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I. INTRODUCTION

The adjective 'nonstandard' applied to cosmologies is
intended to describe those ideas about the origin and structure
of the universe that are differesnt from the Friedmann-Robertson-

Walker models based on Einstein's general theory of relativity.

To fix ideas, these latter models, called the 'standard
models' are given by the Robertson-Walker line alement
2

2
as? = ¢? ac? - s [d—rf +r (d02+sinzad¢2}] (1.1)
1-kxr

where (r,8,¢) are the comoving coordinates of a typical
'fundamental observer’ and t the cosmic time. The spaces
t = constant are homogeneous and isotropic and are completely

specified by the curvature parameter k = 0, + 1 or -1. In
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termg of observable physics, the above statement is called the
'cosmological principle' implying that all fundamental observers
at any given epoch find the universe in the same physical state
aAnd that to the typical obhserver viewing the universe there ix

no preferential direction.

The function S(t) called the *scale factor' or the

.'expansion factor' is determined by Einstein's equations:

1 8nG
Rie = 2 94k R = - & Tik - (.23

'The 'physics’ is contained in the Tik on the right hand side.
The standard Friedmann models describe the universe as
originating in a spacetime singularity at 5 = 0 (the 'big bang').
The cosmic clock begins from this instant. In the early stages
the univarsg was radiation-dominated while in later stages
{including the present} it was dust-dominated. Whether it will
continue to expand for ever ( k = 0, -1, é *> 0} or it will

eventually contract ( k = +1, § > 0 now, § < 0 later) depends
on how much gravitating matter it has per unit volume, The

critical density (corresponding to k = 0} is

3n?

L . {I.3}

Thus k = -1 models have density p < Po while k = +1 models

have p > po+ The conatant H is of course the Hubble constant.
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It is convenient to define

2

e

o -
fl = ———— q = =H [I.‘}
o '
as the 'density parameter' and the 'deceleration parameter'
respectively. We will denote the values of H, 5 and g at the
present epoch {t = tol by Ho . no and 9 and write
-1 -1
H, = h, X 100 km 8 {Mpc) . {I.5)

current estimates place h, in the range 0.5 to 1.

In more recent times the standard models have had an
important input - that of the inflationary era brought in by
the phase transitions of watter. Since the main thrust of these
lectures is on nonstandard cosmologies, we will not discuss
these and other details of the standard models here but assume

them to be known. [For details see refs 1, 4 and 5]

Nonstandard cosmologies are many and it would not be
posaible to do justice to all of thenm within the limited timespan
of these lectures. I will concentrate on some of those which
have played significant roles in the ongoing cosmological debate.
Even those that I describe are presented without too many details,
but with the aim of giving their motivation, march of ideas and
confrontation with observations. This last topic of observational

tests will be considered at the end for all models taken together.
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II THE STEADY STATE THEORY
I1.1 MOTIVATION FOR A NON-BIG BANG COSMOLOGY

In 1948, around the same time that George Gamow was
initiating detailed studies of the physical properties of the
universe close to the big bang epoch, three astronomers proposed
an entirely new approach to cosmology. This model, now famous
{or notorious!) as the steady state model, does not have a
singular big bang type epoch; indeed, it does not have ejther a
beginning or an end on the cosmic time axis. The cosmological
scene wasg considerably enlivened for two decades after the inception
af the steady state modal by the observers' attempts to shoot this
rival model down. What was the motivation that led Hermann Bondi,
Thomas Gold, and Fred Hoyle to the steady state cosmology?

First of all, in 1948 the measured value of TOEH;1 was

only ~ 1.8 x 109 years. Conseguently the age of a standard
Friedmann m&del could pot exceed 'I'D - a value lower than the
geological age of the Earth! Thus a prima facie case existed for
doubting the conclusion that the universe began ~l to 1.8 billion

years ago.

Secondly, if a model (like the Friedmann models} proposes
that the universe began at t = 0, it should provide a physical
discussion of the beginning. At least it should leave the question
tractable for a future, more sophisticated physical theory. The
spacetime singularity at the t = 0 epoch precludes any such
discussion. For example, the gquestion a5 to how the matter and
radiation we ses around us came into existence in the first place

remaing unanswered.



156

Finally, on a more fundamental level we could raise the
following doubt. The universe by definition contains everything-
even the phyaical laws that describe the behavior of the matter
and 80 on contained in it. Have we any guarantee that the physigal
laws that we use here and now have always remained the same? We
could have assumed this to be the case had the universe itself not
changed considerably in the course of time. This, however, was
not the case for the Friedmann universes., A typical standard
model changes considerably in its physical content and properties
from soon after ¢ = 0 to the present day. So the assumption that
the laws of physics have remained unchanged throughout the history
of the standard models is more an article of faith than a verifiable

fact.

Today, a&s we shall see later, the age problem is still
with us, although not in such a severe form as the low value of
‘I'° in 1948 suggested. The questions of singularity and matter
creation still remain with the standard models: the work
discussed therein does not tell us what happened at ¢t « 0,
Hoyle's approach to the steady state theory was designed to attack
the problem of primary creation of matter. His colleagues Bondi
and Geld, however, considered the last issue discussed above as

of paramount importance.

II.2 THE PERFECT COSMOLOGICAL PRINCIPLE

Bondi and Gold argued that the cosmological principle
goes some way towards ensuring that the locally discovared laws

of physics have universal validity: but it does not go far enough.
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This principle tells us that at any given cosmic time ¢, all
fundamental observers see the same large-scale features of the
universe., Thus we are justified in assuming no spatial
variation in the basic physical laws at any given cosmic time.
But there is no justification from the cosmological principle

to assume that the laws remain unchanged with time.

To providea such a justification Bondi and Gold
strengthened the cosmological principle in what they called
the perfect cosmological principle (PCP). The PCP states that
in addition to the symmetries implicit in the cosmological
principle, the universe in the large is unchanging with time.
Thus the geometrical and physical properties of the hypersurfaces

t = constant do not change with ¢,

It is important to emphasize the gualification "in the
large". On a small enough scale the observed part of the universe
will change. For example, stars in a galaxy will grow oclder,

a small cluster of galaxies may evolve with time in shape and
composition, and so on. However, according to the PCP the

statistical properties on a large scale do not change,

For example, Hubble's constant should remain the same
whether it is measured now ox at any other time past or present,
since lt= accurate measurement involves sampling a largish region

in our neighborhood.
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This requirement tells us immediately that

5
H 5 conatant Ho . {I1.1)

.Furthér, the curvature of a t = constant hypersurface is given
by k/Sz. This could in prineiple be,Feasured at different times
and found to be changing unless k = 0, Thus the PCP leads us to

the unique line element.

24t 2 2

dsz = c2 dtz - e ¢ [dxr” + 1 2

2

(a8® + sin?s as?)]. (I1.2)

Notice that we have arryived at the line eslement of the
steady state universe without having to sclve any field equations,
as we had to do to determine S(t) and k in standard cosmology.
Bondi and Gold cited this result as an example of the deductive
power of the PCP. fTwo other examples of deductions from this

principle are given below.

Expansion of the Universe

The line element {11.2) is completely characterized by
Ho. 1t is possible to have HO =0, Ho « 0, or H° > 0, all
consistent with the PCP. If, however, we take account of the
local thermodynamic conditions, we are able to deduce that Ho > @,
For our observations show that the universe in ocur local
neighborhood is far from being in a state of thermodynamic

equilibrium. Stars radiate; regions of high and low temperatures
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exist within the Galaxy and outside it, If Ho = 0 we would

have a satatic, infinitely old Euclidean universe., Such a universe
shouid have reached a thermodynamic aﬁuilibriuﬁubg now, as

implied by the Olbers paradox, - If Ho < 0 we would have a
contracting universe in which radiation from distant objects would
be blueshifted, Such radiation would lead to an infinite radiation
background,.,even worse than that indicated by the calculations of
Olbers. Thus our local observations preclude HD < 0, leaving

the case Ho > 0, which is consistent with the finite and low night
sky background. Hence the universe must expand: a conclusion

arrived at without locking at any nearby galaxies!

Creation of Matter

It is easily seen that a proper 3-volume YV bounded by

fixed (r, 8 , ¢ ) coordinates ilncreases with time as

¥V =« exp 3Hot.

that is
v
v = JH . (Ir.3)

By the steady state hypothesis the density of the universe must

remain cohstant at p = CI Then the amount of matter within
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Vv must increase its mass M = Vfa as

M = BHOVf%.
in other words,

Q= 3H°f; {II.4)

denotes the rate of creation of matter per unit volume., If we
use Cgs units we get

0=2x 10"

p - -
46 2 hg gem 2 7L, {11.5)

<

where L and ho have been defined in 1.

The small value of @ shows that there iz a very slow
but continuous creation of matter going on, in contrast to the

explosive creation at t = ¢ of the standard models.

1I1.3 THE CREATION FIELD

Attractive though the above deductive approach is, it
has its limitations. For example, we do not have a quantitative
relation connecting Ho to say, the mean density P, a8 we have in
Friedmann cosmologies. Nor do we have any physical theory for
such an important phenomenon as the continuous creation of matter.
Is the sacrosanct law of conservation of matter and energy being
vialated in the process of matter creation? Bondi and Gold

appreciated the fact that questions like these could be answered
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through a dynamic theory rather than from their deductive
approach, However, they felt that the PCP together with local
observations fix the large-scale properties of the universe in a
form that can be tested by obsarvations {see § II.4). Therefores
they attached a greater importance to testing the PCP by
observations than to a dynamic theory that might determine

Hor 040 and so on quantitatively.

Fred Hoyle, on the othar hand, took the opposite view.
He loocked for a process - that is, a field theory - that could
account for the phenomenon of primary creation of matter. After
geveral attempts he finally adopted the formulation suggested by
M.H.L. Pryce. This formulation, known as the C-field theory,
was used extensively by Hoyle and the author in the early 1960s.

The details of the C-field thecory are given below.

The Action Principle

Tﬁe C-field theory involves adding more terms to the
standard Einstein-Hilbert action to represent the phenomenon of
creation of matter. Using Occam’s razor, the additional field
to be introduced is a scalar fleld with zerc mass and zero charge.
We denote this field by ¢ and its derivative with respect to

the spacetime coordinate xi by Ci' The action is then given by

L _
_i-éff cici g a'x + ] [ c, dal. (I1.6)



162

Instead of the slectromagnetic tems {which might be present if
we had charged particles), we have in (I1,6) the C-field terms, To appreciate
the difference between the two interactions, note that the last term of (II.6)
is path-independent. If we consider the world line of particle a between
the end points Ay ard Az,wehave

i
Ci da” = C{Az) - CUL.I.)'

J’i,

Normally such path-independent terms do not contribute to any
physics derivable fram the action principle. So why include such a texm? The
answer to this question lies in the notion of "broken" world lines. A theory
that discusses creation {or amnihilation) of matter per se must have world
lines with finite begimings or ends (or both). The C-field interaction term
picks out precisely these end points of particle world lines, If we vary the
world line of a and consider the change in the action A‘inavnlme
omta:.nmgﬂmepointAl where the world line beging {see Figqure 1), we get
at Al {which is now varied)

m, c g%: qik - Ck =0, {IL.7
This relation tells us that overall energy and momentum are conserved at the
creation peint. The 4-momentum of the creatad particle is compensated by
the _4—momentum of the C-field. Clearly, to achieve this balance
the C-field must have negative energy. We will return to this

point later.
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We also note that singe the interaction term is path-independent,

the equation of motion of a is still that of a geodasic:

2.1 k 1 ’
d%a i da da

n, I: o + r‘kl o ds :] =0 (11.8)
] a a a

The constant £ in the action (Il.6) is a coupling conatant.

