neighborhood of a star, e.g. our Sun. Its effects can be felt only in

Cosmology.

Exercise. What are the modifications on the above conclusions if we take

into account Lagrangean [s ?
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7 Creation of Photons in an Expanding Universe

The minimal coupling of Flectrodynamica and Gravity implies that the total number
of photons N is a conserved quantity in an expanding FRW Universe. We have shown
this in the previous section in a classical framework. This result is not maintained
in the non-minimal case. Indeed, let us set N = nV, in which n is the density of

photons in the Universe.

In the minimal case the conservation of the total photon number is repre-

sented by the equation of evolution

A +n0=0. (32)

This result iz no more true for the non-minimal coupling. Let us restrict our

analysis, in this section, to the case controlled by Lagrangean [a.

Exercise. From the equation of evolution of electromagnetic disturbances
given in the precedent section, evaluate the dependence of the total photon number
for Lz in a FRW cosmological background.

Answer:

A direct calculation gives

A(1 ~ AR) 4+ n© = Mn(R + RO) (33)

The natural framework to analyse the possibility of photon production by
the gravitational field associated with an expanding spatially homogeneous Universe
is the attempt to quantify this process. To this end, the standard strategy was to
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put into use the quantum evolution for the photon vacuum. Nevertheless, keeping in
tune with the preceding classical developments, and from what we have presented in
the previous chapter, we shall pursue here a statistical analysis, through the exam
of the influence of a variation of the number of photons upon the thermodynamical
behaviour of a cosmic radiation field, in order to compare the resulting picture with
the actual, observed characteristics of the Microwave Background Radiation (MBR).

In Condensed Matter Physics, changes in the number of elementary com-
ponents of a given reaction are usually taken into account by the introduction of
a chemical potential term. Now, the interaction of photons with matter is charac-
terised precisely by a null value of the chemical potential, once an indeterminate
number of photons can be arbitrarily emitted or absorbed, in principle, in any cho-
sen reaction. In spite of this well-known fact, one could legitimately wonder whether
the absence of a chemical potential is actually a necessary condition, or even a valid

conjecture, in the case of the photon-Gravity interaction.

With respect to this question, the standard hypothesis of the minimal con-
pling (HMC) approach provides an unequivocal answer: once the concept of a van-
ishing chemical potential for the photon holds locally, then a straightforward use of
the equivalence principle would extend its validity to any circunstances whatever,

However, as we saw in the precedent section, a strict attachment to empir-
ical criteria leads to a more general conclusion, since the ensemble of observational
data presently available on electromagnetic processes in gravitational fields does not
suffice to establish the HMC as the only type of admissible coupling between Gravity
and all other fields (see the next chapter for another support on this). Therefore,
we will analyse here the alternative hypothesis of direct coupling to the curvature
(HDCC).



323

8 Thermodynamics of a Photon Gas

The statistical distribution function of a boson gas in equilibrium endowed with a
chemical potential g in given by

1

de = g[g’fg -1]

(34)

The photonic chemical potential may be conveniently split into two inde-

pendent parts:

#=po(P,T)+ A (35)

where Ap is the gravitationally-induced component and io(P, T} is the flat-space
contribution which, in view of the arguments quoted above, vanishes. In order
to proceed one must consider the question: what is the form of the functional
dependence of Ay on the curvature? We will limit our analysis here to the particular
case in which the background curvature is described by a FRW geometry. Besides,
we will treat photons as test particles, that is, we will neglect their contribution to
the total energy-momentum tensor. Such hypothesis requires that throughout the
history of the Universe — even at primordial epochs of great compression — the
energy density p, of the photons must have remained very small. We shall see that
this regularisaiion of the photon energy density, in the case of FRW models, follows

as a natural consequence of photon number non-conservation.

Due to the spatial homogeneity of the FRW model, Ax shall depend only
on cosmic time. It seema reasonable to suppose that Ay may be written as a
combination of powers of the unique curvature parameter available, the expansion

factor 6. Thus we set



Ap = -50 (36)

where b is a constant {we absorb the A factor on it) and the minus sign arises both
from the bosenic nature of photons and from the fact that we presently live in an
expanding era (8 > 0). In this way the arrow of time provided by the cosmic

expansion coincides with the thermodynamical arrow, as we shall see below.

Exercise. Show that the inclusion of higher powers of & does not qualita-

tively affect the results we will obtain in this section.

From the Lagrangean L; it follows that photons travel along null geodesics.
Also, as in the standard model, the frequency w varies as A~1. (Show this). The

temperature T' behaves in the same manner. {Is there other possibility?)

Our task now is to exhibit the thermodynamical quantities for such a gas
in equilibriwm. Let us do this, as an example, for the thermodynamical potential
=-PV.

We have

Q=YL [ )1 — 7 (37)
]

2

in which g is given by eqgs.(35, 36).

Calling

-
]
l
=
i
)
D

we obtain (show!)
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G=FVT‘£ 1

(38)

Infinite series of this kind will appear frequently in this problem. We will

present some of its properties in the subsequent section. Here let us give the re-

sults of the application of the present model for the photon properties in a curved

background and compare it with the standard conjecture (see the precedent section).

The energy density:

6 o gmmd
p= ;’—T‘zl: mt
The pressure:
_1
p - 3p‘

The total number of photona:

2 2 g™
N= —VTSE -

2
x 1

The free-energy:
F= -%Vrg;l ‘: + Np.
The total entropy:
5= L 4ol

Evolution of the photons density n = g:

(39)

(40)

(41)

(42)

(43)
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m2

. 252 2 o0
B4+nrB = —FT RODE (44)
1

Let us see what are the consequences of these expressions in the standard

FRW background.

Let us take the scale factor as A(t) = Agt?, where the parameter ¢ varies in
the range @ < g < 1. This expression seems to be in good agreement with current
observational data, including the evidence regarding primordial cosmic abundances
of the chemical elements. Accordingly, the functional dependence of # with respect
to cosmic time goes as § ~ 9=, Thus, for very long time intervals (t — co), the
factor 8 becomes extremely small, and we obtain
o o-mf

lim y
J—0 mo1

((4).

Therefore the therrnodynamical potential in this limit condition approaches the
value

45

Hence, we see that the distribution generated in the non-minimal coupling

case converges assymptotically to a black-body spectrum.

Exercise. Tty to evaluate, from the above property, a limit imposed by the
observed MBR (micro-wave background radiation).
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9 Some Mathematics!

Let us define the quantity L(8,s) by the series

oo ~mf

L(B,s)= Y “mr (45)

[
m=1 m

There are some correlated expressions which are of importance to deal with
these series. We present some particular results which have been shown in the quoted

paper [9]. We have

i %@— 5"3 (£+1),C(2N a+1)

= ﬂBN +1
+ G YN +2) - infl, (46)

for N=0,1,2,....

The asterisk above the summation symbol means that the value a = N is
excluded. The reason is that in this case the Riemann zeta function reduces to the

divergent expression {(1). We have

1

C(s) m=1 m'
The process of regularisation proposed by [9] gives precisely the extra term invelving
the Euler number +, by the use of an integral expression for the series (46}). The
additional term is the result of the contribution to the integral, in the complex plane,
of the residue of the pole {(1). We can also evaluate the series

1See [0] for more detailed calculations of the series presented in this section
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,.,2 o _‘E_;o ),c(zN ~a+1)
+ Lo+ ¥ + 1)~ il 7
for N=0,1,2,....

In these expressions {(s) is the Riemann zeta function

&1 1 w gl
o)=232 5= (1 —21“’)['(3)./o P (48)

m=1

Some especial values which are useful for our analysis here are:

€0)= -3
(1) =
,ﬁ.?
(==
{(3) = 1202
((4) = %

We note that the function ¥(Z), which appeared in the above expressions,

is the so-called psi or digamma function

W2) = 2 linE(2)]

which for integer values of the arguments gives



$(1) = -

n=1 1

P(n) = —v+ E =

where v is the Euler number.

The recurrence formula needed to obtain some special values of interest is

given by

W2+ =92+

Using these properties we can obtain some formulas of interest for this sec-

tion. We have:

> LA (G -8+ S e —20)
5 o) ot 30—
é‘;mhﬂgnﬁ) =%T,ﬁ %pa
;‘; ooahnf:‘ 8) %,& ﬂ’f .6'+E (2«)!“3 20).



Chapter 26

The Scalar Field

The description by the Old Standard Model of the distribution of the erergy content
in the Universe by means of an Ideal Gas was a consequence of the high degree of
simplification for the representation of the existing matier concentrated in the form
of the Galactic Fluid, Radiation, Photons, Neutrinos, etc. During the last decade &
lot of interest was devoted to the scalar field. Curiously, this was not a consequence of
any observation of the presence of this field in the actual process of cosmic evolution.
In fact the importance of this field came from speculative theories which allow the
application to the Universe of some models of elementary particles. In any case,
the theory acts as a model for more realistic configurations. Thus it seems worth to

spend some time to analyse these proposals.

1 The Gravitational Interaction of the Scalar Field
d

The first question we must solve is precisely the one we have found in the case of

propagation of electromagnetic effects, that is: What is the way the scalar field &
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couples to Gravity? Contrary to the previous case of the vector field, in which the
great majority accepted the minimal coupling as the good one, in the present case
there is not a consensus. There are at least three reasons for this almost unanimity

for the previous case:

e The identification of the propagation of electromagnetic waves through nnll
geodesics and the (false) belief that only minimal coupling provides for such

behaviour;
o The (undue) uses of the Equivalence Principle as a generator of physical laws;

» The conservation of Maxwell's conformal invariance.

We shall see now how these arguments appear in the case of the scalar field.

Once there is not a single direct/indirect observation concerning the prop-
agation of ® in a curved spacetime, we cannot invoke the first argument. We are
thus left with the other two criteria. Unfortunately, in the case of the @ field, their

application does not yield a unique proposal, as we shall see,

2 Minimal Coupling

The Lagrangean for this case is given by:

L=38,8,0" - V() )

The potential V contains not only the matter term but any self-coupling that might
be present. The equation of motion is given by:

14
0% + = =0. )



The energy-momentum tensor is defined by:
T = 2 6/—gL
= JS—g b L

It then follows for T,.(®) in the minimal coupling case the form:
TI'W = Q'f-‘¢l" - %(an@“\ - 2V)' (3)

The simplest form of the potential ¥V containing a non-linear term is provided by
the model

1 1
= EMZ(P + Z/\d’", (1)
in which the constant A is assumed to be positive.

