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L. THE STANDARD MODEL: BASIC FEATURES

The observations underpinning modern cosmology are of two kinds:
firstly, observations of individual sources ({galaxies, radio sources, q80’s,
elc} and secondly, mesasurements of background radiation (radio, microwave,
x-ray, elc) As @ result of these observations (see eg Woeinberg’s book,
1972, for &« summary) we have the foliowing overall picture of large-scale
phenomens (Longair, 1985): *Galaxies are the basic building blocks of the
universe. Most large-scale high energy phenomena in the universe are
associaled with the nuclei of galaxies containing a massive object, possibly
8 black hole. The Big Bang model of the universe is the most convincing
framework within which to conduct cosmological ressarch® It iz this model
with which we are concerned in these lsctures,

The major features of the modsl are, (1} its symmetry, {2) its sise
(the universe is very big f), (3) thers is an evolution of the universe,
driven by ils present expansion, and (4) the universe had ile origin atl a
beginning a finite time ago. Because of (5) observational problems and (6)
causal limitations, certain features sre quite unknown, particularly the
amount of matler in the universe and its Future fate. An unresolved issue is
(7) the basic issue of the relation of local physics to the universe and its
evolution. ~ Further, (8) [fundamental pursles remain, particularly why
features (1)—(4) above should be trus,

These lectures concentrate on the main realisstion of this model,
discugsing relevant theory and observations, and problems thal remain. We
assume standard physics except where otherwise specified; in pariicular, we
assume space—time is 4—dimensional and gravity is correctly described at a
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classical level by the general theory of relstivity {"GR") The general
approach of Ellis {1971a) i# followed; aiternative approaches may be found
in Peebles [1971), Weinberg (1972).

L1 Basic Components

The basic components of any general relativity space-time are (Schuts
1985, Hawking and Eilis 1973) (a) s 4-dimensional mani/ofd M, described
by coordinates {x'} which can be chosen arbitrarily, (b) & symmetric meéric
tensor go{x') determining the light—cone structure and the behaviour of
clocks in the epace-time; (c) a torsion—free commaction, described by

the connection components I, and related io the metric tensor by the
condition g, = 0, which determines covarisnt derivatives and so the space—
time geodesics and the curvature tensor R'yq; (d) & conserved maller stress
tensor T,, which iz the sum of components Ty ., (labeiied by the index M
renning from 1 to N} describing the energy, momentum, and stresses of sll
matter and fields in the space—time, snd delermining the space—iime metric
through Einstein's fie/d eguations

Go=Rap -1/ Rgy = K Tey - A g {t)

where & is a constant, Ry, = RS is the Ricci tensor, and R = RY, =
&*® R, the Ricci scalar, and for generality we have included the “Cosmological

constant” A (possibly sero). The behaviour of each matter component Ty u, (M =1
to N) will be determined by eguaéions of stafe describing the physics of
that kind of matler by relaling ite components in a suitable way.

In addition, in & cosmological model there is defined at each space—time
point & unique §-velocity vector u* (Ellie 1971a) which is a unit vector:

uty, = -1 {2)

representing the average motion of msiter at that point when a suitable
averaging scale ig utilised. The world-lines defined by Ghis vector field
are the world lines of fundamental observers, that is, cobservers
moving with the average molion of matter sl each space-lime poink u*

s tangent %o these world—lines, and if T is proper time measured
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slong them then u* = dx“/dT. Any particular galaxy will have a motion that
is close to, but not identical to, that of a fundamental obssrver. As a
consequence of the existence of this preferred 4-velocity, there alse exists
at each point a uniquely defined symmefric §-meitric,

b = B + Gy, (3)

which is & projection tensor (h*yh%, = h®,) projecting into the 3—dimensional
space orthogonal to u* (b, = 3, h'yu" = 0} thus hy, is just the metric of
the rest-space of observers moving with 4-velocity u* (if X* and Y® are both
orthogonal to u®, then XY = X%, Y® = X'h,Y®). By (3), the space-time
interval ds® can be written

ds® = gdx'dx' = hjde'dd’ - (u;dx') (4)

showing how the displacement {dx!) is split into a spacelike park (orthogonal
to u') determined by hy;, and a timelike part (parallel to v').

We will now examine the nature of these structural components in a
standard universe model, examining features (1) — (8) above in turn.

2. SYMMETRY AND GEOMETRY

The basic feature of the geomelry of the standard model is that it iz
isofropic about every poinf, and consequently is spatially homogeneous.
The intuitive concept of isotropy about a point p is that all directions about
p are completely equivalent: no observalions can distinguish any one direction
about p as being different from any other. This can be extended o the ides of
isotropy about a world-line , ie. at every moment in an observer's
history, his observations are all isolropic. It then is highly plausible that
if a space—time is isotropic about more than two world—lines, it must be
spatially homogeneous; and indeed this can be rigorously proved. Instead of
giving this proof, we follow a standard argumenk observations (discussed
further below) indicate that on a large scale, the universe is isotropic about
us. Then either (1) we are preferred observers, and the universe is observed
to be anisotropic aboul most world-lines; or (2) we are fypicai observers
and the universe is isotropic about each world-line. The first possibility is
regarded as implausible, so we adopt the second (s wariant of what iz ususlly
referred Lo as fhe Cosmological PFrinciple, Bondi 1960, Weinberg 1972):
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this leads to the standard model, as we now demonstrate in detsil.
21 Metric Time Dependence

Congider first the covariant derivative uyy of u, = g’ This defines
s spatial veclor u* = u.;bu‘, the acceleration vector, which is orthogonal
to u* {u™u, = 0 by (2)); this must vanish at every point or it would define

a unique spacelike direction, breaking isotropy, s0 u** = 0. Since (1) implies
u'u,y, = 0, we see thal uy is completely orthogonal to u". In order thal it
be isotropic about u, it is then necessary that uyy be proportional o the

metric of spaces orthogonsl to u*, ie. Uy = A hy for some function M.
Taking the trace of this equation we find

ap = (1f 3) @ by = Uy, O = u'y (5)

{which shows that the fluid acceleration, shear 0,, and vorticity W vanish).
Thiz implies in particular that Uy = Up = 0 where as usual square
brackels denote anti-symmetrisation; hence there exisls 8 function  (x)
such that

g, =-4 = {hhy=0 t*= Lot =1} 6)

the minus sign being introduced for convenience and the last equalily
following from (2). The funciion i, determined up to & congtant, is a cosmic
lime function for the universe measuring proper time along every fundamental
world line (as follows from (6)) Further if X* is orthogonal to u*, then (6)
shows §,X* = 0, ie. X* lies in a surface {t = constant}, so these surfaces
are just the surfaces orthogonal to the flow lines generated by u*, ie. are
the surfaces of instantaneity for fundamental observers. Thus L is a synchro—
nised time for fundamental observers; it is convenient lo choose it ag the

time—coordinate x°. Spatial coordinates x# (x4 = 123) sre most conveniently
chosen as comoving coordinates, ie. as coordinales that are constant along
the fundamental fiow lines: x*# = x#.,u* = 0 (note that x# is just a function,
5o the covariant derivative is the same as the parlial derivative), Then the

coordinates {x'} are normalized comoving coordinates, with x# labelling the
fundamental flow lines and t measuring proper time along them, and the 4-



velocity vector u* has components

= 8% =(1,000) M
Putting (6) into {4) then shows

ds* = hyde'dx! - d8? (8)

where hu® = 0 => h, = 0 (a = 0123) Note that here and in the sequel
we regard tensors in the 3-spaces {t = constant} as 4-lensors that project
into these 3-spaces, eg h,, has indices a, b running from 0 to 3 and is

such that (heg). = h,, where the “perpendicular* subscript indicates projection
orthogonal, to u* on all indices. In comoving coordinates this is equivalent

to hoy = 0 = hyo (8 = 0,123},

All physical or geometrical functions must be functions of .t alone (or
else they would not be seen as isotropic by some fundamental observer). In

particular, the spalial gradiente of @ must vanish everywhere, so
8,h' = 0 which implies ® = 8{t). Now from (7), (8) y, = —6,° s0 u,, =
Ty = (1/2)0g,,/0%. Thus (5) shows (1/2)h,,/0% = (1/3)8(t)h,;. Integrating,

bad) = SO i), SOz Aep [wmemar (o)

The funclion S{t) is arbitrary by the multiplicative constant A; from (9s),
it is related to @{t) by

B(t) = 3 54L/Sit) (9b)
where a dot represents lime differentiation: ie. for any f(x'), f* = f,u* = df/dt.

211 The scale function and expansion

Equstions {9) show that S{t) iz the scale function for the universe: all
spatial distances (measured in a surface t = constant) between pairs of
fundamental observers scale with S{i) as . changes, because these distances
ar¢ delermined by the spalisl melric {(9a) in which time entsrs only through

the common scale factor S{i). In more detail, let 7y, be any curve in &

surface {Zy: { = 4} joining the world—fines C,, C, of iwo fundamental observers,
and given in terms of the normalised comoving coordinates by x'(v) =
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(t, A#(¥)). The distance d; measured between C;, C, along this curve will be

d = f Slky) {f4p(x#) dA®/dv dNA/dv)'? dv, (10a)

At any later time i, the distance between the same wotld lines aiong the

corresponding curve s given by the same funclions A4(y), ie. {b = tg, x# = NB(v]}
will be given by the corresponding expression with iy replaced by & and s0
wiil be related to d; by

d; = (S(k)/S(k)) 4 (10b)

showing how S{t) i8 & common sceling factor for spatial digtances. The

tangent vector 1} to each such curve 7y is orthogonal to u* and has componenis
7 = dx*fdv = (0, dM#¥{¥])) and (because ihe curves 7, 7Yy are dragged into
each other by the fluid flow) commutes with u* = dx*/dt = 8%, so

() = T® = uhe® = (ST/SEIYT® = (ST/SH) 7° (11a)

the later equalities following from equations (5) and {9) and the ‘fact thst
7 is orthogonal to u". Integraling,

7 = SHK, K*=K'w=0 Ku =0 (i1b)

The vector £7} (£ any small constant) is a relative position vector for neighbouring
particles along the curves y. If we split this vector into a direction e*

(e, & = 1, gu* = 0) and a distance 81 by the equation £m* = ¢*6l, then it
follows from equations (1) that
{e*f =0, (128)

(61 = H(t) 8,  H(t) = S'/S) {12b)

Thus the directions of neighbouring [undamental particles sare unchanged
(relative o physically non-totaling axes, represented here by s parallelly
. propagated basis) as the universs evolves, while the "Hubble law" (12b}
shows that at any time i, the rate of change of distance ie proportionsl Lo



distance, with the same constent of proportionality H(t,) for all directions.
That is, at any time t; the expansion is an isolropic expansion determined
by the *Hubbie constant® H(,).

Overall, ihe conclusion is that ihe space seclions {i = constant} in the
standard model are conformally mepped intc sach other as the universe evolves.
In fact equation (5) shows that the vector field u* is a conformai Killing
vector; it generales this conformal mapping between the space sections.

2.2 Metric Spatisl Dependence.

To determine the nature of the components [,, we need to note that the
3-spaces {1 = constant} with metric h,, given by (9) must themselves be

isotropic about each point (or their structure would define spatial directions
that would violate the demand of isotropy and would be observable through
their effects on geodesics). Hence the only possibility for the Ricci tensor
R, of these 3—spaces is that it must be isokropic:

Ra = R = (/3 °R by (13a)
where *R ig the Ricci scalar of these 3-spaces: *R = *Rug™ = *R.h*®. Now
in all 3-dimensional spaces the number of independent components of the
Riemann tensor is the same as the number of independent compconents of the
Ricci tensor, so these tensors are compietely algebraically equivslent to
sach other. The equation giving the Riemann tensor from the Ricei tensor is

*Rubed = *Rachina — *Redhive — ea’Rug + hee ' Rpd — (1/2)'Ri{hychpa — haghine)  (13b)

(this form is required boceuse Lhe right hand side must have the full
Riemann tensor symmetries and the correct contractions to give the Ricci
tensor and scalar] Now substituting (i3a) into {13b) shows

*Rabed = K'(hchpa — huahre), K = *R/6 (14a)

showing that the 3-spaces with metric h,, are spaces of constant curvature K",
To determine the functional form of 3R(x'), substitute (13a) into the
contracted Banchi identities °R,%, = (1/2°R, . The component of this
equation orthogonal to u® shows that *R = *R(1); the component parallel then
shows *R{t) = B/S(t), B a corstant. Thus
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where k is @ constant, the curvature of the 3-spaces with metric fplx#) (this
identification follows because when S(t) = 1, then fu, = hy, by (98) and K' = k
by (14b)). Now S{t) can be rescaled by a constant {ie. we can. choose the .
constant A in (9a) arbitrarily). By equations (9s), (14b), this has the
effect of rescaling f.(x#) and k by constents while leaving unchanged the
quantities h,, and K', which are invariants (defined uniquely by the space—
lime geometry) and so are unaffected by this choice, By this rescaling, the
constant k can be scaled to +1 if it is positive or —1 if it is negalive.
This choice will be understood from now on; that is, the 3-space metric hy(x#)

will be a space of constant ourvature K® given by (14b), where k is +1, 0,
or -1 In the cages k = «f and k = —1, S{t) ie then uniquely determined, but
in the case k = 0, a freedom to rescale S(t) by a constant remains.