The varijation of C gives the scurce equation in the form
= cof n {r1.9)

whare n = number of net creation events per unit proper 4-volume.
In calculating n we attach a + sign to the points like Al

where a world line begins and -~ sign to the points like A, where
a world line ands. BAgain we see in (II.9) the relationship

between the C-field and the creation/annihilation events.

Finally, the variation of 9k leads to the modified

Einstein field egquationa

e ul T -r“‘i (I1.10)
c (m) (c)
where Tik is the matter tensor as in atandard cosmology while
{m)
e all Jat¥cle (11.11)

(el



164

Again we note that T44< 0 for £ » 0. Thus the C-field

{c)
has negative energy density that produces a repulsive gravitational
effect. It is this repulsive force that drives the expansion of

the universe,

The above effect may resolve onhe difficulty usually
associated with the quantum theory of negative energy fields.
Because such fields have no lowest energy state, they normally do
not form stable systems. A cascading into lower and lower energy
states would inevitably occur if we perturb the field in a given
state of negative energy. However. this conclusion iz altered if
we include the feedback of (I1.11) on spacetime geometry. This
feedback results in the expansion of space and in the lowering of
the magnitude of field energy. Both these effects tend to stabllize

the system,

Cosmological Eguaticns

Using the Robertson-Walker line element and the assumption
that a typical particle created by the C-field has mass m, we get

the following eguatiens out of (II.7} through (IT.11):

¢ = mc {11.12)

Wi -
a

mE {&E+3 -56+3§o}c2 {I1.33)
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"2 2

g 5% + ko 4 Cf 2
2 5+ S~ gt C (I1.14a)
8 ¢
.9 2 .
JEUL I P {o-—f;c’} . (11.14b)
s 2¢c

It is easy to verify that the steady state solution (ITI.2)

follows from thess equations for

k=0, S =@ v, mE £fm- . {ITI.15)

Notice that both H0 and b, &re qi#en in ﬁerms of the elementary
cgreation procesa: that is, in terms of the coupling constant £ and
tha mass of the particle created. Thus the Hoyle approach gives
the quantitative information lacking in the deductive approach of

the PCP,

A first order perturbation of the above equations and of
the solution {II.15) also tells us that the solution is stable.
Indeed, a stability analysis brings out the key role played by (II.7).
This tells us that the created particles have their world lines
along the normals to the surfaces ¢ = constant. Hoyle has argued
that such a result gives a physical justification for the Weyl
postulate: it tells us why the world lings of the fundamental observers
are orthogonal to a family of space-like hypersurfaces. In the
c-field cosmology these hypersurfaces are not just abstract notions

but have a physical basis.
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Because the velocity field given by (II.7} is the gradient
of a scatar, the vorticity or spin vector ui mugt be zero. Thus
spinning universes would be excluded. Hoyle and the author have
argue@ that provided matter creation 1ls always going on, the newly
craated matter will tend to introduce the regularity implicit in the
Weyl poastulate. Thus they conjectured that starting from arbitrary
initial conditions the universe may be driven by the C-field creation
process to the homogenecus and spinless state it is in today. Hence
the coincidenee of $HI.1 that led to Mach's principle is explained

as a dynamic ocutcome of matter creation.
Explosive Creation

Although the C-field was introduced primarily to account
for the continucus creation of matter, the author showed in 1973
that it alse describes explosive matter creation such as is required
in the big bang cosmclogy. We illustrate below how this is achieved

for the case k = 0,

In equations (II.12) through (II.14}, we make use of the
idea that all matter is created in an explosive process at t = 0.
Then the right-hand side of {(1I1.131) is like a delta function sit},

leading to the sclution

Notice that this solution is inconsistent with (II.12} except at
one epoch, t = 0. This is hardly surprising, since we have assumed

no creation of matter subsequent to t = 0, Thus the creation
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condition (1I.9) is not satisfied at ¢t > 0.

Substituting for C in (II.lda) we can integrate for S

and obtain a solution

6 + epp? T3
Sit) « | 14+ ——2—-— (I1.16)
O

where to and tl are constants related o the initial conditions

at t = 0,

The scale factor given by {1I.16} behaves like that for
the standard Einstein-de Sitter model for <+ »» to. In the C-field
model not only is the spacetime singularity at t = 0 averted,
but we 2lsc see the present matter as arising from a primordial

axplosion that conserves energy and momentum,

This consexvation of energy and momentum must follow as
a general deduction for any C-fileld model, since the governing
equations are darived from an action principle. Hence criticism
based on the unexplained origin of naw matter, which could be
validly applied to the explosive creation of the standard cosmology
or to the continuous creation in the Bondi~Gold version of the

steady state model, does not apply to the C-field casmology.

In physical terms the creation is explained by a process
of interchange of energy and momentum batween the neagative snergy
C-field and the matter, The divergence of (II.10) gives the

mathematical formula for energy conservation:
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ik ik

'r) Sk ™ £CC - {I1.17)

{m

It is easy to verify that the idea would not work for a positive

energy fleld.

I1.4 OBSERVABLE PARAMMETERS OF THE

STEADY STATE THEORY

Leaving aside the dynamics of the model, we now come to
gsome of the observable features of the steady state theory. Here
we deal esaentially with the line alement {IX.2) and the geometrical
properties deducible from it. Indeed, a=s Bondi and Gold emphasized
in their original paper, the steady state model makes precise
predictions and is therefore vulnerable to observational disproof,
in contrast to the big bang models, which can always be fed with
arbitrary parameters, (This comment will become clearer when we

discuss observational cosmology later).

Since these calculations of observakle features are
similar to those for standard models, We will be brief here and

gimply state the results.

The Redshift

The redshift of a galaxy Gl at (rl, 81,¢1) emitting
light at tl that is received by the observer O at r = 0 at

the present epoch tO is given by
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H {t_-t)) H Ht
= oo - = 2. o
z, [ 1 ryz e (11.18})
The Luminosity Distance
This is given for the above galaxy by
L
Dl = —Ho- Zl (1 + 31) - {II.19)

Equation {1I.19} is the Hubble law for steady state cosmology.

Angular Size
The angle 48{<<l) subtended at O by an astronomical

source of projected linear size d and redshift =z is glven by

H
se w24 . { 155} . (1T.20)

Thus the. anqular size tends to a finite minimum as z + =,

Plux Density

The formula for bolometric flux becomes in this case

5 . “ho1 . {1r.21)

41;— 22 (1+z)2
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For flux density at freguency v, ve get

~ L Jiv 1 + z)
Jo ) = 2° (11.22)
g 2 asa
[ =]

Number Count

The number of sources with redshift less than 2z is

given by
N(z) = 4%n (E—)a[m (142} - ——-—-,3’2 t 28 ] (11.23)
B 2{1 + 2)

The Age Distribution of Galaxies

New galaxies are always being formed in the steady state
universe. Since the universe expands, the galaxies, once formed,
move away from each other. Thus the older a population of
galaxies, the more sparse its distribution will be. Since the
volume bounded by galaxies increases with time as exp(!not). we
have the following simple result for the age-density relation of
galaxies:

-3Hort

Q= e (11.24)

where Q{(r)Jdr is the proper number number density of galaxies

with ages in the range «,1 + dr. The average age is therefore
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{BHO)_I. Wowever, caution is neceasary in the interpretation

of (I1.24), as we shall see in the following section.

I1.5 PHYSICAL AND ASTROPHYSICAL CONSIDERATIONS

This section briefly outlines some of the ideas propused
from time toc time in the context of the steady state theory to
discuss such problems as the nature of created particles, the
formation of galaxies, the origin of the microwave background
radiation, and so on. Some of thess concepts might still be
relevant whether or not the steady state cosmologlcal picture

survives.

The Hot Universe

Tn 1958 Gold and Hoyle proposed the hypothesis that the
creatad matter was in the form of neutrons. The creation of
neutrons does not viclate any standard conservation laws of
particle physics except the constancy of the baryon number. Although
this was considered an objection in 1958, today the baryon number
is no longer regarded as invariant. Indeed today scenarios are
being proposed in the context of the early universe to account
for the observed baryon number in the universe. In the Gold-Hoyle

picture the created neutron undergoes a g-decay:

n+p+e +%v ., (IT.25}

The conservation of energy and momentum results in the electron

taking up most of the kinetic energy and thereby acquiring a high



172

kinetic temperature of ~ 109K. Gold and Hoyle argued that such

a high tempgrature produced inhomogeneously'would laad to the
working of héat engines between the hot and cold regions, which

in turn would result in condensations of the size of » 50 Mpe, while
pure gravitational forces are known not able to provide a
satlsfactory picture of galaxy formation. The temperature
gradients set up in the hot universe of Gold and Hoyle help in
this procass.

The resulting system, however, is not a single galaxy,

3 to 104 members.

but a supercluster of galaxies containing ~ 10
Such large-scale inhomogeneities in the distribution of galaxies
were first referred to mainly through the work of G.0. Abell

and G.de Vaucouleurs.

It is worth noting that inhomogeneities on such a large
scale as ~ 50 Mpc caution us against applying the cosmological
principle too rigorously. For example, tha formula {II.24) for
the age distribution of galaxies will hold over a region
considerably larger than 50 Mpc in such a model., 1If we are in
a particular supercluster, we axpsct to see a preponderance of
galaxies of age similar to that of ours in our neighborhood out
to say 20 or 30 Mpc., Thus it will not be surprising if our local
sample yields an average age much larger than the universal average

of 38 ) e 3x10° hl years.

Although newly created electrons have a kinetic temperature

of ~ 109x, the temperature tends to drop because of expansion.
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The averags temperature is 3/5 of this value, that is, around

6 x 10% x, 1t was suggested by Hoyle in 1963 that such a hot
intergalactic medium would generate the observed X-ray back-
ground. However, quantitative estimates by R,J. Gould soon
showad that the expected X-ray background in the hot universe
would be considerably hi?her than what is actually ohserved,
thus making the hot universe untenable. Although the present
kackground measurements do not rule out such a hot universe for
ho=r 0.5, astrophysicists are inclined to look for other

explanatlons for the origin of the X-ray background.

The Bubble Universs

In 1966 Hoyle and the author discussed the effect of
raising the coupling constant f by a4102°. Ag the formulae
{I1.15) show, we would then have a steady state universe of very

8 g cm 3) and very short time scale

large density (f ~ 107
(H;Ifu 1 year!)., If in such a dense universe creation is switched
off in a local region, that is, if we locally have

et =0, {I1.26)

i

then this local region will expand according to (II,16). Being
less dense than the surroundings, such a region will simulate an

air bubble in water.

According to this model, this bubble is all that we see
with our surveys of galaxies, quagars, and soc on. Hence our

cbservations tell us more about this unsteady perturbation than
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about the ambient steady state universe, There are, however,

observable effects that give indications of the high value of f.

For example, these authors showed that particle creation
is enhanced near already existing massive objects and that the
resulting energy spectrum of the particles would simulate that of
high-energy cosmic rays. Although this result applies for any
value of f, the actual energy density of cosmic rays requires

the high values of f chosen hers.