We note that the trace of T, does not vanish in the limit V = 0. Indeed,

we have

T=—-9,8" +4V. )]

This is a peculiar situation, which is not common among the others massless fields
(photon, neutrino). Besides, the above equation of motion for the massless @ field
is not conformally invariant, a property that in the microworld seems to be a very
widespread symmetry. This led to the idea that, as far as the interaction of $ to
gravity is concerned, one has to abandon the minimal coupling hypothesis.

3 Conformal Coupling: a Feasible Example of
Non-Minimal Interaction

In order to produce an equation for the scalar field whick is conformal-invariant

in the massless limit we have to use a direct coupling with the curvature of the
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spacetime. For this we need to review some results of the conformal mapping. Let
g Tepresent an arbitrary Riemannian metric. We define the transformed geometry
by setting

Gu(z) = X' (2)g.(2). (6)

Then the corresponding changes follow:

g =a"¢ (M
T =Tp
+ 070 e + n 6% — Guvg™ ) (8)
R=03%R+ Pl ) 9
W, =W (10)

These expressions allow us to combine the conformal map with the transformation
on the scalar field $ = (1-1® and go into the modified non minimal Lagrangean:

L= %Q,,.'l'_,g - V(®) - —R@’ (11)

The equation of motion is then given by:

5V '
i —_
+ oz te R(’ 0. (12)

Exercise. Show that, in the limit V = 0, eq.(12) is invariant by the conformal
transformation on both the geometry and the scalar field as defined above,

The energy-momentum tensor T}, in this case is:

1 1
e =Tw - E‘P (Riw - Eng)

1
+ E(Dﬁzgnw - Qamw)- (13)
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in which T}, is the minimal tensor (3). The corresponding equation for the metric

tensor is

(1~ 589 (Ru — 500 ) = ~T5. (14)

Taking the trace of this modified Einstein’s equation gives:

T* =T+ %m’ + 08, (15)

Using the equation of motion for & and the above form of V we arrive at the simple

expression:

T = M*®*, (16)

We thus see that the nonminimal coupling restores the lost property of the scalar

massless field.

4 The Fundamental Solution

In the framework of the spontaneous symmetry breaking mechaniam [10] the con-
stant solution ® = Py appears a8 a very fundamental one. Its importance is related
to the behaviour of its associated energy. In the conventional case of a free field
and in the absence of any sort of self-coupling the field cannot admit a completely
homogeneous solution but the one which bas vanishing energy. This trivial solution
is generally associated to the ground state of the theory. However, when the field
exhibits some special sort of non-linearity, then it happens that the existence of
another constant solution besides the trivial one may be possible. The interest on
this situation appears very naturally in the gravitational framework. The reason is
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simple: the energy-momentum tensor associated to this solution is undistinguish-
able of the one produced by the cosmological constant. A very interesting property
appears: the energy-momentum tensor assumes precisely the same form irrespectly

of the way the ® field couples to Gravity. Let us prove this.

In the minimal coupling case we find for the fundamental solution (besides
the trivial one):

d2 = —g. (17)
Thus, it follows
T = V(q’o)gﬂv
= 4—M 2020, (18)

In the non minimal case (conformal coupling) we find:

M2
o= — .
0T oA+t (1_5'9)
Thus,
1
T‘ ( ’2) V(bo)gﬁ“"

1 2

= M*¥lg,.. (20)

We conclude that the fundamental state, which extremizes the potential,
can be identified to the classical cosmical vacuum introduced by a priori reasons

by Einstein in the birth of Modern Cosmology (1917). This simple result is at the
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basis of the most fashionable cosmical scenario of the 80’s, the so called inflationary
model.

Exercise. Show that the energy distribution of the fundamental solution
can be interpreted in terms of an Ideal Gas, with the equation of state provided by
p+e=0.

Exercise. Examine the scalar field theory with a potential V given by

_122 4 _l_zz
V—2p¢ +p"1 p’Q(Tc 1)

in which T represenis the medium equilibrium temperature. The existence of T,
acts as a sort of self-regulator guantity. Analyse the thermodynamical properties of
this system.

It is possible to generalize the preceding theory and set up a scalar analogy
of the Born-Infeld Electrodynamics. What will be the cosmological consequences of
such a theory? Does this theory provide a singular origin of the Universe?

5 Structure of Spacetime

At the heart of the Old Standard Model we find the statement that the creation
of the world was a pon-accessible explosive event. The Universe starts its expan-
gion from an extremely condensed configuration and it is immediately projected
in a Friedmannian state controlled by Einstein’s equations. This medel is a naif
— although direct — consequence of the application of General Relativity. Latter
on, more sophisticated arguments were considered and even the role of the classi-
cal structure that we call spacetime was examined. Before this, however, a less

ambitious program went into the reexam of the Riemannian nature of spacetime.
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In the classical GR this condition is an ¢ priori. We were first conducted to the
abandonment of the Euclidean nature of ST in favour of a pseudo-Euclidean one
in the Special Theory of Relativity; and then, from this, in a smooth way, to the
general Riemannian framework of GR.

The various suggestions to derive the actual structure of the spacetime’s
geometry from first principles failed. In the last years there has been a renewing
of interest on ancient ideas concerning not only this geometrical nature, but even
other apparently sound properties, as its number of dimensions. In some Gravity
textbooks one finds arguments set forth by Palatini, which intend to derive the
Riemannian nature from a variational principle [11]. This method, however, does
not provide an absolute answer but depends basically on the way matter couples to
gravity. This seems to be little noticed in the literature, Thus, we will present here
this method as a good exercise on the various distinct consequences of the gravity-
matter interaction. Indeed, let us take the situation in which matter is represented
by a scalar field ¥. In the minimal coupling interaction the Lagrangean takes the

form:

L=R+ %@,,w ~V(®). 1)

Independent variation of g,, and of the connection I, 4 yield respectively Einstein’s
equations and the Riemannian identification of the connection to the Christoffel

gymbol.

Let us turn now to the case in which matter is pon-minimally coupled to
gravity. We follow the same example as above and treat matter in terms of a scalar
field. We set

L= R+ 30,8°— V(8) + ARW". (22)



343

Let us call ¥ = (1 + 2®?), for convenience. The structure of the geometry
is controlled by that part of the Lagrangean which contains terms propottional to
" R. We have

5 j V=gW¥R = f Ne=r" (R,... - %Rg.w) 8g*

+ [ V=9¥'¢sR,. (23)

We are interested in the variation of the connection that controls the geometry. We

have

j J=g¥¢"bR,, = 0.

Thus, a straightforward calculation gives the desired equation:

(V—g¥¢*)s = 0. (24)

A simple manipulation of this equation gives

¥
Guvid = _2?)\9#»- (25)

We arrive thua to the conclusion that the riemannian structure is obtained from
the variational priciple only in the very particular case in which matter couples
minimally to gravity. In the case of nonminimally coupling it follows that the
geometry is characterized by eq.(25) which is a particular case of a Weyl geometry.
Once we will consider this structure in a subsequent section, it seems worth to spend
some time in its further caracterization.
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6 Weyl Integrable Spacetime: WIST

In the early days when the implementation of Einstein’s idea of treating gravity
phenomena as intimately related to specific aspects of the geometry of spacetime
was a growing program, some physicist went through the idea of generalyzing this
program to other parts of Physics. As a consequence, a series of tentatives of mod-
ifying Riemann geometry appeared. Although the subsequent history of all these
proposals has failed in its original goal, some of them left a powerful mathematical
ool which has been considered in other contexts. Weyl’s geometry is one of these.
Originally this geometry was created to turn Electrodynamics into a geometrical
scheme. Soon, however, it was concluded that this proposal was not a successful
one. Thus, its program as a unified scheme was abandoned. However, this geomet-
rical scheme appeared since then in other contexts, one of which, a cosmological
scenario [12], will be examined further later on.

Weyl geometry is defined by the non conservation of the length in a parallel
transport. This is exhibited by the non vanishing of the covariant derivative of the

metric tensor:

Sk = W;\Q;w- (26)

It then follows that its affine connection is dependent not only on the metric itself
but also on the vector W). We find:

T 1 o a :
rs, = £%, - LW,80 + W8 - Wog,.). (@)

Given this Weyl connection it is straightforward to write Weyllian expres-
sions for the geometrical quantities with the use of the corresponding Riemannian

formula. The covariant derivative of a vector Q* reads, for instance:



Q" = V@ W0 + WLQU5; - QW) (28)

In this expression the symbol v7, represents the covariant derivative using the

Christoffel symbol of the associated Riemannian metric.

Exercise. Evaluate the curvature tensor of Weyl's geometry in terms of the

Riemannian curvature and the vector W,.
Exercise. Evaluate the contracted curvature tensor.

Answer:

e 1 1 of o
Ry = R — 7 W, — 'Z'anl* - ng[VaW -W Ww] (29)

7 The First and the Second Clock Effects

Equation {26) implies that the length is not preserved by a parallel transportation
in Weyl manifold. Indeed, it follows

dL = LW,dz" (30)

This property has some consequences which imply, in the general case, observational
difficulties. The simplest way to see this is precisely to follow Einstein’s eriticism to
the general Weyl geometry. Let us consider the case in which two identical clocks are
synchronized at a given point P of the space-time. According to General Relativity,
if these two clocks travel to another point Q through distinct paths, gravitational
efects may cause them to lose their synchronization. This is the so-called first clock

effect. In Weyl spaces, due to the distinct variation of the units of measure along the
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two different paths, the discrepancy between time measurements units at Q adds a
suplementary contribution to the loss of synchronization. This is called the second
clock effect. In the case of closed circuits such additional synchronization loss would
disagree with observations.

Thete is only one way to escape from this difficulty: to impose that the
clocks measure the same value in a closed path. That is, we must impose

f dL = 0. (31)

Thus, Stoke's theorem implies that Weyl’s vector is a gradient:

W, =a,W (32)

In this case the Weyl geometry reduces to a WIST, that is, to a Weyl In-
tegrable SpaceTime. The characterization of a Wist depends only on an unique
function W. We will associate this function W to a matter field and examine the

dynamics in a simple case.
Exercise. Show that a WIST is conformally related to a Riemann space.

Exercise. Show that the scalar of curvature R of a Wist is related to the

quantities of the associated Riemannian geometry by the expression:

R=R-30w+ ;W,,.W“‘ (33)

Exercise. Assume the hypothesis that it ia possible to foliate the structure
of the spacetime. Suppose then that on a certain hypersurface Tg the covariant

derivative of the metric tensor vanishes
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Guvir = 0.
This corresponds to a Riemannian configuration on Xg. Question: what can be said
about the value of g,.;. on another hypersurface I,?