221 Spatial coordinates and geodesics.

The properties of the 3—gpaces {t = constant} are determined by equations
{14), but for detailed calculations we need to choose explicit coordinates
which will determine & specific form [for the metric components. Choose any

point p in the surface {Z;: t = oonstant = t} and draw the radial geodesics
<y through p in &, with curve parameter chosen to be the redial distance r as

measured by the metric f,,(x#) The actual distence {as measured by h,,) will
then be S{t,x so (as S(t) is constant slong each of Uhese curves) r is an

affine parameter on each of them. Isotropy about every world line implies
the 3-metrics are spherically symmetric about p so the surface {34 r = d/R{%,)

in £} is a 2-sphere orthogonal to the geodesics -y, with metric proporticnal
to that of & unit 2-sphere. Puiting this together,

do? = hy(x*) dx' dxi = SHA}dr* + (1) (46" + sin’6 ddh")} (15)

whete the function of proportionality f(r) is independent of 8, ¢ because

of isotropy, and must obey the limit f(r) ~ r as r — 0 because the origin of

coordinates is & regular space-time point. To determine flr) we use the
. geodesic deviation equation (Synge and Schild, 1961)
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B /B1% + PRy VPUVE = 0 (16)

for the radial geodesics with tangent vector V* = dx*fdr = 6" and connecting

vector U* = dx*/d@ = &', Substituling into (16) from (14) and noting that
V,U* = 0, V*h,, VP = S?{t) shows

SFUsr* + kUt =0 (17s)
To turn the covariant derivalives into ordinary derivatives, choose & parallel
propagated orthonormal basis {e,} along the geodesics where
e = S0, e = (S} 6%, e = (S(LI(r)sinG} 8%,
then the components of the deviation vector are U* = S(t)f{r)6", and (17a) becomes

d*(e)/d® + kf(r) =0 (17v)
The solutions with the required limit behaviour at the origin are
ff)=sinrifk=1 [(f)=rifk=0i(r)=sinhrif k =-{ (18a)

Thuz finally the FLRW metric in these coordinates ig

ds® = gid'dx! = - dt? + SHtHdr® « (1) (d8® + sin’® dop*)} (18b)
with f(r) given by (18a).

The nature of these spaces of constant curvature foliows immediately from
this derivation. From (15), the sphere S; at distance d = S{i)r from the

origin of coordinates in Z, has surface ares A, = 4mWSYL,H%r). The nature
of the space is characterised by the curves of the area A,/S%t,) sagainst
distance d/S{t;), where we divide out the scaling factor to obtain. curves
applicable at all times (and representing exactly the geomelry of the 3—spaces
with metric f,,, cbtained when S(i;) = 1). Thus one can imagine testing the
geometry of the space seclions (in principle} by comparing the radii and
surface areas of spheres centred on the origin of coordinates p. In the flat
space (k = 0) case, the Buclidean relation holds: the area is proportional
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to the square of the distance. In the hyperbolic case (k = -1}, the area
increases faster with distance than in the Buclidean case; and in the elliptic
case (k = +1), the area increases siower than in the Euclidean case.

Two fundamental properties follow from the discussion.

222 Spatial homogeneity.
Firstly, the point p was an arbitrary point in the surface I we could

equaily well have chosen sny other point p as the origin of coordinales,
and (because k in {l4b) is a oonstant) would have obtained the identical
geodesic behaviour and metric componenis centred on that point. Thus the
spatial sections (with metric (15)) are completely homogeneous: all points
are compistely equivalent to each other. From (5) and (9) the scale factor

and oxpansion are also constant on X; (which is an arbitrary surface of
constant time), so Lhe space—time itself (with metric (i8)) is spatially
homogeneous; and by the argument preceding equation (9) all scalars (e
the density and pressure) must aiso depend only on the time coordinale &.
Thus all physical and geometrical properties are identical at ali points of
each surface {t = constant), which are therefore surfaces of homogeneity.
Hence we have shown that "isotropy everywhere’ implies spatial homogeneity of
the space—Lime.

The property of homogeneity can be mathematically formalised in varicus
ways (Ellis and Matravers, 1985), most commonly this is done n terms of the
existence of continuous symmetzies of the space—time and associsted Killing
vector fields (see eg Weinberg 1972). We have not used this approach lo
derive the metric, but the result is of course the same. Given the metric

(18), one can prove that, for every point p in X, there exist 3 independent
non-sero Killing vector fields which vanish sl p and generale the isotropy
group around p; and 3 independent Killing vector fields that are non-zero at
p, and generate the group of translations of p. Together these Killing
voctor fields gonerate the full 6-dimensional group of isometries of &
general FLRW space—kime, guaranteeing spatial homogeneity and isolropy
(there exist extra isometries in the special cases where the space-time
itself iz s space of constant curvature; these are the cases of de Sitter,
Minkowski, and anti-de Sitier spacelimes respectively, only possible if the
matter is degenerate as discussed later).



2.2.3 Topology

The digcussion so far hae related only to local properties; but it should
be realised that different global connectivilies are possible in each case. In
the case k = 0, the spatial seclions are flat and we can change (r, 8, @) to
Buclidean coordinates (x,y,3) in the standard way; the metric will then be

ds® = —dt* + S%t) {dx* + dy® + dz7} (19)

Itis usual to assume these coordinales have the standard range: -o° { x,y5 < o ;

then the spatial sections {t = constant} are infinite, without boundary, and
of infinite volume; and there is an infinite amount of matter in the universe.
However there are many other possibilities. The simplest is the torus topology,
where there are numbers L, L, L, such that if the poinl p has coordinates
(x,y3) it is identified with every point q with coordinates (x + nL,, y + mL,,
3 + pL,) where (n, m. p) are arbitrary integers. In this case each space
section {i = constent} is without boundary but iz of finite volume, and thers
is a finite amount of mabller in the universs, which has spalially closed
("compact”) spatial sections. There are many other possible topologies (see
eg Ellis 1971b) Thus as well as giving the space—time metric, we need to
specily its topology in order Lo give a full description of its geomelry.

The cage k = -1 is gimilar: the "natural" topology of the space—sections
is that of Buclidean 3-space, but there are many other possible Llopologies
allowing finite, closed spatial sections, When k = +1, thingse are fundamenta-
ly different. To =ee this, consider the geodesice and coordinates described
above, where now H{r) = sin r. It is clear that the area of the sphere 5,

reaches a maximum when r = d/3{t;) = 7 and thereafter decrsages to zero as
r = 2w at a poink q "antipodai® to p. To see whal is happening, consider

geodesics Y, 7Y, leaving p in opposite directions. They intersect each sphere
Sy in points 1, t; respeckively that are antipodal to each other in 5S¢

therefore as 1 —» 2w, these geodesics sppreach q from precisely opposite
directions. Hence if one moves [rom p along the geodesic <y, after approaching
q and passing through it one continues along the path of the geodesic ¥; and

then amives back at p; and this happens whatever direction is chosen for 7,

Thus when k = ~+1 the spatial sections are mecessarily closed and of
finite volume (the situation is exactly modelled by the 2—dimensicnal surface
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of an ordinary sphere, which is the 2-dimensions! analogue of the 3—dimensional
space of constant curvature we are discussing) There are still various
topologies possible, but all of them are compact (Ellis 1971b). This is why
Einstein preferred this case to the other possibilities: it solves various
problems in physics, eg. what are the boundary conditions on physical fields
at infinity 7 (this problem falis away when there is no infinity, and periodic
boundary conditions are imposed by the topology).

2.3 Relation to Observations

These notes have dwelt at soms length on the symmetries and geometry of
the space-time metric, becsuse they are the foundation for the other
properties of these space—times. A major iesue, then, iz the question: is the
metric {18) in fact a reasonable representation of the universe around us 7

Observational reiations will be discussed in some detail later on, but
for the present the point iz: iz the universe in fact spatially homogenecus
and isotropic 7 On a small scale it is clearly neither. Thus what is implied
is some estimate of an averaging scale such that the universe is spatially
homogensous and isotropic on that scale and above. This scale cannot be
smaller than about 100 Mpc for we have seen structures in the distribution of
matter up to thet kind of size (eg L'Apparent el al, 1985). A direct
observational proof of spatisl homogeneity on a large scale is unforfunately
very difficull even if we assume that the Einstein field equations hold (Ellis
i980). An indirect spproach via the idea of showing all observed matier has
had uniforrn thermal histories (Bonnor and Ellis, 1986) is promising, but runs
into theoretical as well as observational problems. Even a direct check of
“small-scale" spatial homogeneily, using a definmition that can be disproved
{cf Stoeger, Eilis, and Hellaby 1987), is difficult to carry out.

As a consequence, the deduction of spatial homogeneity is usuaily made on
the basis of the observed isotropy of matter and radiation about us (when
averaged on a suffisiently large scale], and particularly becauss of the
high degree of isotropy of the microwave background radiation. The deduction
of spatial homogeneity then takes place on the basis of the sssumption that
we are nol near the centre of the universe, providing the base for the
argument for homogensity skelched in the preceding sections; however one
should be aware that this is an unverifiable philosophical assumption (Eliis
1975) and there are alternative possibilities {Ellis 1979), eg it could be
that the universe iz inhomogeneous and we are near its centre | (see
og. Elis et al 1978). Confidence in the resulting standard models is then
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strengthened by their overall success in relating disparate phenomena (eg.
element abundances and the microwave background radiation temperature, and
ages of stellar clusters and the Hubble constant),

While this approach provides a reasonable foundstion for believing in
an isotropic and spatially homogeneous world model, it should be developed
further to give a proper view of Lhe relation between that smoothed out
model and the inhomogeneous distribution of matter in the real universs.
What is required is some kind of "fitting” procedure which will state how to
best approximate a lumpy universe by an exactly smooth model (Ellis and
Stoeger 1987a). This requires a delailed analysis of possible observations
in both space-iimes (cf section 5).

2.4 The origin of unilormity

If we accept the standard model, we are led to one of the major problems
in cosmology: namely, why is {Ae universe so smooth ¢ The basic issue
here iz that the standard FLRW models — exactly spatially homogeneous and
isotropic universe models ~ are a priors infinitely improbable. Thus
one of the major themes of cosmology in recent times is & series of altempls
to explain, eg through the ‘“inflationary universe" proposal or Penrose’
arrow of Lime argument, how this extraordinarily unlikely situation could have
come about. This iz in contrast to cosmology of the 1930’z to 197¢'s when it
was sgimply accepted that the universe is uniform because it was crested
upiformly (to some extent this was regarded as ‘"explained" ihrough the
Cosmological Principle).

4. THE SIZE OF THE UNIVERSE

One of the major features of. the observed universe is that it is very
large. Now of course in a k = 0 or k = —1 universe with ils natural topology,
the spatial sections are infinite: so it hardly makes sense fo talk
about the size of the universe. However we can only observe a small seciion
of the universe, and the =cale of the part we can see can be estimated from
the present value of the Hubble constant (which by (9b) iz just one third of

the present value B(ty) of the expansion @) The value of the Hubble constant

is a matter of debate {Rowan Robinson 1985), but even allowing for this
unceriainly the size of this observed region of the universe is of the order
of 10" light years. There are two important implications: this figure is
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very large in relation to man, and it is very, very jarge in relation to
microphysios.

3.1 Observational Resirictions

The scale of the observable region of the universe is very large in
relation to man. The total history of astronomy - say 2000 years - is
insignificant compared with the timescale of 10'° years given by the inverse
Hubble time; snd if we were now to set of in a spacecraft at the speed of
light and travel for 2000 years, we would not have moved very far in our own
galaxy, let alone the local cluster of galaxies. Thus, as pointed out by
Schucking, Hoyle, and Sachs, on a cosmological scale we can only view the
universe [rom ons space-time poiné, the event 'here and now", we cannot
move significantly, either in space or in time, from this eveni, and we can
only see events on its past light cone. This is a fundamental limitation on
observational cosmology and our ability to determine the structure of the
universe cbservationally {cf Elliz 1975, 1980).

