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1. INTRODUCTION

The inflationary universe has renewed the interest in the semi-
classical approach to quantum gravity which in this case is character-
ized by a classical description of the cosmological gravitational field
by means of a Robertson-Walker space-time and a quantum field theoreti-
cal treatment of the matter content, taking into account gravitation as
an influencing external field

In this context we restrict ourselves to the discussion of the
quantum field theory of mutually interacting quantum fields in a given
unquantized curved space-time. The intention is thereby 1.} to contri-
bute to the development of an appropriate conceptual framework (what are
the measurable quantities, what is the related claculation scheme ?);
ii.) to work out the physical characteristics of such a theory (includ-
ing a discussion of advantages and deficiencies of the respective
'schemes); iii.) to answer geustions like: How are the minkowskian cross

sections and decay rates modified ?

The latter has been done in case studies™¥)

pansion law and particular types of mutual interaction which allow an
exact treatment of the quantum field thepretical effects up to a certain

assuming a cosmic ex-

* Lectures given at the VR School on Cosmology and Gravitation, CBPF,
Rio de Janeire, Brazil, 20.-31. July 1987.
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order of the coupling parameter. Exact solvability is thereby given pre-
ference over physical applicability of the results, because at present,
when conceptual framework and physical understanding still need improve-
ment, examples first of all have to support intentions i.) and ii.)

The details of the exact calculations will not be described here.
For them and aiso for additional details regarding the following text
see references i-4. All notations and abbreviations which are used here
without definition can be looked up there. For a survey of the litera-
ture see also the reviews in references 5,6, and 7.

2. SEMI-CLASSICAL APPROACH

We study the interaction given by il(k,gaa.w,w} between two types
of neutral scalar particles described by the massive Klein-Gordon field
o and the massless field ¥. This may be regarded as a first step towards
the discussion of a scalar quantum electrodynamics. X is a coupling pa-
rameter. The fact that the curved space-time background acts gquantum
field theoretically already in zeroth order J{I = 0 (for example in
creating particles out of the vacuum), severely influences the outcome
of the mutual interaction and its registration.

We restrict ourselves to a treatment in the interaction picture
using an fn-out scheme based on the S-matrix S=1im Texp{i]‘%e'“lnld“x}
a0

The gravitational background is thereby always exactly taken into
account. o is the switch-off parameter.

We consider a 3-flat open Robertson-Walker universe
ds? = aZ(n){dn? - dx?) (1)

which is conformally flat. Apart fram the examples, the expansion law is
left unspecified, but the in- and out- region (n=-=, n= +=) must allow
the definition of free particles.

The Klein-Gordon particles are assumed to be eonformally coupled
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to the background (v, ™ +m2 + R/6)8 = 0 (R = scalar curvature, for
¥ : m=0). The general results can easily be transcribed for other
fields an other interactions.

The physical specifications above have the following consequences:
i.) Energy is not conserved. ii.) There is a conserved 3-momentum para-
meter called P, q, ... for ¢-fields and k, 1, ... for vy-fields, The
measured 3-momentum is p/a and k/a respectively. iii.) There is creation
of massive ¢-pairs out of the vacuum in every mode p with total number
N(o)(E¢I0) = |g {2, iv.) Because of the conformal situation there is no

corresponding creation of y-particles: N(OJ(Eﬁlﬂ) = IBkI2 = 0.

The information regarding the influence of the gravitational back-
ground is essentially contained in the Bogoliubov coefficients relating
in~ and out- particle solutions of the Klein-Grodon equation
a = uin’ u out B = uin uout* Nith

(E P_)’ _ (P.’ P )
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3. IN-QUT TRANSITIONS AMPLITUDES

An in-out transition amplitude relating in- and out-states which
contain only a finite number of particles can always be written in the
form
<gut d‘s?IS{z)|c°rw ins = ¥ cout d’swid°t? in><in g’t?|s(z)|c¢r* in >

gt T (2)
(z} > order in ».