Another useful idea to come out of this plicture was that
galaxies, especially the elliptical ones, are examples of a small
bubble whose expansion iz controlled by a local massive object.
The basic calculation is given below. ¥Now that it is being
realized that ellipticals cannot have arisen from condensation of
a pregalactic cloud the above expansion idea may well contain a

garm of the truth.

Consider first an expanding bubble as a cloud of gas
moving radially outwards. The Einstein-de Sitter model is
simulated by this cloud, in which each particle has just the right
velocity to escape to infinity: '

~2 2GM{r}

r“ = T . {II1.27)

Here M(r) is the mass interior to radius r.

Suppoze now that when r = r, an object of mass u appears

at the origin. The appearance of this object will influence the
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subsequent motion of the cloud according to the equation

12 26[M(x) +ul 2Gu
L

+ - (11.28}

o

Here we have assumed that the velocities are not affected by

the introduction of p; thus (II.28) 1s continuous with (I1.27}
at T =r.. The mass p now exerts its gravitational pull so that
the cloud is unable to escape to infiniey. In (II.28} r attains

a maximum value given by

M My,
Toax = {1 + :i r® for M >> ., {11.29)

In our description it is assumed that there is no inward/outward
crossing of cloud particles, so M{r} is fixed for each cloud

element.

what is ro? This radius can be fixed in the following
way. Although we expect u to be small compared to M, we cannot

use the above Newtonian calculation unless T, iz large enough SO

that any general relativistic correctisons to our calculation are

negligible. At T, these corrections are of the order tzGH/chzl.

This quantity must be smaller than the Newtonian quantity ZGu/rocz.

This requirement gives us a lower limit on r,:

r, 2

M 2GM
o=

5 (11.30)
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Setting I, equal to the right-hand side gives for T ax

oM M
rmax = “:2- (]l) - (11.31}

22

If we now set rmax;:_: 3 x 10 cm, a typical galactic

radius, {1I.31) gives

. (11.32)

: 2/3
= 5 % 105 ( )

ol

M
n
<

Thus a central condensation of u -\-109 M0 can control the shape

of a galaxy of mass M ~ 5 x 1011

q@. Anisotropy of expansion
can lead to ellipsoidal shapes, the important result being that
galaxies formed this way should have no rotation. Apart from the
lack of rotation, ellipticals are now believed to contain massive
nuclei, the most dramatic discovery in recent years being that of

a supermassive object at the center of the galaxy M87.

The Origin of Elements

one of the beneficial influences of the steady state
cosmology on astrophysics was that it prompted work on stellar
nucleosynthesis. Since the model does not have a high-temperature
spoch, it cannot draw on the calculations given in Chapter 5 to

explain how nuclel are made from protons and neutrons.

Since centers of stars provide sites for high temperature
and density, astrophysicists looked for nucleosynthesis in such
places. The pioneering work of E.M. Burbidge, G.R. Burbidge,

W.A. Fowler, and F. Hoyle in 1957 demonstrated in a comprehensive



177

manner how the whole chserved range of nuclei can be produced in
stellar processes as stars evolve. Thus it became established
that the bulk of the nuclei are produced in stars rather than in

the early hot universe, as Gamow had envisaged.

Light Nuclei and the Microwave Background

Between 1964 and 1965 the steady state model received
two near-fatal blows, The realization that the observed helium
abundance in several parts of the Galaxy is considerably higher
than that generated in the atars led astronomers hack to Gamow's
ideas once again. The case for the hot big bang became even

stronger with the discovery of the microwave background in 1965.

The steady state model has not quite recovered from these
two blows. Indeed, if 1t is to survive as a viable alternative
to the big bang it must produce an astrophysical interpretation
for both the above observations, as well as for the cbserved
abundances of other light nuclei besides helium, like deuterium,

Li, Be, and so on.

Energetically, it is realized that increased stellar
activity is required to account for the ohserved helium, and the
resulting additional starlight has to be thermaiized to produce
the microwave background possible scenarios exist in which dust
grains in the intergalactic space act as thermalizers, In working
such scenarios into the steady state model a further constraint
has to be placed on any calculationas. This is the constraint

demanded by the PCP, that is, that the universe in the past was no
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different from the way it is now,

The main difficulties of such attempis are as follows,
Although increased stellar activity can generate gsufficient
helium, the production of deuterium in stars (or supermassive
objects) has not proved so easy, since the deuterium produced
is quickly destroyed. Also, the extreme homogenelty of the
microwave background places severe limits on any theory that

attempts to generate it from discrete sources,

Although attempts have been made by pro-steady state
astrophysicists to construct a viable explanation, the goal has
not yet been achieved. Wor has the problem been abandoned as
insoluble: so the fate of the steady state model hangs in the

balance!

Inflation and the C-field

There is considerable similarity between the C-field
cosmology and the inflationary scenarios currently fashionable,
The idea of negative gtresses of C-fleld cosmology is echoed in
the negative =tresses of the vacuum of inflationary models. The
bubble universe model in which locally the C-field switches from
the creative to noncreative mode is very similar to the emergence
of the Friedmann universe when phase transition is completed in a
given region of the inflationary universe. Further, the result
that inflation wipes out memories of the state of the universe
existing before-hand was obtained earlier for the C-field cosmology

by F. Hoyle and the author.
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ITI MACHIAN COSMOLOGIES
III.1 INERTIA AND COSMOLOGY

Mext we will consider some of the cosmological models
inspired by the ideas of the philosopher - scientist Ernst Mach.
Mach's principle itself arose out of the observation that the
local inertial frame, earlier identified by Newton as the
abeolute space, is one relative to which the distance parts of
the universe are nonrotating. Let us now examine the possible

implications of this observation further,

Whan expressed in the framework of the absolute space,

Newton's second law of motion take the familiar form

BE=mf . : (1T1.1)

This law states that a body of masz m subjected to an external
force P experiences an acceleration f. Let us denote by S

the coordinate system in which P and ; are measured.

Newton was well aware that his second law has the
simple form {(IIT.1l) only with respect to 5 and those frames that
are in uniform motion relative to S. If we choose another frame
8’ that has an acceleration a relative to S, the law of motion
measured in S’ becomes

3;;’ P-ma=me | (111.2)
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Although (ITI.2) outwardly looks the same As {I1I.1), with
E' the acceleration of the body inm s! , something new has entered
into the force term, This is the term ma, which has nothing tec do
with the extarnal force but depends solely on the mass m of the
body and the acceleration a of the refarance frame relative to the
absolute space. Realizing this aapect of the additional force in
(III.2), Newton termed it "inertial force.“ As this name implies,
the additional force is proportional to the inertial mass of the
body. Newton discusses this force at length in his Principia,
citing the example of a rotating water-filled bucket in which the

water surface is curved due to such forces,

According to Mach, the Newtonian discussion was incomplete
in the sense that the existence of the absolute space was postulated
arbitarily and {n an abstract manner. Why does S have a special
gtatus in that it does not require the inertial force? How ¢an
one identify S without recourse to the second law of motien, which

is based on it?

To Mach the answers to these questions were contained in
the observation of the distant parts of the universe. Tt is the
universe that provides a background reference frame that can be
jdentified with Newton's frame S. Instead of saying that it is an
accident that Zarth's rotation velocity relative to S agrees with
that relative to the distant parts of the universe, Mach took it as
proof that the distant parts of the universe somchow enter into

the formilation of local laws of mechanics.

One way this could happen is by a direct connection

between the property of inertia and the existence of the universal
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background. To see this point of view, imagine a single body in
an otherwise empty universe, In the absence of any forces (III.1)

becomes

mE =9 . (I11.3)

What does this equation imply? PFellowing Newton we would conclude
that £ « 0, tﬁat is, the body moves with uniform velocity. But

we now no longer have a background against which to measure
velocities! Thus I =0 has no operational significance. Rather,
£ should be completely indeterminate. And it is not difficult tao
see that such a conclusicn is not inconsistent with {III.3) provided

we argue that

m= 0, (III.4)

In other words, the measure of inertia depends on the
axistence of the background ir such a way that in the absence of
the background the measure vanishes! This aspect introduces a
new feature into mechanics not considered by Newton. The Newtonian
view that inertia is the property of matter has to be augmented to
the statement that inertia is the property of matter as well as

of the background provided by the rest of the universe.

Such a Machian viewpoint not conly modifies local mechanics,
but it alse introduces new elements into cosmology. For,except in
the universe following the perfect cosmological principle, there is
no basis now for assuming that particle masses would necessarily stay

fixed in an eveolving universe, This is the reason for considering
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cosmologlical models anew from the Machian viewpoint. The ideas
presented here give some instances of how different physicists

have given quantitative expression to Mach's principle.

II1.2 THE BRANS-DICKE THEORY OF GRAVITY

In 1961 C. Brans and R.H. Dicke provided an interesting
alternative to general relativity based on Mach's principle. To
understand the reasons leading to their field equations, we first
note that the concept of a variable inertial mass just arrived
at itself leads to a problem of interpretation. For how do we
compare masses at two different points in spacetime? Masses are
measured in certain units, such as masses of elementary particles,
which are themselves subject to change! We need an independent
unit of mass against which an increase or decrease of a particle
mase can be measured. Such a unit is provided by gravity, the so
called Planck mass:

1/2 -
('g—“) e 2.16 x 1077 g, {111.5)

Thus the dimensionless quantity

G 1/2
X = m(iE) (III.6)
measured at different spacetime points can tell us whether masses
are changing. Or alternatively, if we insist on using mass units

that are the same everywhere, a change of y would tell us that &
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is changing. This is the conclusion Brans and Dicke arrived at
in their appreoach to Mach's principle . They looked for a frame-
work in which thé gravitational constant G arises from the
structure of the universe, so that a changing G could be locked

upon as the Machian consequence of a changing universe.

In 1953 D. W. Sciama gave general arguments leading to a
relationship hetween G and the large-scale structure of the
universe. We have already come across cne example of such a

relation in Friedmann cosmologies:

3R2
p =

(=]
o T 16 %o

If we write Ro - c/Ho as a characteristic length of the universe
and Mo = 4wp°Rg/3 as the characteristic mass of the universe,

then the above relation bacomas

1 M M

:- o -\.q‘1~ o sz_2 . (rrr.m
s Roc ° Roc re

Given ; dynamic coupling between inertia and gravity, a
relation of the above type is expected to hold. Brans and Dicke
took this relation as one that determines G - as a linear
superposition of inertial contributions from masses all over the
universe, a typical contribution m/rc2 being from a mass m at
& distance r from the point where § 1is measured. Since m/r
is a solution of a scalar wave equation with a point source of

strength m, Brans and PDicke postulated that § behaves as the
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raciprocal of a acalar field ¢:

G~ ¢, (ITI.8)

where ¢ is expected to satisfy a scalar wave equation whose source

is all the matter in the universe.
The Action Principle

These intuitive concepts are contained in the Brans-Dicke

action principle, which may be written in the form

L ]

A - = J (6R +us L tkok)/—_gd4x ' A (111.9)
Vv
Hotice first that the coefficient of R is c3¢/lsw instead of
c3/16«G as in the Einstein-Hilbert action. The reason for this lies
in the anticipated hehavior of G as given in {r17.8). The second
term, with 4 * a¢/axk, ensures that ¢ will satisfy a wave eguation,
while the third term includes, through a Lagrangian density L, all
the matter and energy present in the spacetime region 1. fThe
ik

energy momentum tensor T is derived from by variation of PP

w is a eoupling constant.

k

The variation of Jb for small changes of g« leads to

the field equations

8n “ 1l 1
Rik_fgika=_c¢'Tik-_¢§ {’1"::'2‘911;“11

1
. “’11: - 9,0 9. {ITI.10)



185

Similarly, the variation of & leads to the following equation

for ¢ @

k R
2000 -4y ¢ = 4, (ITI.11)
This latter equation can be simplified by substituting for R
from the contracted form of (III.10}., We finally get
B»
Q¢ = ——— T, (111.12)

(20 + e

where T 1is the trace of Tik. Thus (IIT.12) leads to the

anticipated scalar wave squation for 3 with sources in matter.