3.2 The origin ol extent

The observable region of the universe is extremely large compared with
the natural time and length scales of microphysics, nsmely the Planck units
of 5 x 10°% secs and 10 com (see og Barrow and Tipler
1986). The problem then is, why is the universe so large 7 or equivalently,
why is it so old ? (Dicke and Pesbles 1979). The underlying issue is the
relation of the structure of the observed universe to microphysics. If the
structure of the universe is essentially determined by microphysicai
processes, it is difficult to explain its large size relative to ihese
fundamental scales. If initial conditions unrelated to microphysics are
responsible, what are those conditions and how do they come to be independent
of the fundamental physical iaws of nature ? Either way we have a problem;
the “Inflationary Universe" idea (Guth 1981), discussed laler, proposes a
possible solution.

4: THE EVOLUTION OF THE MATTER IN THE UNIVERSE
41 Conservation Equstions

The evolution of the universe is governed by the gravitational equations
. (1) provided that appropriate equations of siale desoribe the physics of the
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matter components. The total matier strese lensor T,, must satisiy the
conservation equations

™, = 0 (20)

which are consistency conditions for equations (1); each individual matter
component Ty o (M = 1 to N) will also individually be conserved provided there
is no significant interackion between that matter component and the others.
The question then is what are the differant significant matter components and
what are the appropriste equations of state Lo use, We have lo describe matter
(galaxies and possible intergslactic matter) and cosmic background radiation.

4.2 Equationg ol state
Various quite different matter descriptions are possible.

421 The kinetic theory approach

This is interesting both in its own right, and as a basis for the fluid
approximation. If the distribution of particles is isolropic everywhere in an
expanding universe, then in both the Liouville (Ehlers Geren and Sachs 1968)
and Boitsmann (Treciokas and Ellis 1971) cases the space-time must be a
Robertson-Walker space—time; this provides further justification for using the
observed isotropy of the microwave background radiation as evidence for the
standard FLRW geometry (Hawking and Ellis 1973). However the converse is not
true: there exist exact solutions of the Einstein~Liouville oquations in &
FLRW space-time in which the distribution function of particles is aniso—
tropic (Ellis Matravers and Treciokas 1983). We will not develop the lopic
further here; a review of kinetic theory and cosmology will be found in
Sachs and Ehlers (1971}

422 The fiuid approximation

A continuum approximation seems sensible in describing the matter in
the observed region of the universe, which contains about 10" gslaxies esch
containing of the order of 10" stars. The stress tensor of & fluid cen always
be written in the form

[

Tap BUuy + Gy + UGy > P hyy + Ty {21}

where qu* = 0, Wu® = 0, w*, = 0. However in the case of the standard model,
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the requirement of isotropy demands that both q, and 7, are sero; then the
stress tensot takes the "perfect fluid* form N

T = 440 +p hy, f = i), p=pt) (22)

One should note here the paradox that this does not necesssrily mean thal lhe
fluid oheys the perfect fluid equations of state. For example a simple
<imperfect” fiuid might cbey the Eckarl equations of state (Ellis 1971a)

G = -k hob(Tb + T u.b), Wp = — XO‘.], (23]

where T is the temperature, k Z 0 the heab conduction coefficient and A = 0 the

viscosity coefficient. In the case of 3 FLRW universe, not only will u', and Oy,
vanish (as discussed above) but isotropy will slso show that T = T(t), so by
{23) both q, and W, will vanish also, and the siress tensor (21} will take
the form (22) A similar conclusion hoids for the more realistic Israel-Stewarl
equations of state (Israel and Stewart, 1979; Hiscock and Lindblom, 1987} in
a FLRW space-lime, they are consistent with the perfect Fluid form (22). It
is even possible that a "perfect fluid* siress tensor only makes sense in
conditions of wero shear, because in general anisolropic expansion will
generate anisotropic pressures [Treciokas and Ellis, 1971).

Given the stress—tensor form (22), the physics of the silustion is
still  indeterminate until the relation belween p and &t is specified,

either directly ss an equation p = p(p), or indirectly in terms of some other

appropriate variables (eg @ temperature T and enmtropy S) The ususl spproxi—
mation, valid for most time in the evolution of the universe, is the “gamma-
law”

p=(y-1m 12y £ 2 [248)
which includes the case of "pressure-free matter™
¥Y=1 <= p=0 (24b)

probably an adequate description when the matier component dominates al late
times in the universe, and "pure radiation";
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Y = 4/3 <=> p= pufs, @ = aT! (24c)

probably sn adequately description when radiation dominates at early limes in
the universe. There are iimes when more delailed descriptions will be required,
specifically when significant interactions are taking place -belween the
various matter and radiation components present, or when bulk viscosity is
significant; but for most of the time, equalions (24) suffice for cosmological
modelling purposes,

Because of (5), the only non—trivial conservation equations (20) lake
the form

pt o+ (p+p3sys =0 (25)

in the standard modet when Lhe siress-tensor necessarily ilakes the perfect
fluid form (23}. With the simple equation of state (24a) this shows

pl) = M (So/S(t)'Y, M = constant (26a)

where S, iz the present value of S(t), leading in particular to the "pressure—
free matier" form

Un(t) = My (So/S()’, M, = constant (26b)

and the "radiation" form

Blt) = My (So/SE), M= constant, (260)
which implies
T{t) = Ty (So/S(t)), To = constant. (26d)

We can normally regard the matter in the universe as comptising & non—
interacting mixture of presgure—free matter and of radiation, that is, the
total stress tensor is (22) with

= phy v fy, P = Hf3 (27)

where ji,, fi, are given by (26b), (26c} however at times of strong interaction

these relations will have to be modified to take into account energy transfer
between the different components. Current best estimates suggest thal the
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value of the present matter energy demsity M, lies in the range 107 gm/fcc £

M, = 107 gm/cc, while the present microwave background radiation temperature
Ty = 275 K implies thai the present radiation energy density M, has the value
M, = 10™** gm/oc {other known radiation components are negligible relative

to this)l Any of the currently proposed "dark matter" components should obey
either (24b) (if non—relativistic) or (24c) (if relativistic), and so can be
regarded as an addition sither Lo {26b) or {26c). If the standard values

quoted here are correct, the universe is matter dominated (ze, > £5,) now and at
late times, but radiation dominated ai early times (f¢n < f2; when S{t)/S, < 100 in
the low densily case and when S(4)/Se < 10000 in the high density case).

423 A scalar field
It is possible thai a scalar field ® of maess m (possibly zero) and with

potential V[®) is important in the early universe. If so its equation of
motion is

¢, - mé= -3V/0P (28a)
and its stress tensor given by
NTyey = B8y - (1/2) gy (2,8" + 2V(E) + m*®%); (28b)

the conservation equalions for this stress lensor are salisfied as a result
of the equalions of motion {28a) (Lightman et sl 19750 If the field is

spatially homogenecus, ¢ = (i), then this stress-tensor takes the perfoot
fluid form (22) with

8muy = B2+ 2V(@) + m°F, Smp, = - 2V(E) - " (29)
while in & FLRW universe the equation of motion (28a) becomes

O/ (SPO%/0t) = SHm*® - IV/3P). (29b)

4.3 Energy and Causality Conditions

Whatever the detailed equation of state chosen [or makter, there are
two kinds of restrictions that must normally apply. The first is causalify:
no signal (a sound wave, elastic wave, etc) must be able o move fasier than
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light. This gives the upper limit in (24a); if <y were larger bthan 2, a sound
wave could travel Faster than light, viclating the basic principles of Special
Relativity.

The second kind of restriction is inequalities on the energy density
and pressure, collectively known as emergy condilions (Hawking and
Ellis, 1973 For our purposes there sare two important such restriclions,
Firstly, we normally require that the inertial mass densily of malter be
positive; in terms of the fluid variables (21), this is the requirement

u +p 20 (30a)
If this is not trus, the matter has very unususl properties, for example
from (25e) i will foliow that on compressing the fluid ils energy density
decresses. This implies & mechanical instabilily. Secondly, we normally
require also that the aclive gravilational mass density be posilive; in
terms of the fluid variables this is the requirement

@+ 3 Z0 (30b)

I this i not true, the gravitational effect of the matier will be negative
(as discuseed below).

While both inequslities will be satisfied by "normal* matter, they may
not be true at various Limes in the cosmological context. For example,
guppose & scalar field were (o dominate at eatly times; Lthen

AT(pgrpy) = °, 4m(py+3p,) = 28 - 2V(®) - m?P? (8la)

showing that the active gravitalional mass can become negalive. As & specific

example, if ¥ were to remain constant for some time (as is possible if the
potential V is appropriately chosen} then

This is whai happens in some versions of the ‘inflationary universe” idea:
the irertial mass density takes the limiting value of (30a) that (by (25a))
allows expansion but no change of density; and (30b) is violated One should
slso note thal in this case the equations of motion are indeterminale, and
the fields prosent determine no unique timelike direction. When Lhe sbrict
inequality holds in (30a), the 4-velocity u* is unique {and consequently the
spatial geometry (15) is uniquely determined; particulariy one csnnot have
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different choices of k in (18a) by making different choices of u'),

In general we may expect enefgy viclations when quantum fields are
dominant. However problems could arise even in the classical regime, both
because of the question of effective averaging of the field equations [(Ellis
1984b) and because effective negalive pressures could arise in a gravitating
fluid, where all inter—particle forces are sitractive rather than repulsive.

4.4 The Thermal History of the Universe

The thermal evolution of the universe tskes place within the general
context set by the relations above, i we f{ollow conditions back inlo the
past, as S(i] decresses towards zero, by (26d) the radiation temperature
increases without limit. Three major physical processes then take place.

Firstly, the average photon energy eventually exceeds the binding energy
of any bound system; so successively only simpler and simpler sbructures can
exist. In particular, above about 1500 K molecules cannot exist, any that form
being immediately broksn down into their component atoms. Above about 3000 K,
atoms can no longer exist, as their ionisation energy is exceeded, and they
are broken down into nuclei and eleckrons, creating a plasms. Above about 10° K,
complex nuclei cannot exist, being broken down into neutrons and protons. At
high enough energies, the baryons themselves may be decomposed in ko Lheir
constituent quarks.

Secondly, a series of interactions which exchange energy between
particies but cannol take place al low temperatures become poesible, and
proceed fast enough to create thermal equilibrium between different components
of the primeval plasms. In particular above about 3000 K Thomson scattering of
photons and electrons equalises their temperalures, forcing the mailer to
follow the radiation temperature law, because the thermal capacity of the
radiation vastly exceeds that of the matier at least until the matter becomes
relativistic, when it follows the same law as radiation. This scatlering makes
the universe opaque to photons at early times. Similarly above about 10° K
electron-neutrino scattering brings neutrinos into thermal equilibrium with
the other components, making the universe opaque to neutrines.

Thirdly, a series of interactions transmuling particles into each other
take place at high temperatures and create equilibrium abundances between
particles species; for example, above about 6 x 10° K neutrons and proions are
transmuted into each other by weak interactions and aitain an equilibrium
abundance. Ai{ high enough temperaiures, pair production thresholds are
- gxcesded so that as the lemperature rises, photon pairs successively create
equilibrium abundances of electron—positron pairs; muon pairs and pion pairs;
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proton and anti-proton pairs; and so on. At each such threshold, radiative
energy is converted to energy of relativistic particles.

A fourth process will take place if our present understanding of the
nature of fundamental forces iz correct: as the temperatures increases,
successively forces that are disparate ab lower temperatures will become
ynified at higher temperatures. Thus the electromagnetic and weak forces
will be unified above the eleciroweak unification temperature; the strong
force will also be unified with them above the grand unification temperaturs;
and gravitation too will become unfied with them above the Planck temperature.

Together these processes creale equilibrium abundances of particles at
very early times, the nature of the equilibrium being determined simply by the
conserved quantities at that temperature; at temperatures below the GUT
temperature but above 10" K, these are electric charge; baryon number, and
leptan number.

In the standard model, the temperature drops from indefinitely high
values ak ihe origin of the universe to the present value of 3 K, and as it
does s0 the processes menkioned above, dissociating complex structures and
establishing equilibrium when the temperatures are high enough, one after
the other cease to be effective. Alpo particle pair annihilation takes
place, converting the energy of relativistic particles to radialive energy,
and forces which were unified ab higher temperatures separate into the
fundamental forces we experience today ss the temperature drops below the
various unification thresholids.

Two important consequences follow. Firstly, the universe (which was
opaque) becomes transparent to different forms of radiation as the temperature
drops - notably to neutrinos at about 6 x 10° K, and to photons at about 3000 K
(the time of decoupfing of matter and rsdistion). Secondly, as the
tempersture drops the mechanisms maintaining thermal equilibrium successively
cease to funclion and the expansion of the universe then allows non-equilibrium
procesges Lo take place, building up, complex structures. In particular baryo-
synthesis will tske place al about the Grand Unified Energy (if our current
understanding of Grand Unified Theories is correct) and nuclecsynthesis will
take place at about 10° K, creating the light elements (deuierium, hefium,
and lithium), heavy elements are formed latsr in the interiors of massive
slars. We wili not discuss these complex physical processes [further here,
referring the reader to Weinberg (1972), Turner and Schramm (1979), and
Schramm (1983) for details.
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45 Obeetvations

The details of this evolution depend on the rate of expansion of the
early universe, determined by the Einstein field equations (discussed in the
next section). The evidence for the picture outlined is truly impressive.