The zeroth order part thereby reduces to
<out pair§'§°swipairs° h?¥ ins = f(u,s]éé B S p <out 0|0 in> ' (3}

9’

where we have introduced the notation |general state ¢ » fpairs é >,
The hat denotes a state consisting of unpaired states only. fla,g) is a

function of the Bogoliubov coefficients of the modes involved.

On the ather hand, it has been shown by Parker 8) for the universe
in question that
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(<out 00 in>|2 Y220 (4)

where ¥ is a normalization volume, Accordingly we have for zero and a1l
higher orders of the mutual interaction the fact that oy in—out ampli-
tude becomes arbitrarily small for increasing normalization volume V.
It is zero in the limit ¥ » =. A single in-out amplitude with a finite
number of outgoing particies loses its physical meaning for ¥V > = be-
cause the background fills all modes.

Another consequence of {3) for the zeroth order is, that 7t is
impossthle to find unpaired (1] outgoing particles in a mode which has

initially been unoccupied.

4, ADDED UP PROBABILITY

To construct a physically and mathematically reasonable transition
probability, we note that in our case a massless particle in the out-
region has not come out of the background, but has solely been created
or influenced by the mutual interaction: massless particlss are good
indicators. The added up probability is based on this?

,20d (s¥]c*rY) - T < out d*s¥[s)c®Y in> |2

alld (5)

[t answers the question: What is the probability that & particular state
of massless particles |Swout> will be found in the out-region regard-
Tess of what has happened to the massive states 7 wadd
in working out in=-in amplitudesl):

can be obtained

WAdd (Y oty - L {%in d¥s*1s|c®r in> 12 (6)
and

This permits a Feynman diagram technique Wwhich differs from the one in
flat space-time only by the replacement of the plane waves for massive

particles by the exact solution u}; .



In reference 1) we have applied the concept w44 to the decay of
a maseive panticle according to the interaction | = /~g [ /afn))e2v?
for an expansion law a{n} = 1 + e2P", The life time is worked out
exactly up to the second order in X, The main gravitational effect
consists of finite additive (!} corrections outside energy conservation.
The result reflects the existence of iwo {ime scales, the infinite one
of mutual interaction and the finite one of the gravitational influence.
See reference 1 for details and the resulting criticism. We turn to
another example.

5. EXAMPLE: DECAY OF A MASSIVE PARTICLE IMN UNIVERSES
WITH STATICALLY BOUNDED EXPANSION LAWS

We discuss the decay of a massive ¢-particle into two massless
v-particles for the metual interaction

L, = /g (ma(n)) o2 (7)

with coupling parameter ), which contains a factor a-l(n) to make the
interaction conformally invariant, so that the exact calculation becomes
Tess cumbersome. m in (7) breaks the conformal invariance. The diagrams
which contribute to the added-up transition probability are shown in
figure 1. The second reflects energy non-conservation.

Sidaty) B -ikaty) b

FIGURE 1: Diagrams contributing to the added-up transition
probability {6)

We have to have approximately flat in- and out-regions to make a
particle definition possible. This is guaranteed in the case of stati-



431

cally bounded monotonic expansion laws a(n}. In the following we dis-
cuss the structure of the gravitational influence on the particle decay
for the scale factor representing a step at n = 0:

a(n) = o(-n) a; + e(n) a, (8)

with

1/2

a. = (A-8)Y2, 2 = (A+B) A>B>D (9)

i 0
We then add the corresponding rigorous calculation for the tank expan-

sion law:

%(m) = (A +B tanh bn)t/? (10)

which is the prototype of a smoothed out step, leading to all the typi-
cal physical deviations from the step situation. The expansion law is
bounded by 3 and 3, in the in- and out-region, respectively. In the
following, quant1t1es with hat and tilde will refer to the respective
expansion laws above. The details of the calculation can be found in

reference 4.