This exercise reveals the so-called Structural Problem of the Spacetime. We
shall come back to this latter on.

8 Dynamics for a WIST

We will examine here the consequences of changes in Einstein’s General Relativity
in a cosmical context in order to take into account the structural problem [12]. The
simplest theory is given by the action

$= [ VAR +mW + nWHW,] (34)

The curvature R in a WIST can be written

R=HA+ gw“w, -3y, W* (35)

Then, up to a total divergence the action (34) takes the form
§ = [ V=il +ewW,) (36)

and ¢ is a dimensionless parameter,

Variation of the independent quantities g, and W yield



1
R,y ~ ZRQJ-W +v.W,=0 (37)

and consequently

ow

Il
=

(38)

This last equation takes the form

1
TV Wagls =0 (39)
We can rewrite the equations of evolution in terms of the associated Riemannian
quantities:
T 1, 2 A, ox
R, - ERg,w - MWW, + ?Waw G =10 (40)
and
oW =0. (41)

in which ! we defined A? = $=2, This equation is equivalent to Einatein equation in
which the WIST field W is identified to a matter term. In the next section we will
show that it can be interpreted as a stfff matter state.

9 The Cosmic Model

The simplest example of a WIST in a cosmological context is provided by the fol-
lowing model. We will limit our analysis to the case of spatially homogeneous

1We will analyse here only the case in which 46 — 3 > 0. We leave o the reader the exam of
the alternative case in which this quantity is negative.
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FRW.-type cosmologies, described by the line element €q.(2). Then the WIST field
W is a function of the cosmic time only: W = W{t). The Weyl vector W, becomes

Wa = W, (42)
where the dot denotes simple differentiation with respect to the time. In this case

the equation of motion (40) is similar to Emstein’s General Relativity and the source
term is identified with a perfect fluid. Indeed, we have

Ruw = 3 Rg = ~Tol W) )

in which

T = (pw + pw)V.V. — pwon {44)

The density of energy and the pressure have the values 2

-1...
pw =pw = ?f\zwz (45)

In these expressions the co-moving four-velocity is V* = §.

Using the condition of spatial homogeneity into eq.(41) yields a first integral
for the WIST function:

W=~vA"3 (46)

where - is a constant. The remainig equations for the radius of the Universe are:

*The interpretation of the WIST as a matter term in the framework of General Relativity
appears somewhat atrange, since it produces poesible negative values for the corresponding energy.
Thus, if one is not able to admit this it remains just one thing to be done: to come back to the
geometrical description and do no changes to the Finstein’s version of the WIST scheme.



A e+ %A’(WA)’ =0 (47)

and
- 1.,,.-
2AA+ A* e - §,\’(WA)’ = 0. (48)
where € = (0,41, ~1) is the 3-curvature parameter. From these equations it follows

that if (3 — 4£) = —A* < 0 an open Universe is obtained (¢ = —1). Combining the

above equations supplies the fundamental dynamical equation

l=1- (%)4 (49)

in which Ag = constant = (%7’,\2)}.

Let us examine now some properties of this model, namely:

# The age of the Universe
o The accelerated Universe

= The coamological structural problem

9.1 The Eternal Universe

From the evolution of the scale factor it follows that the minimum possible value of
the radius of the Universe is the value A{t = 0) = A # 0. There is thus a previous
collapsing era (for t < ). The Universe has no singular point. The evolution of the
Universe begins at the infinitely remote past due to the unstability of a spatially
infinite, empty Minkowski space-time. This can be seen from a direct inapection of
the above equations of evolution or from the analytical expression for A(2).
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Exercise. Solve the equation for the radius A(t).

Answer: The solution is given in terms of the elliptic functions

V23, qer 1,y
F(at,? _./n (l—Esm z) dz

and

E(a,—z‘/g) =/: (1 —%sin’z)édz

by the implicit expression
[‘ﬁF( o)~ VEE(a .‘/7-)+smﬂ(ooaﬂ) *] (50)

in which a = arccos (“—"4'1) and § == arccos (%{1)2

9.2 The Accelerated Universe

In the course of the everlasting collapse, the Universe is always accelerated (or
inflationary). Indeed, from the equations of motion we have

- 2 rAn

A=—|— ,

A ( A) >0

The Universe, in this model, starts to evolve due to Weylian perturbations of an
empty Minkowski space-time; thus, the most remote image of the cosmic history
is that of a collapsing primordial Universe of infinite radius. Throughout this col-
lapsing era the cosmic evolution is driven by the erergy of the WIST field W(t)

which provides for the acceleration of the model. In fact, were the Universe al-
ways dominated by the W-energy only, it would accelerate forever. However, in
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Figure 1: Qualitative behavior of the scale factor A(t) according to the implicit
solution Eq. {50). Given that |A| < 1, the angle of inclination of the curve is always
less than x /4.
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the neighborhood of the maximally condensed epoch a significant amount of matter
may come to appear, therefore implying important modifications of the evolution of

the geometry in the ensuing expanding era.

9.3 The Hubble Parameter

Let us examine the corretate behaviour of the expansion factor or Hubble constant
= %. We have
1 ACI 4 %
=3 [1 (%) ] '

In distinction of the old standard cosmological model, here we have a sort
of Big, although not infinite, Bang. The Hubble parameter H is always a smooth
function of the cosmic time ¢ and does not diverge at the origin of the expanding
era; quite on the contrary, it vanishes at ¢t = 0. The correaponding evolution of
the cosmos may be outlined as follows: the Universe stays for a long period in a
phase of slow adiabatic contraction, until parameter H attains the minimum value
Hn = —3”%\/5;—0. Then an abrupt transition occurs: a fast compression turns into
a fast expansion unti] H attains the maximum value Hpyr = —H,,; afterwards the
expansion proceeds in an adiabatic slow pace again. The time lapse between the two
extrema 1s in fact very short, once the value of the scale factor at both occasions,
AltZ) = A(ty) = 3ta,, keeps very close to the minimum A,.

9.4 The Structural Problem

For very large times the scale factor behaves as A ~ t. Thus, assymptotically, the

geometrical configuration assumes a Riemannian character (once W — Q) in the



Figure 2: The Hubble parameter H = A™!(1 — AofA)*)'/2. Here, Hy = H(ty)) =
(3%4v/2/Ao) = —H,, = —H(t(-)), where e corresponds to Ay = 3/ A,.

Figure 3: Behavior of the Hubble parameter with respect to the scale factor A(%).
Here, A(!(t)) = 3”414-0.
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Figure 4: Behavior of the WIST function wi{t).

form of a flat Minkowski space (in Milne’s coordinate system). In consequence, in
the present model the evolution of the Cosmos may be assigned to a primordial
unstability of Minkowski space, at the remote past, against Weylian perturbations
of the Riemann structure. In order to know how the modification of the geometry
occurs in the evolutionary scenario we must turn our attention to the behaviour of

the structure’s control function W. Using the results of the equations (46), (50) we

get
W = 5 asceoe (%)a (51)

The behaviour of W{t} is portrayed in the picture 9.4. We note that when
A — oc, that is for large times, the structural function tends to a constant: W —

:l:ﬁ.

The important quantity, as far as the structural question is concerned, is
not W but its time-derivative W. Once this function W has a strong peak in the
neighborhood of the minimum radius Ao (see fig. 9.4, there occurs in this region
the greatest deviation from the Riemannian configuration. In this sense, a sort of
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Figure 5: Behavior of the WIST function & = 7/A>.

structural phase transition takes place when the Universe approaches its maximally
condensed state. From the behaviour of the associated energy of the WIST fluid
it follows that it hinders a further collapse to a singularity and reverses the cosmic
evolution into an expa.nsioh. In other words, the variations of measuring scales are

responsible for the reversion of the collapsing process.

9.5 WISTons and Anti-WISTons

In the derivation of the above solution of the WIST structural function W ne atten-
tion was paid to the sign of the constant 4. The only information we have about ~
is that 4? = %ﬁ. Therefore v in fact admita both a positive and a negative value:

18 = £ /GA (52)

Hence, the corresponding solutions

W) = Wi arccon [ 32] (53
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in which Wéi) = d:‘/g)\". Thus the amplitude of the solutions depends exclusively

on the dimensionless parameter §.

Remark, however, that the energy density pw of the equivalent stiff matter
atate associated to the WIST field is the same in both cases

=l

Thus, in spite of the fact that the pairs of WIST functions (W, Wi#)) and
(W), W(-)) have different characteristics, they induce the same type of cosmo-
logical evolution:the solution given by eq.(50) does not distinguish which pair is
the source of Einstein’s equations. Their only distinction ia connected to lenght

vatiations, once according to the WIST interpretation ALt = LW*AL.

9.6 Time Reversal

The above system is invariant with respect to the time reversal operation

t— -,

if W+ is concurrently mapped intc W~ and reciprocally. In this sense, the WIST
instanton-like functions W* and W~ may be called Wiston and Anti-Wiston
solutions, respectively, since an anti-Wiston may be described as a Wiston running

backwards in time.

The above solutions of W(t) reveals an instanton behaviour typical of non-
linear theories of self-interacting scalar fields. Thé root of such non-linearity is
related to the fact that W is taken as the actual source of the curvature of the

metric structure, which in turn modifies the D’Alembertian operator O due io the
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introduction of W-dependent terms. Let us exhibit this situation by means of a
change of variable. Define the new variable () = W(t). From the dynamics of the
Wistons it follows:

F+3AMA=0 (54)

and

A —no 1 =0, (55)

Taking & to represent a generalized coordinate associated to a one-particle dynamical

system, we obtain the conservation equation

SV +V(@) =0, (56)

in which the associate potential V(e} is given by
}2
V(o) = 3T ot - bt (57)
with ¥ = 6);'3'7:-!!. The evolution of the field o is equivalent to a unit mass particle
moving in a potential with vanishing total energy.

Exercise. From the above characterization of a Wiston, we can set that the
density of the number of wistons is provided by the association

pw ~ n’
gshow that the total number of Wistons N is conserved through the evolution of the

Universe. Hint: Use the equation of the Wistons to obtain ## + On =0, in which n
is the density of particles.



