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1. THE GHOST, YOU'VE COME A LONG WAY BABY

1.1 Introduction

The BRST symmetry shows that ghosts are real. [ have chosen to start the
lectures like this, because I think that, at least for a theoretical physicist, the
statement is correct.

Furthermore, in order to have a least a chance of fully exploiting the richness
inherent in the BRST symmetry, one must try to go all the way. That cannot be
done if one does not feel at home with ghosts, or if one thinks that they are some
kind of embarrassing mathematical artefact that must be included to fix up some
details. Therefore, it is important to cross that threshold immediately, so that one
can relax and enjoy what follows.

In order to make that step easier, [ would first like to make some general com-
ments on the historical evolution of the idea of ghost in physics and its relation with
the basic principles of quantum mechanics. These comments will not be logically

needed for the subsequent presentation, which does not follow the historical route.

1.2 Quantum mechanics, the art of finding and combining simple ele-

mentary processes

In particle physics language, a ghost is a particle that obeys the wrong relation
hetween spin and statistics. The first kind of ghosts were introduced by Feynman {1]
in 1962, when studying quantwumn theory of gravitation. They were vector particles,
that is, particles of integer spin (1 and 0} obeying Fermi statistics. Probably the
first mention of the ghost in this sense in the physics literature are the following

phrases in Feynman's article,

..] found it by trial and error...you must substract from the answer...the
result you get imagining that...an artificial dopey particle is coupled to it
(the graviton). It's a vector particle.

Well, since 1963 the ghost has come a long way. We do not, or rather we should
not think of it anymore as an “artificial” or “dopey” thing, although many of us
still have that tendency. Rather, the lesson that we have been taught, sometimes
the hard way, is that the distinction between ghosts and “real matter” is not one
to be taken too seriously.

To see this, it is best to look at quantum mechanics from the point of view
of the sum over histories. In that formulation, the amplitude K{2,1) to propagate



from configuration 1 to configuration 2 is given by,

K(2,1) = T edSthineny 03)

histories
Joining 1 and 2

The idea is illustrated in Fig. 1.

Figure 1 The quantum amplitude is obtained by summing over all possible histories

Joining the configurations | and 2.

[n Dyson's words [2] on occasion of the Einstein centennial in 1979 , this formula

ts described as follows,

..- Thirty-one years ago, Dick Feynman told me about his *sum over histo-
ries’ version of quanfum mechanics. ‘The electron does anything it Likes,’
he said. ‘It just goes in any direction at any speed, forward or backward
in time, however it likes, and then you add up the amplitudes and it gives

you the wave-function.’ I said to him, ‘You're crazy.’ But he wasn't.

In the classical limit of actions which are large compared to Planck’s constant,
due to destructive interference, oaly histories close to the one which makes the
action stationary contribute to the sum. This is why action principles arise in
classical physics.

Now, the point here is that although the resulting amplitude K{2,1) may be
quite complicated, the amplitude for an elementary process, or histery, is simple.
It takes the form, .

i
exp HS (1.2
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But this is not all, another important ingredient must be added. In field theory,
(and by field theory here | mean something very general, including things like

quantum gravity and strings), the action may be written as,
§= Sk;“(fm) + Sinteraction (1‘3}

The splitting (1,3) is not just a technicality or a calculational tool. It deter-
mines our whole physical picture of objects (particles, say) that propagate freely
in between interactions. If we did not have this splitting, there would not be that
much information contained in {1.2). We would only know that the elementary
amplitude must have an absolute value equal to unity, and that is just too flexible.

The sum over histories, together with the splitting of the action into free part
and an interaction, lead directly to Feynman diagrams, like the familiar one of
quantum electrodynamics shown in Fig. 2, which describes the interaction between
two electrons due to the exchange of one photon. To obtain the amplitude for that
process one must sum, according to the general rule, over all alternative ways of

exchanging a photon.

Figure 2 Interaction between two electrons due to exchange of a photon.

There are different ways of doing this. The most convenient and physically
transparent one is that which exhibits manifest Lorentz invariance. In that case,
one includes in the sum over all possible exchanged photons, not only those which are

- polarized transverse to the direction of motion, but also those whose polarization

vector lies along the momentum (l'ongitudina.l photons) and along the time axis
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{time-like photons). There is also another way of calculating the same amplitude in
which only transverse photons are exchanged, but a supplementary instantanecus
Counlomb interaction must then be added.

Here we see in a familiar context the first example of a general occurrence which
appears to be of importance; namely, if we insist in formulating a theory in terms
of as few variables as possible, the elementary machinery becomes less transparent

and we lose understanding rather than gaining it.

In fact, look at what happens with the exchanged photons. We may view the
instantaneous Coulomb interaction as resulting from performing first the sum over
longitudinal and time-like modes, while leaving the sum over transverse polarization
yet undone. However, the result of that partial sum is no longer of the form exp
[%S) with 5 of the form {1.3}).

Thus, this seemingly innocent {and technically correct) step carries with it
abandoning the picture that the interaction is completely accounted for by an ex-
change of particles. This is not just a philosophical loss, since the Lorentz invariance
hecomes also obscured. Conversely, if one insists in a formulation hased on a simple,
uniform, elemientary process, one gains as a honus Lorentz invariance.

What [ amn trying to say is that it appears to be a good principle to insist on
an elementary amplitude of the form exp( %S }. If we start giving up and allowing
things like 4 exrp(tB) we might as well give up completely and try to write the full
amplitude K {2, 1) right away, which is not likely to work.

This important example of quantum electrodynamics also teaches us another
lesson. We must be willing to pay a certain price in order to have a simple, uniform,
elementary process. We must not panic too easily. The time-like photons have
negative kinetic energy and their contribution to the probability enters with a minus
sign. Yet we must have them; they are a good thing.

It is often said that no catastrophe takes place due to these minus signs because
the time-like and (longtitudinal) photons are not “real” but they are just “virtual.”
By this it is meant that they do not take part in processess like the one illustrated
in Fig. 3b but they only appear in diagrams such as the one of Fig. 3a.

This is correct, but the terminology is somewhat unfortunate and misleading.
Indeed, the virtual photons are not less real that the other ones in the sense of
having ohservable physical effects. They contribute to energy levels as reflected, for
example, in a small shift (the Lamb shift) they produce in the spectrum of light
from excited hydrogen atoms. It is just that they cannot be observed directly with
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something like a photo-cell.

Figure 3 The process shown in (3a) is possible for both real and virtual photons while
in {3b) only a real photon can appear.

1 would like to indulge here in a slight digression: The more familiar one gets
with ¢qnantum mechanics, the more blurred in one’s mind the distinction hetween
“real” and “virtual” processes becomes. Indeed, relativistic guantum mechanics is
somehow engineered so that it is consistent to have a distorted view of the world.
For example, a relativistic particle has a non-zero amplitude to cross the light-cone
and can even turn back in time. Yet we can, because of that very fact, reinterpret
things so that our usual notions of causality are not viclated. In the same way,
the consistency of a world in which only traverse photons can be ohserved by a
particle detector may be thought of as being possible because of the existence of
“virtual” photons of all four polarizations, otherwise the sum of all probabilities for
all mutually exclusive “real” processes would not be equal to unity.

It would seem that the more we progress toward systems that are less familiar
and reach into smaller scales, the more useful it should be to take quantum me-
chanics as it naturally comes, without manacling it early in the game with things
like the ohserver or the measuring process.

