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“Ce monde-ci, le méme pour tous,
aucum des dieux ni des hommes ne
1'a créé, mais il a toujours éteé,

LI

est et sera.

Heraclite

(*) The proof of this assertion - which is still missing - has
been left by Heraclite to the subsequent generations.
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INTRGDUCTION

It is said that the most crucial of the unsolved problems in
Einstein’s Cosmological Program can be put as follows: is the Universe
eternal or did it have a beginning?

In other words, has space-time always been there or was there a time
in which reality was not reducible to a succession of events represented
in a four-dimensional contimmm?

Is space-time a useful concept to be invoked in all physical situations
in order to describe the flux of our experiences or does on¢ need to appeal
to transcendent 'complete cosmological models” (Grischuck and Zeldovich, 1984)
which aim at generating classical space-time itself from more general

structures of quantum character?

The inevitable need to go into such unusual questions (among physicists)
appeared more dramatically in the last decade, due mainly to the alternation
of success and failure of the so called standard Hot Big Bang cosmological
model.

In this Vth School probably most of the lecturerswill mention this
problem from different aspects - either from a historical point of view
(Eisenstaedt), for conventional (Ellis} or ymconventicnal (Narlikar) models.

The simplest and most direct way to present this problem is to consider
the situation in a given specific model like for instance, as it appears
in Friedmann's Hot Big Bang cosmology. This model represents a homogeneous
and spatially isotropic geometry the dynamics of which is characterized
by a unique function A{t) of the global time. The fact that A{t) is a
monotonic function which can attain the value zero represents an evolution
process of the Universe from a singularity - vhich is to be identified with
the vanishing of the radius of the Universe.

A further exam of the consequences of the existence of such singularity
in our real Universe divided the physicists into two groups.
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In the first group, we have those who believed that the singularity
exhibited in Friedmann's model was just a mere artificial consequence of
the high degree of symmetry contained in that geometry. They argued that
this metric is nothing but an approximation of the real world and that a
more realistic, less symmetric model, would reveal the true regular nature
of the glcbal geametry throughout the whole space-time. In the other one,
we find those scientists who believed that the singularity is an intrimsic
property of Einstein's General Relativity which cannot be eliminated by
any realistic theory. The history of this controversy is a fascinating
subject that should be carefully analysed.

At the end of the sixties and beginning of seventies an important
event was the appearance of a series of theorems which pretended to solve
unequivocally the question of the inevitability of the presence of a
singularity in a gemeral solution of Einstein's equations.

Although the theorems did not succeed in proving that the curvature
or any equivalent function of the metric of space-time indeed attained an
infinite value (which one naturally should expect in order to characterize
a given solution as singular) they led to the belief that General Relativity
plus some "reasonable" conditions (like, for instance, the positivity of
the energy) induce the presence of particular domains in space-time in which
properties like continuity, would no more be reliable. For sake of
campleteness, let us emmciate here ane of those theorems, due to
S. Hawking. He says:

"The following requirements on a space-time ¥ are mutually inconsistent:

(i) There exists a compact space-like hypersurface (without
boundary) H.

(ii) The divergence @ of the unit normals to ¥ is positive at
every point of #.

(iii) va“v"s 0 for each time like vector V¥,



%)
(iv) M is pgeodesically complete in past time like directions."

A demonstration of this theorem is presented in the book of Hawking
and E}lis (1973) or in Penrvse's (1967}.

We remark that, as it has been emphasized by many authors, condition
(iv) should be retained as a sort of equivalence to the presence of
singularity, for classically we can hardly conceive the amnihilation of
the world line of a real particle in an accessible region.

Restriction (iii) is guaranteed to be true in general relativity if
we accept the stfong condition on the stress-energy tensor:

Y] 1
va“v 2 5T

or
p+3p2o0
which for a classical fluid is almost a dogma for physicists,

These theorems almost completely dominated the scene of cosmology
along the seventies. This situation has led some scientists (like C.W.
Misner, for instance) to propose a way to "tolerate' the existence of such
ugly properties of general relativity by making a mathematical effort to
remove the inevitable cosmical singularity to a very remote past.

It was only when some of the difficulties of the standard Hot Big Bang
model revealed to be unsurmountable in the classical context that the
alternatives to generate a non-singular cosmology gained some real interest.
Later on, in the eighties, the work of those scientists which dared to
propose non-singular cosmological models, started to be taken seriously.

In the search for such regular cosmes, at least ome of the conditions
of applicability of the singularity theorems had to be abandoned. The
straightforward way to do this is to modify at least one of the three
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elements which are present in Einstein's equations (that is: the geometry,
the gravitational coupling constant and the matter) by adopting any of
the following alternatives (1)

(i) Intreduction of a cosmological constant A.

(ii) Violation of the condition va“v" 5 0.

(iii) Use of more complex expression for the representation of the
matter content of the Tight hand side of Einstein's equations
(non-equilibrium configuration) which in turn satisfy the
proposal (1i) above.

{iv) Modification of the right hand side of Einstein's equations by
stochastic fluctuation or quantum effects.

(v) Introduction of an independent affine connection (e.g- torsion).

(vi) Acceptation of more general metric property like a WIST
structure, for example.

(vii) Non-minimal coupling of gravity with long range fields.
(viii) Violation of Lorentz invariance (for very high energies).
| (ix} Non-linear Lagrangiams.

(x) Generation of a negative effective gravitational constant.

Amd so on.

It is to be understood that the present status of these theories are
not the same and change fram time to time. For instance, in the seventies
no merit was seen in introducing a cosmological constant. In the eighties,
however, the discovery of many different ways to induce an effective A
modified this situation - and it even turned to make possible the existence
of the most fashionable cosmological model of nowadays (inflation).

We will examine in these lectures some features of most of the above
suggestions.
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Z. THE COSMOLOGICAL CONSTANT-I
The modified Einstein's equations take the form

Ri-ﬂ'

v

T ps¥ - M
z““\,-"""“\,-"""v _ (.1

Then for an arbitrary time like vector:

va’f'v“ =~ {p+3p) - A (2.2)

Thus the sign of R]‘n’_\)""\‘"J depends on the value of the constant A.
This seems to be the easiest way to create conditions for the existence
of a non-singular cosmos. Indeed, since the very beginning of
relativistic cosmology, Einstein, de Sitter and many others have used
this freedom of a non-controlable cosmical constant. Soon, the idea of
A = 0 was abandoned and revived only in the last years thanks to an
artificial generation of an effective A by quantum methods. We will
come back to this later on.

Let us just retain that although a A = 0 could imply a non-singular
cosmos there is no experimental support to believe that the curvature of
our actual Universe was dominated by such effect.
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In the early days of Relativistic Cosmology the cosmological constant
A was identified to a perfect fluid of density p and pressure p with the
anomalous equation of state p + p = 0 which fulfils all space. The origin
of this fluid was supposed to be primordial.

In the last decade A received a new version: it was associated to the
energy of the vactmm. It has been shown (see chapter 5) that in the vacuum
state of (say) a scalar field, the total energy-momentum tensor of the
field reduces to the product of a constant times Byv ~ which yields the
conventional form for the presence of the cosmological constant in Einstein's
equations of gravity.

Besides these two respectable suggestions a lot of highly speculative
proposals have been set forth either as a relic of phantasmagoric extra-
dimensions of the space-time (see references in Xolb's lectures) or as a
consequence of imposing higher symmetries on unobserved extra-fields
(Aurilia, A.; Nicolai, H. and Townsend, P.K. (1980) Nucl. Phys. B 176, 509).

In any case, the origin of the cosmological constant is a fascinating
subject which still divides the opinion of physicists. For some, it is
nothing but a simplified trick which synthesizes a lot of phenomena that
occur in large domains of space-time. Others, however, claim that it
contains a germ of the inconsistency of cosmology pointing out the necessity
to undertake a Critique of the Cosmological Reason. Just to give one
example of how this criticism could produce alternative cosmological
theories let me quote the search of new long-range forces by the russian
physicist L.B, Okun (1980) Sov. Phys. JETP 52, 351.



3. QUANTUM VACUUM EFFECTS (THE CASE OF THE SCALAR FIELD)

There is not a unique procedure to couple scalar fields to gravity
(see Novello and Oliveira, 1987 for a review). Since there is not yet
any observational evidence which could be used, physicists have been
guided by general principles in order to obtain a valuable prescription
for such interaction. The two most employed principles which have been
used are:

{i) Minimal Coupling
{ii) Conformal Coupling

In case (i} one adopts the view that the passage from flat space to
curved space (which is to be identified with gravity) is made by simple
replacement in the Lagrangian which describes the dynamical of ¢ of simple
derivatives by covarisnt derivatives. No functional of the curvature is
present {except, of course, for the free part of the gravitational field).

In case (ii) one asks for conformal invariance of the theory (in case
the scalar field is massless).

We thus write for L and Ly s the Lagrangian minimally coupled
and conformally coupled, respectivelly:

L= /E (9" a8 g *%R +V(0) + 20} (3.1)

in which we have added a cosmological constant just for camleteness. In
these lectures , we limit the form of the potential V¥ to:

V) = - M4 + o (6*6) 2 G.2)

For the conformal coupling:

Lyp = by - 7% %a 0% . (3.3)



The equation of motion for this LII is given by
e + 3 Re - 3"%’, =0 5.4y
and by varying the metric tensor we obtain the modified Einstein's equation:

(-6, =-F0% 8 +¢* 0 15

+ % gwfdl'

k-’p"‘ sV e - 3t Clesolder « 200 420, o

* 't15'{"*,u;v‘b M ATV S N R ARE R (3.5)

inwhich [J¢ = b v g .

Taking the trace of (3.5) we obtain (using the form 3.2):

TR - an (3.6)

Remark that the trace is independent of the value of the constant o.

There are many remarkable consequences of assuming conformal

coupling. Let us review some of them.
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Novello, M. and Oliveira, L.A.R. (1987) Non-minimal Interaction of Gravity
with other physical fields: an overview (to appear in Rev. Bras. Fisica).

