419

The Role of Quantum Mechanics in the Specification of
the Structure of Space-Time*

JORGEN AUDRETSCH

Fakultdt fiir Physik
Universitdt Konstanz
Postfach 5560
D-7750 Konstanz

W.-Germany

1. INTRODUCTION

General-relativity theory as a metric theory formulated in Riemann
or Riemann-Cartan space is now accepted as the most satisfactory theory
of gravitation as far as quantum effects of gravitation may be neglected.
During the last centuries there have been many attempts to deduce the
Riemannian structure of general-relativity theory from a few axioms.

Up to 1970 the common axiomatic approach te space-time structure
was the one of Synge,l) which is based on the behaviour of standard
¢locks. The main objection against this chronometric approach 2) is
that the real clocks of physicists and astronomers (e.g., atomic clocks)
are highly complicated systems which work on the basis of quantum mecha-
nics. Because one can construct ideal clocks showing gravitational time
in a more geometric way by means of light rays and freely falling par-
ticles, the chronometric axiom reduces to the claim that gravitationmal
and atomic time agree. This, on the other hand, should better be deduced
from theory 3) and measured experimentally. Accordingly there have been
several efforts after 1970 to describe an alternative constructive
approach to general relativity based on more primitive concepts.5) AN
these different approaches end up with assigning to space-time a Weyl
geometry instead of the further restricted Riemann geometry of general
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relativity.

A typical axiomatic scheme which resulis in a Weyl geometry is
the one described in Ref. 2. It can be very briefly summarized as fol-
lows: primitive concepts are event, light ray, and freely falling par-
ticle. The light propagation determines the null cones and therefore
A(x)gus of metrics.
The freely falling particles determine the affine geodesics and there-
fore a projective structure, i.e., an equivalence class of symmetric

a conformal structure, i.e. an equivalence class e

affine connections. The compatibility requirement that the null geo-
desics of the conformal structure belong to the geodesics defined by
the projective structure then finally results in a Weyl structure.

There seems to be no way to close the remaining gap between Weyl
and Riemann space if one is re%tricted to the use of these primitive
concepts only. The axiomatic scheme remains incomplete. The aim of this
paper ie to show that the gap can in fact be cloged if quantum mechanics
ae the theory of matter is made part of the total scheme. Quantum mecha—
nica preoves that space-iime must be a Riemann (or Riemarm-Cartan) space.

This proof is based on two demands a gravitation theory has to
fulfit )

{i) Completeness: The theory must mesh with and incorporate all
nongravitational laws, in particular the quantum mechanical.

(it) Self-consistency: If one calculates the prediction for the
outcome of an experiment by different methods, one always gets the same
result.

The demand (i) forces us to include quantum mechanically described
matter into the scheme of general relativity. Quantum mechanics must
contain ¢lassical mechanics as a Timiting case. The demand {1i) then
requires that this classical timit on one hand and the axiomatically
introduced classical mechanics on the other agree. It is this demand
which will finally lead to the conclusion that gravity as a space-time
theory must be described by a Riemannian instead of the more general
Weylian structure.
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2. WEYL SPACE

The Weyl space is characterized by the fact, that all scalar
fields and tensor fields A(x) are subject to the following position-
dependent real one-parameter gauge transformation

é _,-&n - e%w (A)R(X) ﬂ (1)

{accordingly for f{x)) which are called Weyl transformations. A(X} is
thereby a real function and w(A) is a real number, called the Weyl type
of A(x}.

The gauge covariant wWeyl derdvative
a o o £ w(A a
D]‘l AT = auA + rue A"+ —£—)- a A (2)

conserves the Weyl type. The real valued Weyl potential al_I transforms
thereby according to

au—raaIJ = au-aun(x) R (3)
The axiomatic approach 2) is not able to provide the manifold with
torsiont
a0
Pﬂu B Pu& . (4)

A corresponding Weyl derivative for spinors can be introduced.

There is a metric 9y of Weyl type w(gw) =2

' A(X)
% ¥ Yug T ¢ %8 (5)
with vanishing Weyl derivative
D, 9, = 0 (6)
€ € - a2
au gaB - rau Yoe = ruB 99e © au gaB . (7)
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This implies

P - P P [
T = Tt v V2 (8 2 +60a -g o a) (8)

The curvature tensor of the Weyl connection

RU _3030 E .G € 0

r + -
v H PV v rDIJ I‘IJ\-' reu FDH FEV (9)

contains as a trace the field etrength of the Weyl potenital

-

_ _ _ E
fuv = 8, 8,-8, 8, R euv - (10)

A Weyl space reduces te a Riemann space if and only if the field
strength fuu vanishes. The necessary and sufficient condition for this
is that au is & gradient of a scalar

fw = 0 <=» au = au (scalar) . (11)

This implies: If in a Weyl space the covariant derivative of a scalar »
of non-trivial Weyl weight w(e¢) # 0 vanishes,

= ——3 & =
Du¢-0 3u¢‘zau¢ 0

= a = —%au(ln¢)=~fuv =0

u !

then the Weyl space reduces to a Riemann space.

3. DIRAC THEORY IN WEYL SPACE

The Dirac field is described by two 2-spinors xA and oy - The
corresponding Lagrangian scalar density is

_j_'ﬁ__ ;(a. A_ A a X
i_/EfE{xcﬁxDux xUA;‘DuX

(13)

ahx sAX A X
Tey o Du @y + 9y 0 Da wi} -m (¢A X t o xx) R



This implies for the corresponding Weyl types:
ity = Wy ==Yz, ()

As expected, the mass has to be of non-trivial Weyl type.

The corresponding Dirac equations are

. o A m
io geBx =~ —=— wg = 0
At i

(15)
AX m %
1% Do, + x. = 0
a A A
The Dirage 4—curvent
it = VZ Uqu(¢A o+ xp Xy (16)
is conserved
D s 4 = 0 .
a? (a7

4. CLASSICAL LIMIT

We obtain the limit of the classical particle paths by means of
the first step of a WKB approximation

-

xA - el S(X)/ﬁg (-it)" x’:
n=o

is - (18)
‘DA € (X)m z ('-i.“ )n wnA
n=o
which leads in lowest order to the Hamilton Jacobi equation
(3, 5) (3, ) ¢ = m (19)

and therefore to
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K -
2(3¥s)D_3,S =D W (20)

where we have used

(21)
which is a conseguence of w{S$) =0 .

In the WKB 1imit the 4-current takes the form:

B
i, = -m—°au5+0('ﬁ) =t Jg, * o(h) . (22}

For its directional Weyl derivative we obtain;
« /0, 30" 15 +g 3
(D, Joo) dg = DK[]n “m JJa Ioa * doy Jo D, (Tnm) . (23)
The corresponding streamlines of jou are not autoparallels. Accordingly,
in a Weyl space, the quanium mechanically defined particle trajectories
on one hand, and the free-fall trajectories of classically defined

atructureless test particles on the other, do not in general agree.
The requirement that they should agree results in

b,m = 0 (24)
so that with (11}
fw = 0. (25)

The consequence of the requirement is therefore that the Weyl space
reduces to a Riemann space and the gap described in section 1 is closed.
Guentum mechaniecs will contain claasical mechanies as a limiting case

tf and only if the Weyl space is reduced to a Riemann space.

Comments om the possibility to enlarge the axiomatix scheme 2) in
order to introduce torsion, i.e. to construct a Weyl-Cartan space, are
given in the lectures.
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