As an example of how respectable people are willing to gamble along this line,
. I would like to quote from a paper by Hawking [3] on the path integral approach
to quantum gravity. To put the quotation in context I should mention that for the
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gravitational field, the “injtial configuration” is one three-dimensional space and the
“final configuration” is another three-dimensional space. The elementary process
or history which interpolates between them is a four-dimensional space-time which
has the initial and final three-spaces boundaries.

— initial

Figure 4 Initial and final configurations for the gravitational field are space-like hyper-

surfaces.

The quotation is the following:

Ultimately I suspect that one should do away with all boundary surfaces
and should deal only with closed space-time manifold.

You see what this means. It means that there would be no analog of what
one calls “external lines” in a Feynman diagram. In other words, there would be
no “real” space-times. The whole theory would refer only to an enormous maze of
“virtual” space-times,

At the present state of development this is just speculation. I have mentioned

it only to illustrate the way of thinking.

1.3 Ghosts necessary to keep elementary processes simple

I realize that you are becoming impatient because I never scem to get to the
point. However, after all this softening-up you should be ready to believe in ghosts.

We have so far been using quantum electrodynamics as an example. There,
one may view the need for the longitudinal and time-like photons as arising from
the demand that the sum of all the probabilities for processes involving only “real”
particles in the initial and final states should be equal to unity. However this turns
out not to be sufficient in more complicated theories. One needs in general, another,
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more exotic kind of “virtual® particle, and the price to pay in mental flexibility in
order to have a simple and uniform elementary process is stiffer. One must accept
that the new modes obey a relation between spin and statistics which is opposite
to that of usual matter. These new modes are called ghosts. They seem to be more
shocking or, I suppose I should say, “ghostlier” than, say, the time-like photons. The
reason is that they are either fermions with integer spin or bosons with half-integer
spin. However, in my opinion this is mostly psychological since we have had already
forty years or so to learn how to live with those other ghosts— the longitudinal and
time-like photons.

One may view this “wrong” connection between spin and statistics in the same
way as we viewed above the fact that in quantum mechanics particles can propagate
faster than light and backward in time. That is, at a basic level there is really
no connection between spin and statistics. Anything can happen. One can have
bosons with integer spin, fermions with integer spin, bosons with half-integer spin
and fermions with half-integer spin. Yet, things are somehow engineered so that in
the world that is directly accessible to us, we may consistently imagine that particles
do not turn around in time, do not travel faster than light and they do obey the
spin- statistics theorem.

To go further, I have to explain what I meant by “more complicated theories”
above. | meant a nonabelian gauge theory.

A gauge theory is one which is invariant under a symmetry that acts indepen-
dently at different points. Since one may define a geometrical object as something
which is invariant under a set of transformations, one may say that gauge theories
are field theories with geometrical content. This is what makes them theoretically
attractive.

The simplest of gauge theories is electradynamics and the gauge transformation

for the photon is the familiar one,

A, — A, +B,A (1.4)

Here, A = A(z) is an arbitrary function over space-time. The fact that there is only
one function involved, means that the symmetry upon which the theory is built, has
only one parameter and hence it is abelian. One then says that electrodynamics
is an abelian gauge theory. The extension of this idea to a nonabelian group is
due to Yang and Mills. In that case one has a set of functions A® = A%(x) where
the index A runs over the generators of a Lie group. One also has in that kind
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of theory, not just one “photon” field but & whole collection of them A}(z). The
gauge transformation (1.4) is modified to read,

AL — A%+ 8,A% + CLALAS (1.5)

where the real numbers C}, are the structure constants of the {nonabelian) gauge
group.

The symmetries present in electrodynamics and in its extension, the Yang-Mills
theory, are what we call internal gauge symmetries. Technically this appears in the
fact that the gauge transformation does not contain derivatives of the fields and
hence does not connect different space-time points. There is another kind of gauge
symmetry, which is perhaps even more interesting, and which does act on space.
time and hence it is not internal. In that case, the gauge parameter A is labeled
by a space-time index instead of an internal gauge index. For example, in general

relativity one has the gauge transformation for the graviton (reparametrization),

Guv — G ¥ A AL, + o (1.6)

and 1he gauge parameter carties a vector index. Another important instance of a
noninternal symmetry is the gauge supersymmetry {“the square root” of a repara-
metrization) present in supergravity, where the change in the “gravitino” field is
given by

A~y A%+ (1.7)

In this case, the gauge parameter A carries a spinor index A and it is anticommu-
tative. For this reason the transformation mixes fermions with bosons and is called
a supersymimetry transformation.

The general practical rule for the appearance of ghosts in a gauge theory can
now be stated. In each case there will be a pair of new fields, usualily called “ghost”
and “anti-ghost,” for each gauge function present in the gauge transformation. The
ghost field will be anticommuting (fermionic) if the corresponding gauge parameter
was commuting and vice versa.

Therefore, in electrodynamics there is one pair (C€) of fermionic scalar (spin
0} ghosts, whereas in the Yang-Mills case we have a whole collection (C* and &,)
of fields with the same characteristics.

It is important to emphasize that there are indeed ghosts in quantum electro-

dynamics. The reason that they were not seen to be necessary before is that in the
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path integral for a gauge theory one has the freedom of choosing a gauge condition.
In elecirodynamics there is a simple gauge condition, the Lorentz gauge, which is
linear in the fields and does not destroy the simple nature of the elementary process
of photon exchange. If that gauge condition is used, the ghosts decouple compietely
from the photon and can therefore be ignored. However, if one would use other,

nonlinear, gauge conditions it would not be possible to ignore the ghosts.

The rise of the ghost has an interesting history with its ups and downs which
have reflected the influence of other advances in field theory. As I said at the
beginning, the first’ghost that was seen to be necessary was the fermionic vector
ghost of quantum gravity, coming from the A, in (1.7). This ghost was found
by Feynman as he says, “by trial and error.” He was trying to make the sum of
all the probabilities for graviton-graviton scattering to be equal to unity and he
realized that even including the time-like and longitudinal modes of the graviton,
as in electrodynamics, would not do. But of course he, for one, was very fond of
Feynman diagrams and tried to overcome the difficulty by bringing in new diagrams

which would involve new particles.

There is good reason to he fond of the diagrams because they are not just a
calculational tool. They carry with them the key message that the whole compli-
caled theory is built by putting together a few simple elementary processes which
are very similar to each other. Thus, with this idea in mind, it was natural to
attempt to cure the disease by simply extending what had already been done for
electrodynamics, and “introducing” yet another “virtual” degrees of freedom be-
sides the longitudinal and time-like gravitons. I have used here quotation marks
for the words “introducing” and “virtual,” to emphasize that one is not putting
something artificial in by hand, but rather one is discovering something quite real
that was there all the time.

This approach, let to a satisfactory formulation which was already written in
the desired form in which all fields present, including the time-like and longitudinal
modes and the ghost, appeared on the same footing describing particles that prop-
agate freely in between interactions. That is, the total action was written in the
form (1.3)

Next, there tock place another development which has been hailed with good
reason, but from the point of view taken here could be thought of as “reactionary.”
Faddeev and Popov [4] observed in 1967 that, since the gauge transformations that
" we wrote before do not change the physical fields (by definition of a physical field),
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one should include in the sum over histories only classes of equivalence of gauge-
related histories, rather than histories themselves. From this nice geometrical point
of view, they concluded that the amplitude for an elementary process was not of
the form ezp(S) but instead of the form

det M (exp ;—;S’) (1.8)

where the Faddeev-Popov determinant det M, is a certain functional of the fields.
They then went on to say [5],

the expression.. for the S-matriz contains the nonlocal functional det M and

therefore does not look like the familiar integral of the Feynman functional

ezp (i action}... We may, however, use for det M the integral representa-

tion...