We note that for our expansion law there is creation of massive
¢-particles out of the vacuum (i.e. in zeroth order of the mutual inter-
action). It is given by the Bogaliubov coefficient 8 :

MO (plo) = igyl? )

The added-up probability to find two massless v-particles in the
out-region if there has been one ingoing massive ¢-particle with momen-
tum parameter E- turns out to be

sadd S . T, o) +
il 2 [p-kV |21 B
(12)
+ g+ 18,17 1-:1;% (a_g)| +B (k)

in the step-case. The result of the tanh-case is obtained from this in
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replacing hat by tilde and adding a finite term to Tn’ See reference 4
for the exact expression:

gadd . padd (BT T, * finite) (13)
Tn is the infinite n-time between the in- and out-regions during which
the quantum interaction takes place.

E(k) and ﬂ(k) are of the same structure and become singular at
w_; =0 and at w_o = 0, comp. figure 2. With the definitions

1/2
E'i/o = (p? + mza%]/c,) / (14)

570 = Eijo = k- Ikpl (15)
and because of (12, 13), this means that the decay becomes resonant if
conservation of 3-momentum as well as conservation of measured enerqy
is fulfilled. With regard to the asymptotic regions, the latter means
w ;=0 for n<0and w_o, for n > 0. Accordingly, we have two sin-
gularities at different values of the momentum parameter k. In addition
we have a finite part of the spectrum outside of the resonances, because

.
=

0 E/2 Eof2

FIGURE 2: The correction term ?Rk) in (13) as function of the
energy of the massless particles for different values
of the expansion parameter b (for decaying particle
at rest : p = 0). Logarithmic scaling of the %-axis.
The correction term A(k} shows a similar spectrum,
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there is no energy conservation. Note the particular appearance of B2
and the factors 1/2 in (12) and {13). A physical explanation of all this
will be given below.

add

From w° - we can obtain the total decuy probability

wtot  _ T W add( 1k grk‘ 1% ) (16)

for a massive particle at rest {p = 0). It turns out to be in the step
caset

tot _ A2 2
U = Tam [’Z_Tn’”z_(?* lﬁl T)J . (17)
In the tanh-cqse it is of the same structure but contains a finite
correction Rf1n:

ﬁtOt = ﬁtOt[MN’) + Rﬁn(ai, 30,|E|2) . (18)

Both resuits are to be compared with the minkowskian probability

tot . 2 g
Mink © Fam ot (19}

We turn to the interpretation of the two wtOt:

1. How is the result {17} related to {19) ? In our case one half of
the particles has the chance to decay in the Minkowsky-region n <0
with a{n) = a; (and the other half in the region n > 0 with a{?) =aDL
This explains the factors 1/2. The parameters a, and a, appear in the
result, because ‘EI of (7) contains »/a instead of A». Introducing in
(19), according to Tt = ai1i, the conformal time Tn » we end up with
the first term of (17).

2. With regard to the second term of (18) we have to take into account
additionally that at n = O massive particles are created out of the
background (zeroth order). These particles are decaying in the region

n > 0. Therefore, as compared to the first term, the factor 1/2 has to
be replaced by (1/2 + |8]2).
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3. In the tanh-c%e, the gravitational influence is not localized at n=0,
but smeared out over a finite time interval TI™® around n=0. This
fact must be related to the appearance of the finite correction Rf‘".

Our result, although suggestive from the physical point of view,
still contains the infinite duration Tn of the mutual interaction. Can
we process it further ? In Minkowski space-time, the division of (19)
by Tt would lead to the reciprocal liefetime of massive particles at
rest:

1 . A2
Mink Tom | (20)

The corresponding procedure {division by Tn)gives in the step-case:

1
3

32 1 A 12
T gew (7ay trag ) tamE, B (21)

- f—

To work out the n-lifetime ¥ in the tanh-case, we have to take
into account that the infinite duration Tn of the mutual interaction on
one hand, and the finite duration (gravitational time) of the influence
of the curved background around » = 0 on the other, introduce two diffe-
rent time scales. This is a characteristic trait of an S-matrix approach
in a universe with an asymptotically flat expansion law (the curved
space-time is localized in time). The natural consequence is, to divide
RFiN by an apprepriate Tgrav;
afin
yorav. (22)

¥ -
A [

(22) seems to be a physically reasonable result which, as far as
numerical values are concerned, will give at T2st a certain mean 1ife-
time. Nevertheless it must be stressed that T9'aY cannot be defined
exactly. Because of the underlying two time-scales there is no direct
way of further evaluating wtot exactly. Additional attempts are neces-
sary to obtain a localized picture of the interaction process.