Firstly, the 3K cosmic background radiation with a black body spectrum is
evidence for a hot early stage of the universe, this radiation being interpreted
as relic radiastion of that era of thermal equilibrium. Two histories are
possible. In the first, this radiation decoupled from matier at a time by when
the temperature was about 3000 K and (by (26d)} the scale factor 55 = S(ty) was
Ss = 107%S,, and the radiation has travelled freely ever since. In the second,
decoupling took place as above but a dense intergalactic medium then heated up
to about 10° K at fairly recent times, causing significant Thomson scailering
again and resulting in our seeing back onmly fo an era when 5 = 107'S,.

Secondly, element abundances are predicted by the theory of nucleo—
synthesis in the early universe and can be compared with current observations
of element abundances. Theory predicts production of He* mass fractions of
between 01 and 0.3 in the early universe (depending on the number of neutrino
types and the present baryon density) while the values estimated from present
day observations lie belween 020 and 029, in gopd agreement with the theory;
indeed the observations can be used to restrict the number of neutrino types
{at most ome neutrino-like particle is at present unknown) and to limit the

present baryon density to relatively low values (Myyyon = 107°° gm/ec).

46 Why does the msiter in the universe evolve ?

A dominant feature of the present—day universe is that it is both
presently out of thermal equilibrium, and is full of the products of s lack of
equilibrium in the past (light and heavy elements; molecules; radioactive
substances; slars, organic and biological systems]. One of the major questions
facing cosmology is how this can be.

The standard model solves the issue in effect by referring it back to the
evolution of the universe: local systems can be out of equilibrium and evolve
because the universe itself is evolving (Marx and Sato 1986). This leaves the
question of why the universe itself should be evolving; which we return to
after studying Einstein's equalions.

Alternative models based on a non—evolving (“Steady—State”) universe have
to develop some approach that tackles the evolution issue satisfactorily. The
* original Steady-State theory (see eg. Bondi 1960) does so through a continuing
(steady-state) operalion of non—equilibrium processez (in that case, the
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creation of matter), static inhomogeneous universes may also be able to do so
in & similsr way (Ellis Maartens and Nel 1978) However some proposals for
stationary universe (eg. Segal's theory, 1976) seem unable to explain the
fundamenial feature of the continuing existence of non—equilibrium processes
and the evolution of the contents of universe. A theory that cannot do go is
unable to describe important aspects of the observed universe,

5: THE ORIGIN OF THE UNIVERSE

The evolution of the universe is governed by the Einstein field equations
(). We consider in this section how one of these equations implies that the
standard universe model must evoive from a singular origin; and in the
following section, the complete set of equations governing its evoluiion.
5.1 Instability and Evolution

The uniquely defined 4-velocity vector field u* must satisfy the Ricci
identity

u.;lw - u.;cb = udel.bu (32]

Substituting into this relation from equations (5), (9b) and (6}, we find
WRae = S™{E)/S(E) (hycup — hapuc) (33a)
Using the Ricci lensor definilion Rgy, = Ra"ye this shows
Ry = 3S™)/St)m, uuRape = — S)/SE) by {33b)

Equations (33b) show that u'v*Rgp = ~ 3 S*(t)/S(t). Using equations (1) and
(22) to evaluate uv®Ryp in terms of g, p and A, we find
3S)/S) + £/2(pe + 3p) - A =0 (34)

which is the Raychaudhuri egquation for the standard models. This is the
basgiz of the instability proof and the singularity theorem.
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511 Instability of the static solution

A static solution will correspond to S{) = constant, so S** = 0. Then
(34) shows

K/2 (@ +3p) = A, (34a)
which shows that (provided the energy condition (30b) holds) & necesary

condition for a non-empty stalic solution is A > 0 [in fact this was
the resson Einstein introduced the cosmological constant into the field
equations, for in 1917 everyone knew thal the universe was static). Given an
equation of stale satisfying the energy condition (30a), (30b) and a positive

value of A, there will be some vslue S, of S{t) such that (34s) is satisfied.
If S{t) ie then perturbed to s slightly larger value, g will decrease. Thus
provided Op/@u > -1/3 (which will in particular be true if p is congtant);

then &(iz + 3p) < 2A so by (34a) S* > 0, and the solution will expand to even
larger values. Similarly if it is perturbed to slightly smaller values it will
continue decreasing. Thus, as discoverad by Eddinglon in 1930, & séafic
FLRW solution is unstable. This discovery was the reason thai the idea of
an expanding universe became accepted amongst relativists, and it enables us
to "explain” the fact that the universe is evolving.

Two comments are in order. Firstly, these results will not hold if the
inequality (30a) is not strictly violated (eg if equality holds then
perturbing the scale function resulis in no change in density) or if (30b)

does not hold (if this sign is reversed, then A need not be posilive and the
solution c¢an be stable) Secondly, the idea of a perturbation of the universe
is a logical absurdity: as (by definition) there iz no physical system outside
the universe, there iz no way it can be periurbed. Nevertheles the stability
argument hag powerful appeal to physicists, and is still accepled as implying
that the univers must either expand or contract, and therefore that it must be
evolving. This can be interpreted in the sense thai the universe is not
exactly a FLRW spacetime, and 50 can be regarded as "perturbed” from a FLRW
universe in that it is a little different from those modsls,

512 The Singularity Theorem
Observed redshifts show the universe is presently expanding (the
present Hubble constant H(t,) = H,, given by (i2b), is positivel Thus if

"A = 0 and the energy inequality (30b) holds, 5* < 0 and so S{t) increases
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monctonically from sero; in fact then

Sft] = 0 a finits time ty ago where to < 1/ M, hd]
Phis shows that the universe not merely evolves, but has a beginning at &
singular origin at & "Hot Big Bang’ (HBB) where {(by (26)) the energy density
and lemperature diverge. One should note here parlicularly that high pressures
will not prevent ihe initial singularity in the standard model, where there
are no spalisl pressure gradients and the fluid moves geodesically. On the
contrary, pressure enhances collapse because of itz contribution 3p to the

active gravitational mass (£e+3p) in equation (34).

In principie & non—sero value of A, if it iz larger than the active

gravitaliona] mass density k(ft ~+ 3p) in (34) can prevent this origin at an
initial singularity . However in practice this will not work if we believe
the usual explanation of the microwave backgroudn radiation as relic radiation

form a hot big bang. The reason is that A must dominate equation (34 at the

time of the turn-around. However the radiation iz evidence of & thermal
equlibrium when the temperature was ak least 3000 K, ie. when S/S, < 1/1000;

but at that time, by (26) g¢ > 10° feo. If A were large enough to overcome this,

it would be the dominant force in the solar system today and would certainly
have been detected.

One possible way out of the prediction of an initial singularity is to
suppose that the energy conditions {30) are violated at early enough times
when quantum field effects come into play (cf section 43). Ancther is Lhat
the Einstein field equations might be incorrect, and some alternative field
equations might hold at very high demsities iesding to an effective energy
condition violation then (eg when quantum gravity effects are dominant)
Both are possible ways of avoiding the initial singularity in the universe (of
Ellis 1984b for & summary and references).

513 Ages

The singulsrity statement (*) slready indicates the possibility of an
age problem. if \‘he age of any object {stars, rocks, elements, or
whatever) in the universe is larger than 1/Hy then that component of the
universe is older than the universe itself, which cannot be Again the possible
ways out are a violation of lhe energy conditions; alternative field equations;
or & posilive cosmological constant. The difference from singularity avoidance
is that to avoid singularities, the effective energy violstion must occur at
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eorly times (when S/S, < 1/1000), while to have a serious effect on ages the
effective energy violalion must occur at late times. Sharper age inequalities
than (*} can be derived by more detailed examination of ithe field equations
{cf the following section).

5.2 The problem of the origin of the universe

The prediction (*) raises the problem, why is there a beginning to the
universe 7 In the 1930's cosmologists such as Fddington and Lemaijtre at first
found it very difficull to believe this could be so. The point is that what is
predicted is not merely creation of matter in & given spacetime, but creation
of space and time, and even of the laws of physics themselves. Space-time
curvature diverges al this event, so this is a space-fime singularily
(of Tipler et al, 1980), Furthermore if k=—1 or k=0 with the natural topology,
what is implied is the creation of an infinile smount of matler al that
time. How can we account for this creation of all from nothing 7

A psrtial response ig to congider the alternatives: suppose the universe
were indeed a steady—stale universe that existed forever. Is this really a
preferable explanation of the ‘“origin" of the universe: that it existed
forever 7 If one considers this, it seems just as problematic as the coming
into being of the universe a finite time ago. Aesthetic and philosophic issues
are at stake: physics cannot decide. In any case it ig clear thal non—quantum
energy viclalions will not avoid ithe prediction of an initial singularity
where the classical equations break down; there must be a period in the early
history of the universe where quantum gravity effects dominste. These may or
may not succeed in explaining the origin of the universe from some previous
structure in a non-singular way, bul at least from a classical viewpoint ihe
universe has a singular origin,

One of the issues highlighted by this discussion is the difficulty —
sctually impossibility ~ of testing the field equations, or the equations of
state of matter, in the wvery extreme conditions relevant to the very early
universe. Thus it is worth studying the nature of the standard universe models
without imposing particular field equations ("cosmography') as well as with
particular gravitalional equations imposed ("cosmology”) While one can
provide plausmbilily arguments for parlicular field equations, proving
their validity is not possible; so it is difficult, in the end, to disprove
any behaviour that is allowed cosmographically.
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6: THE EVOLUTION OF THE UNIVERSE
6.1 Equations

We have consideted so far only one of the field equations; but all of
themn must hold. To ensure all equations are eatisfied we now need to check the
ten field equations and four conservation equations,

611 The conservation equations
The energy conservation squation is (25} these determine the evolution

of the energy density it once suitable equalions of state are specified (cf
section 42). The momentum conservation equations are identically satisfied
because thete are no pressure gradients to csuse non—geodesic motion, and the
fluid flow lines are indeed geodesics.

6.1.2 The (0,0) field equation
The (00) field equation is (34). This iz a seoond order equation. Now
using (25a) one can show that (S'u) = — SSYgu + 3p). Thus multiplying (34)

by 5* and integrating we find the first integral
35" - xS’ - AS? = const = E (35)
valid whenever S* # (.

61.3 The (0,44) field squations
From (33b) (1) and (21) we find uRgpbh?, = 0 = q, showing that the three

{0,22) Neld equations are identically satisfied for FLRW universes with a perfect
fluid matter source (22) {which is required by isotropy).

614 The {1 1) field equations

The six {(V,f4) equations determine the geometry of the 3-spaces {t =
constant} orthogonal to the fluid flow in the following way. The metric gy, of
these 3-spaces is the total projection into them of the 4-dimensional metrie,
i€ g = blhydgea = hyy. Similarly the covariant derivative *V* in the 3-spaces
is defined as the tolal projection of the 4—dimensional covariant derivative
Ve = o 68 *V.Ty = h'h'h,"V\Ty,. It foliows from this definition that °V,
ie indeed the correct Christoffel connection for the 3-—space metric hy,, ie.
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it is torsion—free and preserves that metric: *Vchyy, = 0.

The curvature tensor R,p,a is defined in the standard way by the

3-dimensional covariant derivative; is. for every vector field X' in the
3~surfaces {t = const} [ <=> Xu* = 0),

WX, - SVVX, = X R (36s)
To work this out, it is important ko remember that each 3—derivative is the
total projection of the corresponding 4—detivative, and g0

avoav'hxn = hcthhdhut vl (hd.ht‘v.xvl- [ssb)
Using (3) and (5), equations (36) lead to the Gauss—Codacci equations for a
FLRW universe:

*Rabed = (Repoa)r = (1/9) 8" (hyghne ~ bichya). (87

Contracting with h™, the first term on the right becomes (h™R,pe). =
(Rec) + Riypegu®u®. The former is found from (i} and (22) and the latter from
(33¢). On using (34) we rederive equations (13a) where now

R =2{xp~ A - (1/38°) (38)

Thus (13a) are 6 of the Einstein field equations provided (38) determines °R.
Comparing (38) with the first integral (35) shows these iwo equations are
identical provided that *R = -2E/S% then (i4) shows the constant of
integration E is related o the constant k of (14) by E = -8k, so (36a} is

38YS? -k - A = - 3%/S? (38a)

where k = +{, 0 or —1; this is the Friedmann eguaiion for the standard
model. We now see thal this equalion is both a first integral for the
Raychaudhuri equation (in consequence of the energy conservation equation)
and is slso the Gauss—Codacci equation (38) giving the Ricci scalar *R in terms

of the energy demsity g¢. Equations (i3) and (14) will be valid .if the metric
takes the form [(i15). Thus all the (w1} field equations will be valid if

the metric is {i5) and equation (38) holds where *R = 6k/S? ie if (38a)
is valid.