These last years the literature envolving scalar fields in cosmology
has considerably grown, mainly in two directions: either exploring the
consequences of spontaneous symmetry breaking or the properties of
conformally invariant coupling., In the fourth Brazilian School of
Cosmology we had the presentation of the belgian group (Brout, Englert and
Gunzig) work which explored the possibility of the quantum creation of the
Universe. They start with the action

S = JJ-g d,x{ w’:uv‘“—sz*i: - %Rw; - % R}

and restrict the variation of 8,0 to the set of conformally flat geometries.
We can then substitute the scalar of curvature R by a new scalar field ¢

to obtain a theory of two fields ¢ and ¥ in Minkowski space, one of

them with the "wrong" sign of contribution to the total emergy. They
explore then the fact that a state can be created with tota) emergy Zero,
showing that the Minkowski flat space-time is unstable and yields after
perturbation a Friedmann-like Universe.

Exercise: Show that, in general, imposing the condition that the metric
is conformally flat in the sbove action does not commute
with the variational calculation. In what conditions do
they commite?

In 1974, J. Dreitlein (Phys. Rev. Lett., 33, 1243) gave an interesting
example of how a scalar field can produce a cosmological constant using the
mechanism of symmetry breaking.



4. THE MBNIKOV-ORLOV SOLUTION

In 1979, Melnikov and Orlov examined the possibility to treat the
interaction of a quantum scalar field ¢ {x) in a classical geometry (in
which the metric tensor By is a c-nwmber). Guided by the features of
the mechanism of spontaneous symmetry breaking, they tried to find a
solution such that in the fundamental state we have

<olejo >~ /3 £ .0

in which n is the conformal time of the open Friedmann geometry given by
ds® » A%(n) (dn? - dy? - sinh®x(de?® « sin®6d$?)] “.2)

For a massless field and without cosmological constant the equation
of the race reduces to

% =1 (4.3)
in which a dash means derivative with respect to n. The equation of ¢ is

o o200 XL 2085 -0 4.4)

Then, compatibility of these equations with assumption (4.1} yields
the relaticn

Y
c=% (4.5)

and for the radius of the Universe (as function of the cosmical time t
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. dt .
defined by n = J AT we obtain

AD) =/t (4.6)

2
Loy

(L(I\D] is a copstant)
and

fM.fef =0 4.7

Melnikov and Orlov considered the basic solutions of this equation:
£f=0, £f=+l and £ = ~1, The trivial solution (f = 0) is imstable and
the other tWo £2 = 1 are stable. A simple direct demonstration of this
can be made by changing the equation for £ (4.7) into a planar autonomous
system. Indeed, set x = f to arrive to the equivalent set

Bk
\1

Se
]
™
]
»
w

(4.8

The critical points of this system are given by:
(x5, ¥y = 0,00
(XA’ YA) = ('1.0)

(XB,YB) = (1,0}
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We can arrive at the features seen in graph 1.

¥
Figure 1 - {see the text)
Points A.B represent the stable solutium

11 (4.9)

‘o Tt o X

From the equation of By (eq. 3.5) and specializing for u=v =10
we obtain the value of the constant L(MJ) which appeared in (4.6):

2 K
L[}'D} = 5 (4.10)

for the minimm allowable value of the radius of the Universe,

Is the interest of this solution purely académic? Melnikov and Orlov
argue that it is not, Although such long-range scalar field was never
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chserved in any event in Nature, they claim that certainly a ¢ field in
those very intense gravity field (near the minimm value L., for the radius
-of the Universe) behaves as a massless one - and should be treated in its
quantum regime. Remember that the Planck lenght Ly, is given by

iy, = /S8 % Jene % 107 TR

<

In natural units (h=c =1},

AL (4.12)

L PL

M0

for the typical value of ¢ of the order of unity. It must be remarked
that Melnikov-Orlov solution A(t) = /1t~ + Lfm) gives values of the

maximal red-shift, decceleration parameter and the age of the Universe
which are in accordance with observations.

4.1. Energy of the findamental state of Melnikov-Orlov solution

If we adopt the standard Einstein's formula

Giv = < crem) Ty

we obtain
2
31
Elo> = - 0

which shows explicitly the expected violatian of the positivity condition
(in standard notation) and makes understandable the absence of singularity
in this model.

Remark that the gravitational constant, in this state, becomes



renormalized:
11 %z_ _ 120t? - 2
“ren ¥ 120KkA
Thus, for

K
< g > Kyep < 0

This simple observation makes explicit a crucial fact: the possibility
of a change in the sign of the gravitational constant induced by the
non-minimal coupling of a scalar field with gravity. Does a similar
phenomenon occur in our actual lniverse?
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Melnikov, V.N. and Orlov, S.V. (1979} Phys. Llett., 70A, 263.



5. THE COSMOLOGICAL CONSTANT-11

At the end of the seventies a new interpretation to the origin of the
cosmological constant A appeared: the identification of A as a conse-
quence of a spontancous symmetry breaking mechanism. Let us briefly review
its main lines.

In flat space-time the dynamics of a scalar field ¢ is given by

* v
N I a1 (5.1
with
W(o) = Mo*e - alp*e)?

Thus, the equation of motion is given by

¢ « %‘; -0 (5.2)
or

[ + M - 200s*0)6 =0

The energy of this field is

1 1 i
t 6] =5(p*d +¢*¢ d-xn (¢ ¢'" - W) (5.3)
v Z oy T A

There exists a fundamental solution ¢ = ¢U = constant such that
by (5.2).



Moo (5.4)

and by (5.3) (with E = 1)
o .5
E = -z-l\' (5.5)

We see that the condition of minimm for the energy coincides with
the condition which extremize the potential W. In this case we have

2
log | = %23 (5.6)

Now, let us examine the field ¢ when minimally coupled to gravity.
From (3.1) we obtain

D¢ + Eradi 0 (5.7)

and for the enerpy

1 * 1 A
t o=5d" ¢ +¢ & )-xg ("3 -W (5.8)
uv 2 TIRIY w Y 2 RV )

and it is left as an exercise to show that all previous results of free
scalar field follow.

let us now consider the modifications imposed by non-minimal (i.e.
conformal) coupling (see equations 3.3, 3.4 and 3.5). There has been some
misunderstanding in the literature on the way to define the enmergy of the
field ¢ when coupled (non-minimally) to gravity. (This question is valid
for any spin.) However, there has been some agreement between the standard
Einstein's definition (see Coleman et al, Tagirov, Iel'dovich, etc.} and
we accept that the stress energy tensor 'l'w is given by



GJ /g Ldyx = J ST, g dx (5.9)
Using the conformal Lagrangian (3.1} we obtain

Y Z 2 2
T = '12(¢:u¢,v RO "l' g0 -W '%¢ GW"%(]:“’ Bv ¢ )

(5.10)
or representing by tW the energy of the field ¢ when minimally
coupled we can write
T =t +n(J6%. - 4% . ) o ¢ (5.11)
we T 'R Bpw ~ siy 6w *
Using equation (3.5) of the evolution of ¢ :
1 1.2 1 2 F3
(g -g#6y = - 1, - (e guv'm.u:v )+ hgyy (5.12) -
or
1 2 2
t o+l ]e -4 ) - A
Guv » 28 D_rg“‘z’ 2150~ M (5.13)
“x * 5!
Substitution of (5.13) into equation (5.11) yields:
1 1 2 1.2 A2
T = 7 [t e LA ¢,u;v -39, (5.14)
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-
taking the trace
1 2 2,2
T=T gu\J:t*sz -3A¢
w 1_ 1.2
K
We have

_ e A 2 A
R « % - 20(4*9)

(Remark that contrary to all other fields with different spin, the
trace t of the minimally coupled field does not vanish in the limit M+0).

Then

2
T- (1.4, (-¢:A¢'*+ ale? -0ty [e?-2mh  Gam

[Jo* + %Rd,w " %‘ =0 (5.16)

$* 0 + (TJe9)6 = - 3 R 60— 0% « d0(o*e)”

which yields for the trace

. Moo - L rore - Eaove

;| (5.17)
-g b*¢

% |-y



or using (3.6), that is
lr. Mooty - AA
we arrive at
T = We*s (5.18)

which has the good limit for M= 0.

Let us come back to the equation of ¢ . For ¢ =¢ o= constant we
have

boo g - 0

or, substituing the value of R we obtain (for the non-trivial solution
¢o = ()

ok < 2= af (5.19)
- 12¢

From the definition of T"Y we obtain the energy

W k,.2
- K e
E < .Ioo _ 2" %
19
K &
or
o 3067 - sog" - ol (5.20)

6-K¢2



The condition for an extremum %% = 0 implies

Ku¢: - 120¢§ s M- =0 (5.21)

which is compatible with the constant solution ¢ if and only if

M4 (5.22)

A - 'BE
and in this case, the fundamental solution (equation 5.19) takes the value

2 ¥ (5.23)
which is the same value (5.6) as in flat-space case.

5.3. A Mechanism for Generating an Effective Gravity Repulsion

We will consider now the effects in ordinary matter of the existence
of a scalar field ¢ in its fundamental state ¢D.

The total Lagrangian is given by

L=v/g (0" ¢ g -W@) v TR-gReE 4241y (5.24)
» ’v

1]

in which L, represents all other kind of fields and matter in the world.
From (5.24) we obtain

1 1.2 (mat)
(-5 66, =T 18} +Ag, + T 5 (5.25)



m

(mat)

v is the energy-momentum

in which Tw[ﬂ is given by (5.11) and T
tensor obtained from varying L.

When ¢ is in its fundamenta] state ¢ = B = constant we have

1 1p2 W (mat}
(Z-gB) 0 =--780 8- Ty

or
6 =-x_ Tt _, (5.26)
wv =~ “ren Tpu eff Byv .
in which
2 4
hogs = 3 W’ - Bl 20 (5.27)
1_1g2
)
! (5.28)

_ 1 B2
Ken ¥ 7 T
We remark that:

(i) The sign of Kren depends on the value of B.

(ii) The above result is not a privilege of the scalar field. Any
field coupled non-minimally to gravity can induce a similar
modification - eventually turning gravity into a repulsive force.