Now, this “integral representation” was given, of course, in terms of the ghost
fields and brought us back to the expression previously obtained directly from the
diagrams. One gained with this a nice and useful connection hetween the ghosts and
the geometry of the gauge field. There was, however, at the same time, a negative
effect that came from the psychological impact of the word “representation.” We
became used to thinking that the understandable thing was the Faddeev-Popov
determinant and that the ghosts were merely a technicality to represent it. Perhaps
we would have heen more flexible if we had kept in mind that this way of thinking
was analogous to taking the instantaneous Coulomb interaction in electrodynamics

more seriously than the time-like and longitudinal photons.

1.4 BRST symmetry: ghosts and matter become different components
of single geometrical object

Perhaps this psychological blockade is one of the reasons that made it necessary
for seven more years to pass before the important discovery {6] which put the ghost
once and for all at the same level with “real” matter, the BRST symmetry. The
other, and more significant reason for this delay would seem to be that the concept of
supersymmetry [7] was only formulated in 1973. Indeed, otherwise the development
in question conld have naturally taken place already in 1967.

The BRST symmetry, where the initials stand for Becchi-Rouet-Stora and
Tyutin, may be taken to be the basic invariance of the quantum mechanics of a
geometrical system. It contains and extends the concept of gauge invariance. In it,



578

the “original fields” get mixed with the ghosts. For example, the BRST transfor-
mation of the Yang-Mills field is given by

§A® = €8,C° + ... (1.9)
u »

where € is an anticommuting parameter. It is necessary that ¢ should be anticom-
muting, because the field A} is bosonic, whereas the ghost C* is fermionic. In this
sense, the BRST transformation is a supersymmetry transformation.

The fact that the ghosts and the other fields take part in an invariance which
mixes them with each other, means that they are all to be thought of as components
of a single geometrical object. This is much in the same way as we consider the
electric and magnetic fields as components of one single field, the electromagnetic
field, because they get mixed under the Lorentz transformation. Thus, from now on,
we have to get used to thinking in terms of “BRST multiplets” instead of "“origina.l
fields” and ghosts. The task of finding geometrical quantum theories is then the
task of developing a BRST “tensor calculus.”

This would be already attractive by itself but it is made even more so by a
spectacular property of the BRST transformation: If we apply it twice we get zero.
That is, if we call 2 the BRST generator, we have the equation

=0 (1.10)

and we say that 2 is nilpotent.

The construction of a nilpotent BRST charge for any gauge system, including non-
internal symmetries, was completed with the work of Fradkin, Batalin, Vilkovisky
and Henneaux [8].

Equation (1.10}, if shown to a mathematician, makes him tremble, because it
expresses as John Wheeler likes to put it, that “the boundary of the boundary is
zero.” Thus, one expects that there should be a deep connection between BRST
invariance and topotogy. This relation has not yet been fully unraveled.

The BRST invariance has already had a number of useful practical applications,
both in Yang-Mills and string theory. I will just mention some of them here.

The first one is connected with the business of the Faddeev-Popov determinant.
If one takes the original Faddeev-Popov expression for the amplitude and “repre-
sents” the determinant as an integral over “additional variables” called ghosts, the
resulting ghost action is always quadratic in the ghost field. This means that the
ghosts interact with the other fields of the theory but they do no interact directly
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among themselves. However, if one looks in detail, in terms of diagrams, at the
balance of probability in a complicated theory like supergravity, one finds that it is
necessary to include terms which are quartic in the ghosts, that is, self-interactions
of the ghosts. Now, there is no way in which this can come out of a direct applica-
tion of the Faddeev-Popov presectiption which only gives a quadratic ghost action.
This came as a bit of a shock because it clearly invalidates the view that the ghosts
are simply a way to represent a determinant. However, if onc locks at the situation
from the point of view of BRST invariance this is not an exceptional case at all;
the interactions of the ghosts among themselves are necessary in such a case just to
ensure BRST invariance.

Anocther important application of the BRST invariance is the one which actually
directly motivated its discovery. It is the fact that it is responsible for the Ward-
Slavnov identities which are crucial in proving the renormalizability of the Yang-
Mills theory. As a result of this understanding, a greatly simplified proof of the
renorimalizability became available.

The importance of the BRST invariance hecomes even greater for generally co-
variant theories like gravity, supergravity and strings. The reason is that in that kind
of theory, gauge invariance is everything. There is no distinction between dynamics
and a gauge transformation, because the latter is jilst a localized displacement in
space-time. .

The condition for the BRST invariance of permissible states,

Qlp >=0 {1.11)

is then the equation of the theory.

In string theory, the nilpotency condition provides a particularly transparent
way to understand the need for the critical dimension. Indeed, if one computes 022
for, say, the free bosonic string immersed in a D-dimensional spacetime, one finds
that it has two contributions. One of the form D times a factor coming from the
“original fields,” and another equal to —26 times the same factor, coming from the
ghosts. The condition D = 26 results thus from precisely balancing the “matter”
and the “ghosts.” What else could one ask to be convinced that the ghosts are on
the same footing with matter!

The applications of the BRST symmetry, and hence, of the concept of ghost
which I have just described are quite significant. But one has the fecling of having
seen only the tip of the iceberg. Probably the deepest developments along these
lines should lie in developing thecries where elementary extended objects (strings in
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string theory, three dimensional spaces in quantum gravity) can undergo quantum
mechanical decay. A field theory of strings along these lines has been proposed by
Witten {9], not long ago. Another interesting line of development, perhaps more
reachable, lies along the understanding of anomalies in gauge theories. Of course all
these developments, being based on BRST invariance, could not be even thought
of without allowing ghosts to play a prominent role.

The ghost has indeed come a long way since it was calted in 1963 an “artificial
dopey particle” by its own discoverer.
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II. BRST SYMMETRY IN CLASSICAL MECHANICS

2.1 Ghosts have role in classical mechanics

As it was reviewed in the first lecture, the need for ghosts and the symmetry
that reveals their profound importance were first established in guantum mechanics.
It was only afterwards realized that they have a natural and necessary place within
classical mechanics as well. Indeed, the BRST symmetry could have been discovered
in the last century within a strictly classical context by mathematicians dealing with
the geometry of phase space had they only been willing to extend their analysis to
Grassmann vanables.

Having said this, it should be immediately clarified that I am not advocating
a direct physical meaning for ghosts within classical mechanics. Their physical
implications can only be infered by explicit use of quantum mechanical laws. It is
nevertheless extremely nseful to be able to discuss them and the BRST syminetry
classically. One can then bring in these concepts as a powerful tool in the actual
construction of the quantum theory.

The role of ghosts in classical mechanics emerges most clearly through the
Hamiltouian formulation of the classical dynamics of gauge systems, which provides
the most general ground for systematically discussing the BRST symmetry. This
will be the starting point for our whole discussion of BRST invariance. It will appear
that through Hamiltonian methods one obtains a formulation of great generality
and power. In particular one frees oneself from the assumption that the gauge
transformations obey a group composition law. The results cover therefore, the
general case of an “open algebra.” Furthermore, they are valid “off-shell.”

2.2 Gauge invariance and constraints

One says that a dynamical system is & gauge system if the general solution of
the equations of motion contains arbitrary functions of time which are not fixed by
the initial conditions.