9.7 Creation of the Universe

In the present model the Universe passed a previous collapsing era which was re-
versed by the Weylization of the spacetime geometry. This solution resembles the
fate of a cosmos controlled, in Einstein’s General Relativity, by a cosmological con-
stant. Indeed, let us come back to the basic equation

Ate= %pyA’ (58)

in which py is the vacuum density of energy. Then, in the case of closed section

(€ = 1}, we obtain the classical de Sitter solution

1
A = + cosh (Ht). (59)

where 1py = H?. This solution represents a Universe which passes continuously
from a collapsing to an expanding phase. The responsible for such well-behaved
(i- e. non-singular} hehaviour is precisely the energy of the vacuum. Besides such
simple classical characterization it is possible to present the expanding era classically
disconnected from the contracting part of the de Sitter geometry [13). The starting
point of this is the observation that there exists a precise relation between the
quantum tunneling effect in ordinary Quantum Mechanics and the exiztence of non-
trivial solutions of the classical equations of motion in the analytical continuation
for imaginary times [14]. Thus, the extension of the Friedmann’s equation (58) in
this case yields

L

Al=1- 3vaz (60)

and the corresponding solution

1
A= --b;oos(Ht). (61)
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Let us come back to the classical solution (59) and interpret it as the description of
a point like particle which position is provided by the one-dimensional coordinate
z(t) = A(t). There exists a barrier at the point A = Ap which the particle cannot
penetrate due to the presence of the potential H2A%. However, in the quantum
regime the particle acquires a non-vanishing probability to overcome the barrier.
The classical deSitter solution cosh(t) can be matched to the tunneling solution at
the point A(t = ¢) = #. This allows the interpretation of an Universe being created
in the primordial state A(t = 0) = & from quantum tunneling. In other words,
the quantum creation mechanism which allows the scale factor to become zero (cf.

eq.(61)), acts as a substitute of the previous collapsing phase.

This ia the so-called deSitter instanion solution. The corresponding primor-
dial quantum state is called Nothing.

Exercise. Investigate the possibility of interpreting the Winston solution as
an instanton, Could we identify the process of Weylization in terms of quantum

tunneling?
Comments.

Some authors argued that the Euclideanization of spacetime i3 nothing but
a mathematical trick to deal with quantum process. The real structure of the world
should be identified to a Lorentzian manifold. The previous exercise suggest the
modification of the contest Euclides X Lorentz to the alternative: Riemann X Weyl.

This question is part of a larger program in which stochastic Quantum Me-
chanics is related to the Weyl structure of the background geometry. Compare with
[15].
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9.8 Cosmogony

In the Old Standard Cosmological Model the question of the origin of matter was
related to the inaccessible primordial explosion. Thus, there is not in a strict sense
a Cosmogony in this model. In the case of models with no singularity one must face
the problem of matter creation. In this section we will analyse this question in the
particular case of a WIST configuration.

There are many possible ways to deal with the non conservation of matter in

the framework of WIST theory. Here we will present a simple model for Cosmology.

Following the standard prescription based on the Minimum Coupling Prin-
ciple let us assume that in the WIST scenario the energy-momentum tensor T,

satisfies the relation

™, =0, (62)

where the semi-colon denotes covariant differentiation in a Weyl manifold. In the
particular case of 2 Riemann configuration, i. e., when the WIST field W () vanishes,
this expression reduces to the usual conservation law of General Relativity. Thus,
eq.(62) should be considered as a specific model of the interaction between matter
and the field W.

Let us follow our previous methed and see what consequences such an in-
teraction process has in the associated Riemannian spacetime. We have

T, = v, T - W% + Lwer (63)

We can interpret this equation as if it represents the non-conservation of

matter produced by the decay of the W-field in the Riemannian background.



In the case of a relativistic fluid (say, photons) in a Friedmann-Robertson-
Walker geometry eq.(62) yields

p+aHp—3Wp=0 (64)

We can thus interpret the WIST energy function W as the time-dependent total
decay width I'w of the associated boeonic field W into photons. Integrating this

equation we arrive at

p=poA~te" (65)

where the symbol (0) denotes the value of small fluctuation of matter density ocurred

at some ocasion in the past.

We can now use the particular solution for the field W which we obtained
in previous section to get some conclusion on the cosmogonic scenario that we are

congidering,.

A remarkable consequence of the introduction of dissipative effects induced
by the WIST character of the spacetime background is the exponential dependence
of matter properties on the behaviour of the WIST field W(t).

The reader will find no difficulty to prove the following description concern-

ing an Universe driven by a Wiston®

According to the solution eq.(51) it follows that any fluctuation (A%)o ex-
perienced by a given matter field ¥ at the remote past is strongly damped in the
course of the collapsing phase (¢ < 0); then there occurs a transition from supres-

sion to stimulation around ¢ = 0, and a equally strong amplification begins as the

3For an anti-Wiston Universe this account should be inverted.
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expanding phase takes place ¢ > 0. This production mechanism, however, saturates
very rapidly, and for later times ¢ 3» @ it becomes insignificant. Thus, in distinction
of other eternal, bouncing cosmologies, the infinite span of the contracting phase in

the present model does not imply a boundless matter-energy production.

Due to the exponential damping of any primeval irregularity, only fluctua-
tions taking place near ¢ = 0 do care for the subsequent evolution; but these fluctu-
ations are exponentially amplified for a short period, so as to allow for arbitrarily
large amounts of matter and entropy to be created. This period of intense creation is
equivalent to a non-equilibrium process; notwhithstanding this fact, after the ampli-
fication mechanism has been shut down one might expect the WIST field declining
contribution to the source of Einstein’s equations to be rapidly cutmatched by the
newly produced matter content. In this way, the primordial stiff matter state asso-
ciated to the Big, but not infinite, Bang described here could be straightforwardly
continued to a standard sequence of radiation-dominated and matter-dominated

phases.

The operation of this amplification mechanism also provides a fresh perspec-
tive with which the standard baryon assymetry problem may be envisaged. The
prevalence of matter (e.g., baryons) against anti-matter in the observed Universe —
as well as the observed ratio of entropy per baryon — is not explained in standard
Cosmology except with the use of fine-tuned initial conditions. In the present sce-
nario, on the other hand, an eventual baryon excess fluctuation ANy = Ny — N
taking place shortly after the stage of maximum contraction at ¢ = 0 may be expo-

nentially increased up to a convenient amount, since in this case we have

ANg = AN,
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10 The Cosmic Evolution

We can synthesize all the preceding considerations as follows.

Due to Weylian scale fluctuations a primordial empty Minkowski spacetime
begins to collapse at a remote past. This collapsing phase of indefinite duration
is driven by the WIST field W{(t), whose effects are thermodinamically equivalent
to a stiff matter state of a perfect fluid with energy density given by pw ~ A%
(see eq.(45)). Throughout the collapse, the Universe is accelerated or inflationary.
Any eventual matter-energy fluctuation is exponentially supressed in the course of
the entire collapsing phase. This resembles the memory loss of certain models of
inflationary scenarios. The collapse proceeds adiabatically in a very slow pace un-
til a stage of greatest condensation — corresponding to the minimum Ay of the
cosmic radius — is approached. In fact, in the neighborhood of this maximally con-
densed stage the contraction is accelerated to an acme and then decreases suddenly,

reverting to an expansion when the minimum radius Ag is attained.

In analogy to the quantum creation models, the infinite collapsing phase
of the present scenarioc may be associated to the propagation of a Weyl instanton
or Wiston in an Euclideanized, classically forbidden region. According to this al-
ternative interpretation, the Universe (as a classical entity) emerged from Nothing,
endowed with a minimum radius in a stiff matier state characterized by the ab-
sence of a matter content (e.g., baryons and leptons), except for small fluctuations.
However, as the Universe begins to expand, a non-adiabatical amplification mech-
anism starts to operate, driven by the energy of the WIST field W(2), in such a
way that matter-energy fluctuations may come to be converted, in an exponential
rate, into large amounts of particles and radiation. An eventual baryon excess may
be amplified in the same fashion. Thie Big, but not infinite, Bang stage lasts

for a very short period, once the energy of the produced material scon dominates
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the energy of the WIST field; in this way the Universe enters in the Friedmannian

radiation-dominated and matter-dominated regimes.



Chapter 27

Isotropization

In the Old Standard Model the Universe is postulated to be generated in a very
symmetric isotropic state to conform with actual observation. However, it has been
argued that it should be a true progress in our understanding if one could derive such
state from less symmetric configurations. Since the end of the 60’s many attempts
in this direction have been undertaker. We can divide these proposals into three
classes, according to the emphasis on the method. They are:

¢ Geometric
¢ Thermodynamic

» A-Dependence

We will describe generically their basic properties and consider some exam-

ples to clarify their meanings.
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1 Geometric Analysis of Isotropization

The best example of this approach is certainly the proposal made by Lifshitz and his
Russian collaborators, mainly Khalatnikhov and Belinskii [16}. At the first moment,
this method received a severe criticism, due to the misunderstanding related to the
problem of the real existence of a true singularity in the general solution of Ein-
stein’s equations. Indeed, LKB were originally interested in the exam of the generic
behaviour of the geometry near the cosmological singularity. They comment, in the
first version of this work, that it could be possible that the singularity exhibited by
Friedmann’s model was not a common property of any geometry admitted by Gen-
eral Relativity (GR). This assertion was wrong, as these authora soon recognized,
and had just a partial importance in this research. However, this initial sin was
never forgiven. At those days, the Physics community faced the dictatorship of the
so-called singularity theorems which intend to demonstrate that, for any physically
acceptable source for the gravitational field, an unavoidable true singularity occurs
in the corresponding geometry of the Universe. Nowadays, as it occurs generally in
human society, this period of absolutism has passed. However it was responsible by

the largely spread attitude of rejection towards the entire LKB program.

Here, we do not consider details of this proposal. The reason is just this:
during the [Ith Brazilian School of Cosmology and Gravitation, held in Joio Pes-
sos, we had professor Evgenii Lifshitz with us. His lectures were published in the
proccedings of that School *. Subsequently, during the IIIth Brazilian School of Cos-
mology and Gravitation we had the presence of Khalatnikhov and Belinskii which
provided further developments of this program. I will limit thus this section to

present roughly its main lines of investigation and conclusions.

The method was christened “oscillatory regime of approach to the singularity ”.

1These lectures were published in Portuguese {4].
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They intended to examine the analytical properties of the generic solution of Ein-
stein’s equations near the singularity and, as a sub-product, to show that Fried-
mann’s Universe had a previous, less symmetric phase. They limit their main con-
siderations to the exam of global (i.e., non local) singularities. LKB show that, in
the case we can treat the source of gravity as a perfect fluid, then the gravitational
energy becomes more important than the matter in the singulanity’s neighborhood.
This means that matter does not direct the evolution of the geometry near the sin-
gularity: the geometry sustains itself, and if we consider the running backwards of
the time, the behaviour of the geometry towards back to the singularity is controlled
solely by the geometry. This, of course, is possible only because GR provides 2 set

of nonlinear equations for the metric.