Bacause it contains a scalar field ¢ in addition *o the
metric tensor - P the Brans-PDicke theory is often referred to as

the scalar-tensor theory of gravitation.

Splar System Measurements of o

It is clear from these field aquations that ag w =+ =
the Brans-Dicke theory tends to general relativity. For w .= D(1)
the theory makes significantly different predictions from general
relativity in a number of Solar System tests. These tests are the

same as those for general relativity,

The computation of perihelion precession of the planet
Mercury gives the theoretical prediction of this theory as
{3w + 4)/{3w + 6) times the value given by general relativity. Dicke

‘and his colleagues suggested during the 19708 that if the Sun is
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oblate, with a guadrupole moment parameter of ~ 2.5 x 10‘5, then

the resulting change in its gravitational field would lead to a
perihelion precession of about 7% of the cobserved {unexplained)
value of » 43 arc second per century. Had this been the case the
ralativistic value of ~ 43 arc second would have been too high,
while a Brans-Dicke value of w * & would have correctly accounted
for the residual of ~ 40 arc second per century. However, external
studies of the Sun's surface do not conform with oblateness even
of this order. Hance this test does not give any evidence for w

as small as 6.

The bending angle of a light ray grazing massive spherical
object in the Brans-Diche theory is (2w + 3}/(2e + 4) of the relativistic
value. Since the accuracy of the radioc and microwave measurements
of the bending angle is ~ 5% and the angle agrees with the
relativistic value within this error, the parameter w has to be as

high as ~ 10.

The lunar laser-ranging experiments, however, lead to the
conclusion that > 29, Here agaln the general relativistic value
of the Earth-Moon distance is in excellent agreement with ohservations,
and any departures from it, if they are to he tolerated by the
observations, have to be small enough to demand a large value of w.
Radar ranging to probe landers on Mars places an even more severe limit

on @ by requiring that w>> 500,

It therefore follows that at the Solar System level the
Brans-Dicke theory has to have a large value of w in order to survive,

thus making it practically indistinguishable from general relativity.



However, even for a large w this theory can produce interesting
departures from general relativity at the cosmological level. The

following section outlines these differences.

III.3 COSMOLOGICAL SOLUTICNS IN
THE BRANS-DICKE THEORY

We will consider only the homogeneous and isotropic
cosmological models in the Brans-Dicke theory. Accordingly we
start with the Robertson-Walker line slement and the energy tensor
for a perfect fluid,as in standard cosmology. The scalar-field ¢
is now a function of the cosmic time only. Thus the field

eguations become

" ‘s 2 .. .y -
28 . 57 + ke ix 298 _ w ¢
e Rl Tl Sl Sl (r1r-13)
S dc 2¢
52 + kc2 - BUE _ #5 gg; . (IIT.18)
s® et 45 6

Compare these aquations with the corresponding ones of the Friedmann

cosmologies, The conservation equation is the same:

ad-g (es?) + 3ps? « 0 . {111.15)
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In addition, we have the field equation for ¢ :

1 da P | LR
2 (483 = (e - 3p). (111.16)
g3 dt (26 + 3e?

We anticipate that big bang solutions will emerge from these
aquations and set the blg bang epoch at t = 0. Then the integral
of (I11.16) gives

5% = — 87 I (e - 3p)S° at + €, (T11.17)
{2u + 3)c °

where C is a constant. Two types of solutions are obtained,

depending on whether C = 0 or C ¥ 0.

cC=20

We will consider a simple example of thiz type, with
k=0,p=0, €= pcz. This solution is therefore analogous to

the Einstein-de Sitter model of general relativity. Write

A B
$=5, (::) TR (f;) ] (111.18)
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So that p o« t-3‘ and the field equations give

20 + 2 2 ;
A= 3I.Il_+4 ' B = s'm r3 (III-I"
and
(2w - 3)Ps
Py = —— . (I11.20)
° Brt o

The temporal behavior of S and Guxt-l) is illustrated
in Figure 2. It can be verified that ag v + = this solution tends

to the Einstein-de Sitter model.

An analogue of the radiation model can be obtained in
this theory. H. Nariai obtained solutions for p = n€ with n in

the range 0 <n<1/3.

cC#¥ O

In this case the ¢-terms dominate the dynamics of the

universe in the early stages, Thus for small enough t we have

t

an I
—_— {e -~ 3p) 8
(2w + 3}c a

3 ac <« |cf, {II1.21)

bath for the cases of dust and of radiation. For our power law
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golutions for the case p = 0, we have at small enough +t

Ip+B=1, ¢ = 22 (111.22)

In the case of a radiation-dominated universe p = 1/3¢ and we can

again try a solution of the form {ITT.18) to get az t + O

A" = — AB + — . {III.23)

Taking into account {III.22) we can solve {111.23) to get

L]
Aw Bt 1 Tew/3Y £+ 1 = .1 £3/2u/3) + 1 (IT1.24)
30 + 4 Ju + 4

The upper sign holds when C > 0 and the lower sign when
C«<0. For ¢ >0, ¢+ 0 when S + 0, while for C < W, ¢ » =
for S + 0. These conclusions hold irrespective of the values of Xk
or of the equation of state, since at small values of § the dynamics

of the universe are controlled by the é-term.
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TABLE 1

MASS FRACTIONS OF 2H AND 4Hc IR

ARANS-DICKE COSMOLOGY FOR
*
MATTER-DOMINATED MODELS

-3
g {g em 7}
- 103! 10730 10727
e 7.6 x107% 2.6 x107% 3.4 x10°°
0.26 0.33 0.40
10 7.6 x 107% 2,1 x 1075 ~ 1072
0.26 0.30 0.35
© 6.6 x 1074 1.3 x 107 Y
0.25 0.27 0.29

-* The deuterium fraction is given above the helium fraction.

Production of Light MNuclei

Dicke and G.S. Greenstein independently investigated the
nucleosynthesls problem in the early Brana-Dicke universe. Greenstein
followed the same physical approach as for standard cosmologies,
for the case C = 0. The results obtained by him for ho = 1 are

given in Table 1.
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For each of three values of the present density of
matter Pyt Tahle 1! gives three sets of values for the deuterium
and haliom abundance, corresponding to w = 5, v = 10, and v =00 .
The last case is of course that of general relativity. The
differences between the Brans-Dicke theory and general relativity

2

are noticeable for w = 53 at high values of £y when more H and

4He are formed in the former theory. For w > 30, the present
observed abundances set an upper limit of Py € 5 x J.t)_30 g cm'3 in

the Brans-Dicke cosmology.

In the s-dominated models the constant C c¢an be adjusted
to produce any desirable abundances, high or low. For cosmic
abundances lower than the above value one has to choose suitably low

value of |cC]| .

There is, however, ancther observational handle on C,

which is described briefly below.

The Variation of G

Since G a;¢_1, a time-dependent ¢ will mean a time-dependent

gravitational constant. As seen from (ITI.18), we have for C = 0

G 2 H
a2, 1=~ ] (111.25)

o + 4 w o+

=

Thus |G|G] is of the order of Hubble's constant unless o is large and
its sign indicates that the gravitatibnal constant should decrease

with time {see Figure IXI.l}
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However, for a large enough |C| , the ¢-dominated
solutions differ significantly from the matter-dominated ones even
at the present epochs. In this case for C large and negative

we can have G increasing with time even at relatively recent

epochs,

We will review the evidence for or against G-variation
later.
IIX.4 THE HOYLE-NARLIKAR COSMOLOGIES

Wa naxt consider another gravitation theory that may claim
to have given the most direct guantitative expression to Mach's
principle. This theory was first proposed in 1964 by Fred Hoyle and
the author, and we will rafer to it here as the HN theory and to
the cosmological models based on it as HN cosmologiles. Throughout

this discussion we will set ¢ = 1.

Like general relativity and the Brans-Dicke theory, the
HN theory is formulated in the Riemannian spacetime. There is one
important difference, however, between this theory and all other
cosmological theories we have discussed so far. The difference lies
in the fact that general relativity, the Brans-Dicke theory, and so
on are pure field theories, whereas the HN theory is based on the
concept of direct interparticle action. The difference between the
two types of theories is best seen in a description of electro-
magnetism to which we will fregquently refer in this section and the
next for comparison. Until the advent of Maxwell's field theory, it

wag customary to describe electrical and magnetic interactions as
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instances of direct action at a distance between particles, The
success of Maxwell's theory established the field concept im
physics at the expanse of the concept of action at a distance

{see Figure 3).

Since Mach's principle (implying as it does a connection
hetween the local and the distant) suggests action at a distance,
even an early convert to it like Einstein later became skeptical
as to its validity. By the early 1960s, however, it became clear
that action at a distance can successfully describe electrodynamics
and that it has interesting cosmological implications. Since
Hoyle and the author had played an active role in these developments
(see ref, [3]), thay naturally adopted an action-at-a-distance

approach to Mach's principle.

Accordingly, we use here the somewhat unfamiliar notation
of action at a distance. Let us dencte by a,b... the particles in
the universe, m. Oy being the mass and charge of the ath particle.
As implied by Mach, the mass m, is not entirely an intrinsic
property of particle a: it also owes its origin to the background
provided by the rest of the universe. To express thias idea

quantitatively, write

m o) = 2 mPhay. (I11.26)
a ay
=g
The above expression means the following. At a typical world peint
A on the world line of particle a, the mass acquired by a is the net

sum of contributions from all other particles b [ # a) in the universe,
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The contribution from b at A is given by the scalar function m (P
{A). The coupling constant AB is intrinsic to the particle a,

Notice, however, that if a were the only particle in the universe

m, = 0 and we have the conclusion arrived at in (III.4).

A Digression into Electromagnetic Theory

What are these functlons m(b’ {X}? That they communicate
the property of inertia from particles b to any particle placed at
the spacetime point X {3 clear from the context. To arrive at a
suitable form for them we take hints from action-at-a-distance
electromagnetism, in which it is usual to introduce electromagnetic
disturbances that arise specifically from sources, that is, from
moving electrical charges. Accordingly, we introduce the 4-potential
Aib) (X} as denoting the electromagnetic effect at X from the

alectric charge b, The A{b) {X) satisfies the wave equation

(b} k , {b} (b}

DA + Ry AT = 4w Jy (II1.27)

whera Jib) is the 4-current density generated by the charge b, The

solution of {III.27) may be written in the integral form

b)

k
i (X) = 4x I Y Guc (X,B) db

A {I111.28)

where G {¥,B} 13 a Green's function of the wave operator

ik
*
(gt[] + Rf}. The wall ~known C.unlomb potential is a special case of

(III.28).
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The Green's function is not uniquely fixed from the form
of the wave operator alone, Boundary conditions must also be
specified, The customary boundary condition is that imposed by
causality; that is, the influence from B to X must vanish if X
lies outside the future light cone of B. The Green's function
satisfying this condition is called the retarded Green's function.
We will denote such a Green's function with a superscript R.
Similarly a Green's function confined to the past light cone of B
is ealled the advanced Green's function and is denoted with a

superscript A (see Figure 4).