In practice, a gauge system is most often given by specifying the action integral
in lagrangian form. The procedure for passing from the lagrangian to the hamil-
tonian was worked out by Dirac long ago [10]. It will be assumed here that the
system is already given in hamiltonian form.

By definition, one says that all the histories which spring from the same initial
condition are physically indistinguishable and are related to each other by a gauge
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transformation. The gauge transformation turns out to be a canonical transforma-

tion whose generators will be denoted by Ga(q,p).

2.3 Classical mechanics over Grassmann algebra necessary

The notation (g, p) is being used to represent a set of canonically conjugate co-
ordinates in phase space. Some of these coordinates might be commuting and other
anticommuting. More precisely, they will be assumed to be elements of a Grass-
mann algebra with definite Grassmann parity. One must allow for anticommuting
(g, p) in order to have a classical description of fermions, but even in a theory which
has no fermions to start with, they will be brought in when the ghosts are included.
Therefore, we have to be prepared and have a classical mechanics capable of deal-
ing with anticommuting numbers, so we allow for that possibility from the very
beginning. Also, it is not necessary for what follows to have canonically conjugate
pairs. Indeed, there are cases of interest such as the classical description of spin, in
which the dimension of phase space is odd and conjugate pairs are not available.
Those cases are included in the present discussion which just needs the existence of
a Poisson bracket. I have chosen to use the notation (g, p) anyway, because it has

a phase space ring.

2.4 Higher order structure functions

In order to avoid unnecessary cluttering of the equations with sign factors in
this introductory account, I will only deal with the case in which there are no
fermionic coordinates among the (g,p). Actually it suffices to assume that the @,
are commuting. All the important results carry over unchanged to the general
Bose-Fermi case.

It will also be assumed for simplicity that the constraints G, are independent
or “irreducible,” as one says. That is, the Jacobian matrix (8G, /8q, 8G,/8p}is
of maximal rank everywhere on the constraint surface. This means that one can
locally take the (7,’s as the first m {non-canonical) coordinates in phase space. The
reducible case will not be dealt with. Again, the main results still hold {provided
one adds even more ghosts!- usually called “ghosts of ghosts™).

To begin with, the constraints 7, will be also calied “zeroth order structure
(0)
functions” and will be indistinctly denoted by U _. From the point of view of the

action principle these constraints are not uniquely determined. They can always be



replaced by an equivalent set,

(0} (0)
U (a,p) = MXg,p) U ,(q,p), det M #0 (2.1)

@) (@)
because the equations ' = 0 are equivalent to U = 0. This change in the

generators implies of a change in the description of the gauge transformations. If,
for example, the structure functions €%, associated to the first set are independent
of (g,p) {structure constants of a group), that property will not hold for the new
set. One expects, of course, that the two descriptions will be equivalent, but that
equivalence is not transparent. It will be one of the virtures of bringing in the ghosts
to make the equivalence manifest.

A new notation and a new name will be also introduced for the structure

functions C%, (g,p) appearing in

[Gu’Gb] = C:}Gc {2.2}

(1 SN I
They will be denoted by -2 {J :* and the ¢ ’s will be called “first order struciure

functions.” The first class property of tle constraints reads then,

{0} m (1} o
rd
U, u,|=-2v04v, (2.3)

The first order structure functions carry with them an ambiguity over and above
10} (0)
that implied by the ambiguity (2.1) in 7 . Indeed, once U is fixed, equation (2.3)

1)
determines I/ only up to

1) (1) n {0)
US—~ US, = US + MU (2.4a)

with
M = —M% = ~M? (2.4b)



U] ()
Having introduced an appropriate notation for U/ and U, the analysis pro-

3]
ceeds as follows. One takes the Poisson bracket of equation (2.3) with U 4 and

fully antisymmetrizes in a, b and c. The left-hand side then vanishes by virtue of
the Jacobi identity, while the right side becomes, with the help of (2.3), a linear

{0)
combination of the U ’s. This yields,
(0 1) (0} o
Ual | Ut Ug| +2UUS ) =0 (2.5)

(0
Now, (2.5) does not imply that the coefficient of U/ vanishes, because that equation

is clearly identically satisfied if one sets

:]I

n (©) {1 () {0}
Ulp Ugl +2U5, US =208 U, (2.6)

(2)
wiiere the thereby-defined second order structure functions U :ic(q, p) are antisym-

10} (1 2)
metric in {d.e) and (a,b.c). Again, once U and U are fixed, the U/ 's bring in

their own ambiguity. They are determined up to

(2) (2} de {0}
Uk - USs. +M3I U, (27)

where M:;cf is completely antisymmetric in both the upper and lower indices. It
may be shown [8] that, under the assumption that the constraints are irreducible,
equation (2.8) with the ambiguity (2.7) is the most general solution of {2.5} and it
always exists.

The construction leading to the appearance of the second order structure fune-

tions may be systematically continued. Thus, third order structure functions will
. @
appear by taking the Poisson bracket of (2.6} with U ; and fully antisymmetrizing
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in a, b, c and f. Using the Jacobi identity and the defining equations (2.3} and (2.6)
of the structure functions of lower order, yields the identity

(2}[ ) )
aia; -
D[b;b;b,h] U“ =0
where,
(F] . 2 | (@ o (3—11)‘ .
a8 — L3 D g Lesathy
D hlb:ksh TR gﬂ v by e boyr ? v LTS SR by
L
"-H’a agc (2_‘]"« ] ;
—E(‘H‘ DB-@ U e U birabee (2.9)
From (2.9), it follows that
@ [a305] @ (0}
D [b:b:b;b-ﬁ] =3U ::r:::h 4 a3 (2'10}

where the “third order structure functions” are completely antisymmetric in both
the a and b indices.

For the higher order structure functions. one finds, in an analogous manner,
the identities

ir) 10)

pla “n]

(B croerr b 2] t,,. =0 (2.11)

which imply in turn the existence of the structure functions of order n + 1

(n+1) {n+1)
U fretas - [ag v @nia]

obeying
{r+1} 0

D}:: =) U g (2.12)

(n}
In (2.11) and (2.12), D :::-.::b-.n stands for

(y) (r—gq}

n
Gy..an _1 a3...8 gt enln _yng+1
D 4 bnys ~ 2 Z u [} . ’ v l"::H ------ Arngz ( )



n—1 fg+1) e (n-q)
a1 a . Yoy
- z(q + l)(n - q + 1] U 5: .... :.--b.ﬂ.l U b::.:--.bnq.:c(_}n(q-'.l) (2'13)
q=0

and only involves siructure functions of order < n.
Finally, one easily checks that {2.12) determines the structure functions of order
n + 1 only up to

(n+1) (n+1) (@

ay...ln ay .yl G1.ln
U ey ™ U i MU, (2.14)

(for given structure functions of order < n}, where M, """ ** possesses the appro-
priate antisymmetry properties.