Exercise: Examine under what conditions one can neglect the matter influ-

ence on the evolution of the cosmological metric. Hint:use the metric in the form

ds? = dt® — (a*l,ls + b'mamg + Angng)dz=dz? iy

in which @ = ", = t? and ¢ = #*=. The quantities p; are constants and the
vectors I, m,, i, constitute a basis of the 3-dim. space. Show that, near the origin
t = 0 the matter terms behaves as a lower power of the time { than the curvature
terms. {Thia proof, like all others claims from LKB in this section, can be found
in the references, in particular at the proceedings of the IIth Brazilian School of
Cosmology and Gravitation). See, however, the arguments in [17] on some special

cases in which matter is not unimportant near a singularity.

From the above remark it then follows that our interest must turn to the cos-
mological vacuum solution of Einstein’s equations. The simplest metric exhibiting

such property is Kasner geometry. It is a Bianchi type-1 geometry [18], which can



370

be written in Euclidean coordinates {z,y, #) in the form (1) for the specific values:

.= 5:! (2)
m, =82 (3
na =& (4)

Besides, Einstein’s equations imply that the parameters p; must satisfy the

two following conditions:

Pitpmt+m=1 (5)

F+p+r=1 (6)

This solution is spatially homogeneous and anisotropic. We note that Kas-
ner’s geometry exhibita the property that the axiz z,y,z expands and contracts
through the power law # that is submitted to conditions (6), that is: one axis
contracts when the other two expand. LKB argues that the generic behaviour of
the cosmological metric near the singularity must be obtained by a straightforward
generalisation of Kasner geometry (cf. (1)). After finding such a geometry one has
to examine the process of evolution which goes beyond the vicinity of the singularity
to the ulterior phase of Friedmann’a Universe. This process evolves by alternation
of the axis of expansion/contraction. Then comes the most controversial claim of
LKB: this evolution occurs in a spontaneously stochastic way. If this should be
the case, then the Universe would lose any memory of its initial condition (includ-
ing any arbitrary existing primordial anisotropy} which, for some physicists, is a
very desirable property. Unfortunately an undoubted proof of this assertion is still

missing.
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2 Thermodynamic Treatment — I

The Old Standard Model treats the matter content of the Universe as an adiabatic
fluid. The Gibbs relation between the total energy E = pV, the total Entropy 5,

the thermodynamical pressure py; and the volume V for an equilibrium temperature
T is:

TdS = dE + pudV (N

Thus, for the time derivative:

TS =[5+ (p+pu)flV (8)
The most general form of the energy-momentum tensor is:
T = pV\ Vo — Ph:w + Q{anJ + 1L, (9)

in which @, is the heat-flux and II,, is the anisotropic pressure, which has the

following properties:

o IL,VE=0
e I, =1L,
o L. =0

Using the projected equation of conservation of T, in the V* direction

yields:
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p+{p+p)f+QuV*+Q*, — o™ =0 (10)

For the Ideal Gas both quantities ¢, and I, vanish. Then, using (11) into
(8) gives § = 0. This is the situation in the Old Standard Model: the evolution of
the Universe proceeds in an adiabatic way. This simplification should not be invoked
ulteriorly to produce a real cosmological problem, on the origin of the actual high
value of the total entropy of the Universe. However this will be precisely the case,

as we comment elsewhere in this text.

In [5] the consequences of assuming the possible existence of a huge quan-
tity of massless, almost non-interacting neutrinos in a highly dense past era of the
Universe is examined. The viscosity produced by neutrino scattering induces the
presence of an anisotropic pressure. Combining (8) and (10} it follows, in the absence

of heat flux, in order to conform with the second law of Thermodynamics:

0" >0 (11)

In [5] Misner considers that, at the very hot epoch of the primitive Universe,
the energy content could be approximated by a linear Stokesian fluid. He then sets:

I, =ne. (12)

The main idea behind the above hypothesis is that, in some sort, the neutrino
pressure could counterbalance any primordial anisotropy. However, it was remarked
by [19] that this linear approximation was not enough to smooth out the Universe.
The analysis of this phenomenon depends on the study of the evolution of the
shear, which is obtained from (12), through the same procedure as we did above for
Raychaudhury’s equation.
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Exercise: Obtain the equation of evolution of the shear and the generalized

equation for the expansion parameter.

Answer:

1. The equation for #:
6+ %a’ +o*—wt—a, +a, V"
+a*e, = R, V*V* (13}
In the above expression the following definitions were used: ¢? = 7,,6*" and
w? = W,
2. The equation for 7.
houhgeo™ + %[a*;; - %w’ ~ 0hap
+ .65 — %h“hg,.[a“‘" + "]
+ %ew + Cautts — Wy
= Rog VP — %R,.,V"V”hag (14)

Obs: we use the definition

T

W = 7% wasV,

B | —

Note that the shear’s evolution depends not only on matter (through Ein-
stein's equations), but also on the Weyl tensor Weg,.,. *

A further generalisation of the above scheme would lead us to examine more

general Stokesian fluids. From the above remarks and the generic properties of the

2Some authors, [22], have speculated on the origin of the vanishing of Weyl tensor in our
Universe.
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kinematical quantities we can write, for the traceless anisotropic pressure a series
in powers of © and &,,. Let us limit ourselves here to the polynomial containing
terms up to the third order:

Mo = (@0 + @10 + B0%)o + 80,0% = 56" 0ughu (15)

We shall see later on that, at least for the treatment of the phenomenon of

phase transition, the additional terms of higher orders have a minor importance.?

3 Changing of Observer

The decomposition of equation (9) gives the reducible quantities for the energy-
momentum tensor for a given observer endowed with the velocity V,. This means
thus that the corresponding quantities p, p, 4, and II,, are observer-dependent. In

this section we will exhibit the modifications that arise in these quantities when we

deal with another observer, V.

Let us write the new frame characterized by ¥, in terms of the original four-
velocity ¥, and a spacelike vector e,, which is orthogonal to ¥, and normalized:

Voer =0
e, ed=—1
We thus write for the normalized ¥,

V* = coshy V* + sinhy e* (16)

3Remark however that in case of bi-axial fluid terms of higher orders must be taken into aceount

[25.
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Let us now evaluate each one of the irreducible components of T}, in the

new frame. We have:

Tw=+)VuVi —pgu +qu Vo + 1L

=(ﬁ+ﬁ) f’n i’v‘ﬁﬂw"‘&(u ‘-”v)+ﬁw (17)
(i)The Density of Energy (5):
=T, Vv : (18)
Then it follows
p = cosh®y (p+ p) — p + 2 sinhy coshy g, €® + sink*y 11, €' &” (19)

(ii)The Preasure (§):

F=p+3G-0) (20)

(iii)The Heat Flux (§,):
§u = coshy g, + V,, [coshy (p — p) + sinhy ¢, €] — ¢, sinhy (5 + p) + sinky I,
(21)

(iv)The Anisotropic Pressure:

=
:
Il

(22)
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Exercise: Show that for a perfect fluid (4. = 0 = 1.} and such that an
equation of state is provided by p = Ap, the corresponding equation p = 3 is such
that
[\ + 1 sink™y (14 )]

A= T sy L F N

(23)

Let us note that the only case in which the equation of state is preserved is

A=1i=—1 Thisis nothing but the well-known vacuum frame-invariance.

4 Thermodynamic Treatment II — Phase Tran-
sition

In the 80’s physicists developed the idea that in the super-dense era of the primi-
tive Universe a cosmological phase-transition could occur. This was thought in the
framework of field theory and could materialize the desire of a unified treatment
of the interactions, at least in a determined epoch of the Universe. Indeed, the
Standard Model assumes the existence of a very hot primordial phase. A direct
consequence of this is that, at this extremely condensed period, we cannot treat
the processes of interacting particles in a completely empty spacetime at zero tem-
perature. In that epoch the matter and radiation are so intensively connected in
all domains of spacetime that we are induced to treat all interacting process, in
analogy to Thermodynamics, as if they were immersed in a thermal bath at a given

(time-dependent) temperature T'.

Thus, the natural framework to describe these changing phenomena concern-
ing interacting particles is the Finite-Temperature QFT. The most striking result
concerning the applications of this theory to the Universe is precisely the presence of

a possible similar phenomenon of phase transition. The reader interested in details
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of this subject should consult the references [10], [20}, [21]. Before going into this
matter it seems worth to make a short resumé of Landau’s phase transition theory.
We remind the reader that we will not give a complete treatment of this theory, but

just a very condensed review of its main properties.

4.1 Landau’s Phase Transition Theory

We start by the definition of an order parameter, which we call #. Different states
of a fluid are characterized by the distinct values of 5. We choose the following

characterization:

e 1 = 0 represents a symmetric phase

e 7 ¥ 0 represents a less symmetric phase

Thus 5 = 0 is the less ordered state. The theory argues that it makes sense
to develop the free energy as a series of powers on the parameter 5. We thus set:

A B C
F(p, T, ‘q) = Fo + o + Eﬂz + Eﬂa + Zﬂ‘ + ... (24)

The quantity Fp represents the remaining part of the free energy that is independent
of the order parameter. The minima of the function F, with respect to #, represent
the most favourable states of the fluid. In order to allow the fluid to have access
to the state of equilibrium in the maximal disordered case we have to impose a
priori that the expansion {24) starts at least on n?, that is, we set &« = 0. Now
a further hypothesis is made concerning the dependence of the coefficients A, B,
C, ... on the temperature T. In principle this dependence must be provided by
a theory. In the absence of this we may take a phenomenological short-cut and
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assume, following Landau {23], that only A depends on T, the other coeflicients are
taken to be constants. We set:

A=a}(T-T.) (25)

The analysis of the extremum (minima) of the free energy yields the result:

e If T > T. the most favourable state is for p =0

¢ If T < T, the most favourable state is for 5 # 0

It then follows that the temperature is the parameter that controls the actual
phase of the fluid. Note that the most disordered phase (1 = 0) occurs for high values
of the temperature. Thus, the increase of temperature points in the same direction
as the evolution of the system with the corresponding increase of entropy. See below,

however, for a special case in which these arrows (T and S} do not coincide.