Thege Grean's functions have played a key role iln action-
at-a-distance theories. It was originally believed that action at
a distance must be instantaneous and hence inconsistent with the
framework of special relativity. However, K. Schwarzschild, H.Tetrode,
and A.D. Fokker demonstrated during the first three decades of
this century that a relativistically consistent action at a distance
theory can indeed be formulated. If we consider two spacetime
points A and B with szas as the invariant square of the relativistic
distance between them, then a{sis), whare & is the Dirac delta
function, is a convenient function for transmitting physical influ-
ences between A and B. For this function acts only when A and B
are connectible by a light ray (that is, when siB = 0}, This delta
function therefore necessarily occurs as the main component in any

Green's function in the action-at-a-distance theory. The action

-principle, which is the basis of the electromagnetic theory in
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Riemannian spacetime, is described bhelow, We start with the action.

A==l dree I [ &, aa® av (171.29)

whera Eik' is the symmetric Green's function gilven by

= T R A

Gik {r,B) = 3 [Gik {A,B) + Gi‘k (A,B)] . .UIIJO,
Thus Eik (A,B) = Eik {A,B} and each term in the action is

completely symmetric between each palr of particles, The action
{ITT.29) together with sultable cosmological boundary conditions
reproduces all the electromagnetic effeacts of the standard Maxwell

field theory.

That cosmological boundary conditions are necessary in
the action-at-a-distance framework is seen from the following simple
illustration. Any retarded signal emitted by particle a will get
an advanced reaction back from b, as shown in Figure S. This
signal from b arrives at a at the same time that the original signal
left a, no matter how far away b is! ‘Thus electromagnetism ceases
to be a local theory: any so-called local effect must take account
of the response of the universe, which consists of reactions from
all such particles b other than a, This was pointed out first by
J.A. Wheeler and R.P., Feynman in 1945. Later, between 1962 and 1963,
J.BE. Hogarth, F. Hoyle, and the author showed that this response
depends on the model of the universe. A “"correct" response eliminates

all advanced effects except those present in the radiation reaction,
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Tt is interesting (and significant) that the steady state model
discussed in Chapter 9 generates the correct response, while all

Friedmann models fail to do so.

Inertia and Gravity

our purpose in the above digression into electromagnetism
wasS to show that a similar approach to inertia leads us to a
Machian theory of gravity, 1In the case of inertia we note that the
functions m(b) (X) are scalars and so we have to deal with scalar

Green's functions. Thus we write

m® (x) = I A € (x,8) as, (111.31)

and the inertial action as
A - E I I A, Ay, Tia,B) as, ds,. {111.32)
a < ’

Ead
what is G(A,B)? Again we proceed by analogy with electromagnetism.

From symmetry considerations we need E{A,B} ='E{B,A}.
Further we require @ to be a Creen's function of a scalar wave
equatien. To fix E? completely we use another hitherts undiscussed
property of Maxwell's electromagnetic theory known as conformal

invariance.
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Conformal Invariance

Let us consider the transformation

Ty * o g, {111.33)
whaere @ is a twice-differentiable function of coordinates xi and
1ies in the ranga 0 < 2 < =, Such a transformation is called
conformal transformation, Given a spacetime manifoldeﬂt with
coordinates {x } and metric {gikl, we have through (III.33) qenerated
another spacetime manifold JL with the same coordinate system (x )
but with a different metric (n gik) . M and ﬁt are said to be
conformal to esach other. If J% is flat then J{ is said to be

conformally flat.

If we identify the corresponding points {with the same xi)
in $1 and‘jz , we will find that, in general, distances between two
points are stretched or compressed when we go from J( to jz . However,
the null-cones in both the manifolds are unchanged, This invariance
of null cones id distinct from the invariance under coordinate
transformations. The coordinate transformations preserve the null
directions locally, and they are important in field theories that
describe physical interactions lgcally, The action-at-a-distance
theories describe interactions globally and must take account of
the global structure of null cones. Hence such thecries are
expected to preserve their form under conformal tranaformations as

well,



Tt is easy to verify that the scalar curvature changes
under the conformal transformation to
F=q2 {R +6 9—5‘1_-} (IIT.34)
where [] is evaluated with respect to the metrie (gik)° There are,
however, certain quantities that do remain the same under a
conformal transformation. These are known as conformally invariant
quantities, It is easy to see for example that the action

describing Maxwell's field theory is conformally invariant. Consider

the changes

Ai = Ai + gi { ¥ = a scalar function)

These changes leave the form of Maxwell's equationsz intact.

We now fix the form of‘E(A,B) by demanding that cur inertial
action {(III.32) is conformally invariant. Since under the
transformation (ITI,33)

dsa = R(R)dsa. dis = n{B) dlb. (1171.35)

we must havae

T8 = et am™l Ewm,s). {II1.36)
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The only scalar wave operator that permita (III,J6) is then
o« -é— R, (111.37)

In other words, E(X,B) satisfies the wave equation
1 -1 -1/2
E]x +1 n(x)] d1x,8r = [Fatx) T2 o, (x,m. (111.38)

s‘(x,B) is the four-dimensional Dirac¢ delta function, which
vanizshes unless X = B. Thus we have ensured that the action-at-a
djistance theory given by (III,32) does not change under conformal

transformations.

ITT.S THE GRAVITATIONAL EQUATIONS OF HN THECRY

The action of HN theory is given by (II1.32)}, and with the
‘help of definitions (III1.26) and (TII.31} we may write it as

ﬁ = - Z Ima ds, . {111.39)
[ 8

Written in this form this action appears to have only the inertial
term describing free particles, How can such an action yield any

gravitational equations?

The answar to this question lies in the fact that the ma's

in (IIY.39) are not constants but depend on spacetime coordinates as
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well as on spacetime geometry. For they are defined with the
help of Gireen's functions, which in turn are defined in terms of

spacetime geometry. Thus if we make a smal) variation

CITIRaR FTSR L T

the wave equation (II1,38) will change and so will its solution.

Thue we will have
Eia,B) + &(a,B) + §8(A,B)

and hence J* - d}+ 6}& . We therefore have a nontrivial problem
whose solution may be expressed in the following way. To simplify
matters we will take all aa to he equal to unity. (Later we will

relax this assumption.)

Define the following functions:

noo =3 nf*on < Lt + w0, (IT1.40)
a

s () = mfx) mPexy, (111.41)

v = 1 [ oy (o017 as,. arr.a)
a

ps in the electromagnetic case, we have chosen the symmetric



{half R + half A) Green's function. The gravitational equations

then become (with ™My My ):

1 ¢ 1
R = 3 Ty R= - 3 (Tyx = g (9 D¢~ 4!

1 A R _A
i

-3 (m? " +omom

- pa R _A
Iy & M, Mgl (ITI.43)
together with the "source" equation for m(X)
m+ x km = N, (ITY.44)

This derivation leading to the final set of equations of
the theory may appear somewhat long-winded to anybody unfamiliar
with the techniques of direct interparticle action. We have
followed here the method used by Hoyle and the author, who arrived
at this theory via their earlier work on slectromagnetism. As in
the electromagnetic case, the universe responds to a local event.
Ta ensure causality and to eliminate advanced effects, the correct

response should be given by

s‘m(&]h (X) = Em[a)R{X) = m{X). {I71.45})
A a

Under these conditions the equations (III.43) further simplify to
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Had we adopted the standard field theoretical approach and
introduced a scalar inertia field miX), we could have arrived at

(TIX.44) and (III,46) from the action given by

A = J { Il'z' rmé + ml '“ig /=g a¥x - E fmdsa. (1I1.47)

The action-at-a-distance approach, although unfamiliar to a typical
theoretical physicist, is useful in that it gives direct expression
to Mach's principle. The physical interpretation of the field
theoretical term {I¥1.47) is not so easy to see. For this reason,

we have discussed the former approach at some length.

Notice that in the former approach our action (ITI,39)
contained only the last term of (IITI.47), but there m was made up
of nonlocal tweo-point functiongs., Here m 1s a straightforward field
with scurces in matter whose dynamic properties are defined through

the first term in the ahove action.

Since the property of conformal invariance was used in the
formulation of the theory, we expect the final eguations (TIT.44)
and {(ITT1.46) to exhibit conformal invariance, Thig expectation is

borne out. If (qik’ m) are a solution of these agquations, then
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- 2 —= 0 m. I1I.48
Ty =V Tger O t '
Thus apart from coordinate invariance of general relativity, this

theory also shows conformal invariance.

Tt is well known that the coordinate invariance of the
action leads to a conservation law for the energy momentum tensor.
In this case the conformal invariance of the action leads to a
vanishing of trace of the field equations. It may be easily verified
that the trace of (III.46) vanishes in view of (III.44). The
vanishing of trace represents the fact that the problem is under-
determined. Just as the vanishing of Ttt in general relativity
gshows that more solutions can be generated from any given solution
by coordinate transformations, 80 we can generate more sclutions
through (III.48)}. All these solutions are physically equivalent
provided we stick to the rule that ¢ does not vanish or become

infinite,

Suppose we are allowed to choose an @ in the above range that

ensures that

7= a1 m= constant = . (ITT.49)

This cholce of R is possible provided m doss not vanish or become

infinlte. 'This conformal frame is called the Einstein frame, for
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from {I11.49) we get a simplified form for (II1.46).

. 3 - - a
Ry = 5 94 R K Typr (ITI.50})
with the constant « given by
) &
¥ = =5 . {ITI.51)
mO

Thus we have arrived at Einstein's equationsl At first
sight we don't seemed to have gained anything. We have no new
theory and hence no new predictions, as in the Brans-Dicke theory.
Closer examination, however, reveals several ways in which this

theory goes beyvond relativity.

1. Cur starting point was based onIMach's principle., It is
only in the many particle approximation, whaen the response condition
{IIT7.45) is satisfied, that we arrive at the final Einstein like
field equations. An empty universe in relativity is given by

R,, = 0.

ik
which can have well-defined spacetimes as solutions. Test particles
in such gspacetimes will have well-definad trajectories. Such
trajectories would not make any sense according to Mach, since we
no longer have a material background against which to measure the

motion of these particlea, These solutions in fact correspond to



the £ = 0 solutions of (III.3}. In the HN theory an empty

universe corresponds to
4
m=0, indeterminate Typer

in aceord with the Machian m = 0 solution of (III.J).

2. The sign of x is fixed arbitrarily in general relativity.
Heither in the heuristic derivation of Finstein nor in the Hilbert
action principle is ¢ reguired to be positive, It is only when

« i3 determined by reference to Newtonian gravity in the weak
field approximation that we conclude that « > 0. In the HN theory
shows that x must necessarily be positive. [(This conclusion does
not depend on our assumption of L 1; the result follows what-

ever sign the A, are given.)

3. In the direct interparticle approach it is not possible to
accommodate the A-term of cosmic repulsion, Thus Occam's razor
automatically comes inte play. In relativity the i-term is still

posaible.