615 The complete set of aquations
The Einstein equations guaraniee that if the universe is initially a FLRW
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model, then it will remain a FLRW universe iater on (¢f Hawking and Eilis
1973). PFrom the above it follows that all the non—trivial field equations
and conservation equations for the standard model .will be satisfied if Lhe
metric ie given by (15) and additionally,

(A) In the exceptionsl case of a séafic umiverse, ® = 0 and g is constant;
(34a), (38a) with S* = 0, and suitable equations of state hold;

(B) In the general case of a mon-sfafic universe, S* # U, (25a), (38a),
and suvitable equations of state hold {(34) will automatically be salisfied se
a consequence of the othar equations),

6.2 The Einstein static universe

By the above, & stalic solution to the field squations salisfies [34a) and

K- A = 3K/S? (39a)
Substituting (34a) inte {(39a) shows
k/S? = 3x/2 (p+p) > O {39b)

giving the general form of the Ainstein séalic universe with positive
cosmological constent ( i (30b) holds) and positive spatial curvature (k = +1
if the (30a) is sstisfied) Einstein particularly approved the finite spalisl
sections of this universe because il solves the problem of boundary condikions
at infinity for local physics (Einstein 1956) We reject this as a universe
model both because it does nol expand [s0 there are no redshifls) and it s
unstable [section 5i1).

6.3 Initial conditions

In the expanding universe models, it is convenient to parametrise solutions
by preseni-day values of the Hubble constant He and (dimensionless) decsleration

parameter gq, defined by

Ho = (5*/Sk, 9o = — (1/H,") (5*/S) (40a)
together with the effective densily parameters
0. = (cpalo/3Ho', @ = (Kp.)o/3Ho", Qy = A/SH' (40b)

for the matter and radiation (see equations (26)) and cosmological constant A
respectively. In terms of thess quantities the pholon to baryon ratio b s
given by h = Q,/208), where @ = 3.7m,/2kT,; here m,, is the baryon mass, k the
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Boltsmann constant, and T, the present background radiation temperature. The

present value of {), lies betwsen 1 and 004 while the present value of O, iz
sbout 107 if the 3K black body radiation is the dominant component (as is

suggested by present observations), hence A = 10% to 10°.

Evaluating (34) at the present time and using these definitions shows

Q0 = 1/2(Q, +2Ay) - Q, (41s)
while (38a) similarly shows

(K*)o = kfSy” = Ho® (@ + 0, + Oy - 1). (41b)
Equation (41a) can in principle be used io estimate A and (41b) fo estimate (K*)

from observations [¢f section 911 in Rindler 1977). If we assume A = O (which
is compalible with the observations), the standard assumption of dominant non—

relativistic matter (Q, << O,.) leads to the relations
G = 1/20., (K*)o = k/Sg’ = Hy' (Qa - 1); (42a)

showing the critical denmity separating k = +1 and k = —{ universes is O, =1
corresponding t0 Qo = 1/2. However the assumplion of a universe presently

dominated by relabivistic particles (Q, >> (1) leads to
% = 0, (K%=k/S'=H(Q -1} (42b)
showing the critical density iz again ), = 1 but now corresponding to qo = 1.

These relations determine the value of S, if k#0; if k = 0, that value ie
indeterminate (S can be rescaled by an arbitrary constant, of section 2.2)

For later use, it ie convenient to rewrite the Friedmann equstion (38a} in
terms of these quantities and the normalised scale variable y = S{1)/S,
The general result for a matter plus radiation universe ig

¥ = Ho' {Qufy + Qufy’ + 043" - K/S,"H"}. (43s)

In the matter dominated case (), = 0 = 1) this reduces to

y? = Hy® {2q0/y - (290-1)} (43b)
while in the radiation dominaled case (Qp = 0 = Q,) it reduces to
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y? = Ho' {q/y" - (9~} (43¢c)
One application is that the age t, of the universe can be found from the equation

t= f dy/y*, where the integral iz taken from y =0 tlo y = 1.

64 A = O Solutions

6.4.1 Qualitative behaviour

Following the universe back into the past, if the energy conditions are
satisfied it bas s singular origin at an initial singularity (see section
512) provided the epace—time can be extended back that far, and indeed this
is possible (Collins and Ellis 1979, section 4) If k = -1 or k = 0, the

universe expands forever in the future becsuse by (3Ba) S* is never sero;
furthermore the scale function S(t) is unbounded. If k = +1 then for certain
equations of siate violating (30b) the universe might expand asymptolically to

8 finite radius, or there could even be a singularity in S** (Barrow et al 1985}

however if p20, p2p it wili reach & maximum value of S where 5* = 0 and then
recollapse o a fulure singularity where the density and tempersture again
increase without limit and space-time comes to an end (at leasl on a clasaical
view). In particular this will happen for a pure "dust* (pressure—free malter)
universe, or pure radiation universe. It is noteworthy that the question of
whether the universe recollapes in the future or not turns out to be identical
as to whether it has spherical space sections (k = +1) or not {k = 0 or -{),

which in turn corresponds to it exceeding the critical density (Qa+0, > 1) or
not. However note that while an "open" universe (with infinile space seciions)
must not exceed the critical density (Qa+0), = 1) and will expand forever, a

slosed" universe can also expand forever, the simplest example being a k = 0
universe with torus topology (section 2.23) and exactly critical density,

6.42 Exact solutions:

The general behaviour just discussed holds for all reasonable matter.
To obtain exact solutions we need to consider particulsr equations of stale
A non-inieracting mizture of matier and radiation s represented by

equations {26), (27) leading to (42b); when (1, = 0, Lthis can be wrilten as
¥ = 1(y'S,") {8* + 2ay - ky"} (44a)

whers
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a = Sg’Ho'Qa/2, B = (So"Ho Q) (44b)

The general solution tc (44a) may be oblained in terms of ths conformal iime

parameter 7 defined through the equation T = 1/5, f dt/S(t). The solution in
the three cases k = +I; k = 0; and k = -1, is

k=1 y=afl - cosT)+ # 5inT (45a)
k=0 y=af271* « 87T {45b)
k=-1 y = & [coshr - 1) « B sinhT (45¢)

where correspondingly (setting t = 7 = 0 when S = 0)
k=<1 t=S,{a(r -snT)+ B (1 - cosT]} {4fd)
k= 0 b=S, {a/6 T+ /2 1% (45e)
k =+ t = So { @ {sinhT ~ T) + B (coshT - 1)} (45f)

It is interesling how in thiz parametrisation the dust and radiation decouple.
Equations (44) of course include as special cases the general pure dust and

radiation solutions, corresponding respectively to £ = 0 and a0 = 0.

Particular cases allowing simpler representation are of interest. In the
low density case (k = -1) there is a mathematically simplest universe model
given by the condition that the bracket on the right hand side of squation (44a)

is8 & perfect square. Then B = & ie Q,%/0, = 4/S,?Hy* Using (41b) this
becomes

0, = A0, - Q)

giving a value for the present matter densily (f4g), of about 2 x 107 gm/cc,
very close to the observed value.

The simplest pure matler case is the Kinstein-de Sitéer universe

(g = 0, k = 0; go = 1/2 in (43b)). In this case the scale furction is
S(t) = A [t - ta)¥* (46a)
where A, L are constants. Its age is found to be

to = 2/3 1/H,. (46b)
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The corresponding simplest pure radiation universe (4 = 0, k = 0, g9 = 1 in
(48¢)) has )

Sit) = A (4 - ), (47a)

o= 42 1/H, (47h)

For many purposes, the dynamics of the universe are adequately described by
equations (46) at lste times when the universe iz maiter dominated, and by {47)
at early times when i is tadistion dominated, in general A can be normalised
to 1 and t. to zero without loss of generality, but if one wishes to describe a

single model by (46a) ai early times and (47a) at lates times, then ab the
change—over Lime by both S(t) and S'{t] must be continuous (cf Eillis 1987); this
is achieved by sppropriate choices of the constants A, b (eg choosing A = 1

and te=0 in (46a), valid for t = t; end then finding A, i« in (47a), valid

for t 2 by, from continvity of S, $* at t;). More accurate calculations need
the exaci equations (44a) or solutions (45).

For completeness, the simplest emply universe model iz the AMifne

universe (f, = fta = 0] given by (43b) or (43c) with qo = 0. Of necessily,
= -]; one finds

S =t - b), (48a)

kb = 1/H, {48b)

(the normalisation factor is necessarity A = +I because k = ~1). This ir in
fact the flat space-time of Specisl Relativity with a cloud of patticles
expanding uniformly into it; gravily does not cutve the space—time at all
(this is possible because it is empty).

While it is possible that the late universs is dominated by relutivistic
particles, it is more plausible that it is matter dominated, ec the solutions
of (43b) are of particular significance, The parameters for these models may

usefully be taken ss the Hubble constant H, and the matter density (. (or

equivalently g = 0u/2). The set of such models and observalional constraints
on them sare discussed by Goth et al [1974, 1976). Direct observational limits
from observed helium abundances, ages and densities suggest the universe is a
low—density universe: “a vaniely of argumenis strongly suggest \hal the density
of the universe is no more than a tenth of the value required for closure”
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{Gott ot al 1974). The present obgervational evidence is the same as at thal
time; however this conclusion should bs reviewed in the light of the possible
presence of a large mass of non-baryonic matker that does not affect helium
production {Schramm {983), but there iz no direct observational evidence for
the presence of such matter.

Exact solutions describing other kinds of matter can be obiained; for
example solutions with bulk viscosity are given by Trecickas and Ellis
(1971); and kinetic solutions by Ehlers, Geren and Sachs (1968) and Eliis,
Matravers and Treciokas [1983). We will not discuss these kinds of solutions
further here, sithough they may through interesting light on the possible
behaviour of FLRW universe models,

6.4.3 Approximate solutions

If the universe expands to arbitrarily large values of S ab late Limes,
k = 0 or k = -1. The asymptolic solution depends on thie value, If £ = -Z,
the (curvabure) k-term will dominale the Friedman equation (38a) at late enough
times for normal matter, cf. (44a) for large y. Thus the asymptotic form of

the equation is just y* = 1S, leading to the Miine solution (48a) as the
asymptotic form. If # = &, the mabler term (given by o in (44a)) will

dominate at late times, leading to the Einstein—de Sitter solution (46a) as
the asymptotic form.

At early times,the matter term will dominate in {38s), of (44a} for emall y."
Thus the effective equation at sarly times will be

33 = xust (49a)

Using the equation of state (24a) and corresponding density behaviour (26a),
the solution is

S=A@-uWY xu = (4390 1 (49b)

showing that the initial expansion depends only on <y (there are no free
constants in S(tJ]. For the plausible case of a radiation dominated early

universe [y = 4/3), we find

S=A{t-t)" xp = 34 1)A* T= (3/4al* 14" (49¢)

- showing the umique relalion between ltemperature T and time i in the early.
universe which leads to the standard nucleosynthesis predictions.
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6.5 A # 0 Solutions

While the cosmological constant A can be regarded as a separate lerm
in the field equation (1), it can alternatively be thought of as an extra

contribution (T,),, = — A gy to the matter stress temsor T,,. If so, then by
(22), (3) it is equivalent to a perfect fluid with
#s = - pa = A/K = constant {50a)
implying
By +pp =0, p4y +3p, = -24A/x (50b)

Thus thig "fluid" always obeys the exceptional limit of (30a) which (by (25a))
allows expansion without change of £i; and violates (30b) if A > 0.

6.51 Quantitative behariour

If A <O, it acts as an exira atiractive force tending to siow down the

expansion of the universe to the future (energy condition (30b) is =atisfied).
The cosmological constant will eventually dominate the Friedmann equation
and cause s recollapse to a second singularity in the future The universe
starts at an initial singularity and ends ai a second one,

If A > 0, it acts as an extra repulsive force, violating the energy
condition (30b). The result depends on the value of k. If k = 0, S* cannot be

2ero; these universe already escape to infinity when A = 0, so when A > 0 they
do so more easily. All these universe start at an initial singularity and
expand foraver.