4.2 Phase Transition in QFT

Let us come back to the scalar field theory submitted to the potential (4). One
can provide a simple example of the spontanecus symmetry mechanism breaking
by considering that the mass term has the “wrong ” sign. Indeed, let us set M? =
—u3 < 0. If we then look for the equilibrium points of this theory we find, by

extremizing V, that there are two solutions:
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This mechanism takes a very important place in the modern Upification
Program of the Fundamental Intetactions [10]. Our interest here is to examine the
modifications imposed on this mechanism in a non stationary cosmological back-
ground. The net consequence of the thermal bath (cf. above) provided by the
cosmical environment at the very condensed phase of the Universe is the introduc-
tion of Temperature-dependent terms in the self-interacting potential V (see [24] and
references therein). The free energy F can be approximated (for high temperatures:
T>»M):

F = Vir=g + %,\T’@’ + .. _ (26)

The theory contains again the possibility of two minima:

e &, =0

o &)= 4T2-T17%)

in which the critical temperature is defined as T, = % A new phenomenon then
occurs: the existence of the minimum &, depends now on the surrounding matter’s
temperature. Indeed, for high temperatures T > T, the null solution is the only
possible state for the system. However, as the temperature drops below the critical
value T, a symmetry breaking sclution occurs.

Exercise: Compare the entropy of both states.

It then follows that as the Universe expands, and the temperature dimin-
ishes, the system consisting of the scalar field gets into a less symmetric config-
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uration. When the system sits on its state ®, , its corresponding distribution of
energy is equivalent to a cosmic fluid with equation of state p + p = 0, typical of a
cosmological constant A, given by (see eq.(3)):

. .
A= —a,\(:z"== -TH? (27)

In this case, if there is no other competitive source of curvature, the Universe
can jump into a deSitter type of geometry. Remark that this occurs only under the

very stringent hypothesis that the scalar system is homogeneous.

One further remark: In the Old Standard Cosmological Model there is a
simple dependence of the temperature T with the cosmical time £ through the func-
tion A(t), the radius of the Universe: T' ~ A~1. In the special case in which A ~ "
it then follows that we can write T ~ 8", In general, even for other more general
functions A{t), the temperature still is a regular function of 8. One can thus use the
expansion © as the true parameter that controls the phase transition mechanism. In
a subsequent section we shall find precisely this situation when dealing with viscous
fluids.

4.3 Liquid Crystal

In the previous examples we have considered in thia section, we dealt with an order
parameter (e.g., 7) that is a scalar. This, of course, is not imposed by any theory
but just a phenomenological choice. Let us now turn our interest to a case in
which this parameter must have a tensorial character. This is the case when we are
concerned with the distinction between gas/liquids and, on the other hand, crystals.
The first ones have no internal privileged direction: their properties are the same,

irrespectively of the direction we choose to observe them. This means that they
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have the highest symmetry of isotropy. On the other hand, non-amorphous solids
(crystals) have a lower symmetry: they are in, general, anisotropic. The interesting
case in which an anisotropic crystal can cohabit with the isotropic liquid phase of the
same substance is called the liquid crystalline state of the matter. The distinction
between the two phases is not made by a scalar quantity, as the associated order
parameter has a tensorial character. Once we are interested in the bulk properties
of the fluid* we must look for a macroscopic order parameter®. This is the standard
Landau's treatment. Once we have in mind the future application of the present
theory in Cosmology, let ns try to unify the variables employed to examine these
processes, This means that we will choose the anisotropy tensor o, as the order
parameter ®. The shear tensor belongs to the orthogonal H space (see Section 24) of
the comoving observer. Thus we will treat o;; a8 a three-dimensional object which
we parametrize as [25]
~z+y) 0 0

¢ —3(z—y) 0 |. (28)
0 0 z

The case in which none of the parameters z, y vanish represents the general bi-axial
phase, For didactical reasons we will restrict ourselves here to the consideration of
the simpler case in which the fluid exhibits a plane of isotropy. We choose this by
setting y = 0. The free energy F can thus be developed in powers of the order
parameter as in (15). Once F is a scalar, and oy; is trace-free, it follows (note that
Tro® = 22 and Tro® = 32%):

3
16

“We remark that we use the term fluid in & generic way: it can be identified to any of the
above state of matter

5In the cosmological treatment, this means that we will not take into account local apecificities.
This microscopic (e.g., local) treatment can be of importance when examining the evolution of
inhomogeneities.

$We note that any functional of the shear can be taken, equivalently, as the order parameter.

F=FR(PT)+ %An‘:’ + iBz3 + =Cz* + ... (29)




There are two possible extrema:

ez=10

» 3C23 + Bzp+24=10

Following the de Gennes-Landau’s scheme we set parameters B, C, to be constants
and A = a*(T — T*). Then, the extremum zo occurs only for temperatures in the
domain

B? +

™ =
T<T+ 21a3C

We note that there is an interval for the temperature in which both states — which,
from now on we will represent by I (for the isotropic case, = 0} and U (for the

uni-axial anisotropic solution x0)— coexist.

Exercise. Show that the liquid crystal admits the following four configura-

tiona:

e T > T+, The most favourable state ia I;

o Ty < T < T+, The most favourable state is I but there is a local minimum
corresponding to a small anisotropy;

e T* < T < Ty. The most favourable state is U but there is a local minimum

corresponding to an isotropic (less favourable) phase;

e T < T*. Corresponds to the phase U.

in which we have defined



1. T+§T‘+%;€%;

2. Ty=T"+ L5

Exercise. Show that the variation of the entropy S = »%, during the

transition is given by AS = L222°

In the above expansion of the free energy (29} a term linear in the order
parameter does not exist. The reason is simple: ¢,, is trace-free. Besides, this is a
necessary condition to allow the existence of the isotropic phase. We should note,
however, that the influence of an external field can modify drastically this situation.
Indeed, let us consider a typical diamagnetic liquid crystal and look into the net
effects of the application of an external magnetic field on it. The free energy gains
an additional interacting term, which depends on the magnetic field H — 4 and on

the oreder parameter. Once F is a scalar, in the first order we have:

AF = nH, H,o" (30)

which can change drastically the behaviour of the fluid [25].

Exercise. Examine the influence of an external magnetic field in the phe-

nomenon of phase transition when the free energy takes the form

F=Fy+nH,H,o" + ATro* + BTro® + C(Tro?) .

The above interacting term AF can be written in a more general form, in
terms of the energy-momentum tensor T}, of the electromagnetic field. Indeed, we

have in general:



1
T = pem ViV — §Phw +1L.. (31)

in which the anisotropic tensor is given by
M, =-HH, + %H‘h,ﬂ, (32)
and H? = H*H,. Using the properties of the projector operator and of the shear it

follows

H H,o" = ,,0" =T,,0". (33)

In these expressions we used the decomposition of the electromagnetic field

F,, in terms of the comoving fluid velocity V* as in the previous seciions, to write

Fu = —V,E, +V,B, + 758V, Hy.

Finally, we can write the above interacting term of the influence of the

magnetic field in the liquid crystal under the general form:

AF = —nT, 0" (34)

This form is very suggestive to translate the interaction into a geometrical

language. Using Einstein’s equations, we have:

AF = n(Ry, — 2 Rgu )0
= 1R, 0" (35)

in which the second equality comes from the fact that the shear is traceless.
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4.4 The Cosmic Fluid as a Liquid Crystal: the Isotropiza-
tion

In the Old Standard Cosmological Model the matter content of the Universe was
treated as a fluid in its state of maximal symmetry: an isotropic gas {or a liquid)
which creates a correspondingly simple geometry, the conformally flat Friedmann
Universe. Here we will analyse the model in which, at least for a certain epoch
of its evolution, in its highly condensed stage, the cosmic matter is identified to a
more realistic configuration: a viscous fluid in a less symmetrical state, generating
an anisotropic Universe. We assume that there is no heat flux and the tensor of

pressure is given as in eq.(15):

L = [-a3(8 — 8°) + Aol + 8[0,acrs® — %a,.ﬂa*ﬂh,.,],

in which we have redefined the constants by setting, for convenience, ag = 2?@* and
ay = —a®. The question we are considering is precisely this: to find a way which
the Universe could have used to dissipate this anisotropy. A natural process to do
this is to apply what we have learned from the previous sections. The shear, thus,
will be treated again as the order parameter. The free energy of the self-gravitating

cosmic fluid iz given by

F=Ftmi-2%0 057+ 3w+ 3pm. (36)

We have assumed the existence of planar (uni-axial) anisotropy.” The planar anisotropy

allows us to set the matrix of shear as being given by

-1 0 o
0 -1z 0 37
0 0 3

TIn investigating more general cases of bi-axial fluids one can follow the same procedure. Note,
however, that in this case there ia a neceasity to take into account more terms in the series of F:
at least of sixth power of the order parameter (see [25]).



The search for the equilibrium states of the fluid reduces to the examination
of the minima of F, with respect to £. We note that, as we have already discussed
previously, we find here that the distinct equilibrium phases of the fluid, charac-
terized by the order parameter I, are controlled by the expansion factor 8. The
system admits two equilibrium points:

e =0

lEo

which satisfy the equation:

3952 + %.szo - a8 - 6" =0. (38)

There i3 a non-null solution only if

3 &

0>6 —ﬁ-zaz—ﬂiee.

We thus see that the possibility of the existence of an anisotropic phase
depends on the value of the Hubble constant ©. In the case there is a value Xy # 0,

it will be a minimum if it satisfies the inequality

9853+ 3650 — a(6 - 0%) > 0. (39)

It the follows that if 8 < ©* the isotropic solution is not stable. There exists a
domain for © in which both states coexist. In this case

, 18
<O —EEEG‘.
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We can ther summarize all this information by discriminating the relation
between the actual value of © and the critical values 8. and 9,.

e 8 < 0, : The most favourable state is I;

¢ 8, < 9 < 8, : The most favourable state is I but there is a local minimum U
corresponding to a small anisotropy;

» B, < 9 < 8 : The most favourable state is U but there is a local minimum

corresponding to an isotropic (less favourable) phase;

* 8" < 8 : Corresponds to the isotropic phase I,

The non-ideal self gravitating cosmic fluid can thus provide an internal mech-
anism which Nature could have used to attain the isotropic state through the stimu-
lation of a continuous, second order, phase transition. We remark that in our actual
Universe the isotropic phase occurs in a latter period for lower temperatures. This
is not the common situation in ordinary matter, in which a phase transition to a
more disordered state is accompanied with an increase of temperature (cf. above).
Nevertheless, this situation is not forbidden by any physical law and, besides, there
do exist some materiala which evolve in this peculiar direction like, for instance,

some two-components organic thermotropic systems [25)].