Exercise: Examine the theory of two-scalar fields given by

L=/ et o gV -V +vt v gV-WG) - FRGZ+vD) +
’u ’v ’u ,\’.

sr e IRV L) (5.29)



272

for

V(o) = m? - o4 e)?

waw = M2 - neprp)?

Answer: {as g, n do not appear in the equation for the trace R we
will give the answer only in the special case o= n = 0).

Dynamics is given by

o + % Ro - &% + 33‘; =0 (5.30a)
[+ g R - &lol% + Eiﬁ -0 (5.30b)

1 1,.2 .2 1 2.2 (mat)
. { ria g(d’ +¢ )]GIJV -~ Tuv{ﬂ - Tuv['l'] i E¥Y Ew + Agl-l\) - Tuv .

(5.30)

Remark that we can extend the results of the previous analysis and

look for the fundamental states¢ = constant = A and ¢ = constant = B.
In this case, a straightforward calculation yields:

2wl oM - 2 e - )
7
E[6E - «(m® + M)}

g2 _ a0 - o) - 2k - 3P
£ [6€ - c(n® + M)

In the fundamental state (¢, ¥, g) = (A,B,g) the equation for the

geometry reduces to:



(mat)
6o = Lefffiy ~ “ren T

with
A ££ = -szMz K
off " e _ vl + MD)
oL gl6e - xtn? o M)
ren 0 |f - E(_)][E‘ E(_'_)
in which

E(.,)"E(Mim)

|
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6. VECTOR FIELDS

Since the early days of General Relativity the interaction of vector
fields to gravity has been studied assuming the validity of the minimal
coupling principle. Only very recently the exam of non-minimal coupling
has attracted the interest of physicists. The only reason for this is
the absence of experiments on that coupling, which induces one to choose
doubtfully simplicity as a criterion.

The success of theories of scalar fields interacting conformally to
gravity opened the way to the exam of more complex theories in a curved
space.

Although we do not see in the near horizon any perspective of
inequivocally solving that question, physicists have started a program in
which different alternatives are being considered in an almost equal footing.

This situation seems very likely the case of weak forces. In the
fifties physicists deal with the following questien: covariance requirements
induce to believe that the weak interaction Lagrangian have to be constructed
with objects of a Clifford algebra. Among the different possibilities
generated by the basis of that algebra in a four-dimensional space-time
which cne is better adapted to describe matter desintegration?

This question theoretically remained wmsolved until Wu and
collaborators gave an experimental answer to the problem. We are still
waiting for an analogous decision in the case of gravitational interaction
of vector fields. Let us thus examine in general what such an interaction
should be in principle.

There are seven possible Lagrangians which cen be constructed as linear
functions of the curvature tensor. We divide them into two classes:



Class One

L, =R wuw“

-
n

W
R, WHw

Class Two

Ny
3’RFWF

t ]

uv
RFWF

™
[}

=
]

] 41}
RWFGI-O'

Buv Hy
b-h" Fop F

raBuv
Ly = w Fog Fiu

The two first class Lagrangians are gauge dependent but have the
right dimension., They do not need the introduction of a new coupling
constant. Class two are gauge independent but they all need the
introduction of a lenght iq in order to have the correct dimension.

CGne could be tempted to restrict class one Lagrangians to vector
mesons and look for the equations of motion of electrodynamics only
among class two fimctionals. However, one should be less radical and
leave this decision to an ulterior analysis.

Exercise: Some authors (Goemner, 1984) quote an eight possible form
of Lagrangian:



oo
I

-
n

8

Proof:

RoBuv =

nv-..

R« FOB PV
Buv

Show that this Lg is not an independent one, but that we
can write

2
-lg -l -xlg

it is well know that the double dual R* Bu satisfies the
identity

1
Ry ~ Mopww ~ 8 R Zyauv (6.1}

or, equivalently

.
oo * 7 Ry Bay * Ray Boy ~ Koy Bgy - Roy Eav?

1
- R BBy (6.2)

Thus

1 £ puv
LS = - L6 -3 R(gungﬁv = gu\lgBu) R 7( apBey RB\Jg(ll-l

- R, Ban ~ RBe) il

2 UV u v
Lg=-Lg-SRE PV - R FF

or

2
Lg=-Lg -3l - g qed. (6.3)
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Let us examine an example of a class one theory which is given by the

Lagrangian

L=vglr-1F P .pR WY (6.4)

v
in which F_ =W -W .
W ey wep
Variation of gy and Wu yield the equation of motion:
. .
3+ 896, = 8, - sz’u’u - BRWN, - (6.52)
P (6.5b)
R

in which EW is the Maxwell's stress tensor given by

o 1 B
Eo=F Fo,+78,Fg ™

Remark that as in other non-minimally coupled interactions this set
of equations allows a renormalization of gravitational constant.

Indeed,
consider the special case in which Wuhp = Z = constant; then

1
(¢ + 132)6IN = - BR Nuwu - E.W (6.6)



Taking the trace of this equation we obtain

(.].c + BDR = BIR
which implies
R=10

Then inserting this result into equation (6.3}

lH,m: - 'c‘renEI-'U
in which

LI 14— RZ

“ren u

R'H.\-' = - l:ren E Y (6. 73)
M Lo (6.7b)
Y

which is nothing but Maxwell's electrodynamics coupled minimally to gravity
with a different gravitational coupling (given by (6.7)) plus the (gauge)
condition

WHW"' = constant = Z.

Suppose now that besides this field there are other forms of matter
present described by the traceless energy-momentum tensor Tlf‘;.est)-



That is, take the theory given by

1 1 ANy H .
La/-_g{;R-TFWP + BRW W *"[rest)j (6.8)

in which L(re st) represents the Lagrangian for all other kinds of matter,
such that
Tgest}guu - T(rest) -0 (6.9)

The equation of motion is given by

(1. whc,, - e[ W, - o

- -E - 1{r®st) (6.10a)
’Ll;\’ BR wIl-lw\’ E].l\.' T].m

W
P Wl W (6.10b)

Let us analyse the same case as above in which WuWu = L = constant.

Due to (6.9) we obtain, as previously, that
R=20.
Then (6.10a.,b) takes the form

(rest)
Rv = 7 “ren Ew = %ren Tv



Thus, in this particular state of the W' vector, the non-minimal
coupling represented by the presence of the term RW WY in the Lagrangian
is nothing but a simple mechanism by means of which gravity with a
coupling censtant distinct from the newtonian value can be gemerated by
ordinary matter whose stress-energy tensor is trace-free, e.g. photons,
neutrinos, etc. One can then contemplate the possibility that such
process yields a non-positive renormalized constant (k. ).

Exercise: Using this interaction (formula 8} can you envisage the
possibility in which the effective gravitational coupling
constant changes its sign during the evolution of the
Universe?

What can we say about the Cauchy preblem of equations
{6.10a,b) in this case?

The sbove embarras du choix of the non-minimal interaction led to the
search of alternatives ways of selecting the Lagrangian which describes
the coupling of a vector field to gravity.

The most appealing criteria should be one envolving invariance under a
given transformation which characterizes a symuetry property. It promptly
comes to me's mind to examine dual rotation.

A dual map is a transformation on the set of the bi-tensors Fuv
such that

FI.I\J -+ FI'N = cosé FW + sing Fu% 6.11)

Classical Maxwell's electrodynamics is invariant under such
transformation for any constant angle 6 (but it is not invariant if 8=6(x)).

One should then be puided to propose the generalisation of such
invariance for the non-minimal Lagrangian L. It is a rather simple
exercise to show that this is accomplished by the unique combination.
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* 71' Ly=®, - '41[ Re,) Fua P (6.12)

The interesting fact is that the invariance of L(in] by the dual map
(equation 6.11) is not breaked if we transform the constant angle 9 into
a function 8(x). This is a remarkable property which has no counterpart
in the flat space limit. This certainly points in fawvour of L(in) but
not too strong to eliminate its currents.

Exercise: The invariance of Maxwell's electrodynamics iumder a
rotaticn of the dual angle has led to the so called
already unified program (Rainich, 1925; Misner and Wheller,
1957). Examine the possibility of generalization of
that program in case of non-minimal coupling.

We leave to another ocasion to proceed with such generic study (which,
I believe, the reader will not have too much difficulty in going alone

through it).

Let us now tum to an example of a class one Lagrangian.
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7. THE NOVELLO-SALIM-HE INTZMANN SOLUTION

In a paper of 1979 Novello and Salim undertoock the task of examining
the cosmological consequences of class one Lagrangians mainly in respect
to the possibility of finding non-singular solutions for the gecmetry of
the Universe.

They started with the theory given by L, of Chapter 6 and looked for
a spatially homogeneous and isotropic metric such that

as? = ae? - Al(e)ao? 7.1)

Let us consider the ansatz that the potential W is given by

"11 = (W(t), 0, 0, O) (7.2)

FW =0 (7.3)

(remark that due to non-minimal coupling, from the vanishing of Fuv does
not follow the vanishing of the total emergy).

Define the function 2(t} by

Qet) = % . oW (7.0

Then equations (7.2) reduces to the set:

A 2
3 i "5 {7.5a)



%*zg}h%,_%g (7.5b)

A Az 1, gt A Q

:&*Z(K ';z(?*-—r-)--;(ﬁ (7.5)
g

[Ce=0 - (7.5d)

From (7.5b,c) we obtain the same restriction as in Friedmann models
that is, ¢ can take the values C,:1.

From (7.5d) we obtain
. -3
@ = (constant) A

A particular solution of this set of equations (7.5) - the Novello-
Salim-Heintzmann proposal - is given by

W = i1-F) (7.6)

At) = /2 . (7.6b)

in which Q@ is a constant that measures the minimm value of the radius of
the Universe., When Q = 0 the system reduces to empty Minkowski space-time
written in Milne coordinates.



Exercise: Show that the 50 called Milne Universe

Fi A

ds? = e®Man? - ax - gy - dzd
is nothing but Minkowskii flat space-time written in a
non-inertial coordinate system.

For Q # 0 this model represents an Eternal Universe without singularity.