The proof of the existence of the structure functions of order two and higher
may be found in [8]. It will not he dealt with here. I will turn instead to the
relation between the structure functions and to the BRST generator §). Afterwards,
an independent proof of the existence of 11 will be given. That proof will, therefore,
provide in turn a proof of the existence of the structure functions. However, this
indirect method does not make the direct construction superfluous for two reasons.
The first is that the direct construction provides an explicit way to write down the
BRST generator for a given set of G,'s. This is done by systematically following
the steps indicated in the previous paragrapl. Second, the indirect proof as given
below holds only locally in phase space, while no such restriction applies to the
other procedure. {The indirect proof can alsa be extended to hold globally. See

[11})

2.5 Rank defined. Open algebras

One knows that for a Lie group, all the (local) geometric structure is contained
(2)
in the structure constants C,. In that case one may take the U and all the higher

order structure functions equal to zero. However, in the general case, this will not
be possible and structure functions up to some order n will appear. One then says
that the theory is of rank n. It should be emphasized here that the notion of rank
is not intrinsic to a given theory, but it depends on the choice of the constraints G,
(structure functions of order zero) and also on how the ambiguities in the choice
of the structure functions of order one and higher are resolved. Indeed, as we shall
- see below, one may always choose, at least locally in phase space, a set of G, such

that any theory is of rank zero (“al;elianization“]. However, in general, that choice
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is cumbersome. For a field theory it typically leads to generators which are non
local in space. In practice, there is always a choice, or perhaps a few choices, of
the G, which are privileged hecause of locality properties, covaniance, eic. Thus,
when [ indulge, from now on, in speaking of “rank of a theory” I will have in mind
the lowest possible rank associated with those natural choices. In this sense, the
Maxwell field has rank zero, the Yang-Mills field, the relativistic string and Einstein
theory of gravitation have rank 1, N = 1 supergravity in four space-time dimensions
has rank 2, and the n-dimensional relativistic membrane has rank n. For a theory
of rank n, the idea is that the local geometrical structure is contained not only in
the first order structure functions, but also in those up to order n.

When the first order structure functions are not constant, one often says that
“the gauge algebra only closes on-shell”. This means that the commutator of two
gauge transformations is a new gauge transformation only on the constraint surface.
Note that for this to happen it is not necessary that the rank be higher than one.
The gravitational field is an example of a theory of rank one whose Hamiltonian
gauge algebra only closes on-shell.

The only on-shell closure property arises as follows. The commutator of two
gauge transforinations with parameters ¢} and €3, is a new transformation cbtained
by acting with (*7,¢3¢3G.. This is a consequence of the Jacobi identity. However,

the action 4F of that transformation on a generic function F is
6F = [F,CopelaGe] = CoetelF Gl

(2.14)
+ 4{F, €516,

and this is generated by G, only on the surface in which G, is equal to zero.
Otherwise the second term of the right side of (2.14) makes this no longer true for
every F unless C, is independent of ¢ and p.

[Actually, this last assertion is a bit too strong. Indeed, if the C¢, depended
on the ¢'s and p's only through the generators G, themselves the second term on
the right of (2.14) would also have an overall factor [F, G.]. However, in such a case
there is no quarantee that the rank would be equal to onel.

2.8 Ghosts. Ghost number. BRST generator as generating function for

structure functions

The original phase space of the ¢'s and the p’s will e enlarged by introducing
an additional canonical pair (n®, P, ) for each first class constraint G, present. The
canonical pair will be taken to be of Grassmann parity opposite to that of the



corresponding G,. Thus, if the G’s are all commuting, as we have been assuming
for simplicity, the n's and the P’s will be anticommuting. These extra variables will
be called ghosts. More specifically, # will be called ghost and P anti-ghost.

The ghosts may initially be thought of as a useful bookkeeping device for
concisely taking into account the properties of the structure functions. However, this
narrow view lends itself to rapid change once one realizes that those properties imply
the existence of a symmetry which mixes the ghosts with the original variables. This
means that the appropriate space for describing the dynamics of the gauge system
is not the original space of the ¢'s and the p's, but rather, the extended one which
includes the ghosts.

The basic properties of the ghosts are, therefore,

[qub] = [’Tb: p«] = ‘—6: (2.15)
)y = (Pa)* =-P. - (2.16)

and
(Pasg’] = [Pa,pil = [n°,¢'] = [n°, pi] = 0 (217)

Note that 5 is taken to be real which implies that the conjugate P is imaginary. This
property, and also the symmetry of the bracket (2.15) are due to the anticommuting
character of the ghosts for bosonic G,.

It is also convenient to define an additional structure ou the extended phase
space, that of ghost number. This is doue by attributing the following ghost number
to the canonical variables: the ¢, p;'s have ghost number zero, the ghosts 1* have
ghost number one, and the antighosts P, have ghost number minus one. Moreover,
one requires that the ghost number of a product of variables is equal to the sum of
their ghost numbers.

Consider now the following function on the extended phase space

tm)
D= g Upg PPy, (2.18)

wbnga
n2>0

Note that due to the antisymmetry properties of [7, there is no loss of information
when contracting it with the anticommuting »'s and P’s. Indeed, one may recover
the U’s by repeatedly differentiating £ with respect to the ghosts and setting them
equal to zero afterwards. :
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The function Q will be called the BRST generator. it has the following funda-
mental properties

Q is real , 2 =" (2.19)
(1 has ghost number +1, g(f1) =1 (2.20)
1 is anticommuting , €(f?) =1 (2.21)

here ¢ denotes Grassmann parity. More importantly, it is nilpotent
=0 (2.22)

Properties (2.19) through (2.21) follow because the n-th term in contains n prod-
ucts P and one “loose” 7. Each product #P is real, has ghost number zero and
even Grassmann parity while the loose 7 is also real, has ghost number +1 and is
anticommuting.

The crucial property of f1, its nilpotency, involves the detailed properties of
the structure functions. Indeed, one may check directly that (2.22) is equivalent to
the identities (2.12), (2.13) which define the U’s. This shows that the generator {1
captures in a nutshell the complete gauge structure of the system. For this reason,
it is natural to consider 1} as the central geometrical object in a gauge theory.

A remarkable feature of £, in the present Hamiltonian formulation, is that the
nilpotency holds “off-shell,” namely at all points in the extended phase space. This
is so even for systems in which the gauge algebra in the original phase space of the

¢'s and the p’s only closes on the constraint surface, as discussed in Sec. 2.5,

2.7 Abelianization of constraints. Existence of {1

As was mentioned in Sec. 2.5, the structure functions can be changed by
replacing the constraints G, by linear combinations of themselves. Since one admits
in the linear combination coefficients which depend on ¢ and p, the flexibility in the
structure functions is enormously greater than the one available when changing the
basis of generators of a Lie algebra. Indeed, one can even achieve in principle that
the constraints become locally abelian, that is that all the structure functions vanish
in a region of phase space. This possibility is useful for proving general properties
such as the one we are interested in now, the existence of {}, but it is not one
which is of much use in practice. The reason is that simplicity requirements on the
functional form of the G, which are specially important in the passage to quantum
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mechanics, such as polinomial structure or locality in field theory, are absent in the
abelianized constraints.
The problem one faces is the following. Given a set of constraints G obeying

[Ga, Gs] = C5,G, (2.23)
one wants to find an invertible matrix M2(p, ) such that
Fu(p,g) = MJG, (2.24)

obeys
[Fa, By} =0 (2.25)

One may find a general proof of the existence of M in [8]. I would just like
to mention here that the passage from G to F amounts to solving the constraint
equation G, = 0 to express some of the momenta in terms of the remaining variables.
For example in the Yang-Mills case, one solves Gauss's law, for the longitudinal
component of the “electric field.” This may only be done in a perturbation series
in the coupling strength, which illustrates that F exits only locally in that case. It
follows from the work of Gribov {12] that the solution does not exist globally.

L]
For the constraiut F, the existence of 02 is immediate. One simply writes
nf =9°F, (2.26)

which obeys all the properties listed in (2.19-2.22).