Exercise. Examine the general case in which the pressure is given by

r[.pw = flhnv + f!o.u-v + fSaMava)

in which the scalar coefficients f; are given by the seriea

fi=Fo+ fali 4 [fal} + fobl + [faBB + fohh + falsl+ ...
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in which [; are given by the canonical invariants of the matrix 6 of components
8% = ot + 16k, that is:

o L=Tré* =00, + o7,

o Iy=Tr{ = 0" a,’ + O, 0™ + 10%

It remains to analyse the consequences of the above mechanism to the pro-
duction of entropy. From the regular functional dependence of the expansion 6 on
T, through the geometry, we can evaluate the change of entropy during the phase

transition:

86
AS ~ =555, (40)

The term on 2 in the Old Standard Model contributes with a (small) positive
power of T. In general it will provide a certain regular function of T, which does
not vanish in the neighborhood of ©;. We are particularly interested in the other
term that contains the dependence on the sirength of the anisotropy. It yields the
result that the higher the primordial anisotropy, the bigger the entropy production.
Thus, as a subsidiary consequence, the above isotropization mechanism based on
the standard Landau-deGennes phase transition can supply the Universe with some
additional entropy. The question we would like to answer is this: is this entropy
production enough to explain the total actual value Siotas ?



Chapter 28

The Eternal Universe

1 General Comments

In the Old Standard Cosmological model the geometry of the Universe has a sin-
gularity. At time ¢ = 0 both the curvature and the matter density diverge. It has
been a common practice to identify this as the moment of creation of the Universe.

The creation of a true initial Cauchy surface.

That the presence of this singularity iz not a mere consequence of the high
degree of symmetries exhibited by the FRW geometry was proved by (2], [3]. The
so-called singularity theorems of Cosmology state that under reasonable conditions
any spacetime geometry controlled by Einstein’s General Relativity develops a sin-

gularity.

In the last decade a large number of proposals appeared in which acceptable
cosmological models that violate the conditions of applicability of these theorems
and in which the Universe does not have a singular origin were constructed. In the

Vth Brazilian School of Cosmology and Gravitation [32] I started to elaborate a
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list of these proposals. Here we continue this list by adding some new items that
appeared in the last years, We next enumerate all these proposals':
s A Cosmology
¢ Non Minimal Coupling of Fields to Gravity
¢ Quadratic Curvature Terms in Lagrangeans for Gravity
¢ Torsion Effects
e Quantum Matter Properties
¢ Quantum Gravity
o Viscous Process
& Non Riemannian Geometry: WIST
¢ Time Dependent Cosmological Constant
e MicroPhysics Process

» New Short Range Gravitational Forces

We will analyse here some of the proposals that were not discussed in the
Vth School.

! This list is not exhaustive. We will present a more complete list in a forthcoming publication.
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2 Varying A

The deSitter cosmological medel has many similitudes to the Minkowskii space-
time. Among those, we are interested here in its high degree of symmetties. Both

geometries have the maximum number of Killing vectors.

Exercise. Evaluate the Killing vectors of the (flat section) deSitter geometry

ds® = dt* — exp(2Ht)(dz® + dy® + d2)

This has led some authors to conjecture that deSitter Universe is nothing
but Minkowskii spacetime heat at an effective temperature T which, by simple

dimensional considerations, in

T ~ V/A.

Following this idea, the fact that the temperature depends on the global time implies
a posgible time-dependence of A. Actually, this can be presented in a less arbitrary
manner if we note that the coamological constant may be atributted to a certain
particular state of a self-interacting field (see 4). Indeed we saw in a precedent sec-
tion that in the fundamental state of a scalar field an effective cosmological constant
is generated by the identification A = V(gy). This simple expression was the conse-
quence of a spontaneous symmetry breaking in which the surrounding spacetime is
taken to be at zero temperature. However, the Universe is not at zero temperature

during all its history.



Consequently the equilibrium state of the ¢ field is not at the minimum of
the potential V' but instead, at the minimum of the free energy F. From a naif
application of Thermodynamics (see [10], [21]) the potential F = V($,T) can be

expanded in a deries in the temperature:

V(6,T) = V(¢) +aT? + bT* +.... (1)

It then follows that the states of the equilibrium of the systemn become time-
dependent. This is a direct consequence of the assumption of the evolution of the

Universe; consequently, the temperature becomes time-dependent too.

In this approach the poasibility of a time-dependent cosmological constant
A(t) in related to its origin in terms of the fundamental state of a given (scalar) field

embedded in a non stationary Universe.

We are thus led to make a second meodification in the original Einstein’s
equation by the introduction of a spacetime dependent vacuum energy:

1
“Rgu = —kT + A(2)g,0 (2)

Bu—

in which T{™ stands for the energy-momentum tensor of matter. We should
point out the interdependence of A with matter: in the absence of the surrounding
matter the Ricci identity implies the true constancy of A. The vacuum interchanges
energy with matter in such a way that only the overall energy-momentum tensor
consisting of the substance (matter) plus the energy of the vacuum becomes a con-

served guantity.

Let us limit our study here only to the standard spatially homogeneous and
isotropic background geometry



ds? = dt? — A%(t)do? @)

Then the modified Einstein’s equations are

3A% ~ pA? = —~AA? - 3e. (4)

2AA 4 A2 = —pA? — AA’ —c. (5)

The total conservation law (substance plus vacuum) gives

pt+ovet+(p+p)B =0 (6)

Just to see some curious properties of this model let us concentrate in a

particular type of the vacuum.

We take the matter to be represented by a perfect fluid with the equation
of state p = $p. This seems a reasonable hypothesis once we are considering very
high energy effects (remember that we are looking for a non singular Universe). Let
us then follow [33]) and make the additional hypothesis that the density of matter
takes for all times the critical value

)"’=.0u::=3}3.2 (7)

in which we set H = %.. Then we obtain

A=— (8)

and



e=1. {9)

Thus, the scale factor takes the form

Alt) =B+ Q. (10)-

This particular form for the non singular radius of the Universe yields the
same geometry found ten years before by Novello-Salim and, independently, by
Melnikov-Orlov {[30], {31]) in another context. The source of the NS solution ia
the non minimaily coupled photons; and the source of MO geometry is a non linear
scalar field. We will not describe further these solutibns once they were treated in
the Vth Brazilian School of Cosmology and Gravitation [32]. Let me only peint
out here that the fact that all these distinct sources yield the same geometry is not
surprising if we analyse more carefully the properties that allow their existence.

Exercise. Show that (10) is a deformation of Milne geometry.

Prove that the source of this geometry can be each one of the following:

¢ Photons coupled non minimally to Gravity;
¢ Self-interacting scalar field;
¢ Time-dependent cosmological constant.

Can you provide another particular kind of source for the same non singular Friedmann-
like geometry?
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What can we conclude from this overabundance of equivalent geometrical
effects generated by distinct material sources? Compare with the old tentatives of
the so-called Already Unified Theory by Rainich and others in [34], [35].

Exercise. Thermodynamics of the matter-vacuum equilibrium state.

Show that, in order to guarantee that the cosmological and the thermody-
namical arrows point in the same direction, we must treat the system matter-vacuum

as a single entity.

Hint: Constder the Gibbs law

TdS = dE + pdV. (11)

If we take into account only the radiation term we have

TdS, = 6dA. (12)

Thus, in the collapsing era TdS, < (. However, taking into account the complete

system of matier and vacuum it follows that the system evolves in an adiabatic way.

Exercise. Consider a general varying A(z). Set

AnATY

Study the thermodynamical properties of the combined system of vacuum plus ra-
diation field.
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3 New Short-Range Gravitational Forces

A direct analysis of the properties of the known forces allows us to claim that a
theory of Gravity founds a Cosmology. This is the reason which led Einstein to deal
with his General Theory of Relativity as a modification of the traditional Newtonian
ideas on global properties of the Universe. There have been some ptoposals in recent
years concerning the possible extension of the fundamental forces in Nature in both

complementary domains, that is:

» Shert-Range Gravitational Forces.

s Long-Range Cosmical Forces.

Although there is not a single evidence that supports these speculations, it seems
worth, from a theoretical point of view, to analyse some of these suggestions. We
will not consider any proposal of the Long-Range modification of Gravity (see, for
instance, Okun [26]) but instead present a rough overview of a model of the existence

of new gravitational-like short-range forces (see [27]).

4 The Principle of Unification

On the basis of the model which we will examine here we find the Principle that
states that the Unification Program of Physics led to the idea that all long range
force has an effective local counterpart of finite range. The reason for this suggestion
is the relationship between the Electromagnetic and the Weak forces. Indeed, after
the Unified Program of Weinberg and Salam, one can treat weak (Fermi) forces as a
local counterpart of long-range electromagnetic processes. This has led to the idea
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that Gravity should alzo have an associated local (shori-range) interaction. Let us

see how this idea could be implemented.

5 The Interaction of Leptons

Leptons interact with photons, the intermediate bosons of the Weak interactions
and with Gravity. The electro-weak processes are described by the Salam-Weinberg
standard SU{2)zU(1) gauge theory?. In this model the description of the interac-

tions of electrons and neutrinos are made by means of an isodoublet L and a singlet

R:

L=3(1-m) [ g ] (13)

= 0w, (19

where 45 represents the usual Dirac’s matrix 45 = %' %43,

The gauge group SU(2)zU(1) being a local symmetry group it follows that
the usual derivative &, has to be replaced by the covariant derivatives:

D,L= (3,‘*593.“7"—%9' B,.) L (15)

and DR = (3,. -(#/2) g B,‘) R where W, and B, are the gauge fields (connection
of the symmetry group).

The dynamics of these fields is given by the Standard Electroweak theory
through the £4g9w Lagrangian:
IWa note that the Gravitationsl interaction is not contained in this description.




Losw =1 [Z'Y}: D, L* +ﬁ7ﬂ D, R'T’v]
- 413,‘., B* — i W,.. W (16)

where:
B”y = 3”.8, - ayB"

L 1
W,y = 0, W, — O, W, + g W, x W, an

and 7" represents, as usual, the flat Minkowski metric written in an arbitrary

coordinate system.

We note that all vector fields are taken to be massless. The intermediate
vector bosons of the pure Fermi interacting sector are however massive, The most
economical way, which does not spoil certain important properties of the theory, like

renormalizability, to give mass to vector bosons is by introducing a Higgs doublet

t
4= [ % ] (18)
of the complex scalar field, one electrically charged and the other being neutral.

The total Lagrangian will then include a term which couples the gauge
bosons (GB) to the scalar field ¢:

Lape = |Dugl* — V(4* 4) (19)

where D), is the covariant derivative operator defined in (15) and V(¢! ¢) the Higgs
potentijal;:

V(8'6) = w'(s' ) +h(#' ¢, >0, p?<0 (20}

We just have now to add to the above Lagrangian Lgsw and Lgpy the
interaction of the Higgs field with leptons through:



Lr s=-Gg (ItpR+R(pf L) (21)

and the total Lagrangian of the Electroweak field in interaction with Higgs scalar

fields becomes:

L= Casw + Leps + Lr-s (22)

The conventional Spontaneous Symmetry Breaking mechanism uses the min-

imum value of the Higgs scalar field:

(311

with
and
v = —’;;

and by replacing ¢! by zero and ¢° by 7‘; (v+x{z)), some mediating bosons become

massive while the photon is inposed to remain massless.