4. The transition from (TII.46) to (IYI.50) is possible
provided 0 < ft « =, What happens If we break this rule? Suppose

in the solution of (III.46) we had a hypersurface on which m = 0, If
we insist on the transformation (IIT.49) in a region that contains
such a hypersurface, we have to pay the price of g + @, which in turn
produces spacetime singularities. The work of A.K. Kembhavi in 1979
showed that the well-known cases of spacetime singularities of

relativity arise because of the occurrence of zero mass hypersurfaces
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in the solution of the equations (IIT1.46). For a simple example
of this conclusion let us look at the standard big bang singularity

nf relativitcy.

Consider the Minkowski line element {with ¢ = 1)

2 2

as? = at® - ax? - ay® - dz (I11.52)
as a solution of {III.46). It is easily verified that the mass
function satisfying both (IXII.44) and (IIT,.46) for a uniform number

density N of particles is
m= t {I1I.53)

This is the simplest possible cosmological solution in this theory.

If we now insist on going over to a frame with constant
mass m, then from {ITI.48) we see that the appropriate 2 must be

given by

Q= 12. (III.54)

Howaever, Q vanishes on the hypersurface m = §, The trans-
formation to the Einstein conformal frame is therefore "illegal."
The price paid for insisting that m = constant is that the
resulting model has a geometrical singularity at v = ¢. 1In fact it
is easily verified that the new model is none other than the singular

1/3

Binstein-de Sitter model. (Make the time transformation 1 = t to

demonstrate this result explicitly.)



5. It is instructive to see how the phenomenon of Hubble
redshift is explained in the flat spacetime model of {111.52) and
{II1.53). Clearly, a light photon traveling in Minkowski space-
time dces not undergo redshift. Consider, however, what happens
to a light photon arriving at the ohserver at the present epoch

t from a galaxy at a distance r. This photon originated in an

o

atomic (or molecular) transaition at time T, T F-

From atomic physics, the wavelength of a photon so
transmitted varies inversely as the mass of the electron (making
the atomic transition). From (ITI.53) we mee that if 1 is the wave-
length of this photon and lo is the wavelenqth of a photon emitted
in a aimilar transition at r at the cohserver, then
mttoi tg

1 +2 2 _:.. - - = . {III.55)
o mtro—r) (to - r}

Thus the redshift in the above HN cosmology arises from the variation

of particle masses.

6. A variable gravitational constant arises in the HN cosmologles
if we relax the assumption that la are constants. If ka change

with time it is poseible to generate cosmological models in which G
changes with time. We will not discuas such models in detail. The

result may be stated in the form

g. - aH, (I11.56)
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where H is the Hubble constant of the epoch of measurement and

a is a constant of order unity.

It was shown by Hoyle and the author in 1972 that ia
increasing with time may be interpreted as creation of new particles
in the universe., They did not give a dynamic theory of matter
creation (like the C-field theory), but instead fixed the time
dependence of L by an appeal to the lLarge Numbers Hypcthesis.
Since this hypothesis 1s discussed next, we will postpone further

discussion of the HN cosmology.
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IV THE LARGE NUMBERS HYPOTHESIS

.1 THE LARGE DIMENSIONLESS NUMBERS OF PHYSICS

Physics ie riddled with units of various kinds and with
experimentally determined gquantities of various magnitudes. From
this vast collection certain constants emerge as having special
significance in the framing of basic physical laws; for example, the
constant of gravitation G, the charge of the electron e, and sso on.
The numbers expressing the magnitudes of G, e, and so on depend on
the units used. For example

10

e = 4,80325 x 10~ elactrostatic units

= 1,60207 x 10—20 electromagnetic unitsa,

Clearly these numbers by themselves cannot have abmolute significance.

However, certain combinations of these physical constants

have no units at all. For example, the combination of 4, ¢, and e

% - 137.03602 (Iv.1)

e
does not depend on the units used. It must therefora axpress some
physical fact of absolute significance, Indeed, its reciprocal
ezzhc, known commonly as the fine structure constant, expresses the
strength of the electromagnetic interaction, which we beliave to be
an intrinsic property of nature. A future more complete theory may

well give a reason why this constant has this particular value.
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Given e, G, and the masses of proton and the electron
m_ and L we can construct another dimensionless constant {(that

is, a constant with no units):

a 2

Gm_m
P

= 2.3 x 1037 ~10%0, {1v.2)

T™is constant measures the relative strength of the electrical

and the gravitational forces between the electron and the proton.
Like (IV.l} this constant reflects an intrinsic property of nature.
However, unlike (IV¥.1), the constant in (IV.2) is enormously large!

why such a large number?

Perhaps the appearance of a large dimensionless constant
might be dismissed as some quirk on the part of nature. The mystery
deepens, however, if we consider another dimensionless number, This
is the ratic of the langth scale associated with the universe,
c/Ho, and the length associated with the electron, ezfmecz. This

ratio i=s

m
e 40 -1 40
_-;—QT = 3.7 x 10 hO A 10 . (IV.3)
L]

Not only do we have another large dimensionless number in {IV.31,

but it is of the same order as in (IV,2).

We can generate another large number of special significance

out of particle physics and cosmology. pssuming the closure density
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p , Llet us calculate the number of particles in a Euclidean
sphera of radius c/Hc. the mass of each particle being L The

answer is

~ 10 . {IV.4)

Thus takinq.ﬁr as a standard we see that the large dimensionless

numbers of (IV.2) and (IV.3) are both of the order N1/2,

Reactions among physicists have varied as to the signi-
ficance of all these numbera. Some dismiss it as a coincidewce
with the rejoinder: So what? Others have read deep significance
in these relationshipa. The latter class includes such

distinguished physicists as A.S8. Bddington and P.A.M. Dirac.

Dirac pointed out in 1937 that the relationships (IV.3)
and {IV.4) contain the Hubble constant Ho' and therefore the
magnitudes computed in these formulae vary with the epoch in the
standard Friedmann model, If so, the near eauality of (IV.2} and
{IV.3) has to be a coincidence of the present epoch in the universe,
unless the constant in {IV.2} also varies in such a way as to
maintain the state of near equality with {IV.3} at all epochs. With
this proviso, the egquality of (IV.2) and (IV.3) iz not coincidental
but is characteristic of the universe at all epochs, This proviso
also implies that at least one of the so-called constants involwved

in {IVv.2}, e, mp. m, and G, must vary with the epoch.
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This proviso has been generalized by Dirac to what he
calls the Large Numbers Hypothesis (LRH}. To understand this
hypothesis we rephrase the ratic (IV.31) as that between the time

1

scale associated with the universe, T = H; , and the time

o
taken by light to travel a distance of the order of the classjcal
electron radius, te = ez/meca. The LNH then states that any

large number that at the present epoch is of the order

where & is of order unity, varies with the epoch t as (t/te)r

with a constant of proportionality of order unity.

Applied to (1IV.2), therefore, the LNH implies that the
ratio e?‘/Gmpme must vary as (t/te}'l. Dirac made the distinction
between e, m,, mp on one side and G on the other in the sense
that the former are atomic {small-scale gquantities) which G has
macroscopic significance. In the Machian cosmologies G was in
fact related to the large-scale structure of the universe. Dirac
tharefore assumed that 1f wa use ratomic units" that always main-
tain fixed values for atomic quantities, then &, will be congstant
and Got tl. That is, in terms of atomic time units the gravita-

tional constant must vary with the epoch t, with lc/G 4.

We will now explore the implications of LNH for cosmology.
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.2 THE TWO METRICS

Clearly the variation of G predicted by the LNH goes
against Einstein's theory of gravitation, which demands a constant
G. As in the Brans-Dicke theory of Chapter 10, we are forced
to modify the relativistic framework to accommodate a varying G.

Dirac approached this problem in the following way.

Pirst he tobk note of the many Solar System tests that
are in favor of general relativity and argued that the theory
should not be abandoned altogether. Instead, Dirac proposed two
scales of measurement, one holding in atomic physics and the
other in gravitation physics., If we choose the atomic system, we
will be able to describes atomic physics in the usual way, that is,
with constant values for the atomic constants like e, A, L mp.
and s0 on. However, in thias system G will be variable, since
Dirac considers it a conatant belonging to gravitation physics. If
on the other hand we use gravitational units, then according to
Dirac G will be constant and atomic quantities will be found

variable., And in these latter units the gravitational phenomena

can be desacribed by the Einstein equations.

These two units can be specified in Dirac's framework by
having two different spacetime metrics, We will denote these by
dsi and ds: respectively for the atomic and the gravitational
systems {(the subscript E in the latter case committing us to
Einstein's equations of gravity}. We will use these subascripts in

general on any physical quantity to indicate what system of
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measurement is being used. Thus according to Dirac

ars constants, while

GA: (me,E ’ [mp)f.

are variabkle.

Returning to the astronomical tests of general relativity,
we note that the mass of the gravitating hody (for example, the Sun)
occcurs in the Schwarzschild solution. Clearly this mass, which is
the gravitational mass, must be a constant in the gravitational units.
We denote this mass by Mp. Any measurements made on the Earth,
howaver, use atomic systems (such as spectrometers and atomic ¢locks),
and before we interpret any experimental result we must make sure

that all observable guantities are transformed to atomic units.

This argument tells us how neceasary it is to know the

ratio

dsE

g = as—la (IV.S)

and how the transformation is to be made of any physical quantiry
from one system of units to another. Here we need a quantitative
theory to guide us, a theory that goes further than the above
qualitative arguments have so far taken us. We will come to this

problem saon.
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We also note another outcome of our Salar System example,
If we agssume that our astronomical body has NE nucleons, each

of mass mF, then we may write
ME = m, NE = my N {IV.6)

wherae we have dropped the suffix E on N because it is a pure number.
Whatever matric we use, we will count the same number of particles

in the gravitating body. In (IV.6) we have M_ = constant,

E
mg # constant, since the latter is an atomic quantity. Thus

N # constant. 1In other words, wa are forced to conclude that the
numbhar of nucleons in the body must change with time. Again we
need a guantitative theory to tell us how N changes:; but creation
{or destruction} of nucleons in a macroscopic object is demanded

by Dirac's argument.

So far we have not used the LNH, which started us on the
two-metric theory. Let us now see how it helps us in deciding how

the nonconservation of nucleon number in the body is regulated.

The Creation of Particles

If we go back to (IV.4) and apply the TNH to A , we
easily find that k = 2, that is,

2
N (t) ~(§-) —_—_ (wv.n

In other words, the number of particles in the universe in the

sense defined in SIV.1l increases with t. Dirac has taken this
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result to imply that particles are being continually created in

the universe.

The creation can occur, according to Dirac, in two possible
ways, In additive creation the particles are created uniformly
throughout space, while in multiplicative creation the new particles
cccur preferentially where matter already exists. Thus in the former
made creation occurf mostly in intergalactic space, while in the
latter mode creation occurs mostly in the vicinity of existing

astronomical objects,

Using these ideas we return to (IV.6). 1In additive creatiom
the astronomical body will not acquire any significant number of
new particles and thus N = constant, giving

m. = conatant {additive creation) (Iv.8)

F

In multiplicative creaation N must increase as tz and hence

.

m, = t™2 (multiplicative creation). (Iv.9)

The Determination of ¢

The connection between dsA and dsP canp be fixed by
considering the motion of a planet {such as the Earth) arcund a
star {the Ein). The dynamic equation in the Newtonian approximation

is

GM = y°r {Tv.1,)
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where M = mass of the star, v = speed of the planet, and

r » radius of the orbit., The above relation is expected to hold
in either of the two systems of units, since GM/vzr is a
dimensionless quantity. Also, with ¢ =1 the speed v ia
dimensionless. Thus v = constant in either units. Next, in
gravitational units HE = constant, G_ = constant, hence

F

rE = constant.