If k >0 a wide variety of behaviour ig possible, (a) The Einstein static
universe is now a possibility al some radius S; given by (34a), depending on the

value of A and the equation of state of matter. For S > S, 5* > 0 and

the curve S{t) bends up; for 5 < 5, 5* < 0 and the curve S(i) bends down. Thus
golutions are possible (b) that start asymplotically close to the Einstein
static universs in the past, either {i) with S > 5, and which expand away from it i
infinity, or (ii) with S < S, that collapse away from it to a singularity in the
future, Solutions can occur {c) decreasing from an infinite value of S in the
past, either (i) collapsing to a singularity in the future, (i) asymptotically
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approaching S, from sabove, or (iii) decreasing ko a finite value S, > S, and
then re—expanding to infinity. The lalter universes are known as “oscillaling
universes®, they are non-singular, as are (a) (b)i), and (c)ii). Finally
(d) solutions can start at an initial singularily, either (i} recollapsing in
the future, (ii) asymptolically approsching the RKinslein stalic universe in
the future, or (i) expanding forever. In the lalter case the universe can
slow down near the radius S, and spend a long time there; such universes are
known ss Bddingéon—Lemaitre universes. It has not been emphasized above,
but the equations are time-symmetric and for each solution there is a time-
reversed solution a5 well; in particular (bXi) is the time reverse of (eXii),
(eXi} that of (d)ii), and (b)il) that of (dXiil Robertson (1933) gave a
detailed analysis of these possibilities; an extension of the classification
to . the case of negalive pressures viclating the emergy conditions is given by
Harrison (1967).

Al ste time the equation of state may be taken as that of “dust” (p = 0).
A detailed classification of such models in terms of the observational variables
(to, o = 1/2 {1,) ie given by Rindler {1977, section 9.11). An equivalent
analysis in tsrms of the variables (qq, @) is given by Siabell and Relsdal (1966),

who depict the phase plane for the universe models in ierms of these variables
and give detailed information on the age of the universe in these models. A

large positive A term can lead lo ages much grester than 1/Hg (the limit when A
is sero).

652 Exact solutions:
Exact solutions can be given in the dust case in terms of elliptic
integrals, but they are not particularly illuminating. However simple exaot

solutions can be found in the case of an emply modet (p = f& = 0) driven by a
positive cosmologicel constant A. BEquation (34) becomes S* = —[A/3) S with

solution 5 = A exp (wlt~ts)) + B exp (—w(t-ts)) where @ = (A/3}/? and A, B
can be rescaled by choice of the conmstant ts. Equation (38a) then gives the

relation: 4ABw? = k. Thus we find on suitable choice of constants:
k=+l = S=(3/2A) cosh wt (51a)
k=0 => S= Aexpuwt A constsnt, {51b)
= => S -=[3/2A) sinh @t (51c)
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These are all forms of the space-time of constant positive curvature, the
de Siter universe, with the coordinates delermined by (5ia) covering
the whole space—time but the others covering only parts of it (Schroedinger
1955). The same space-time can be represented as different FLRW universes
because the choice of 4-velocity vector u* is not unique in this case; the
exceptional equation of state (50b) is precisely the one for which the stress
tensor defines no unique timelike eigenvector (cf section 4.3).

Solution (51b) is & Steady State Universe explicitly exhibiting the
stationary nature of this space-time (the metric form is invariant under the

rescaling t = &' = L + g, A - A' = A exp (—w/fty)). However unless matter
obeys the exceptional equation of state (50b}, this can only be a solution of
Einstein’s equations if it iz emply but has & positive cosmological conatant
(a8 above) Bondi, Gold and Hoyle proposed it as a cosmological model in which
the Kinstein’s field equations (and conservation equations (25a)) were aband--
oned, 3 continuous creation of matter taking place as the universe expanded
{cf Bondi 1960). This has turned out to be incompatible with observations of
adio-source number counts {and the microwave background radiation is difficuit
to explain in this case). Furthermore the original argument for this space—
ume in letms of its very high symmetry {the "Perfect Cosmological Principle*)
has been diluted by the realisation Lhai it is geodesically incomplete in the
past, and indeed a non-scalar curvature singularity occurs st the boundary of
the universe a finile distance from every event in the space—time (Bliis and
King, 1974)

It has recently been realised that the exceptional squation of state
(50b) could result from quantum fielde in the early universe, eg. From a

scalar field @ (cf section 43). This has led o the proposal (Guth 1981) of
“Inflation”, that is, a period in the early universe where (50b) (a “false
vacuum") holds and (51b) describes the expansion of the universe for a sufficient
time that ihe scale function S(t) increases by a very large factor (say o*
where Z >> 100). This is atiractive in many ways, particularty in providing a
possible physical explanation for the fact that the observed universe is large
(section 32). A complete description of the expansion of the univese must
then consist of an initial radiation dominated phase (47a), followed by an
inflationary phase (51b}, followed by & radiation dominated phase (47a),
followed by a matter dominated phase (46a). Each phsse must be matched to the

following one by choosing the constanis so that S and S° are both
continuous (cf Eliis and Stoeger 1987b). An important effect of the expansion
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is to make the "curvature" term k/S? in (38a) negligibie at the present time;
thus by (4ic), assuming A = 0, we should live in a high density universe ai the

present lime with the density 0, very nesrly si the critical valuve 1.

653 Approximate solytions
The early solutions with A#0 will be the same ss when A=0. The late

evolution of any universe with A>0 that expands forever will be dominated by
that term, and it will tend asymptotically to the de Sitter universe (51b).

6.6 Alternative Field Equstions:

Einstein's ficld equstions are an approximation that will not hold at
very early times when quantum gravity effects are dominant; and indeed they
may be inaccurate st quile recenl bimes, or on scaleg other than the solar—
system scale which is the scale on which our experimental tesis validate them.
There will of course be & sel of cosmological solutions corresponding to each
gravitational theory. In most cases the gravitational field equations will be
the General Relativity equations (1) plus some extra terms on the feft hand
side; thess terms can be kransferred io the right hand side so that they are
ofefctive matter terms which in turn (ss in she case of the cosmological
constant, of equations (50]] can be expressed as effective contributions to

the energy density g and pressure p in the FLRW universe. Thus slternative
fieild equations are in effect equivalent to alternative equations of state,

Many papets have been written on the effect of such alternative theories
on cosmology. In particular Jones (1974) has described in detail all FLRW
cosmalogiee based on theories of gravily thal lead to aulonomous systems of
equations for cosmology. However this will not include theories with higher-
order Lagrangians. The cosmological implications of gauge theories of gravity
are summarised by Goenner and Muller~Hoissen (1984).

6.7 Observations

671 Element abundances

The early universe iimescale (49c) is tested through the theory and
obgervations of slement abundances. As mentioned above, these are in good
agreement.
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6.7.2 Densities and qq

The relation between Q and q4 is given by equalions (41} Observations are
not good enough to determine qo adequaiely to distinguish between k = +1 and

k = -1, even if we assume A = 0: they only show —1 < qo < 15 (Sandage and

Tamman 1986). Observalions of the energy density g are also unable to

determine k (Peebles 1{986), specifically because of the numerous forms of
*dark matier" (ordinary or exotic) that might be present and undetected.

6.73 Ages

In & universe model with vanishing cosmological constant, we may suitably
work out ithe ages on the basis of the "dust" equation of stale because this is
the piausible equation al late times, and (by (34)) most of the age of the
universe is accumulated in this matter—dominated era, the proper time elapsing
in the early radiation dominated era being very small Exact expressions for
the age in terms of Hy and qo can be obiained from (43b), but simple estimates

will suffice for our purposes. In a high densily universe (Q = 1), (46b) will be
# good estimate wheress in a low densily universe the limit {47b) can be used as

an ostimale. For any p = 0, A = 0 model the age can be expected to lie within

these bounds. A very high density universe (Q > 1) will give even lower estimates
for the age, as will a universe dominated by radiation st lste times (which
can be estimated from (47b}).

The Hubble constant is unknown to a factor of 2, lying in the range 50
Km/sec/Mpc to 100 Km/sec/mpc. This is close to giving significant limits on
universs models. For example, Penny and Dickens (1984) estimate the age of the

globular cluster NGC 6752 as 16 + 2 Gyrs. The lower bound of 14 Gyr implies
an upper limit of 70 km/sec/Mpc on the Hubble constant in the low—density
limit (48b) and of 47 Km/sec/Mpc in the high density case [46b). If one follows
Sendage (1982) in adding 0.2 H,™ to the age of the globular oluster to sllow
for the formation of galactic nuclsi prior to cluster evolution, then in the
low density case Ho < 56 km/sec/Mpc wheress in the high density case Hy < 30
km/sec/Mpe, in apparent disagreement with the observations. If the lower bound
on ages came down to 16 Gyr the disagreement would be more marked, providing
evidence against the critical density (infiationary universe) proposal, and

presence of relalivistic particles ai late times makes the problem worse
(as (47b) then applies). A way out is to assume the cosmological constant is
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positive but then it becomes a substantive issue as lo why A should have such a
small non—gero value.

It is not clear that there is an age problem, but there is certainly
close to being one st least in the high densily cases. On the one had one
needs better estimates of the Hubble constant, and on the other of the ages of
stars, planets, and elements (see eg. Audouse 1980 for & sumtnary).

6.8 The particulsr initisl conditions

The evolution of the universe raises a series of questions thal have been
the concern of cosmology since the 1930’s. Firstly, is the density of matber
and radiation present greater or less than the critical density 7 Equivalently,
what ic the future behaviour of the universe 7 Whal is its spatial curvature,
je.isk=+10 or -17?

Given answers to these questions, the deeper issues remain: why do the
initial values of the universe correspond io these particular parameters 7 An
attack on that problem is the inflationary proposal, which 1f correct shows
that for & wide variety of initial conditions the universe should be very
closs to the oritical density at the present time. However it unfortunately
does not make a prediction as to the value of k, and so is agnostic as regards
\he future evolution of the universe and the nature of spatial curvature. A
second daring attack is via quantum cosmology (Hawking 1984), giving an
explanation for some of these parameters in terms of quanbtum processes and in
particular predicting that the universe is a high density universe with closed
spatial sections. It is to the credit of these theories that they are open lo
verification, for example through age tests which are close to showing we can

only live in a high—density universe if A > 0.

7: NULL-CONE OBSERVATIONS

Cosmological models only allain a relation fo reality through being
lested by comparison with observations. It is thus important to deduce all
possible observational tesis of these models. Some have been mentioned already
in the previous seclions; this seclion focusses on light~cone observations in
cosmology, ie. observations made by electromagnetic radiation (optical, radio,
X-ray, ultra—violet or infra~red) travelling towsrds us at the speed of light.
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1.1 Equations

Electromagnetic radiation travels on null geodesics in space~-time, le.
on curves x*(¥) for which

K*pk® =0, k%, =-£=0, k'=ds*/dv. (52)

These curves can also be derived as solutions of the Euler-Lagrange equations
OL/ox" - dfdv dLfox*" =0 (53a)

where
? = galx) x*® x*® = - 7 + STt) {*? + 1) (6" + sin’0 §*%)},  (53b)
and x** = dx"/dv, with first integral
L = -£ = constant (53c)
- the equivalence of (52) and (53) following from the Christoffel relations for

the connection components I™,., snd the specific form for L from (18b).

Because of the spatial homogeneity of these universes, we can consider
the radiation to travel on radial null geodesic through through the spatial

origin of coordinates 1 = 0. Then & = 6, = const, § = ¢, = const. on the

geodesics x*(v) (having started out radially, spherical symmetry ensures that
they continue moving radially, this is cobvious from the symmetry but alse

follows from the geodesic equations), ie. d@ = 0 = dgf Also £ = 0 is equivalent
to d&® = 0; 30 on these geodesics, (18b) reduces to di? = S¥t) dr’. Thus

wzro-n = f /S = ulut) (548)

along such geodesics from r = r; lo r = 1,5 where the integral is taken from
the imtial time t, to the final tmme t, {this result also follows more
formally from {53)). In terms of the variable y = S{)/S, this relatior can
be writien

urye) = So f dy/yy* (54b)
where the integral runs from y, = 5,/S to 1.

7.11 Redshift
Let pulses of radiation be emitied by G at limes ¢, Y’ = I, + At, and be
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received by O ab times iy, &' = by + Aty where source G is comoving with the
expanding fiuid at fixed r—coordinate value r, and observer O comoving with
the expanding fluid at fixed r—coordinate value r, Then the observed time

dilation for all events at G as seem by O is AlgfAt,. In particular this
applies to the period AL = ch of light of wavelength A, with the observed

cosmological redshift 3z, defined by 3z, = AN/A. FEquation (54a) applies to
both pulses, with a fixed value of u Equating the integral from §; to & io

that from t,' to to', we see thal for small At At,,
1+ 5= Mo/A = Alo/AYy = S(ta)/S(4). (55a)

showing that the redshift depends only on the total expansion of the universe
between when the light was emitted and when it was received.