The question now is how to infer from 17 the BRST generator (1 correspond-
ing to the constraint G,. Clearly, if one could show that Q¢ is related to S by
a canonical transformation, the problem would be solved. The reason is that the
key nilpotency property [f2,2] = 0, being written in terms of Poisson brackets, is
invariant under canonical transformations. The reality, ghost number 1 and Grass-
mann parity 1, properties of {l¢ would be assured, if the generator of the canonical
transformation is real, has ghost number 0 and Grassmann parity 0.

The canonical transformation that [ am talking about here, should be a canon-
ical transformation in the extended phase space and should unavoidably mix the
ghost with the original p's and ¢’s. This is so, because there is no way that F and
G could be related by a canonical transformation in the p’s‘and the ¢’s only since
the Poisson brackets are different.
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The solution may be easily found in the case when the constraints Gz and F,
differ infinitesimally,
G. = (88 + ) (2.27)

with €3(p, q) small. The general case can then be obtained by exponentiation.
The question reduces then to that of finding the generator € of the canonical

transformation such that
Qe — otf) - [alF ¢ {2.28)

where
0
QP — ) = el F, +nPy® U P +0(¢?) (2.29)

{the higher structure functions of the set G, may be taken to be of order € or

higher).
This generator C is obviously given by

C=nP, (2.30)

and has all the desired properties.

The ahove argument only covers the case in which the invertible linear trans-
- formation M(p,q) is in the connected component of the identity, i.e., has positive
determinant. The general case with both positive and negative determinant is eas-
ily included by ol:serving that the particular matrix M{ = diag(~1,1,...1}, which
possesses negative determinant, can be generated by the ghost canonical transfor-

mation
! — -0 P1 = —Pu,n® = 0", Pe = Pala 2 2).

2.8 Uniqueness of {1

The central idea of the discussion that I have been giving is to take the BRST
approach as the basic description of the idea of gauge invariance. The reasoning of
the preceding paragraph shows that this view has an important pay-off. It makes
evident the equivalence between the descriptions based on different choices of the
constraints GG, an equivalence which is by no means transparent in the original
phase space of the ¢’s and the p’s. Indeed, it emerges that the BRST generator is
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unique. For a given system, the 2 obtained from one choice of the whole tower of
structure functions (including, in particular, the choice of the G, } is related to that
obtained from another choice by a canonical transformation in the extended phase
space.

One may say that this important result shows that the “canonical covariance”
of the theory becomes manifest only when one enlarges the original phase space to
include the ghosts. Once more, simplicity and understanding are gained by adding
variables and not by eliminating them.

When going over to quantum mechanics, it is impossible to realize all canoni-
cal transformations as unitary transformations in Hilbert space. Therefore, in the
quantum case, different choices of the constraints may lead to BRST generators
which are not unitary equivalent. This is not a problem of BRST theory, but rather
a general problem of the passage from classical mechanics to quantum mechanics.
In practice, one is happy if one can find @ choice of the constraints which will lead to

an {1 simultaneously satisfying the key requirements of nilpotency and hermiticity.

2.9 Classical BRST cohomology

The off-shell nilpotency of the BRST transformation enables oue to introduce
the notion of classical (non quantum) BRST cohomology for any gauge theory. “This
concepl permils one to nnpletuent the ideas of gauge transformation and gauge
invariance in BRST terms.

Indeed, it follows from the nilpatency (2.22) of 2 and the Jacobi identity for
the graded Poisson bracket that

([4,9),09] =0 (2.31)

for any A(q,p,n,P) on the extended phase space. Hence, one can define BRST-
closed functions as functions which are BRST invariant,

[4,2]=0 (2.32)
while BRST-exact functions are given by
A=K, (2.33)

for some K, and are clearly BRST-closed.
The following idea proposes itself for exploration. To what extent can one
identify two BRST-closed functions wich differ by a BRST-exact function? Or,



what is the same, to what extent is the addition of a function of the form (2.33) the
BRST analog of a gauge transformation? This is the question which is addressed
by BRST cchomology.

As a result of the uniqueness of £2, the classical BRST cohomology only depends
on the first-class constraint surface defining the dynamical system under consider-
ation, and not on how one represents this surface by the equations G,(q,p) = 0,
or on how one removes the ambiguity in the structure functions entening in the
construction of L.

Because the BRST charge possesses definite ghost number one can study co-
hemology classes with given ghost number. Two equivalent functions will then
differ by a sum of terms, each belonging to an equivalence class with definite ghost
number.

One thus defines

(%)' (234)

as the set of equivalence classes of BRST-closed functions modulo BRST exact
functions, with definite ghost number g.

cloasical

The following result is then known,

Kerfl\* 0 g=<0
( Imfl )cluasicul - { (hf';lr dd ? gz 0 (2.35)

The proof may be found in {13].

The operator d appearing in (2.35) generalizes the exterior derivative operator
acting along the gauge orbits generated by the constraint functions G, on the
constraint surface. It acts on forms which are defined throughout the original phase
space of the p’s and the ¢’s (without the ghosts), but differs from the phase space
exterior derivative operator in that it only takes derivatives along the gauge orbits,
and not along directions orthogonal to them. So, this operator d measures the
variations of the forms under gauge transformations only, and remains insensitive
to how the forms vary in transverse directions.

Closed zero forms are constant along the gauge orbits and thus, are just gauge
invariant functions. The statement (2.35) says then that BRST invariants with
ghost number zero, may be identified with gauge invariant functions in the original
phase space. To see more precisely how the identification goes, one recalls that a
gauge invariant function A(g, p) is one that commutes weakly with the constraints.
That is, one has

[Asy Ga) = 0 on the surface G, = 0 (2.36)
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Furthermore, two gauge invariant functions 4, and A/, are considered as equivalent
if they differ by a term which vanishes in the constraint surface or, what is the
same, if

] A = A, + k°G, (2.37)

The result that we are describing then says that, starting from any gauge
invaniant A,{g,p}, one can construct its “BRST invariant extension” by adding to
it terms which vanish when the ghosts are set equal to zero, in such a way that
the resulting function in the extended phase space has zero Poisson bracket with 2.
The extension is not unique, one can always add to it a BRST exact function. This
addition yields, when setting the ghosts equal to zero, the, ambiguity (2.37) in A,.

The situation is therefore quite clear when the ghost number is zero. However,
for g greater than zero the understanding is far from complete. Indeed, although
the above theorem provides a phase space geometrical interpretation of the BRST
cohomology in the case of non-vanishing ghost number, the physical meaning and
the use of the cohomological classes with g > o is still to be uncovered: It is of
interest to point out that one may get non trivial gauge invariant functions from
non trivial closed p-forms by integrating them along non trivial closed p-surfaces »

immersed the gauge orbits.



III. QUANTUM BRST THEORY

3.1 States and operators

It should be apparent at this point that the most natural and powerful de-
scription of the dynamics of a gange system is that which treats the ghosts in the
same footing with the “original” dynamical variables. To implement this same view
point in quantum mechanics one must realize the ¢'s, the p’s, the ghosts 5 and their
conjugate momenta 7 as linear operators in a Hilbert space.

In particular, the BRST charge becomes a linear operator. Since the Poisson
bracket of two anticommuting functions becomes upon quantization an anticommu-
tator, the nilpotency property of {1t reads,

R0 =20%=0 (3.1)

Furthermore, since {} was real in the classical theory one now demands that it should
be a self-adjoint operator
at=q . (3.2)

As a consequence of (3.1} and (3.2) the Hilbert space inner product must con-
tain states with zero norm. Morecver, it follows from the ghost anticommutation
rules that there must actually be negative norm states, as well as others with posi-
tive norm.