If {IV.2) is used with atomic units, we have

-1

Gi\ At T, . (IV.11)
Also, in multiplicative creation Ma = tz while for additive
creation HA = constant, Hence in these units

rA.,t {multiplicative creation), (IvV.12)

LY t™} (additive creation). (Iv.13)
thus we have

Fa

et (multiplicative creation} (Iv.14)

E
and

A ,-1

=~ t (additive creation). (IV.15)

E

In other words, measured in atomic units, the distance of the planet

from the star increases with t 1f the universe has multiplicative
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-~

creation of matter, and the dintance decreases with t {as t'lj

for additive creation. We will consider in Chapter 13 the
observable consequences of such an agsertion.

From (IV.14) and (IV.15) we get the behavior of g defined

in {IV.5). This ratio of ds, to ds, behaves as ™t or ¢,
depending on whether we have multiplicative creation or additive

creation in the universe.

v,.3 COSMOLOGICAL MODELS

Using the LNH Birac constructed cosmological models in
both the circumstances discussed above, namely for multiplicative
and additive creation. AS in the case of standard cosmologies,
the assumptions of homogeneity and isotropy lead to the Robertson-

Walker line element in atomic units:
2 2.2 o2 ar? 2 .2 2. ,.2
dsA = gfdrs - 87t} :—;!' +r . (de” + sin“e d¢ ).] (IV.16)
How does the LNH determine k and S(t}? We reproduce below the

argument given by Dirac.

Pirst we note that the matric proper distance at time ¢t

between a galaxy G at r = 0 and a galaxy at r =1y is given by

"1
arc

o -\/1-1-::!

According to LNH, for large t {that is, for t» te) the expressaion

d s 5(t} : s(e) £ (rll- {Iv.17)

for $(t) should be A:tt/te)n or ln(t/tel. The (metric) recession
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velocity corresponding to (IV.17) will therefore be given by

&~m:;“ f(rlitn-l or dm~tl E(r,). (1v.13)

The constants multiplying (t/teln or tn(t/te) in 8(t}
must he on the order of unity, and hence the constants implied in
the (~) relation above are alsc on the order of unity. It is
then esasy to verify that except for n = 1, there exists an epoch
either in the past {for n ¢« 1 or for S~ 1ln t) or in the future
(for n » 1} when & = ¢ for any galaxy with ry > 0, For example,
for n = 1/2 we find that for a galaxy that at present has é A310'3c,

the condition @ = ¢ occurred in the past epoch given by

T
- o -6 34
tp } t'—-'. } « 10 te:-u 10 te.

That is, tp/te is a large number, However, by the LNH, tp is a

constant epoch when a significant event took place for galaxy Gl'
its recession speed became egqual to ¢. Hence such a constant epoch

should not generate a large number. Therafore only the case.
S(t) ~v {t/te‘l (IV.19)

is permitted by the LNH,

The arguments given above could be critieized on the
following grounds. The epoch when d = ¢ is not unigque to the model
a3 a whole; it depends on f(rlj and hence on the galaxy chosen. So

it is not necessary that LNH should apply to this epoch. Nor is it



22

clear why é « ¢ ghould ba considered significant. Nothing special
happens to the galaxy in question when lts metric velocity of
recession becomes equal to ¢ for the observer at r = 0. No

¢global property like the event horizon or the particle horizon enters

the argument.

Nevertheless 1f we follow the argument further , then we

can write our cosmological line element as

2
as? = c? at? - (ae)? [ﬁ, + 2 (ae? » sine asd) ].uv.zo)
where A 1is a constant. We next consider multiplicative creation,
Since in this case from §$IV.2

- -1
g * t d!a' (W. 21)

it is easy to see that a tranaformation

= td-_tt
at, = (1v.22)

gives us

2
2 _ 2 2 _ 2 dr
ds.E = th A I:

— + rz {de.l2 + sinza d¢2}] . (IV.23})
1 - kr

Now we recall that the above line element must be a solution
of Einstein's equations. In fact Einstein did obtain such a static

solution for homogeneous and isotropic dust with the use of the i-term.



Thus provided we admit the i-term, the spacetime of {IV.23) is
none other than the spacetime of the Einstein universe with

kK =+ 1. With a suitable acaling of the r-cocrdinate we can
express (IV.23) in the atandard form. Notice, however, that
unlike the Einstein universe this Dirac universe does show the
rhenomenon of redshift of galaxies. For redshift measurements
involve comparisons of the rates at which atomic clocks run at the
amitting and recelving galaxies: and for such comparisons the line

alement (IV.20) instead of (IV.23) must be used.

For additive creation the situation is more complicated.
In the multiplicative creatlon case the gravitational mass of an
astronomical object was held constant in the gravitational units
in spite of creation of new particles, by letting the particle
masses decrease with time. In the additive creation case the particle
hmasses remain constant eaven though theilr number increases [see (IV,8}]).
Dirac was therefore faced with apparent nonconservation of energy.
To conserve energy Dirac propeoeed that alonyg with positive mass
particles an equal number of negative mass particles is also created.
The negative mass distribution is homogeneous and remains undertectable
by standard astronomical observations, In a completely homogeneous
asituation the positive and negative mase distributions compensate
gravitaionally to produce flat MinkowskXi spacetime., The formation
of stars and galaxies by the accumulation of positive mass particles
in the actual univarse is a result of small departures from this

completely homogeneous aituation.
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It is worth pointing out that when Dirac first proposed
a cosmological model based on the LNH between 1937 and 1938 he
assumed no matter creation, In this model the number of particles
per unit coordinate volume is constant, as in standard cosmologles.
Hence the number of particles per unit proper volume goes as 5-3,
and since the proper volume of the universe goes as (c/H)a, the

number of particles in the universe denoted earlier by goas as

3
-3 c ay ™3
-1 (E) = {8} ~,

However, by LNH we know that

N = 2, (IV.24)

Therefore we have

t2 S3 = ¢onstant,

that 1=,

5 = tl/s. (IV.25)

Thus for no particle creation § increases much more slowly with
t. (Of course, this solution is ruled out if we apply the LNH to

the function S, as we did in the beginning of this section.)



Iv.4 THE SCALE COVARIANT THEORY OF GRAVITY

In 1977 V.M. Canuto and S.H. Hsieh proposed a field theory
to incorporate Dirac cosmology., As we have seen in the case of the
steady state theory, the C-field theory gave a field-theoretic
description of creation of matter that was demanded by the deductive
approach of the perfect coamological principle. In the same way
this theory attempts to provide a quantitative framework for the

deductions of LNH.

It is clear from the preceding discussion that the crucial
- function needed to quantify Dirac's arguments ia the function 8
relating the two metrics d'n and dag. How do we determine g7
In the theory proposed by Canuto and Hsieh, called by these authors
the Scale Covariant Theory of Gravity (SCTG), the first step is to
note thﬁt a physicist making measurements on the Earth uses the
atomic metric rather than the gravitational metric. How would the
gravitational equations look in the atomlc metric? The answer to
this question is straightforward when we note that the two metrics

are conformal to each other,

For convenience let us drop the suffix A on the atomic
metric and on all other guantities measure@ with this metrig¢., Write
therefore
axt dxk. {IV.28)

as? axd ax® = e

2
* 94k 9ikE

Then, since wa know that the metric tensor . gatiafies Einatein's
9ike
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equations, we can work out the equations satisfied by the atomic
metric tensor gik' A strajghtforward manipulation gives the

answer as

1 2 1
Rix “ 29k F= - Ty ~ 581k * AL LR

+ ;15 g;, (28008 - pd

p,z). (IV,27)
Here everything is expressed in terms of the metric tensor Diget

The energy momentum tensor T of the rest of the physica in

ikE
the gravitational metric becomes Tik in the atomic metric. So
long as scale covariance {that is, conformal invariance) is main-

tained, we have definite prescriptions for ohtaining Tik' Thus

if Tik? iz the perfect fluid energy tensor derivable from the
action
- E c T my dsa {1v,28)
E

then scale covariance of the theory demands that to preserve
{IV.28) in going from dsE + ds we must have masses tranaforming

as
M, > M= ma {1Iv.29)

Notice, however, that if the masses m in (Iv.28) are

constant, the SCTG §ives nothing different from general relativity!
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For the particle masses m, must vary in the gravitational frame-
work (multiplicative creation) and stay fixed in the atomic frame-
work., Clearly then we need some prescription to tell us how the m,
vary in the former framework. Or, alterpatively, the standard form
(IV.28) must be replaced by something different involving g , in such
a way that the result m_= congtant emerges in the atomic frame-
work., Although the S5CTG does not specify how this is done, we will
assume henceforth that this is the case. (This is one of the two

aspects in which the SCTG is not yet complete. The second aspect

ts discussed shortly.)

What is 67 If we take the trace of the equations (IV.27)

we get a wave egquation for g:
B+]_'R3-‘T (IV.30)
6 3’: -

However, this wave equation is not independent of the field
equations and therefore does not supply any new information. The
situation here is similar to that for thea Hoyle-Narlikar theory of
the last chapter. Indeed, the unknown & can be eliminated by

transforming back to the gravitational metrie,

Clearly, to say what 8 is, that is, how the atomic units
are related to gravitational units, a new and independent scurce
equation for 8 is needed., Canuto and Fsieh have so far not been
able to suggest how this equation is to be obtained. As they have
pointed out, the scale covariance must be broken by such an eguation,
hence untll this symmetry-breaking term is introduced the SCTG

remains incomplete.



So in the absence of a true equation for & we have ko
fall back on the LNH to determine g8 . It can be shown, for
example, that G is a definite function of P corresponding to

the cases of no creation and multiplicative creation:

GER = constant (no creation) {Iv.31)

GB-l = constant (multiplicative creation) {IV.32)

Canuto and Hsieh have called £ the gauge function, and
(Iv.31} and (IV.32) are examples of fixing specific gauges. A
complete theory should be able to tell whether eiéher of the two
gauges (or some other gauge} is the correct one. It is almo worth
noting that in this framework the variation of the gravitational
constant depends on the variation of 8 and the gauge chosgen. Thus
if experiments give ;/B > 0 then (IV.31) gqives é/G « 0 while

{1v.32) gives G/G » 0O,

Iv.5 HN COSMOLOGY REVISITED

Some of the ideas of Dirac and of Canuto and Hsieh are
found in a version of HN cosmology proposed by its authors between
197 and 1972. 1In our earlier discussion of the HN cosmology we
considered the case where la, Ab"" the constants that denote the
strength of the inertial interaction, are true conatants, If,
however, these constants vary with time, new cosmological models
emerge. In these models the following properties hold: (1) there

is particle creation at all epochs in such a way that the LNY is



satisfied, (2) in atomic units G varies, while (3} in the
gravitational units G is constant and particle wasses vary. Thus
this model is like the multiplicative creation model later

proposed by Dirac, although ;ts motivation and quantitative details

are different., We briefly illustrate how this model works.