It is characteristic of the redshift effect that this frequency shift is
independent of the wavelength of the light observed. We must be careful,
however. In general neither the source nor the observer will be exactly como—
ving (and there could even be local gravitational contributions) Let 3q be the
local redshift of & source G' as measured by a comoving observer {for whom G,
at the same event, is stationary), and 3 the local redshift of light from s
comoving object as measured by the observer O' (at the same event as O) As
each redshift corresponds to an observed time dilation, the total observed
redshift z for G' as measured by O' is then given by

1+3 = {1+ 30)1 +z)l + 3) (55b)

(¢f Harrison and Nooman 1979). No direct observation by the obeerver can
distinguish these three contributions to the observed redshift; they have o
be inferred indirectly. This is one of the substantisl problems in cosmology,
contributing to the redshift controversy {Field Arp and Baheasll, 1973).

712 Observed solid angles arid angular diameters

Consider light travelling from the extended source G at r = u radially
towards the observer O situated at the origin r = O of spatial coordinales.
For simplicity we consider the light to travel on the bundle of null geodesics

bounded by the <oordinate values (8, 8 + df) and (, ¢ + db). Then the observed
‘solid sngle is dO = cinGd@dp. If the light is emilted at a time 1, the
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corresponding lengths sublended by this bundie of light at the source (evaluated
from (18b} with dr = 0, 4t = 0) are S[t,)f(u)dd, Si)f(u)sinBddh where u is
given by (54), so the cross—sectional area is dA = St)*(uldQ. Thus if we
define the area distance 1o by the relation

dA =1 d0 (56a)

then we see that
to' = St F(u) (56b)

Because of the isotropy of these models, the area distance will also show how
all angles behave: an object of linear size I{t;) wili be observed to subiend an

angle & where
It = o {56¢)

To obtain specific formula for the area distance, one must assume a
specific equation of stale and use the Friedmann equation (42) to determine

y* (thiz is how the matter in the universe affects the focussing of null

geodesics via the Finstein field equations). In particular if A = 0, p = 0, one
can integrate using (43b) to obtain Mattig's formula

fo = Ho™'a0™1+5)"" aos + (ao-1(1+2009)"* - 8 (574)

when q4 # 0, and
ro =1/2H, {1 - (1+3)%} (57b)

when qo = 0. These curves, which should be a good description of the behaviour

of observed angular diameters in the lale universe, are plotted by Sandage
(1961) In principle one can find qp by compearing these formulae with

observations of angular sises of distant objects with clearly defined linear
seales. It is possible the late universe iz dominated by relativistic
particles or radiation; one can use {43c) to obtain the formula

ro = Ho a0 {1+8) §laolt>4) — {ao-1))"* - 1§ (57c)

for this case where p = f4f3. It turns out that the curves oblained from this

formula are indistinguishable from those obtained from (57a) for small red-
shifts, i.e for 3 < 2 (Bllis and Tivon 1985).
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A particularly interesting feasture of these formulae, first discovered by
Hoyle, is thal refocussing occurs. any pair of null geodesics diverging
from the cbserver back into the past reach a maximum distance apart and then
start reconverging (thus the whole past light cone starts reconverging, see
Hawking and Ellis 1968) This is evidenced by munimum anguiar diameiers.
if we consider moving an object of fixed linear size | back into the past, ils
image will decrease in apparent size to a minimum angular diameter at some
redshift s, and will then start increasing in size again. In particular the

simplest case is the high density dust Einstein—de Sitter universe where
to = 2/Hy (1+8)™*" {(1+9)"" - 1}, (57d)

(the particular case of (57a} where qo = 1/2} here refocussing occurs at ze = 5/4.
We have seen qso’s and even some galaxies beyond thie redshift. In iow density
dust universes refocussing occurs at higher redshifts, eg if g = 002 then

2« = 397, thus searching for the refocussing redshift 2. is a possible lest
for the density of matter in the universe (Ellis and Tivon 1985).

713 Intensity formulae
(a) Free propagation Consider light spreading out spherically from
the source G at time t; towards the observer. The argument above shows that at

time %, the cross—sectional area of light emitied at the source into solid
angle d0} is dA = S*(io)*{u)d(). The fraction of the light emitted by the source
that is intercepted by this solid angle is (dQ/4m), so if the source luminosity

ig L{t)), the rate of emission of light into this solid angle is L{k;) (dQ}/4). As the
light propagates freely and photons are conserved, this light will amive at
the observer. The rate of receplion of the light will be measured by him to be
down by a factor (1+2) from the rate of emission, because of the time—dilation
{55a), and the energy per photon will also be measured ko be decreased by a
factor (1+z), because this energy is proportional to the photon frequency
which will be redshifted by this amount. Putting this together, the measured
flux of radiation from the source, ie. the energy received per unit time per
unit area by the observer, will be

F = (L{t)/Am(t+]") (1/Se’f(u)) (58s)

By (56b) and (55a), this can be re—expressed as
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F = (L{t,)/4m(1+5)") (1/r") (58b)

Thus the apparené magnitude m = — 25 logeF ~+ const measured for the
source observed will be

m = ~ 25 logoldty) + 5 logyefro {1+2)°) + const. (58¢)

On substiluling specific expressions for rg we oblain predicted magnitude—
redshift curves for this universe; eg (57b) gives the standard curves,
plotted by Sandage (196t), for pressure—free matter. These can in principle be
used {o delermine gy by measuring the redshifts and apparent magnitudes of

distani sources whose intrinsic luminosity L can be well estimated.

This formula refers to the total radiation received from a source at all
wavelengths. In practice the detector will only measure light in a limited
waveband. Hence to actually compare prediction and obgervation we need to know

the source spectrum F {vq) specifying the fraction of light emitted by the source
at frequency v into the spectral band (Vg, Vg + di/g). This spectrum will be red—
shifted to the observed frequency /. The received radiation in the frequency
band (v, v + d} will then be

Fudv = (Luamisl®) Fotes? (59)

where a factor (1+3) sllows for the redshifting of the emitied band width dvg

to the observed bandwidth dv. It is preferable to use this formula for comparison
with cbservalion than applying "corrections® Lo equations (58)

Furthermore, (59) is only directly applicable to point sources. For an
exiended source, at each point of the image a detector will directly measurs
the observed speci/ic intensify of radiation I, ie. the specific flux
per unit solid angle. By (56a), (59) this is given by

Ldv = F dvfd = (lo/(t+3)*) J(1+9)) dv (60)

showing that the observed specific intensity of radiation is independent of
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the area distance 1, depending only on the spectrum .? , observed redshift s,
and source surface brightness Iq = L/4wdA where dA is the cross—sectional area

of the part of the source observed in the solid angle dQ.

Equation (60) applies to any freely propagating radiation; in particular,
it applies to black body radiation, and it follows directly from this form that
if radiakion is emitted as black body radiation at a temperature T, because its

spectrum al the source then lakes the form Vi (v) = VB{v/T,) where b is the
Planck function for black body radiation ab temperature T,, it will be observed
as black~body radiation at a temperature T where

T = T,/(1+3) (61)

if s is the redshift of the matter emitting the radiation. By (55a), this
agrees with the temperature law (26d) for radiation in the expanding universe.

(b) Absordtion and emission. In general there will be absorblion and
emission of radiation between a discrete source and the observer. A general
formula for such processes can be given (see eg. Narlikar and Davidson 1966,
Ellis 1971a, Harrison 1977) which becomes particularly simple for processes
such as Thomson scattering (Bahcall and Salpeter 1965, Bahcall and May 1968),
In effect, these approaches are based on the Boltamann equation in the
radiative transfer fimit. An alternalive approach to the effect of scattering
processes on background radiation is via a local cell theory approach (Harrison
1977) that ties it more closely to the thermal history of matter and radiabion.

714 Number Counts
If the observer O ab time &y detects dN sources Iying between r—coordinate

distances u and u+du in s solid angie d{} (the observed light being emitted by
the sources at about the time i, ), the volume dV in which the sources lie is

dV = dA dl, where the area dA = 1o°d(} by (56a) and the length dl = S{t;}du by
(18b). Thus if nft;) ie the number density of sources and p the probability
that sources in this volume are detected by the observational procedure, then

dN = p nfty) dV = p nft;) S{t,)re’dQ du = p nft;) S(t)*(u)d du
that is

dN = p (n(t,)/(1+5)") S(te)**{u)dC du (62a)
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which can be compared with observation, because u can be found in terms of the
obgervable quantity rof1+3) by use of {56b):

w = Fro/Sitolt+1) §, (625)

where [ is the inverse of the function f defined in (18a), and S{ky) cen be
written in terms of H,, qo by use of equations (41). If galaxies are oconserved
during the time interval (tot,) then n(t) = n(to)1+s)* and so the total number
of galaxies N detected fromu=0tou =y, iz

N = ngSy*d0 f p f3u’) dv’ (62¢)

where the integral from 0 to u cen be easily performed if the detection
probability p is independent of u,

715 The Obsarvational map

The basic relations given above are the basiz of detailed observational
tests which depend on stalisiical analysis of observed galactic imsges, snd
8o in turn on the detection and selection criteria for these images.

Whether or not a particular source is detected depends on the size and
intensity of iis image. Suppose Lhe intrinsic surface brightness Ig in (60)

varies with distance p across the surface of a galaxy as

o = Bs) flofalsl),  f0)=1 (63)
where B, is the central brightness, /{(} the brightness profile and als) the
scaling radius;, examples of suitable profiles are the Hubble profile ;{() =
(1+€)? and the de Vaucouleurs profile ;{{) = exp(¢''*) where £ = 1 for
spirais and 4 for ellipticals. By {56c), p is relsted to the cbserved angle S8
from the centre (p = 0) of the galaxy image by

p=1r8. (64)

With (63} and (60) this shows the observed specific intensity will be

18 %) = B fiex) (65)
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where

X(3) = rola)/sls), Bla) = Bl F w19 (65b)

Thus the specific flux of radiation measured through an aperture of semi-angle
A centred on the galaxy will be

FAAs) = Bayx' glaxt) (66a)
whers

) = [ omt 10 &t (660

the integral being taken from 0 lo B. One can work oul the integral explicitly
for the profiles mentioned above.

A simple characterisation of detection limits is through a specific

intensity limit Sy{V): the galaxy image is detected at frequency ¥ up to where
it fades away into the noise as its specific intensily (65a) drops below the

value Sy(v). Then the apparent angle A,, of the image is given by solving
the equation

Suv) = LA, 3) (67a)
From (65a) this gives

Agvs) = yBx [y B, (67)
where Z" iz the inversion of the profile ; The apparent fluz of the

source Iy, is then given from (66a) by
Fulva) = FifAs 1) (68)
and the apparent magnitude m,, is defined by m,, = — 25 logie A,y + const.

This is an isophotat magnitude up to the observed brightness limit S{v)

The luminosity L, and so absolute magnitude M, of a galaxy with surface
brightness distribution (63) is determined directly from the central brightness
Bofz) and scale sise az) If it is situated at redshifi s in a universe with

area distance ro(g), one can determine the apparent size A,, and apparent
magnitude m,, of its image from (67), (68) and so determine the

observational map. (M, 8) » (m,,, A,;) from the gbiect plane with coor-
dinates (M, a) to the image plane with coordinates (m,, A,;). This map
determines the image characteristics from the soutce characteristics. This map
is very non-linear; many examples are given by Ellis, Perry and Sievers {1984),
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which also lakes into sccount point-spread effects in the detector. It is
suggesied that sefection effects determining the fraction p of galaxies
measured by a galaxy counting machine or included in a catalogue, depend on
the apparent magnitude and apparent angle, ie. on the image location in the
image plane; further details are given in Ellis, Perry and Sievers (1984).

7.2 Observational data

The relations above, itogether with analysis of local astrophysical
properties of objects observed, form the basis of the delailed observational
tesis discussed for example in Balian el al (1980), Setti and van Hove (1984)
Koib et al (1988). -

(a) Analysis of observations of galaxies and other discrele sources involves
detailed stalistical analysis of their properties, in pariicular knowledge of
the 'luminosity Function” giving their luminosity distribution. Unfortunately
statistical variation in source properties together with the problem of source
evolution, ie. knowing the intrinsic parameters of the source st the time the
observed light was emitted, remaine a major stumbling block in using the
standard lests: the (magnitude, redshift), (angular diameter, redshifi},
(number count, magnitude), or (number count, redshift) relations or varianis
such as the (Volume, luminosity) lest. These give useful restrictions (Gott et
al 1974, Loh 1986) but are far from definitive in determining q; and (K*),.