One also defines, by the same arguments used in the classical theory, a BRST
observable as a linear operator A which commutes with the BRST charge

(4,0]=0 (3.3)

Here the word ‘commutes’ is used in a generalized sense, the bracket in (3.3) is to
be understood as an anticommutator when A is anticommuting.

I will assume that one can find a charge ) satisfying the nilpotency and her-
miticity conditions (3.1} and (3.2). Unlike the situation in the classical case, there
is no a priori guarantee that this can always be done starting from a classical the-
ory, since the question of ordering of the factors comes in crucially. For example in
string theory, (3.1) and (32.2) only hold quantum mechanically for the eritical value
of the space-time dimension, whereas no such restriction appears in the classical
problem. Indeed, the experience with string theory supports the view that when
{3.1) and (3.2} do not hold the quantum theory is ultimately inconsistent.
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Thus, we will regard (3.1} and (3.2) as the statements of the gange invariance
of the quantum theory and, for that reason, they will be taken as fundamental. If
they cannot be satisfied, it would appear that the theory at hand is to be discarded.

3.2 Ghost number

The ghost number of an operator is defined as in the classical theory. It can
be represented by the operator

¢ = in"P, + constant (3.4}

which obeys
[Gspl'] = [ct qi] =0 (35")
[g’ ﬂ“] = Tf‘ ' [61 ‘pu] = _Pa (3.56)

1t desired, one can adjust the constant in (3.4) so that G is anti-hermitian,
G = 2(n*Pa—Pur®), Gt=-G (3.6)

It follows from (3.5) that if a state |f > has definite ghost number g, G|f >=
gIf >, then, ¢'|f > and p;|f > have also ghost number g, whereas n*|f > and
P,|f > have ghost number g + 1 and g — 1, respectively.

Although anti-hermitian, G possesses real eigenvalues. This can be seen by

expanding the states in the n*-representation as
[ >= 9 > +iba > 1° + §lbas > 0% + . (3.7)

Here, [ >,|¢a >,..., are states which live in the Hilbert space of the original
variables ¢',p; and do not involve the ghosts. With the choice (3.8) |¢‘°) > has
ghost number —m/2, [, > 7* has ghost number —m/2 + 1... and the last term
in the expansion (3.7) has ghost number m/2. Note that when m is odd, the
ghost number is half-integer, an occurrence sometimes called “fractionalization of
the ghost number.” It should also be noticed that the anti-hermiticity of G and the
reality of its eigenvalues imply that its eigenstates have zero norm, except perhaps
for those associated with the eigenvalue zero, which appears when m is even.
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3.3 BRST invariant states

The description of the system in terms of the extended phase space has re-
dundant variables. This redundancy wgs already present in the formulation of the
gauge theory in terms of the p’s and ¢’s and it becomes even larger when one has the
ghosts. The whole point above is that by enlarging the redundancy the description
becomes ultimately more transparent and, in & sense, the two redundancies cancel
each other.

To make the redundancies cancel each other one must bring in a condition
that will select the physical subspace. This condition must be the BRST analog
of the demand that the gauge generators G, annihilate the physical states in the
formalism without ghosts.

There are not many options for such a condition in the BRST scene. The
equation that suggests itself [14] is clearly

Oy >=0 (3.8)

This condition possesses the following good properties:
i . It is linear and hence it selects a subspace.
it . BRST observables, obeying (£, A] = 0, map the physical subspace onto itself.
ili, Trivial observables of the form [K, 1) have vanishing matrix elements between
physical states,
< #1|[K,Q)lpz >=0 (3.9}

if |1 >, |2 > obey (3.8). Note that (3.9) needs the hermiticity of ! to hold.

I will return shortly to the relation between ¢y >= 0 and the conditions
G,|¢ > which are implemented in the more conventional formalism. For the mo.
ment, I would like to emphasize that while the latter are many equations (typically
several per space point in a field theory), the former is just one condition. The
reason is that the state vector depends on more variables in the BRST case.

3.4 Quantum BRST cohomology

If one assumes )|y >= 0, one identifies two BRST observables which differ by
a “BRST total derivative,”
A— A+[K, 0 . (3.10)

Two physical states which differ by a BRST total derivative

¥ >— ¢ > +0)x > (3.11)
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are also identified. A physical state is therefore an equivalence class and the space
of physical states may be characterized as

Kert/ImQ, (3.12)

just as in the classical case, but with the understanding that now {} is a linear
operator acting on a Hilbert space. The study of the equivalence classes belonging
to {Kerfl/ Imfl) constitutes the subject of quantum BRST cohomology.

The key test that a satisfactory quantum theory must pass is that the metric
induced on the space {(Kerl/Imfl) must be positive definite. This means that
the norm of any state |¢ > obeying 2|3 >= 0 must be positive or zero, with the
value zero only happening when |qb > is of the form ﬂ|u’; >, If the positivity of the
induced inner product holds and if the Hamiltonian H,(¢,p) admits an Hermitian
BRST invariant extension, the theory is unitary. This happens in the usual cases,
otherwise additional conditions which restrict the physical subspace over and above
Q¢ >= 0 must be taken. (See {15,16] for more on this.)

3.5 Equivalence of the BRST physical subspace with the conventional
gauge invariant subspace

I would like to show in a simple case how the single condition Q¢ >= 0 turns
¥ >= 0 of the Dirac approach.

out to he equivalent to the many conditions G,
This simple case will also show that the equivalence may not hold strictly when, for
example, topological complications come in.

In view of the local abelianizability of the constraints, a natural case to look
at in order to understand the condition ﬂld’ »={) is that of constraints which are
pure momenta,

Goa=Pa - [GayGh)=0 (3.13)

Then the coordinates (g*, p'} split into two groups (¢%,pa ) and (¢*, pa o = 1,...,n—
m). The variables (¢°,p,) are true, gauge invariant degrees of freedom, whereas
(g, pa) are pure gauge.
The BRST generator reads
N=n"P, (3.14)

and a general BRST state is given by

[ >= ' & gan® + Jobasn’n® + .. (3.15)



with $°, v, ... being functions of g, and ¢*,
One finds that ﬂfqb > is given by

N 5= 2 (0.0 On* + H e - Buvilnin® +..) (3.16)

This shows that the BRST operator is the exterior derivative operator d in the
space of the ¢*. BRST states can be viewed as forms. The ghost number of a state,
is equal to the rank of the farm plus the overall additive constant —-m/2 where m
is the number of ghosts.

From (3.15), one sees that a physical state, rewritten as

|¢ - ¢,'(0) + ¢,(l) NIpTAC R (3.18)

(#© = first term in (3.15), O—form; $¥) = $,dg*, 1-form, etc.), must be a closed
form
dp® =gy —gyp® = - (3.17)

Furthermore, adding to Itb > the state 2{x > amounts to modifying 1©}, p(1), (3,
as
AL l,b(o);\b“) AL Y dx101,¢(z) — B4 dy™®. ... (3.18)

Accordingly, the physical subspace is just given by Ker d/Imd in the ¢*-space.

If the topology of the ¢*-space is trivial and no boundary condition is imposed
[15], one can set (1) and all the higher order terms equal to zero by an appropriate
choice of [x >. This means that one can take a representative with ghost number
—m/2 in each equivalence class of physical states. So the requirement of definite
ghost number —m/2 is not a further assumption but, rather, is a gauge condition
on the quantum gauge invariance.