Remark that Novello-Salim-Heintzmann solution coincides with Melnikov-
Orlov peometry given by (4.6). The difference between them being only the
interpretation of the minimm radius Q.

We can examine the system (7.5) of equations in a more transparent
way if we define new variables x and v by setting:

x=34" (7.7a)
y= 8 7.70)

Then, equations {7.5) reduces to a planar autonomous system:

eeglexy (7.8a)

[P

y =-y -xy (7.8b)



286

C. Romero has studied this set of equations and drawn the integral
curves of this system on the Peincaré sphere (compactifying the whole
phase space (x,y}).

M~

M+
Figure 1 - Phase portrait of dynamical system (7.8a.,b) with
compactification of the infinity. Points M{ 5
represents Minkowskii space-time.

let us follow nafvely the {(time) parameter t throughout the figure.

From M(_) (which corresponds to the infinite past t =-«=) to the origin
0 {t=0) we have a contracting Novello-Salim-Heintzmann phase. From the

minimm value for the radius of the Universe at 0 until the future infinite
the model represents sn expanding Novello-Salim-Heintzmamn ending at
Minkowskii M[+}. If we insist and follow the graph from M(*) to point B
we find models which starts in Minkowskian Nothing at past infinity and
ends at finite time t = -|Q} in a singularity at B.

Then we find a new set of soluticns: those which starts at the
singularity B (for t = -|Qj }, pass through 0 (t = 0) and ends at the
singularity in B. Here we find a class of closed solutions (all others
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geometries are open). Finally, there are the solutions which start at the
singularity B (t = + |Q|) and ends in the infinite future in a Minkowskian
regime.

Although the identification of M(_) to M(+) is not free of ambiguities,
one should be tempted to interpret the above figure as being the
representation of eternal cycles of Uhiverses of infinite duration beginning
at Minkowskian Nothing, as fluctuation, and ending at Minkowskian Nothing,
and so on.

Exercise: a) Interpret Novello-Salim-Heintzmamn solution as being
originated by a fluid in Einstein's standard theory

Gl.l\.r"KT].l\J .

What condition of the singularity theorem is violated
in such way as to allows this fluid to generate a
non-singular cosmos?

b) Do equations (2a,b) have a well-defined Cauchy problem?
Examine this problem for Novello-Salim-Heintzmarm
Universe. (S5.Jorda, 1987)

c) Is Novello-Salim-Heintzmann solution linearly stable?

d) Consider the equation of FI-N in the presence of an
external current:

RY 1]
F ;u.-smv*.HJm

Show that although in general Ju(ext)-u £0 ina
Novello-Salim-Heintzmann type of solution the
conservation law J"'.u =0 is obeyed.

L
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8. WIST (WEYL INTEGRABLE SPACE TIME)

1. Scame years ago, during the IIIrd Brazilian School of Cosimlogy,
Vittorie Canuto gave us some very beautiful lessons on the state of the
so-called Dirac's scale-covariant theory of gravitation.

In this Vth School we have the opportunity to follow Narlikar's
lessons on Hoyle-Narlikar theory of gravity. Both theories have its
T00ts on a deep analysis of the role of conformal transformation in
Physics., I will not extend here in Hoyle-Narlikar's theory, but invite
the reader to study Narlikar's lectures in this Vth School and other
references quoted therein.

In this section, I intend to emphasize a common feature of both
theories by presenting same curious properties which appear when one
considers the most general conformally invariant structure of space-time,
that is, Weyl's generalization of Riemarn space.

2. In the 1984 Chicago Meeting "'Inner Space/Outer Space”, some scientists
speculated on the possibility to elaborate a complete cosmelogical theory,
i.e,, a theory which "pretends to describe the Universe from the very
begirming (including the quantum gravitational stage) and up to the present
time”, This includes the mechanism of creation of space-time itself, as a
classical comterpart of some (yet-to-be-discovered} quantum process.

Such line of research is the aggfornamento of the ambitious Einstein's
cosmelogical program, which intend to describe completely the metric
properties of our Universe as a unique solution of the equations of gravity
from a given distribution of matter.

From time to timé scientists criticize this program and elaborate,
by many different ways, less ambitious analysis pointing out the limitatioms
of the naif applicability of globalisation which is nothing but the
extension of local physical rules to the whole Universe.

In this lecture I will present an instigating model in which the global
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structure of space-time becomes dependent on an entirely uncontrollable
function.

This solution represents the opposite of the above scheme and leads
to the complete abandon of the laws which could be attached to the creation
of the Universe, or, less dramatically, of a complete classical picture
of the Cosmos.

3, Let us consider once more the non-minimal coupling of a vector
field 2 with gravity given by the Lagrangian

L=v/g{gR-42,2 22"} (8.1
in which zw = ZIJ,U - Zu,u .
In the standard procedure one varies v independently

assuming a priori the Riemannian nature of space—tnne. However, one could
abandon this restriction and let the symmetric affine commection PIN

vary independently. This technique, which we owe to Palatini, yields in
the standard Einstein (linear) Lagrangisn, Lp=/-g R, the beautiful result
that space-time is riemannian. However, such result is not maintened if
matter is coupled non-minimally to gravity. Let us prove this for the case
of the vector field 2 in Lagrangian ( B8.1). Let us vary B Fﬁu and
z¥  independently.

1 v 1
§L=-5L gwégu v/ Iluvﬁguv + Ewﬁg"w g
uv
+ B/ RZZ, &g

L= [(1eothi6 + B+ 802 2)68" + /7§ d. azz)g""a%w L, s2%

8.2)



2

Then we obtain

1 2
(g+B8I0G, = - B - 8RLZ, (8.3a)
Evia = Koy (8.3b)
™, = - grz¥ (8.3¢)

I,

in which
K =-v (s azh (8.4)
[+ [+ ] K

The symbol ; represents covariant derivative evaluated with the
affine connection rﬁv. The symbol double bar | represents covariant
derivative evaluated with the Christoffel symbol { 3» 1.

Remark that (8.3b) implies that space time is not riemannian but
instead Weyl-like. Besides, the vector K, is a gradient and this space
is a very special one called WIST (Weyl Integrable Space Time)}.

The defining property of Weyl space-time
By = !(ugw (8.5

implies that there is a variation of the lenght s of any vector which
is parallel-transported, given by



M
AR = OK]_I Ax (3.6)

Such property has the undesirable consequence that the measure of
lenghts depends on the previous history of the measurement aparatus. In
the early twenties, this fact led to the abandon of such geometry.

However, using the fact that in a WIST the vector K, is irrotatiomal,
in a closed trajectory we have

é AL = 0 (8.7)

which eliminates the major part of the criticism against the applicaticn
of Weyl geometry in the actual Universe.

From the definition (8.5) of Weyl geometry we obtain the connection:
o 1 o o
e, = {W}- 3 & &« k- (8.8)

We leave it to the reader to show that a WIST is conformally related
to a Riemarm space.

Let us now come back to the fundamental equations (8.3) and look for
a solution which represents an homogeneous and isotropic (Friedmann-like)
geometry, that is,

2

das? < at? - A2(e) [ax® + o2 (x) (0% + sinZ0ds) ] (8.9)

Now, using 8.9 we can write the contracted curvature tensor Pﬁ.m in
teyms of the tensor ﬂu\? of the associated Riemarm space (that is,
constructed with Christoffel symbol) and we obtain (exercise)



0 4 1 1 1.2 1

Rv*Ry-2 Ku“u 3z K\)"u ) Ka"a ARSI TR S
(8.10)
in which we have used the fact that
K. = +KK -4¥% ¢ 8.11)
wv ~ Tujlv _uK\: Y :
Taking the trace of equation (8.10):
(o)
3 .2 i
R=R + 7 K® - 3K "l-' (8.12)

(o}
in which R is the scalar of curvature of the Riemann (associated) space.

We make the ansatz that the vector field Z" takes the form
¥ = (2(1), 0, 0, ® (8.13)

Then it follows that Zu‘J =0 and EW = _0.

From {8.3c} the trace vanishes:

R=190 (8.14)

Using these results into equation (8.3c)
i 2

( ¥ + BZ7) R].I\) =1

or

R =10 (8.15)



Using (8.10) and the form (8.9) for the meiric the whole system
reduces to the set

2R - f.f 4 (8.16a)
A A2 2 o' 1% 1.2 5 A
:!(*2‘%3 -5 % -y -3 3 § £ {8.16b)

in which we have defined the function f by the expression:

f(t)=_m(%+szz)

Now comes the curious fact that, as a consequence of our ansatz,
equations (8.16a,b) reduce to just one single equation

£= 2Ry % 3.17)

in which e=- -%" . Remark that the model excludes the possibility of a

closed (e« 1)section.

Once the whole system of equations rests only on the unique condition
(8.17) to be satisfied by the two functions A(t) and Z{t) we conclude
that the function Z{t) - which is the real cause of the curvature of the
space-time - is completely indeterminate. This property led us to call it
a Marionette Universe.

Exercise: Using Einstein's standard form for the equation of gravity
evaluate the energy of the Z-fields.

Answer:  pigy =3 (A—;zl)



Exercise: Consider a more general non-minimal Lagrangian e.p.,
L, = /g R WY
or
/g R UF“ e
Use Palatini‘s variational process (independent variables:

guv' and W ) What is the nature os the space-time
which these Lagrangians describe?
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9. PHASE TRANSITION IN COSMOLOGY

1. The analogy between superconductivity theory and the phenomenon of
spontaneous symmetry breaking in field theory, largely explored these
recent years, led to a new program of research in cosmology. A new
scenario for the behavior of the Universe in a very condensated regime

is therefore being developed. Phase transition in cosmology was discussed
in the IIIrd School of Cosmology and more recently many articles of review
on the subject have appeared (Linde, 1979).

The purpose of the present lecture is to examine a particular kind of
theory which has not been previously analysed and whose main characteristic
is to have phase transition induced by gravity.