6. GRAVITATIONAL AMPLIFICATION IN ZEROTH ORDER OF THE
MUTUAL INTERACTIOK

We turn to an important phenomenon which governs the mutual inter-
action of quantum fields in curved space-times. The mean number of out-
going massiveqb-part*icles in the mode p if the in-state was |a in> ism

N(g°la) = 1 |<out biSja in>|2 n(g°lb)

allb (23)

Parker 8,9) has shown that the respective zeroth order is of the struc-
ture

MO (%) = WO(p%10) + nip*la) + W10 mip%la) + n(-p%10)] (24

where n{}fla) is the number of ¢-particles occupying the p-mode of
state |a>. The meaning of the three terms in {24) is: particle creation
out of the vacuum, particles which have passed through and finally,
gravitationally induced amplification of the ingoing particle content.
This amplification results in additional outgoing pairs. This is indica-
ted by the appearance of n(-Jf | a). Ingoing particles in the mode -p
induce therefore creation in the mode p. See figure 3 for a schematic
representation.

Fermions on the other hand show attenuation (negative third term).
Fer complex fields the -p-mode is an antiparticle mode.

\T creation out
= B of the vacuum

FIGERE 3 - A amplification
Qutgoing p-mode x i p
in zeroth order P~ induced from -p
out ¢ amplification
N2 nduced from p

TE passed through

in . T “op



7. GRAVITATIONAL AMPLIFICATION IN HIGHER ORDER
OF THE MUTUAL INTERACTION

For higher orders of the mutual interaction we obtain correspon-

dingly 2}

. ] ¢
N(z)(gwia) = allib j<in b[S[a 1ﬂ>lz{z) n(p’ b} +

» (25)
. n“”(g’lﬁ)[ﬂ)]: Jeinbisis in>|2  (n(p’Ib) + w2181 + Re(p op)
with
= = l'.l.* <i t in> < ¢ i T
o = 2 E-a]?b in al$'|b in #El-g b in|S|a in (26)

The second term is again the amplification, now being part of the mutual
interaction. The third term has no correspondence in the zeroth order
formula.

Keeping in mind that the calculation is in fact based on one
single coherent in-out process, the structure of (26) may be visualized
using the following diagrammatic rule: "Let the mutual interaction hap-
pen completely within the in-region only and describe it accordingly by
in-in transition amplitudes. Process now the corresponding particle
ocutcome as in zeroth order in a twofold way: At first the particles in
the p-mode pass through into the out-region as in (24) to obtain the
first term of {25). Secondly, these particles are amplified in the same
way as in {24} whereby a possible outcome in the -p - mode contributes
in a symmetric manner. This leads to the second term in (25). Finally
the o-term of (25) is to be added. See figure 4 for a schematic repre-
sentation.

Writing the particle number according to



(o)
WE0lay = T [<in bisla in>Fyy np®In) (1N (20 0) [h 5 |b) (27_)..._ﬁ

. -
+ Re (BE oE)

we can read off that amplification acts as a mode-dependent amplifica-

[ -E\T o-term

amplification
'J?. ‘\' induced from -p

out, '\T p amplification
B induced from p

TE passed through

- AN
in N

FIGURE 4: Outgoing p-mode in higher order

tion factor (!} This means that the minkowskian contributions cantained
in the in-in transition amplitude are altered in a muttiplicative way,
that may iead to considerable modification.

Fermions show again attenuation instead of amplification. See the
appendix of reference 2 for details.