For ghost number —m/2 representatives, the BRST condition reads,

1 a'p(l))

z = 3.19

o O @19
thus, ¥(°) must be independent of g*. These are exacily the physical state conditions
of the Dirac approach.

8.8 Action principle

The propagation amplitude in quantum mechanics is given by a sum over his-
tories. In the BRST formulation of the gauge theory the concept of history includes
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giving the ghosts as functions of time. This is because the ghosts enter the formal-
ism in the same footing with the original variables. One therefore needs an action
appropriate to the extended phase space.

According to the discussion given in Sec. (2.9), the propagation amplitude
that we are interest in should be just the matrix element of the evolution operator
associated with the BRST invariant extension H of the Hamiltonian H,. However,
that extension is not unique. Two permissible Hamiltonians H differ by what we
have called above a “BRST total derivative.” Therefore one fixes once and for all
one choice of H and allows for the ambiguity in the extension by writing

!
Sk = [ ldp+7*Pu— H + [K 0]t (3.19)
f

The function K may depend on the ¢'s, the p's, the n's and the P’s. Different
choices of K correspond to different BRST invariant extensions of the Hamiltonian.

The path integral should be independent of K. This property is the statement
in BRST terms of the gauge invariance of the amplitude. Its validity is called the
Batalin-Fradkin- Vilkovisky theorem.

The B-F-V theorem is a central result in BRST theory. It gives the most
flexible and powerful formulation known to man of the sum over histories for gauge
systems. It contains as a particular case the Faddeev-Popov prescription, but it
also applies to the situations not covered by the latter. Phenomena such as ghost
self-interactions, which are inescapable in theories of rank higher than one, are
treated here in equal footing with the more traditional case of rank one or zero.
" However, even in the simpler cases additional flexibility is gained since the Faddeev-
Popov gauge condition may be now taken to depend even on the ghosts themselves.
That possibility would be hard to conceive if one takes the view that the ghosts
are introduced to represent a pre-existing determinant associated with the gauge

condition.

3.7 Path integral. B-F-V theorem

One defines the path integral as {17]
Zy = fe::p[r'.sx]DquDPDn (3.20)

where the measure is the ordinary one, given by the product of the differentials for
all times in the interval [ty, ;] over which the action is evaluated. The integration
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aver the anticommuting ghosts is understood to be that of Berezin. The boundary
conditions which the histories admitted in the integral must obey will be dealt with
below.

To prove the independence of Zx from K, one proceeds as follows. Take X'
and K which differ from each other infinitesimally. Call ¢ the time integral of their
difference multiplied by the imaginary unit

1
e=i [ a(i - k) (3:21)
31

The integral (3.21) depends on the history in the complete interval [¢;,1,].

Next, performn a BRST transformation with parameter ¢. This transformation
is not canonical because the parameter depends on the history. Therefore the Li-
ouville measure in the path integral is changed by it. The effect of that change is
precisely to replace K’ by K in the action.

To see this in detail, one defines new variables of integration hy

F'(t) = F(t) + [F,0)| e (3.22)

where F stands generically for ¢,p,7 and P. The transformation {3.22) changes
the action by a boundary term. This is because the fact that € depends on the
history plays no role when analyzing the action and the Hamiltonian appearing in
it is BRST invariant.

On the other hand, the Jacohian of (3.22) may be evaluated directly. A direct
calculation yields

f2
DF' = DF exp|—i f (0, K' - K]dt) (3.23)
ks

where DF is an abbreviation for the product of the Liouville measures appearing
in (3.20).
If one inserts (3.23) into the definition {3.20) one finds the desired result

Zyr = Zx (3.24)

provided the transformation (3.22) does not change the boundary conditions on the
histories, and the boundary term by which the action changes vanishes.
Those two issues are analyzed in Sec. 3.9 below.
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5.8 Contact with lagrangian notation

I would like to digress briefly and relate the present notation with the one
usually employed in the lagrangian form of the path integral. It is appropriate
to do so here because the relation will be needed below to write down one of the
permissible boundary conditions.

It was stated in Chapter I, just after (1.7}, that “the general practical rule for
the appearance of ghosts in a gauge theory can now be stated. In each case there
will be a pair of new fields, usually called ‘ghoets’ and ‘antighosts’ for each gauge
function present in the gauge transformation.”

Now, this seemingly contradicts what we have been doing in Chapters I and
I1[ where we introduced just one ghost n for each constraint. There is, however, no
contradiction. What happens is that, usually, the lagrangian form of a gauge theory
is given so that the Lagrange multiplier associated with a first class constraint is in-
cluded as a dynamical variable. This is the case with the time components Al Gop
and %2 in Yang-Mills, gravity and supergravity, respectively. It also happens in
string theory where one introduces the conformal metric components {—g)%g“ on
the wotld-sheet, as variables in the lagrangian.

If we generically denote the Lagrange multipliers by A%, one finds that their
conjugate momenta vanish,

Mo =0 (3.25)

These equations are called by Dirac “primary constraints.”. By demanding that

(3.25) be maintained in time one then obtains the secondary constraints,

¢a(Q! P} =10 (326}

which involve neither the A% nor the m,.

The secondary constraints ¢,, are those which really contain information about
the gauge invariance of the theory, whereas the primary ones (3.25) are somewhat
trivial. However, it is useful to include both in the path integral since, for example,
one can thus maintain manifest Lorent invariance in the Yang-Mills case.

The situation is then the following. The phase space includes both the (g,p)
appeating in ¢, and the (A%, r,). The constraints G, include both the ¢, and the
.. Their number is thus twice the number of ¢,’s and that is why the nu.mber of
ghosts is doubled. The precise correspondence is as follows,

Ga = ($eyTa)y 7° =(C*,~iP%), Py =(Pa,iCa) (3.27)



3.8 BRST invariant boundary conditions

In order for (3.24) to hold it is sufficient to find conditions at the end points
1,22 which,
(i) are themselves BRST invariant
(ii) make the action BRST invariant, that js are such that

[ﬁgﬂﬂ - n] | =0 (3.28)

where f* stands for all variables fixed at the end points. With the form (3.19) of
the action the f* are the g¢'s and the #'s. If one wants to fix & momentum at both
end points then gp must be replaced by —gp in the action.

One may say that selecting BRST invariant boundary conditions amounts to
implement in the path integral the demand that the initial and final states be
anihilated by the BRST generator (1. That is one has the equality

Zx =< e HHIKAN G-ty (3.29)

with
Qfyn >= Qg >=0 {3.30)

No attempt will be made here to give an exhaustive treatment of this important
issue. Indeed, it appears that a general procedure which would allow one to exhibit
an appropriate houndary condition for each given BRST invariant state II,() >, has
not yet been devised. In particular, there seems to he no available criterion which
would allow one to relate boundary conditions corresponding to two states which
differ by a BRST total derivative.

I will just indicate three different sets of boundary conditions [8), which arise in
practice and do satisfy the above mentioned requirements. They are the following

requirements at £,1;

n* =0, g {or p) fixed but arbitrary (3.31)

C=Ch=my =0, q (or p) fixed but arbitrary (3.32)

This choice uses the “mixed representation” introduced in Sec. 3.7.
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If the constraints ¢, involve only momenta {this happens in electrodynamics for
all times and it also holds for large times in Yang-Mills and gravity if the couplings
can then be neglected) one can take

=Gy =0, the other g's {or p's) fixed but arbitrary {3.33)

It is left to the reader to verify that these three sets of boundary conditions
are permissible in the sense explained above.
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