2. In the present school we have seen the difficulty in conciliating
standard cosmological HBB model with the observed isotropy of the cosmic
fluid. In principle, one should expect that in an Eternal Universe (for
instance, with a previous collapsed era) this problem disappeared, for, in
general, the horizons are not present anymore and consequently any region
had encugh time to be exposed to the all-embracing cosmic interaction.
However, this question is not so easy and depends crucially on the very
specific properties of the matter which dominates the gravitational
behavior of the Universe.

Let us present a model associated to the phenomenon of gravitationally
induced phase transition in which anisotropy may not be an evanescent process.

We start by comsidering a non-perfect fluid which is described by the
stress-energy tensor

- - 9.1
Tu\l = quVU p hlJ\J + “u\’ (5.1

in which h v is the projector operator (in the J~dimensional rest space
of V") defined by



o= - VW 9.2)

and

gUU=0

m
uv
The extra-term ( =, nu") in expression (9.1) represents the (isotropic,
anisotropic) contribution of viscous processes.

The fluid is assumed to be stokesian, that is, the dynamical objects =
and = ¥ are given as functionals of the associated kinematical quantities,

u
e.g., the expansion factor o = Va,u and the shear

iy B 8
Uu\:_?h[uhv) vcc; -Ih

8 w
From the theory of matrices the most gemeral expression for nu"
is given by
11"1\"-f1h“\‘l + £, ouu + £5 a¥e aeu (8.3)

in which the scalar coeficients fk are defined by a series expansion,
typically the following

2
fK = fl(o + fl(l I1 + [sz(I.I) + flKZIZ] +

+ [fm(l])3 RIS ) FE AT i IR (9.4)



for K = 1. 2. 3. In this expression (9.4) the I, are the canonical

invariants of matrix 8 {with components a”vs a”v + % eh"'v] , given by

I, =T 5= ©

i
wl 2 1.2
Iz-Tre = g +'3-3
-3 a A n z2 1.3
13=Tre=ou oao;\—eo -gB {9.5)

In order to simpliry our demonstration let us limit the expansion (9.4)
up to third order and write

v 2 v v a v
L [ao + q13 + pe”] 9, + [AO * A1e + '"]hu + ﬁau o, (9.6)

or redefining the constants 2, and a) as: a, = - aze* and @ = az for
later convenience, we set

7Y o= [32(9-6')+302] [ Vo {A +A +...]h V. 60“ o ¥

I " o 1 u e

in which a, o*, g and § are constants with the additional hypothesis
that g > 0 amd & < O.

The next step is to search for the fundamental equilibrium
configurations of such fluid taking into account the gravitational field
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it generates. This is achieved by locking for the extremm (minimm) of a
unique function which generalizes for the non equilibrium case the
free energy F = E - TS,

Let us suppose that the cosmic fluid in its non-equilibrium era is
represented by (9.1}, As we are contemplating the possibility to describe
the evanescence of anisotropy into an isotropic era, let us proceed as in
Landau's exam of the behavior of irregularities in the neighborhood of
a phase transition.

The first step is to choose a convenient macroscopic parameter which
netly caracterizes the state of order/disorder of the system. As we are
considering the existence or absence of privileged directions in space it
seems Tather natural to select the shear (0“\. ) or any functional of it to
represent such parameter. We can thus follow Gramsbergen et al (1986) and
identify the fluid either as a liquid ({less ordered, more symmetric) or
isotropic phase from a crystal structure (less symmetric, more ordered} or
anisotropic phase.

The free energy F is to be described, following Landau’'s treatment, as
a palynomial expansion in the invariants Il' Iz and I;. We call such basic
expression {in the absence of gravitational interaction) Fy- Landau’s
phase transition mechanism depends crucially on this expansion: for instance,
the lowest order should be at least quadratic in the order parameter to
allow the isctropic state to be accessible, Besides, the coeficient of
the lowest term should change sign with the increasing of temperature - the
real parameter which controls the transition. We will not follow this
procedure and show that in the case of Einstein's theory of gravity the
control parameter is not the temperature.

The first question we are faced to is: what is the influence of
gravity in the free energy? This is a problem which we cannot, for the
time being, solve by first principles nor by direct experimentation.
Thus, we can only proceed by anslogy.

In case of an external magnetic field B the contribution of this



an
field to F is given by
v W
{ﬁF}mg = EBuB T, .(9.7)
We are, then induced to admit that the gravitational effect is given by
v
(AF)grw = YRu v, (9.8)
This expression is indeed unique if we are limited to linear terms in
the order parameter {remember that a”u is trace-free}. (The extension of

this theory to non-linear terms in auv is an interesting non-trivial
exercise.)

Using Einstein's equations

(aF) grav

v 1 v vy, W
-.~.f[Tlil "Z“u + A ]uv

v ¥
("'F)gra\r ==aT o, (9.9)

From the expression (9.1) for the stress—energy tensor:

v H
(ﬁF)grav = -y e (9.10)

Let us simplify our exposition and restrict ourselves to the case in
which there is a plane of isotropy and write

(8.11)
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which implies
-2 3
Teoo = 31
Ils‘:
2

T‘l‘ 33 l'f% 23

2

[Exercise: Abandon this restriction and re-do the following
calculations in the general case.)

Thus we obtain the expression

uF)gra\r = - 1[&2(3- %) + 502] oz -

or using (9.11)

3 3 .4

Py = - 3 vlatte- 09927 & § 2% 4 3 02ty ©12)

grav

The most probable state of equilibrium is given by the minimm of
the free-energy F = Fo + (bF)grav’ that is

Saz(e- a*)s + g- 6:2 - 9323 » 0 (9.13)



There are two possible solutions:

£=0 (9.14a)

corresponding to the isotropic phase, and

2 3 2 .
3820*-1‘6}:04-3 (0-—3) = 0 (9-14b)

corresponding to an anisotropic state I, . The possibility of the existence
of the solution I, * 0 is given by the inequality

9 .2 2 ) 2
ﬂu) l-.ra-ﬁ -12pa(8-0*) 2 @ 9.15)
or
2
3 3 N
[: 3*1-'“ ;z; H el'.‘ (9.16)

This is a remarkable result: it states that the very possibility of
existence of an equilibrium configuration which is not isotropic de;:ends
on the ingensity of the expansion factor 8: for values of B bigger than
oc we can have at least one extremumm Iy * 0. It remains to examine if it
is a minimum. In this case, we must have

- 3yla%(6-6%) + 3 62 + 9627 » O ©.17)

Let us restrict here our exam to the case y= -mz <0 (we left as an
exercise to consider the case of a positive y ).
Then, we must have

98z? + 3 o1 + afe-64) > 0 (9.18)



The associated equation

9zt + 3 57+ al(e-0%) = O ©.19)
will have real roots if

by =1 s _ 36 ga’(e-6%) > 0
or ’

525 16 Bazte-e*} (9.20)

On the other hand, if 8¢ 0 then inequality (9.18) will be satisfied
for any value of I. We note, however, that condition (9.20) is a
consequence of the existence of an extremum. Thus we are cbliged to

compare the relative position of the roots Iy of (9.19) with the
extremm points Ta, -

We have
z § |4 "1 _ 1632(6-3*) N
(£ =" %8 ¥ — &2 9.20)

35

S _ﬁhzega-s*)
[1 P } B (8.22)
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It is easy to show that, for instance, 2(2] > Iy e Thus, if there

is an €
1 Xtrenm E(Z]

20 it is a minimm. We are now faced to the following

question: if there exists both extrema I=0 and L » 0 which one will be

the absolute minimum?
global minimm, We must have

F(0) < F(Eo) y OF
3852 + 620 + Zaz(B—B*] >0

which is satisfied if

2
&

6 > 9*1-—-—2- £
24pa °r

let us represent graphically these results in graphs 1, Z:

L =0 is a minimum

Let us examine the conditions in which z=0 is a

(9.23)

£ « (0 is the absolute minimm

only £ =0 is a minimm

>

8% Bp c

Graph 1. The conditions for isotropic phase



£ = I is & minimm

L= :o is an absolute minimum

=3I, is the wnique
minimmm

g 8, e
Graph 2. The conditions for anisotropic phase

1
bp=9 g —

We can then swmnarize these results:

8> 6 : The most favorable state (MFS) is an isotropic phase.

fp< 8 < 8t The most favorable state is the isotropic phase, but there

is a local minimm corresponding to a small anisotropy.

8% <8< oy : The most favorable state is the amisotropic ome, but there
is a local minimum corresponding to an isotropic phase,

8 < g% : Anisotropic phase.
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The above mechanism of phase transition is controlled by the expansion
factor (8) which mimics the role of temperature in standard Landau‘s model.
The shear (u"u] is the macroscopic order parameter in termms of which the
whole theory is based. The present model depends on three basic conditions:

(i) Einstein's theory of gravity.
(ii) The expression (9.6) for the (anisotropic) pressure.

(iii) Formula (9.8) for the contribution of gravity to the free
energy.

If all these three conditions are fulfilled then the consequences
(9.24) indubitably follow.

Although one can very safely believe in (i) and accepts (iii) without
much pain, there is not any evidence neither pro nor against the hypothesis
that the cosmic fluid of our actual Universe satisfies (ii). Thus the
application of the present mechanism to our Universe rests a matter to be
decided in the future.
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10. NON LINEAR LAGRANGIANS

Since the early days of General Relativity many scientists (Eddingtom,
Weyl, Lanczos, etc) have examined an altermnative, more complex, form for
the Lagrangian which describes the dynamical evolution of gravitational
fields, using non-linear functionals of the curvature. The leitmotiv to
such a study has changed from time to time. In particular, it has been
avocated that (as it occurs in electrodynamics) quadratic (or higher
orders) terms are an almost direct consequence of quantum phenomena.

It has been suggested that the true Lagrangian should be thought as
a polynomial series in the curvature, thus searching the identification
of gravity to some sort of elasticity of space-time. The same effect Seems
to occur as a consequence of stochastic fluctuations of the geometry.
Others (see the review presented by Folomeshikin, 1971) have argued that
any zero mass field should be conformal invariant and consequentely the
Lagrangian which describes gravity should be at least of quadratic

Bu
orders {e.g., W" vWan].

Finally, it has been claimed by some scientists that non-linear terms
are indispensable in order to inhibit singular solutions to appear.