In general it is argued that, since the coupling of gravity with matter is so
weak, one can work in a flat spacetime background neglecting completely the action
of gravity. However, from the fundamental theoretical point of view, the strictly

cotrect theory should include gravity. The simplest way to achieve such a purpose
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is by just using the Equivalence Principle?.

It leads to a non-equivocal way for such a coupling, which is usually taken
to be given by an interaction Lagrangian of electrons and neutrinos with gravity in

the form:

Loravizw = ke [Tule) + T (ve)] ¢
= iz [e 7 Bue+ Ty, 0] 4
=JE[I’T,.D.,L+R‘T,.D,R]¢” (24)

Let us emphasize that this is not an approximation procedure but it gives
the exact correct interaction scheme. Indeed one can reobtain Einstein ‘s standard
geometrical vision by employing identification of the metric in terms of the ¢** field
(see Deser, GPP, [28])

V=g 9" = V=1 (" + ks ¢*)

and using the action

— L fi1 o 1 a l a
§= o [ VAW a (K" + 587 Ko + 58,7 K,)
+ (B + ) (KK (25)

#We have alsc examined a possible violation of the Equivalence Principle by considering that
the coupling constants of electron and neutrino with gravity were not the same, thus sstting:

Lint = Vkg Tur(e.] +¢ Tuv(”ﬂ) ¢
Afier pome algebraic manipulation it came out that:

(f-;l} (E;I) f'r(,, Dgy s L+he.

The important fact was a 73 operator ocurrence. To complete the algebra we had to introduce
the charged tensor currents L v, D, r¥ L. Due to charge conservation these new currents did not
couple directly to gravity but to new spin-2 charged bosone.

Taple) + £ Tap(ve) =

I'r(‘, Dpy L+R",r[,, Dgy R+




am

where

(KK)w = Kpo® Ko — K,,,," K. g*

However it is evident that this procedure does not take into account the possible

existence of a short range counterpart of gravity.

In order to preserve the SU/(2);, x U(1) gauge symmetry even in presence of
tensorial coupling, let us introduce a triplet of tensors zpﬂ and a singlet t,,. Now
leptons L and R couple to the intermediate tensor bosons U} and .. These tensor
bosons are true vectors in the SU/(2) algebra and not connections. In this sense they
are not gauge fields, so that we can note that gravity in our approach is not treated
as a gauge field. By the way, there is no need to treat garvity as a gauge field.

The Lagrangian {24} thus becomes:

- gL/4
’Cgrlw.EW = & (R'nl D, R+ ﬁzw‘h. D, S) ¢W

+ &Iy, D, 7LP" +he. (26)

in which k, and k, will be related to the kg Einstein's constant later on (cf. equation
(30)).

The ocurrence of Fermi's constant is the residunal consequence of two parts:
the unification of Electroweak process and the SSB mechanism of the Higgs bosons.
Besides the riéht-handed electron singlet we have introduced for convenience its left-
hand part § = b;‘l e. It does not change anything in the EW interaction as we
can be easily convinced just by checking the following properties:

LTpS=0 and R+, 8=0 27
IoR=)elnle and RelL=rzlpl, (27
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in fundamental state of the Higgs field in which:

s [t]- 5

Let us emphasize the fact that in order to make a contact of this Lagrangian
(26) with the above one (24) and reproduce the universality coupling of electrons and
neutrinos through the same constant coupling kg, we have to choose the gravitational
field to become a certain combination of 1, and (pfﬂ in an analogous way as it occurs
for the long-range {massless) electromagnetic field. We shall see that this procedure
will be compatible with the fact that only cne of these tensor fields will remain
rmassless, which is of course the one to be identified with gravity. Let us define the

linear combination of (p}fﬂ and 1, given by a rotation linked to an 5 mixing angle:
(PW(S) _ cos - sin ] Zl“’ (28)
$* | | sing  cosp P
We thus obtain for the gravity field ¢** the expression:

¢+ = ~sing g + cosn Y (29)

The same rotation applied to the Lagrangian (24) leads to the following relation:

\/_x% and \/k_:,=—‘./kw

B
sing

(30)

we can the extract the kg Einstein‘s coefficient in terms of the coupling constants
k. and ky:

(81

&
&=
&~
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All these tensor fields, in analogy with vector fields are created massless *

Reasons for this are correspondingly:

1. a term like m? Pu-F" can be constructed with the bosons since @, is not a
gauge field (it is not an affinity but a true SU(2) vector}). Such a term is a true
scalar not only with respeci‘. to the coordinate indices but also with respect to
the SU(2) indices,

2. because of the well-known fact of the non-rencrmalizability of massless spin-2

imteractions.

and one can use the same Higgs SSB mechaniam to provide mass for three of these

bosons leaving one massless (precisely the ¢, defined by (29)) which is to be iden-
tified to the long-range gravity.

Using these generalized gauge-invariant procedute plus Deser-GPP action
(25) for the general case in which there are four spin-two fields one obtains the

necessary equation of motion for the complete set of fields.

1t should be noted that in the case of EW force one ie strongly compelled to start with massless
spin-1 gauge fields. There are two reasons for this. The first one is that we could not consider a
term likem® A A* in the theory since this term ia not gauge-invariant, and secondly because of
the well- Imown difficulties related to the non-renormalizability of massive spin-1 fields interacting

with matter. These difficulties however do not have the same consequence of the spin-2 mediating
tensor bosona.



Chapter 29

Traditional Cosmological
Models

In the early days of Relativistic Cosmology some simple solu-
tions of Einstein’s equations were found. Although the interest
on these traditional geometries has diminished they still consti-
tute a basic reference. Here we will consider just a few ones,
namely:

¢ Einstein’s model: a static homogeneous geometry;

o Friedmann’s model: a dynamic spatially homogeneous and
isotropic geometry;

e Empty Kasner’s model: a dynamic spatially homogeneous
and anisotropic geometry;

o Godel’s model: a rotating universe.

405
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We can characterize these models by the kinematical properties of a given set of fun-
damental free-falling matter (geodesics of the background geometry) and by choosing
a coordinate system in which their four-vector velocity take the simple form V# = §.
Thus,

o Einstein Universe: it has no expansion (® = 0), no shear (o, = 0), no
vorticity (w, = 0).

e Friedmann Universe: it has no shear (¢, = 0), no vorticity (w, = 0) but has

a non null expansion (O # 0).

e Kasner Universe: empty configuration with expansion and shear; it has no

vorticity.

o Godel Universe: it has no expansion {© = 0), no shear (o,, = 0), but has a

non null vorticity (w, # 0).

1 Einstein’s Universe

The framework: Einstein’s General Relativity with cosmological constant A:

1
Ry, - ERguv +Agu = T (1)

The source is a perfect fluid with no pressure

Ty = P6262 (2

The geometry is static. It can be described as the topological product R ® S3. We

set
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ds? = di? - %[d{” + (sing)?d0?)]. 3)

where dQ)? = d§? + sin20dy?.
Exercise. Show that p = 2A.

Exercise. Show that the Einstein Universe can be written in the conformal

form
2
a .
il ey e A C AR O G
in which
1
1=5(V+W)
2
r= -l-(V -W)
T2
and
a
t= E(a.rctan V + arctan W)
a
&= E-(arctan V — arctan W)
where o® = 1.
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2 Friedmann’s Universe

In the Gaussian coordinate system (t,¢,6,¢) the Friedmann geometry takes the

form

ds? = dt* — AX(t)[d€? + o*(£)d?)]. (5)

in which the 3-section curvature is fixed by the form of the o-function. We distin-

guish three cases

o Closed section: o = siné.
e Open section: o =sinh{.

o Euclidean section: o = ¢§.

corresponding to the parameter € equal, respectively to +1,—1 and 0 (see above in

the text). Einstein’s equations reduce to the set

€= A%~ po), (6)
and
2§-+(%)2+%=—p—1\, (M
where we have defined
pe = 3(%)’-

Note that this geometry is conformally flat, that is, Weyl conformal tensor (the

traceless part of the Riemann curvature) vanishes.
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3 Lemaitre-De Sitter Universe

The source is a perfect fluid endowed with the equation of state p + p = 0. This is

interpreted as the cosmic vacuum or the cosmological constant A.

The fundamental lenght has the same form as in the previous case (5).

Show that the expansion factor © is constant.

4 Kasner’s Universe

See the previous chapter.

5 Godel’s Universe

Exercise.

Show that a perfect fluid without pressure yields the following solution of
Einstein’s equations

ds® = a®[dt? — dr® — d2* + 2h(r)dtdyp + g(r)dy?] (8)

in which the functions ¢ and h are

g(r) = sinh® r(sinh®r — 1).
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h(r) = V2sinh®r.

Show that the congruence of the fluid that generates this geometry has no expansion
(© = 0), no shear (6,, = 0) but has a non null vorticity. The vorticity vector has

components w, = (0,0,0,£) such that

p=292=:—2=—2A.

Exercise.

Find a local Gaussian system for this geometry. Prove that any such system
cannot cover the entire manifold. This yields the so called causal cosmological
problem of Gddel’s model.

Answer.

ds® = d* — a*(u? — 1)d€* + a*g(£, £)dii®
+ 2ah(i, €)dédij — a*d3? 9)

in which the functions g and H are the same as above, with the substitution of the
radial coordinate r in terms of the new ones.

Hint: evaluate the time-like geodesics of Godel’s geometry which are not

orthogonal to a global space-like hypersurface.

The complete analysis of this case can be found in [29)].
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The Gaussian system of coordinates (£,#,€, %) is related to the older variables
by the expressions

f = pat + %a #? + larcsin ¥ + iya arcsin A.

V2

t+ ] arcsin ¥ + ! arcsin A
Wt 1 V2 '

= (,o—§+ %arcsinA.
Z=z
in which
2
V=1 —2'uz+isinh2r
u? =
A= 3u2+1 sinh®r 1

T o1 sinh®r + 1 —sinh2r+1'

Exercise. Consider a trajectory which has the following velocity four-vector:
1 . . . .
(0,0, Py \/ﬁnT—l’O)' Show that this trajectory is a closed ome in the four-

dimensional space-time.
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