An intermediate consequence of (24} and {25) is:

Metla) - Nep'la) « T f<inbiSla ins 2[nig?i)-n(-ghe)]  (28)
all b .

Assymmetry in the particle content of the outgoing p- and -p -mode can
therefare be solely caused by the structure of the mutual interaction
as represented by S. Amplification and the process leading to the o-
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term in (25) all happen as creation of (p,—p} pairg, thus reflecting
3-momentun conservation. In the charged case we would find particle-
antiparticle pairs.

In reference 2 we have studied particle creation out of the vacuum
for the interaction £ [z -{x/a%(n))o¥ and the expansion law aZ(n) =
=1+ ezb“ . This is done exactly up to the order 32. The multiplica-
tive amplification and the role of the o-term are discussed in detail.

8. PAIR-INCLUDING TRANSITION PROBABILITY

We can improve the predictive power of the concepts introduced
above in specifying the massive part of the end state too and in using
less extensive summations ). Good massive indicators are all configura-
tions without massive particle pairs, because they consist of massive
particles which originate from the interaction only. The corresponding
probability that such a transition has occurred regardless of a creation
of massive pairs out of the background or interaction is the pair-
itneluding probability:

h‘inc [&’svlcor‘r) = I |‘ out Q*aQSwISI c’r‘rin >|2 . (29)
all Q
The sum thereby goes over all possible states Q which consist only of
massive pairs. Such pair states are indicated by capital letters.
Wi can again be built up out of in-in amplitudes:

wine (a°sv|c¢'r") = 1 |<1n0°3°s"|s|c°.-* in>|2 , (30)
all §
This guarantees that for a finite order of mutual interaction the sum
over Q stops, ending with states @ which contain only a particular
finite number of massive particles. A perturbation scheme based on
Feynman rules, which are again as simple as in flat space-time,maythere-
fore be establis hed. In the framework sketched above, this probability

" w " seems to be a concept as close as it can be to what we are used to



in flat space-time.

9. SPECIFIED MEAN NUMBER

Specifying again not only the in- but also the unpaired part of
the out-state and allowing for the production of pairs as above (thus
isolating the particular transition process as far as possible) we are
led 3} o the following concept of a specified mean mmber N(+):

Np?iatsY «— Py = mi . |<out Q*d*s¥|S|c?r” in>)2 n(p*|q*d%") (31)

which can be transcribed into
H(Ef|a°s' - c'r‘) - N(O)(Eflo) ui“°(3°s'|c’r') +

* allzo l<tn @&s¥s|cM in> 1P (n(p?le%a%s") + MOV (p*)0) - (32)

. [n(gf|q°3’s') . n(-g’lQ’&’s’)]} + Re (EE 62) .

Summation over d reproduces (24) and (28}. The first term therefore is
a weighted particle creation out of the vacuum. The second term is again
the amplification which shows its specific structure already on this
level,

10. EXAMPLE: COMPTON EFFECT IN THE %2¥2 -MODEL REFLECTS
GRAVITATIONALLY INDUCED AMPLIFICATION

We study the Compton scattering in the interaction i; =/-g o2 y2
outside of forward scattering 3 . We disregard the contribution resul-
ting from pair creation out of the vacuum and call the specified mean
numbers which refer to the mutual interaction only Nj,¢(+). Discussion
of the amplitudes in {32} then leads directly to
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Neng(P°115 T < 18 1) = Ny (¥ 115 1y « 12 ) [11-N(°)(p‘|oﬂ +0(2%)  (33)

where 19 lﬁ is the end- and 12 1{ is the initial state of Compton
scattering. (33) clearly demonstrates for the Compton effect the gravi-
tationally induced amplification: Massive ¢- and massless Y-particles
leaving the mutual interaction are not going out in pairs, 4s one would
expect from the situation in flat space-time. Rather the number of the
massive particlee is amplified by a momentum-dependent factor

1+ N(o)(pﬂﬂ) - 1+ |Bj:l|2 .
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