Exercise: Explain this last sentence in the context of the singularity
theorems. (Remark that as we have seen in these lectures
one should weaken this sentence and substitute the word
"indispensable’ by "possible".}

Let me emphasize that T do not pretend to give here a complete
historical review of the abundant literature on this subject, but only to
pick up some examples here and there of the typical situation throughout
these years.

In order to capturate the spirit of the controversy which was in the
air at the end of the sixties it seems worth to quote the american
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physicist C.W. Misner whe claimed that.., "quantum effects do not
significantly modify the nature of initial singularity in relativistic
cosmology and that there is no suggestion that would allow a contracting
lhiverse to pass through a quantum phase and emerge as an expanding
lhiverse'.

An opposite point of view is supported by Nariai (1971}, Novello and
Rodrigues (1975) and many others. In a subsequent paper Nariai gives a
specific example of the consequencé of quantum effects in the modified
Lagrangian, which he takes to be

L=/g(lr.n@ . R B) ¢ Iy ) (1.1

Using numerical integration Nariai and Tomita (1971) have arrived at
the regular solution presented in figure 1.

W0r
z
30
20k
Frisdmonn’'s
model
10— Z. ;
4
! u—— ] "'c
/
i
0 I A L
-8 ['] ] 10

Figure 1 - The 1971 solution by Nariai and Tomita. The dashed line
corresponds to the Friedmann model.
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Ruzmaiknima and Ruzmaiknin (1970) start a program based on Sakharov's
proposal from which the Lagrangian of gravity should be given by

LER) = L(D) + aR + BR® + yRWRW - (10.2)

In the realm of a homogeneous and isotropic Universe, they found that
although it is possible to find regular transition from contraction to
expansion {at t=0), divergences appear as t+ + = andfor t+ - ,

The year after Gurovich showed that more complex forms for the
Lagrangian can induce regularity throughout the whole history of the Universe.
He has shown this starting from a Lagrangian

2 4/3

L=/ g [R+ R ] (10.3)
J:4 22

in which the constant ¢ has the dimension of lemght. From this Lagrangian
(exercise) we obtain

23 13, 1 2 23 1/3 1/3
6o *t R I[gR _-7Rg ]+ x ¢ (r g,,- R ] =

= - KT“\} (10.4)

Exercise: Show that equation (10.4) implies conservation of matter,

that is, ™. = 0.
Ty

In a Friedmann-like Universe, Gurovich found the solution shown in
figure 2.



2

b=-1 / §=0

>
t

Figure 2 - Evolution of the radius of the Universe for the three
possible topologies in Gurovich's proposal,

Let us point out that the factor 4/3 is not the only value to allow
for such regularity. More gensral expressions allow for a similar
behavior. For instance, Buchdal (1970) proposed a systematic exam of
generic Lagrangians

L =F(R) + LM (10.5)
and let for an ulterior decision to fix the form of the function F.

Recently, Kenner (1982) has re-examined this suggestion and obtained well
behaved selutions for choosing
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F(R) = —y— (10.6)
1- l.p R

Exercise: Calculate the equations of motion from (10.5}

Solution:
[R R -RR'*g]d—3§+[a_-]'_“|Rg]£§+
n 'ty ’x L. i) L' WA
dF 1
*Rom-7F8,=-<T, (10.7)

Show that in a Friedmann-like geometry with TW = quVv
and

2
as? = at? - ale) [ 2y s rZae? 4 12 sin? eagd)
14+ er

there remains from (10.7} only cne equation

. o 42
R$-¥Ri§+%p = - xp (10.8)
in which

R=6[%+(§}2+fz-] ' (10.9)
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One is then free to choose the function F in order to obtain for A(t)
the desirable property of regularity.

The difficulty with these a posteriori models is that all of them
lack a more profound principle in order to be reliable.

A different road was undertaken by Ginzburg, Kirzhnits and Lyubushin
(1971)}. They considered Einstein's equations as being a theory for
microscopic fields. Macroscopic fields, which yield the observed metric,

contain fluctuations in the mean metric. This situation can be

represented by the formula

(10,10}

= « > A
g, B, F 88,

Duve to the non-linearity of the equation for gy the equation for
<82 is given by
(10.11)

3 =—KTu“+ L]

) uv

in which L. is a complicated functional of A, and Guv is the Einstein
tensor constructed with the mean metric.

At this point Ginzburg et al made a crucial hypothesis by taking the

fluctuations represented by LI admit a polynomial expansion on the

mean metric by setting

v (10.12)

v v v
@u = Qu{o) + @u(” + OH[Z) * sua

The number in parenthesis (v} represents the order of the mean
curvature which appears in this expansion.

For instance,
v " v
'u(o) = A a.p (10.13)
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induces the renormalization of the (bare) cosmological constant.

The first order term is given by

«MYiBRsY=3"«PRs"

v .
) u n b u (10.18)

The first term renormalizes the gravitational constant and the
second term must vanish because it violates (in this order of
approximation) the conservation law.

Thus we can set

v W
*ut0) = ()
as « and A are already taken by their renormalized values.

Thus, the first non-trivial term which gives a real contribution is
given by

+ ¥ RM‘J'R"‘J + ek R\mﬁk

v v vE o
e o R4 R TR waBA

2, v oB . v ;v v v
R
+6 R "+ o R R 8 +pn.u +g]jnu +n[JRs

(10.15)

But the conditions
u - - 6
@u(z);u 0 (10.16)

imposes four relations among the nine constants that appear in (10.14).

It is a beautiful result {Ginzburg et al) that there remains only
two independent combination, e.g.
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1,2
Loz = - BR, +7Rg, + zn’u’v -2[Jr 80 (10.17a)
_ L 1 po 1

Juv(Z) =-R BRuchHZ' RpuR gu\.-+R,u;v - DRW -7 DR Euv
{10.17)

Thus, .

_ - L2 =1 (2)
Gu“ = - xT.w +a Ju\.r + B Iuv + A A (10.18)

If the fluctuations have quantum character we can set
av B LIZ’N.

Applying this expression (10.17) into an homogeneous and isotropic
Universe one obtains (exercise)

Gh= = k0 - A + Ly, B{0,p,8) {10.19)

The tem Fy is obtained after applying Einstein's equations for
the microscopic metric inte J Eli) and I](i) .

We can then sec that the net effect of this method (in cosmology) is
just to provide a correction of the perfect fluid, introducing new
viscous terms.

The crucial question of this method is to use quantum gravity theory
to evaluate o and B , a problem which is still open.

Another approach to deal with such fluctuations has been developed
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(Novello, 1978) where an equivalent formulation of Einstein's theory to
deal with stochastic or quantum fluctuation is used. The idea is to use
Jordan's approach to Einstein’s theory.

In 1949 Jordan and his co-workers proposed to use Bianchi identities
as dynamical equations of gravity, written in the form:

WeBy % peles Bl _ _112 giloge @l (10.20)
'y
and
weBwy - Joku
;\J
in which
JoBu _ % wlaiel | % gler 8l (10.21)

Lichnerowicz (1960) has shown that if Einstein's equations
(GW + ncTW= 0) are valid on a space like hypersurface I , then (10.19)
guarantees the validity of Einstein's equations throughout the whole
space-time in the future of [ .

=~  Within Jordan's approach the fluctuation presented in equation {10.15)
takes the form

"aﬁuv. - JuBu + gobu {10.22)

v

in which chﬁu depends on the perturbation of WE™ | The use of this
form of perturbation in case of a conformally flat back-ground is rather
easier to treat then the standard procedure (equation 10.15}. See Novello
and Salim (1983) in which a complete review of this theory was presented,
with emphasis on the modification of the behavior of Friedmann's model
nelr the singularity.
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Recently Novello and Neto (1987) have considered a somewhat different
program. They started by realizing that cosmelogy seems to give arguments
in favour of the two following statements:

(i) We live in a world represented by a (riemannian) metric which
describes a non-stationary spatially homogeneous and isotropic
(Friedmann-like) Universe of very slow expansion.

(ii) The Universe has not always been in a conformally flat
configuration.

Although (i) does not require any further comment and seems to consist
in a well stahlished thruth accepted by the great majority of cosmologists,
the assertion (ii) needs some explanation concerning its actual meaning.

Recently, many scientist have been very critical with respect to the
s0 called standard cosmology (identified with the Hot Big Bang solution
found by Friedmann and developed by many others) mainly due to the well-known
difficulties which are inevitably present in this model (see Novello, 1987).
Among these we can quote, for instance, the question of the initial
singularity (problem 1) and the explanation of the origin of the high degree
of isotropy which is present in the 2.7°K background radiation (problem 2}
associated to the presence, in such geometry, of particle horizons {see
chapter 9).

Although it is, im principle, possible to find solutions to these
difficulties without abandoning the condition of a conformally flat metric,
some scientists have proposed the examination of models in which the Weyl
tensor wuBuv is non-null at some prior era. Onme of the main works which
gave a real contribution to the clarification of this question and produced
a severe critic to the standard model in the neighborhood of the assumed
singularity was undertaken by the russian cosmologists Lifshitz, Belinsky
and Khalatnikov (1982}. These scientists have shown (at first, in a limited
scheme in which all matter in the world is identified to a perfect fluid
in equilibrium) that a deep analysis of the coupled behaviour of geometry
and matter in the very dense stage of the Universe yields the result that
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the Weyl tensor wuBuv should vanish only in a later stage of the cosmic
evolution, characterizing then the moment in which the Universe enters its .
present friedmannian era. More than this, from the analysis of Lifshitz

et al, one concludes that Weyl curvature effects are, at these "early"
times, much more important than the corresponding Ricci terms show this.

A similar result is obtained when the basic properties of the standard
cosmological model are carefully examined, at those regions of very high
curvature, using a more general model for the matter content of the Universe.
It has been shown that indeed, at those extreme regions ordinary matter has
an unimportant role on the evolution of the geometry. This property has been
used by Starcbinsky (1983) and others to create a model of an assymptotic
de Sitter regime in which a cosmological constant becomes the main agent
for the isotropization of space-time. Such "vacum domain' made its
appearance alsc in some recent models of cosmology - e.g., the so-called
inflationary scenario. However, what seems to restricts strongly all these
models is the difficulty of obtaining a mechanism by which the de Sitter
era should be replaced by a friedmannian one.