Consider a homogenecus and isotropic Minkowski universe

given by

2 2 2

- dr® - r (da2

ds: = dr + sinZe as?, (1Iv.33)

where we have put ¢ = 1 for convenience. Let n(r) be the particle
number density and i(r) the time-varying inertial coupling
constant of (IV.31). The functions ni{1) and X(y} vary in such a way

as to compensate each other's effect; that is, to maintain
An = constant. {1v.34)

Thus the mass function m{:} is the same as if we had a universe of
uniform particle number density n = constant and fixed . As in

{IV.53) we then get

m{r) : 12. {Iv.35)

Since sz = constant, we get the gravitational constant in the

Minkowski framework as

Gy =1 . . {IV.36)
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The mass of a typical particle is not, however, m(t) but im(r}.
To determine it we need to know A{t). Hoyle and the author
determined i(t) from a reguirement that the universe is opaque
to electromagnetic radiation along the future light cone. A
thorough discussion of this issue will take us to the absorber
theory of radiation, which lies beyond the scope of this book. We

simply quote the result.

This requirement fixes X{1) = ! and n(e) « 1. It is

then verified that the LNH is incorporated by the fact that the
dimensionless number

2

X (13

11172 « constant = 0(1). (Iv.37)
A conformal transformation

dsE = nE dsM, RE = {(IVv.38)

then takes us to the gravitational framework in which GF = constant.
Also, the gravitational mass of an astronomical body remains constant.
Thus as in Dirac’'s multiplicative creation theory, the local solar

system tests give the same answer as in relativity,

To transform to atomic framework we need ancther conformal

transformation:

dsh = nA dsH, R, = 1. {IV.39)
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By writing t = 12 the line element now becomes

2 2

as? = at (@ae? + sinZe a42)].  (IV.40)

2
A - Zﬂot [Ar® + r

In this framework the gravitational constant varies as
G, =t . {(Iv.41)

There is therefore considerable similarity between this theory

and the model proposed by Dirac a few years later,

Iv.6 CONCLUSION

This brings us to the and of our excursion through some
of the better-known parts of nonstandard cosmclogy. Our survey is
by no means axhaustive. We have not discussed such important
models as the matter-antimatter symmetric cosmology of Alfven and
Klein, the Einstein-Cartan cosmologies, or Milne's kinematic
relativity; nor have we discussed such unusual ideas as Segal'@

chronometric cosmology or McCrea's notion of cosmological uncertainty.

Our purpose was to summarize a few nonstandard coamologiea
in order to show that "respectable* cosmology has not been confined
to Friedmann models only. 1indeed, if the history of sciencea (and
astronomy in particular) is anything to go by, it would be premature
to conclude that the problem of the universe has baen basically
solved, To what extent do the theoretical ideas (standard or pon-
standard) presented so far in this book starnd up to observations

available today? We briefly review this question next.



v OBSERVATIONAL TESTS

Cosmological tests are of two kinds: (1) those which
look at the remote parts of the universe and (2) those which
examine nearly reglions. BPBecause light (our mode of observation)
travels with a finite speed, the tests of the first kind tell
no about what the universe was like long time ago., A comparison
of those conditions with what exist now can tell us how {if at all)
the universs has changed over the cosmologlcal time scales, 1In
principle such tests can be well focussed on predictions of
specific models. In practice, however, chservaticonal uncertainties
predominate over the predicted differences in specific cosmologies.
Testas of the second kind are less prone to observational uncertainties.
Their value lies in telling us what relics exist today that carry
signatures of past events in the universe. However, the
uncertainty here comes from the specific scenarios that links those

relica with the early epochs,

These shortcomings should be taken into account while
assessing the performance of any cosmological theory vis-a-via

ovbservations,

v.1 ORSERVATIONS OF THE DISTANT PARTS OF THE UNIVERSE

The Redshilft Magnitude Relation
The steady stata cosmology requires q, = -1 while standard
cosmologies yenerally predict 9, in the range o to 1. The

measurement of the Hubble relation down to large redshifts {(z > 0.2)



and faint magnitudes should in principle distinguish between the
predictions of different models. Figure 6 illustrate how the( m-z)
curvea begin to diverge from one another for different values of

q, a8 z increases beyond 0.2.

Unfortunately the numerous ohservational uncertainties
tend to smear out these differences., These include the aperture
correction, the K-correction, the Scott effect, the Malmquist bias,
intergalactic absorption and possible luminosity evolution
{not, of course, in the steady state model), Details of these may
be found in literature cited at the end, Figure & illustrates the

scatter of actual points arcund the predicted curves.

The nature of K-correction was not underatood in the
early 1950s and this had resulted in the erroneous claim by Stebbins
and Whitfard that the steady state theory was disproved. Likewise,
the affect of G-variation on galactic magnitudes in the Hoyle-
Narlikar cosmology was incorrectly estimated by Barnothy and Tinsley
in 1972. At present assessment both the steady state cosmology

and the H=-N cosmology are consistent with the data en m-z relation.

Radlo Source Counts

The counting of radio sources is a potential test of space-
time geometry. In a complete survey the radic astronomer counts all
sources brighter than a specified flux density §. For details of

this test see reference [4]) at the end.



If quasars are at cosmological distances then counts of
quasars indicate evolution and disprove the steady state theory.
If, however, the quasars are not so far away, their counts are

not of any value in deciding cosmology.

For radio galaxies algso atrong evolution waa claimed,
most recently by Peacock in 1985. However, after a reanalysis of
the data taking into account redshifts of all sources, P. DasGupta,
G. Burbidge and the author have claimed that the hypothesis of

'no evolution' cannot be ruled ocut.

So far as G-varying H-N cosmology or the Dirac cosmology

are concerned the source count does not rule them ocut,

Angular sizes

Here again some studies have claimed evidence for
evolution (see reference [4] at the end) but the uncertainty of
the data together with a suitable luminosity-size anticorrelation
have been claimed by DasGupta and the anthor to 'save' the steady

state theory.

v.2 OBSERVATIONS QF LOCAL S5PACE TIME

The Microwave Background

It 1s usually assumed that the microwave background
provides a strong evidence for the bhig bang. The standard model

does, however run into difficulty in explaining the extraordinary



smoothness of the background on the small scale, So far no
satisfactory theory of galaxy/cluster/supercluster formation
has been able to account for this effect. It is tempting to
suggest that dust grain thermalization as required in the
steady state theory tock place after these discrete structures

formed.

The horizon problem of the standard model and its
1mp11cition for anisotropy of the microwave background have led
to the various inflationary scenarios, These solve one set of
problems but raise othersl It is too early to pass judgement on
this approach. Por a detailed discussion of these ideas see

reference [5].

The Age of the Universe

The standard big bang cosmology rung into severe ‘age
problem' if h, = 1 and marginal age problem if h = 1/2.
This is because the total age of the standard model lies between

1/2

ﬁa9h;1/2 billion years for g, = 0 to A’Sh; billion years for

9, = 1. Compared to the ages of globular clusters ( > 12 - 18 b.y},
this age is not guite adeguate.

The problem is not so savere for the steady state model
but continues to be so for other nonstandard models discussed here.

For a fuller discussion see references at the end.
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The Abundance of Light Nuclei

The big bang standard models run into the over-abundance
problem of 4He, egspecially if the numher of neutrinc species
turns out te be 3 or more, There also may be a problem of getting
both deuterium and 4He right in the same standard model. We
have already discussed the Brans-Dicke cosmology which also tends

to run into the same problem.

In steady state model 4He and 2H muet be produced

locally in supermassive stars, Here the details work out
reagonakly well for 4He but a stellar scenario for 2H SEams

hard to achieve.

The variation of G

As yet no laboratory experiment s sensitive enough to
peasure G/G of the order of lo-ll/yr. Such evidence as is
available comes from radar measurements of planetary distances and
from anomalies in the motions of moon and the planets. Thus Hellings
et al have argued that range measurements to Viking-landers and Mariner
spacecrafts around mass rule out é/G of the above order that is
required by most cosmological theories, Van Flandern on the other
hand claims that G/G ~ (6.9 + 2.4) x 10711 yr-l from the data of

Moon's motion. In the case of Moon's motion tidal forces also

contribute a term of the same order as the C/G term,

Thus the issue seems somevhat uncertain,



v. 3 CONCLUSIONS

The present situation in cosmology may be dignosed under
the following sentence: ‘'The sophistication of theories is not
matched by the accuracy of cbservations'. This sentence neither
reflects favourakly on theories nor adversely on observations. In
standard cosmology ideas from particle physics have brought in
numerous speculative scenarios for the early universe, These have
yat to pay dividend in terms of explaining any of the cbserved
relics like galaxies, photon to baryon ratic, the nature of matter
atc. or in terms of predicting any relics that can be (and have been)
observed., Although sophisticated electronice has made extra-
éalactic observations much more precise compared to the days of
Hubble and Eddington, we are still far from apprectating the nature

of errors which can easily vitiate any cosmologlecal deduction.

In such a situation nonstandard cosmologies have a useful
role to play in offering alternatives that can stimulate the
chserveras into devising discriminatory tests, as the steady state
theory did. In any case cosmology can remain a healthy scienoe anly
until digsenting alternatives to the standard picture are freely

airxed.
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FIGURE 1

H

The world line of & begins at hl and ends at

A If we consider variations in the shaded

2

region, the point Al shifts by sai. This

shift produces a change iln the C-field interaction
term by an amount =-4C = Ci dai. The change in
the inertial part of the action similarly makes 2
contribution at Al of p{’) oai where P;a) is
the 4 momentum of the particls a. The result
{IT.7) follows by equating the net contribution of

6\*‘ at Al to zero.
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FIGURE 2

The temporal behavior of S and G. Both are
plotted on a log-log plot for w = 6, The scales

are arbitrary.
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Action at
B  adistance

(a)

Field
theory

{b)

FIGURE 3 : {a) In the action-at-a-distance picture the influ-
ence from the point A on the world line of particle
a is transmitted directly across spacetime (along
the dotted track) to the point B on the world line
of particle b. (b} In field theory the field in the
neighborhood of A (shown by the shaded region}) is
disturbed: the disturbance propagates across spacetime
as a wave in tha ambient field and reaches the
neighborhood of B, ‘The disturbance then exerts a
force on b at B. This is how the influence propagates

from a to b,



242

FIGURE 4

GRX,B)#0
Retarded

Advanced
G*X,B)# 0

The retardesd Green's function of B is non-
vanishing only in the future light cone of B,
while the advanced Green's function ia

nonvanishing cnly in the past light cone.



FIGURE 5

v
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A retarded signal (shown by dotted line) leaving
point A on the world line of a hits particles
b,¢,d,... on points B, C, D,... Thelr advanced
responsa returns to A along the same dotted track,
no matter how far these particles are from a,

Thus even the remote parts of the universe genarate
inastantaneocus responsas to the retarded disturbance

leaving A.
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Redshift
(on a logarithmic scale)

FIGURE 6
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The redshift magnitude relation for the brightest

cluster members. A numbar of theoretical curves
{qo = 5,1,0,5,0, - 1) are superposed on the data.
§s stands for the steady state model. [Based on
J. Kristian, A. Sandage, and J.A. Westphal, 1978,
*The extension of the Hubble diagram-III," Ap.
J.221, 383.]