In another context, quantum fluctuations and the properties of non-
equilibrium thermodynamics in an intense gravitational field, with its
intrinsic generation of entropy, has led some authours (Penrose, 1978)
although in a more speculative way, to put in telief the role of Weyl conformal
tensor in the evolution of the cosmological metric.

However, this recognition does not solves our problem, since we stiil
have an infinite set of possibilities for the dynamics of gravity. At this
point we shall turn our attention to an old proposal of M. Born (1933, 1935)
developed later by him and his cellaborator L. Infeld, of an extension of
Maxwell’'s Electrodynamics, in order to guide us in the search of our present

aimes.

In the early thirties these authors proposed to develop a (non-1inear)
electrodynamics based on the hypothesis that the basic fields of physics
must be described by a dynamics comprising within itself some sort of
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limitation on the possible extreme values of the strenghths of the fields.
In a subsequent stage, quantum physics has shown that non-linear effects of
electrodynamics do appear in Nature and may be described by successive
approximations which are in accordance with the expansion in series of the
polynomial Lagrangian of Born-Infeld.

The above considerations led us to propose the following Lagrangian
to describe gravity:

1 B
L=/§{;R+-§/_r“z1_(_z) - (10.23)
B

in which constant B measures the maximm intensity admissible for the value
of the topological invariant I = RJBWRan . Let us make some comments
on L. First we note that the choice of the radical term to be quadratic

on I is, of course, not unique. However, had we chosen a linear temm,

e.g. Y1-1 , expanding this expression for small values of I the first
constribution of I is the quadratic one. This is due precisely to the fact
that 1 is a topological invariant and it contributes only with a surface
integral to the action principle.

The tetm ¥Y-g 8 is introduced in order to eliminate the
contribution of the new part of the Lagrangian to the cosmological constant,
when I = 0.

The equations of motion then are giving by:

1 1 g 4 I B LA
R,-7Re, ~7——= g, -gll—==) R, =
v 7z v~ 2 B ¥ v
v T e Y A ST’
- KT, - % 8., (10.24)
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which reduces to Einstein's theory for -17 «< 1.
B

Exercise: Use Bianchi identities to show that equation (10.24)
guarantees the conservation of energy-momentum tensor.

10.1. COSMICAL SCEMARIO

There are many well-known solutions of Einstein's theory which are
solutions of the new set of equations (10.24).

Exercise: Show that the following geometries are solution of
equation (10.24),

(i} Schwarzchild,
(ii} Friedmann,
(iii) Kasner,
(iv) Gidel,
(v) Reisner-Nordstron.

Thus, one should ask what the assumption of this new Lagrangian is
good for? From a pratical point of view, we can answer this question by
examining cosmology: we can perform a new cosmological scenario which
could solve difficulties not only of the ancient standard program, but
also of some new models like e.g. inflation.

OQur new scenario is based on the assumption that during its history
the Universe has experienced the whole spectra of permissible values for
the topological invariant I. In order to fix our ideas, let us concentrate
in a specific configuration and assume that the evolution of I can be
represented as in Figure 3.



Figure 3 - Representation of the evolution of the topological invariant
I=R "'“Rusw during the cosmic history for an expanding
Universe.

In this model, during a period At = v, the Universe experienced a
value IZ very near its admissible maximum Ig - 8% At this stage the
net effect of the I-term in L is to induce a very large cosmlogical

constant (remark that
63
lim & = lim —— & w)
eff
1o et T
which could modify drastically the primordial behaviour of the Cosmos, even
avoiding the singularity. The Universe at this regime 1%~ cte % 34
is in g de Sitter like state that is, a region in which the main responsable
for the curvature of space-time is the effective cosmological constant.
After ty, (the time in which I leaves its constant value and starts to
diminish) the Universe leaves smoothly this phase, pass through a region
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in which matter becomes more and more important and finally enters the
actual Friedmann era in which I vanishes and, besides, geometry becomes
conformally flat.

This simplified scenario, which is in principle allowed by our set
of equations, exhibits some features very similar to other sophisticated
mechanisms which have been examined in the last years to produce some
altemative to the standard cosmological scenario (e.g. cosmic spontanecus
breakdown of symmetry of a given scalar field, phase transitions, etc).
Furthermore, the equations of motion generated by Lagrangian (10.23)
reproduces all observable effects of classical gravity.

Exercise: Examine the possibility of new spherically symmetric
{static) solution of equation (10.24).
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11. NON-LORENTZIAN THEORLES

In the middle of the sixties, in a course given in CBPF, Colber G. de
Oliveira examined the consequences of strong violations of local Lorentz
invariance. Although extremely speculative, the idea that cne can deal
with a riemannian geometry without accepting the validity of local Lorentz
group, comes from time to time as a fashionable model to which deviations
of standard predictions of the special theory of relativity are assigned.

In recent years this idea has been revived by S. Weimberg in the
realm of higher dimensions theories. It is Weimberg who asks: "why
should one adhere to Lorentz invariance in 4 + M dimensions?". Why should
physics in 4 + M dimensions have the generalized Lorentz group S0(3+M,1)
as a fundamental symmetry? ’

We left to other lecturers in this School the exam of theories which
propose the existence of hidden dimensions beyond the usual four which
constitute the classical arena of physics, Here we limit ourselves to
present a model of non-lorentzian theory which changes the behavior of
gravitational imteraction in cases of strong field. The main consequence
in cosmology is precisely to avoid singularities. One should suspect
anyhow that if there is any violation of Lorentz symmetry it certainly
should appear at high energies (cf. Nielsen and Picek, 1%82}. This is
precisely what Gasperini (1986) explored.

Let us assume (Gasperini, 1986) that the space-time is a four-
dimensional (quasi) Riemannian structure with GT = S0{3) as the local
group of invariance, In order to simplify our calculation we will follow
the standard procedure and refer the set of dynamical objects to the
Lorentzian ones.

Let egi} and e?) be, an SO(3) vector and scalar, respectively (i=1,2,3}.



Construct the 1 - forms

o) _ ) g
n
G e(‘”udx“ (1.1

The original Lorentz connection ka is defined by

da‘eL = - u:A B BB . (11.2)

A, B... = (D, 1, 2, 3) being Lorentzian indices, and is decomposed into
an 50(3) connection
i .
o -
J
and \-flo, a 1-form which is covariantly transformed under SU0(3).

The Lorentz curvature QAB , defined by

A
oy - dmAB + ch (1.3

decomposes into

le = dwij + mlk Awkj +Eioh Goj
glo . gl , mij il (11.4)

Remark that although the Lorentz connection is defined as torsion-free

dBA + uJAB " BB = 0 (11.5)

the S0(3) connection acquires a torsion («! = - Elo )

In order to set up a theory which preserves 50(3) invariance one has to
construct a lagrangian as a finctional of the independent dbjects ot
and Elo. The most general theory of this sort has been constructed by
de Alwis and Randjbar-Daemi (1985) and later on examined by Gasperini. To
our proposal here, we will limit to a simplified version which contains
typical new features. Before doing this, let us briefly review how one



deals with differential forms to cbtain tensorial equaticns. Llet us
consider, as an example, the case of Einstein's theory, with S0(3.1)
local invariance.

Consider the curvature Z-form

A 1 C D
g = yRppe A & (11.6}

We set the variational primciple for free gravity as
s J B oae, =0 (1.7

in which, as in chapter 6 , the star * means the dual operation and
tAB = BA A eB .

let us vary (Palatini) independently the basis & and the
connections wAB :

s j "B A s = J (g86™ + xABsmABJ =0; (11.8)
this yields
1 M BN
J(Ac=—~2-d(em BMABNJ-mCB;\eA By A Oy (11.9)

which by straightforward manipulation is reduced to

st + oy B -0 (11.10)
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(11.10) is nothing but Palatini's result that space-time is
riemannian (torsion-free).

For the vector X e ohtain

*
=0

[ 0 oy n aey

or

’ (11.11)

RA’B* = 0. (11.12)

From fornula (6.1} that is,

- % 1
Rapcp = = ¥anco * 7 [Rac Bpp + Ryp 8¢ - Rap Bpe ~ Ry 8ap! -

1
- 3 R gapep,
Taking the trace of this formula we obtain that (11.12) reduces to

B 1.B
R”’Ah N SRR | (11.13)

which is precisely Einstein's equations.

Let us now tum to the 50(3) theory. With the fundamental objects
of this theory (8%, @°, wd . @10 and corresponding curvatures) we can
construct five independent Lagrangians which are
= J B oA

I

E AB

oB *



oB O . O, o
s-jﬂ A 8 "‘moB"e)

1, - J“M gy A @ A 0O (11.14)

Thus, the most general action is given by

= 11.15
I=Tg+K Ep vk, I, vk Iz 4k, I, ( )

for arbitrary constants kl, kz. k3 and k.

Exercise: Use the systematics employed above to obtain from Ip
Einstein's equations to compute from 11.15 the equation
of motion and write it in a covariant way under the form:

Gy * Xy = = ¢ Ty (11.16)

Remark that an extra 50{3) invariant matter temm was introduced.
Although constants kl, kz. k3 and k4 are completely arbitrary, Gaspenm
choses a way to fix a relation between them by imposing that X is
divergence free (which guarantees matter conservation, T‘lm =0 ) and
that the motion of the particles with are responsable for the curvature
of space-time is geodetic (a property which does not follow autematically
from equation of motion 11.16).

If such break of Lorentz invariance occurs for very high energies
but below Planck's mass, the classical gravity theory (11.16) generates
a cosmological system coherent with Einstein's Cosmological Program.

Let us examine what are the consequences of the new theory in the
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global structure of space-time and assumes for the cosmological metric
the Friedmann's form:

2 p

ds? « at? - A0 do (11.17)

Take the velocity of the perfect fluid to be V'=ef ) =6% , we obtain
from (11.16)

b lp+plo.wd (41.18a)
B o= ‘k [:}KpAz —el (11.18b)
1
1 + T

This set (11.18) is obtained under condition k1 - kz = —k3 = 'kd

which is a consequence of imposing that the cosmic fluid follows a
geodesic motion.

Exercise: Obtain the set (11.18) under this hypothesis.
For completenesse we consider here the case in which
the fluid is radiation p--‘; p . The expansion factor 8
is given by 8 = 3A . From (11.18)it follows that
A

-4
n=p°A

The solution of (11.18) for the closed world (e =+ 1) is given by

A-Ao "+ Q (11.19}



k<]

in which constants Aj and Q are given by

2 “Pa 1
C=-7 - "X
T-‘r-z-
K

with the condition 1+ — <0,
2

Remark that (11.19) gives the same time-dependence for the radius
of the Universe as those suggested by the solutions presented by Novello-
_Salim and Melnikov-Orlov in the case of gravitational non-minimal coupling
of vector and scalar fields, respectively.

Note however that although Novello-Salim and Melnikov-Orlov solutions
are exclusive for open Universes, the proposal of Gasperini aveids the
singularity only in the case of ¢losed space section.

Exercise: Compare equations (11.18) with the corresponding
Einstein's equations.

Solution: In the case of Einstein's theory we have:
p+(pepl =0

32

A 2

--;- pA” - ¢
We see that the Gasperini's model yields a change in the gravitational
constant to the renormalized value Kyen = ﬁKq < 0.

1 + =

2
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12, NON-EQUILIBRIUM THERMODYNAMICS

In standard cosmology (Ellis, 1987), the myriad of events associated
to the matter existing in the Universe receives a simplified description
in the form of a perfect fluid: '

T,=oVV, =Phy (12.1)

The reader must be aware that formm {12.1) does not define a perfect
fluid in a wnique way. This is related to the fact that we can choose
another four-velecity field V, and decompose Tw in the basis provided
by Vu'

In general, this would imply

T =p¥V o~ P huu + q(u\f\}) * “].lv (12.2)

uv u
in which besides the modified expressions o and P a heat flux q, and
anisotropic pressures ;uv appear. It is a simple, but very elucidative
exercise to evaluate the quantities PR i;, q" and ﬁuv in terms of the

corresponding quantities defined by observer v

Exercise: Show that for nomalized vectors W and V¥ we obtain, by
comparision of (12.1) and (12.2) the following relations:

5 = 6% + (85 - Tip
2
P =g f-ne 25 p

q, =8 +P, - E“;’u)

- 2 -z
Ty (- BV Y - p e pUI-BVY, (12.3)



in which B is the angle between the two vectors fields:
v
B = VuV .

Exercise: In the old interpretation of the cosmological constant,
A is treated as perfect fluid satisfying the condition
p+p = 0. Show that the "vacuum gas" is the only fluid
which has the same equation of state for all observers.

Although the hypothesis (12.1) may be a good description of our
equilibrium era, many scientists have started a tentative program to
incorporate dissipative terms in the energy-momentum tensor of the
galactic fluid.

In 1968 Misner suggested that neutrino viscosity could be an efficient
mechanism by means of which any arbitrary initial aniscotropy wears out as
the Universe expands. A simple phenomenological description of such process
is given by the linear expression relating the anisotropic pressure LI
to the shear deformation 9, . Although this mechanism did not succeeded
to explain why our Uhiverse is isotropic, it had the merit to call attention
upen viscous processes in cosmology.

Since then, many cosmologists have examined such more general non-
perfect fluids in different contexts. The second viscosity coefficient
has been used by Klimek (1973} and later by Murphy {1973), in order to
create a homogeneous and isotropic cosmology without singularity. The
effect of the first and second viscosity coefficients on the cosmological
singularity has been investigated by Belinski and Khalatnikov (1977) and
generalized for non-linear fluids by Novello and Araujo (1980).

Let me stress that non-perfect fluids may appear as a fluid
description of some specific configurations of fields interacting with
gravity.



Exercise: This last remark must be interpreted as a statement about
the non-uniqueness of the representation of the source of
a piven geometry. For instance, we leave to the readers
to show the following equivalences:

i) Quadratic Stokesian Fluid.
Show that the geometry (Novello-Soares, 1976)
ds?-at? - Mt gar - Py 4 a2h) (12.4)
in which M and J are arbitrary parameters constrained to
satisfy the requirement J(J-M) <0, has as its source

either a neutrino field ¥ with a current j* = ¥ v" ¥
direct in the x-direction or a fluid such that

TIJ\' = oVuVu -p huv + q(uv\)) i (312.5)
with
I -M .
q‘u * M Vu
_ =27 A 1 po.
"Tw T T+ H (eu % ™ 3 epu 8 huv)
1
p=xo

ii) Accelerating non-Stokesian Fluid.

Consider the conformally flat Bertotti-Robinson solution

2 A B
ds ="ABa ] (12.6)



iii)

with  n,p = diag (+1, -1, -1, ~1)

1
-] = -— dt
Qr
1 1
a8 *« -— dr
T
Bz = l dé
3 1 .
g0 = = sine d
q ¢

The source of Bertotti-Robinson geometry is usually stated
to be a (static) eletromagnetic field. Show that it can
be interpreted equivalently as a fluid with

Tyg = oVa¥p - P hyp + 70 (12.8)

(the tetrad indices A, B, ... range 1, 2, 3, 4) with
p = 3'Q for Q% =-constant.

- ZMN
by = G- 3 VC By

? = (0: Q’ G, 0}'
Rotating Non-Stokesian Fluid

Consider the generalized (Bdel-like fluid



2 A B
=T‘|ABGB

ds
@ = dt + hir)d¢

6 =dr

62 = a(r)ds = /HE - g de

-] = dz

Show that in the co-moving frame V, = § Aothe vorticity

s . A _ 1H . . . o db
tensor is given by v~ = (0, 0, 0, - IF ) in which h pre
Show that for %" = constant = 20 there is a solution of
Eisnteins's equation given by

TAB=0VAVB—phAB+1TAB
with

2
HABu-'YnAB

B B 1 2.B
ﬂA=mAu -y hA
p=-.\+(1+v2)92

zZ 2
p=n+(1-15-)n

with 4 = sin JTZ-Z'nr

and 2<72<3.

Show that the scurce of this solution can be interpreted as a
perfect fluid plus an electromagnetic field (Novello, 198D).



From the theoretical point of view all these models suffer of a
drastic illness: they do mot satisfy causality principle, since in the
viscous regime there is no limit for the velocity of propagation of
signals., This difficulty has been examined and partially solved by
Belinski-Nikomarov and ¥Khalatnikov (1979), who presented a model of a
viscoelastic fluid in which the causality requirement is explicitly
fulfilled.

This approach has been recently re-examined by Salim and Oliveira
{1987} in the context of far-from-equilibrium thermodynamics. They have
obtained a non-singular cosmology, which I intend to present as an example.
We will limit our an%lysis here to a Friedmann-like geometry
ds® = dt” - A"(t) do” and let the cosmic fluid be described by the
expression

T].m = quVv - {pth +m ) (12.9)
with

pth = Ap .

In this expression * represents the effect of the viscosity. It has
been of general use (before Belinski et al (1979) paper) to assume that in
the Stokesian regime we should have

m = 7(8)

for @ =%, without any further considerations of the Thermodynamical
properties of such fluid and without any restriction on the behavior of
the function n(9) in virtue of causality requirements, for instance.

let me emphasize that once the fluid is to be considered as being far
from the equilibrium, we have to modify the standard Gibbs equations to
describe the production of entropy provoked by the presence of viscosity.

The standard procedure (Israel, 1976, Pavon,Jou and Casas-Vasquez,
1982) is to start by making the hypothesis that the entropy per particle
s -% depends on the available variables: the density of energy , ., the
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specific volume v = % = ¥ and the viscosity = . In these formulas N is
the total nunber of particles (asumed to be comserved throughout the whole
history), V is the total volume. Then, we can write the generalized

Gibbs relation

:_ 3 " 95 . 35+
s=—£c+-§-‘}~v+a—“n (12.10)

In the standard procedure we can also define a generalized temperature
of non-equilibrium T = ( % ) ! »a pressure p = %—3 )( g—z— )7 ! and a viscous
pressure

T _n s 3s .-1 .
= E;-{ I I 3% )

Then using (12,10) we obtain

néz,},mémp{“uo ) (12.11)

From the conservation of T'' we obtain

ne + 8{p + v} = 0 (12.12)
which implies
ns =y (a e - ov) (12.13)

The entropy four-current s® is given by

5% =ns v¥ +i® |, (i% represents the entropy flux) . (12.14)

Then the entropy production ¢ is:

o=s" = (fn+na}s+n§+i“_u-n§+i“_u20 (12.15)

L ¥ »
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in which we used that the total number of particles is a constant of motion.

Following the standard procedure we set:

(%nz + oGty (12.16)

i i

g =

to obtain (neglecting higher order terms):

| I
Eﬂ_aon ;] (12.17)

Now, going to the Newtonian limit we obtain

ab= - Ty

in which T, is the relaxation time characteristic of the fluid. Then, we
can finally write

101} P (12.18)

Thus, if there is no entropy current i¥ = 0 we have for the entropy
production

ns = EIT x | (12.19)

Putting (12.9, 18, 19) together in the homogeneous geometry one can
obtain a (causal) solution in terms of £ and Ty

In general £ may still be dependent of the parameters of the
equilibriun. If we set £ = 8p, Salim and Oliveira have found a regular
solution which gives for the radius of the Universe the value
At) = A €™ (sechyt)" in which m, y and y are constants defined in
terms of B, Ty hand A .

Although we have restricted here our analysis to the scalar viscosity
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T, it is possible to extend, in a straightforward manner this treatment to
more complex situations.

However, the main difficulty which one faces in all these treatments
is related to the gravitational distortion of the entropy production. In
other words, if the entropy flux I?s) depends on gravity, then a correct
treatment of this question cannot ignore the fact that space-time is curved
and consequently curvature effects must appear as an independent variable
in IFS) (Salim, 1987).
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