As a consequence, attention has recently been more and more on statistical
analyses of source properties, eg of the source covariance function, and on
dynamical properties that relate to the mass distribution, eg galaxy rotation
curves, virial theorem mass estimates, local velocitiese and their relation to
mass inhomogeneities, and galaxy formation processes (see eg Peebles 1986)
Locai gravilational lensing may also be a way of determining mass densities
(see eg. Subramian and Chitre 1987). These all take place in the context of
the expanding universe model and observational properiies outlined above, and
should~ take this context properly into account; for example covariance function
analyses are sometimes calculated without taking intc account cosmoiogical
curvature effects, but the extension to do so ig possible (Groth and Peebles
1977, Bonometto and Lucchin 1978). These analyses also are begining to take
into account the non-smooth distribution of malter in the universe, ise. the
exiglence of clusters and voids on & very large scale and associaled peculiar
velocities,

(b) The other main stream of observaiions is detailed analysis of the back-
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ground radiation spectrum at all wavelengths and the associaled interaction of
radiation with matler (see eg. Rees 1980, Wilkonson 1984). Like dynamical
estimates, this helps materially to place limits on the various possible forms
of "dark matter" and so to oblain important density estimates, particularly
when combined with nucleosynthesis data and theory (see eg. Schramm 1983,
Matzner 1986). However there are so many theorstical possibilities that this
data also does not uniquely determine qq, (K*).

1.3 Observationsl issues

The prime observsiional issues are the nature and evolution of luminous
matter on the one hand and the nature and density of dark matter on the other.
Uncertainties about both kinds of matter prevent us from determining the
cosmological parameters directly from observations. In particular, we do not
known the matter density in the universe, nor do we known how to estimate
source evolution. An alternative would be if we could locate sources whose
intrinsic properlies were well-determined by local physical processes, and so
whose luminosity and size could be estimated directly, thereby providing a
calibrated ‘"standard candle®. It is possible that supernovae will Fulfif this
role, but the erratic behaviour of the Magelisnic Cloud supernova is not
promising in this regard.

As observational knowledge becomes more detailed, we are more and more
faced with the problem of how to semsibly fit & completely smooth universe
model (as described here) to a lumpy reality. Up to now, this is being done in
a rather ad hoc manner, Some initial proposals for a more syslemalic approach
(Ellis and Stoeger 1987a) need development.

A final point is that it is possible we are secing the same galaxies many
times over through multiple images; indeed it is possible we have already seen
all the matter in the universe, and that a number of the "distant galaxies' we
see are in fact images of our own galaxy. Such a “small universe” is possible
in each family of FLRW models, ie. whether k = +1, k = 0, or k = —1. Their
observational properties are intriguing; relatively few galaxies can give an
impression of many galaxies approximately uniformiy distributed over the sky
(Ellis and Schreiber 1986). The underlying issue is thal a local determination
of the universe model [knowledge of q,, H,, etc) does not determine the
topology of the universe in the large (section 223); and that topology
therefore needs observational determination.
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8 CAUSAL PROPERTIES

The FLRW universe models are conformally flat, so their local causal
properties are the same as that of flal space—time. Specifically, these
models are stably causal and so the "fulure" of each event (the space-time
region that can be reached by fulure directed Limelike or null curves from
that event) is bounded by the future null cone (Hawking and Ellis 1973, Tipler
et al 1980); similariy the past is bounded by the past null cone. As a
consequence the region of the universe that can influence or be influenced
from any event is strongly limited.

Consider the event R at lime t = iy situated on the world line of the
obgerver O at the origin of spatial coordinates (r = 0) Because causal
influences can travel at most ai the speed of light, an event S to the past of

R at coordinates {t, r, @, @) can causally affect R if and only if r = uft, i)
where u is given by [54a) However r is a comoving coordinaie, so this is the
coordinate label of the furthermost fundamental galaxy G that can influence R
by means of any physical process taking place at or after time t; on G's world-

line. Suppose now we let t, < 0, where the origin of the universe iz at t = 0

(ie. S{t)+0 as t,+0) The integral may diverge; in that case, an observer

at R can in principle see all the matter in the universe. This will be true
for exampie in the Milne universe (48). However the integral may converge, and
indeed by (49b) will do so in a FLRW universe filled with ordinary matter. In
this case we say there is & parficle horizon (Rindler 1956), and can
then determine the coordinate value up, characterising the furthest galaxies
that can possibly influence the event R at any time in its history:

upnlto) = w0, to) = f di/S(V) (698)

where the integral is from 0 to &, The corresponding physical scale at
the present time is

dyn(te) = Slto) upn(ta), (69b)

giving the present-day distance to the set of galaxies separaling those that
can possibly have had causal connection with O at time L, from those that cennot.
This i the largest present—day physical scale on which structures occuring
can be explained in terms of physical processes acting causally since the
creation of the universe. Their nature is particularly clarified by looking at
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causal diagrams for the FLRW universe representng the light cones al + 45°

(Penrose 1963, 1968, Hawking and Bllis 1973, Tipler et &l 1960). One can
think of this horison as being defined by the set of perticles at which the
observed redshift (which increases with increasing distance from O) becomes

infinite, because it corresponds to the particles for which S3{t;) » 0. Two things
are noteworthy: (a) the parkicle horison slways expands in the sense that once
a galaxy G has entered the particle horison of the observer O, it can never
leave it (by (69a) u,n(to) is an increasing function of t, because S(t) is
posilive). Thus ai later and later times, more and more maiter lies within ihe
particle horison of any observer O. (b) As long as the universe expands, the
present physical scale (69b) must also be an increasing function of time.

The definition given so far does nol take inte account hmitations on
observations due to the early universe being opaque when T/T, > 1000 K, ie. for

S(t)/S(ty) < 1/1000 (section 4.4). Let events P, Q lie on the furthest world
lines O can see to by light emitied at the time of decoupling t4 when the
universe becomes opaque; then the corresponding r—coordinate value is

un{te) = ulby, to) = uly, 1) (70a)

with u given by (54a) in the first case and {54b) in the second, where y, =
S{ta)/Se = 1/1000. The present day physical scale of this "visual horison" ia

dyp{te) = Slto} tsnlte); {70b}

it is the preseni-day distance to the furthest objects from which we can
receive electromagnetic radiation (light, radic waves, and X-rays from more
distant objects are scatiered by the oplically thick intervening medium).
Isotropy of the microwave background radistion is evidence of homogeneily on
this scale, because we measure such radiation from the surface of decoupling
to have about the same temperature in all directions. It is important to
notice then that at the iime of decoupling the particie horizon ocourred sl
the value

Upp = (0, b4} (71a)
corresponding Lo a present—day physical distance of

dppnlto) = S{to) Yppn - (716}
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This is the largest scale (evaluated at the present time) whose homogeneily
can be explained via physical processes taking place in the early universe up
to the time of decoupling. It follows from these definitions that

donlte} = dyn{be} + drph(to)- (72)

One can also evaluate these distances ab the Lime it4 if desired, repiacing
S(t,) in (69b), (70b) and (71b}) by S(ty), and again finding a relation

equivalent to (72) By (56¢) the preseni apparent angular sise @, of the largest
region that is causally connecled st iy is determined from the equation

dpsafta) = S{ta) Uppn = rof3a) Xppn (79)

where 24 ~ 1000 and ro(z) is determined from (57} if the universe is matter
dominated singe decoupling.

The relations so far hold for ail equations of state. Now suppose the
universe is radiation dominated st early limes and matler dominated at late
times; for simplicity we assume the change—over takes place at the tume
ty (this may actually occur earlier or later, depending on the matler

density, cf. section 4.2.2). Then initially (for 0 £ t = &)
S{t) = S, (2Hg)'" ¢
'[Sd, H, constants) and the contribution to u during Lhis era is

uppn = 1/(HaSa).

Finally (for tq S t £ &)
S{t) = Sy {(3/2)Hy(t-tq) + 1

(the choice of constants ensuring continuity of S and S* at t = tg) and the
contribution to u during this era is

(2/HaSa) {(So/Sa)'” ~ 1).

Ugp

Bvsluating the constanis at t = {; shows
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So = Sa {(8/2)Halke~ta) + 1J**, Ho = Hy (S4/Sol**
Thus SqHy = SeHo (So/Sa)'® and so
uppn = 1/(SoHo) (So/Sa) ™ (74a)

= 2/(SoHo} (So/Sa) ™" [(So/Sa}” - 1] (74b)
showing that

dulbo) = 2 {(Se/Sa)” ~ 1] dypalto)
which implies
dppnlbe) = 0016 d,ufto).

This is the “"horizon problem™ the scale of causal connection at the time of
decoupling is much less than the sise of the presently visible region of the
universe (both sizes being evaluated at the present time by}, Thus no causal
process occuring after the creation of the universe can expiain homogeneity on
the scale of the visual horizon; but homogeneity on this scale ie implied by
the observed isotropy of the background radiation,

81 Limite to verification and prediction

Major limits in our ability ic observationally verify the nature of the
universe arise because of the limits imposed by the existence of particle
horizons. in the k = 0 and k = -1 FLRW models with the standard topology, the
implication is that we have seen an infinitely small fraction of the matler in
the universe. Thus we can only delermine the nature of conditions far away on
ihe basis of philosophical assumptions which cannot be observalionally
verified or disproved (Ellis 1975, 1980). The question of whai approach Lo
take to these unobservable regions of the universe is pussling. The standard
approach by default implicilly assumes that conditions there are known, but
no observational evidence backs up this sssumplion. In a k = +1 universe with
standard topology the situation is different: we have then seen a finile
fraction of all the matter in the universe, but there is much we cannol have
seen. The only universes where we can have seen all the matter there is, are
"small universes" [section 223 above; see alzo Ellis 1984b, Ellis and
Schreiber 1986). Present observations do not disprove this possibility.

As a oorollorary to this uncertainty, unless the universe is a "small
universe" we are strictly oniy able to determine the structure of the universe
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in the past of the point R, and not anywhere to the fulure of ils past light
cone. The issue here is that objecls we have not yel been able to ses [and
with which we have not yel had any causal contact) could generale gravitational
waves that will invalidate any prediction we care to make about future events,
2g an eclipse of the Moon or the return of Halley's comst. This has not
happened in the past few hundred years, but this does not mean it cannot ocour
in the future. Thus we are only able o predict future events (such ss that
the Sun wili rise tomorrow) on the basis of & “no—interference’ condition:
distant matter in the universe will not interfere with predictions we make on
the basiz of local knowledge. In effect this is an assumption of uniformity in
parts of the universe we have not yel seen or had any causal connection with.
A “cosmological principle” guaranteeing spatiai homogeneily {and so validating
the assumption that the universe is well-described by s FLRW model in regions
for which we have no observational dala) is such an assumption of uniformity,
which is unverifiable.

The issue that arises is, how Lo deal with uncertainty in cosmology both
in the verification of distani conditions and in altempis to predict to the
future of our past light cone. Philosophical considerations inevitably play a
dominant role in deciding on what approach to take to this issue.

9: LOCAL PHYSICS AND COSMOLOGY
9.1 Boundary conditions and local physics

The last section has started to emphasize that local physical conditions
depend on the boundary conditions on physical fields in the universe (Bondi
1960, Eilis and Sciama 1972). Specifically, we noted there that local physical
effects can only be predicted if distant conditions in the universe ("boundary
conditions at infinity") are such as to not interfere with local predictions.
In fact boundary conditions ai the beginning of the universe govern what is
possible mn local physics. A particular example is "Olber's paradox“. why is
the sky dark at night 7 (Bondi 1960, Harrison 198i), which is just a limit on
the integrated background radiation from all sources, which in turn depends on
initial conditions for the universe. If the background radistion temperature
were over 300 K, life as we know it on earth would be impossible.

A further notable example is the arrow of time gquestion: it seems
probable thai the local time-asymmetry of time-symmelric equations such as
Maxwell's equations is due lo time—asymmetric conditions for electromagnetic
fielde at the boundaries of the universe. This is intimately related to the
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expansion of the universe (introducing a fundamentsl time asymmetry into the
universe and hence to ite conlents) which in turn may be related io the
smoothness of initial conditions (Penrose 1979, 1981).

9.2 The Effect of Expansion on Local Physics

One way in which the Sime-asymmetry of the universe effecis local physics
is directly through its expansion. For example, Maxwell's equations for the
electric and magnetic fielde measured by fundamentsl observers in an expanding
universe differ from their form in flat space-time (see eg. Ellis 1973).

Of particular importance is the way the expansion of the universe affects
geodesics, for these represent “free fall' motion; spherically symmetric test
particles only deviate from geodesic motion if some force (cther than gravity
and inertia) acts on them. To illustrate thiz we consider briefly a particular
problem relating to galaxy formation.

It iz possible thal voids in the distribution of galaxies arize from an
explosion that takes place ab an initial event at a Lime t = t;, the effects of
this explosion spreading out radially until a “freesing out” of this motion
takes place at a time . = i, probably becsuse the outwards moving matier
encounters matter moving in the opposite direction originating at similar
explosions at other places, and interacts with it to reduce the speed of both
relative to comoving matier to nearly zero. We are interested in the length
scale d of the resulting bubble measured at the present itime ly. The time ¢,
precedes the present time to, and i, is after the time of decoupling t4.

A model that represents limits on possible spreading of effects in an
expanding universe is obisined by considering the explosion fragments moving
freely, that is, following geodesics in the curved space-time. The fragments
from the explosion have to catch up with matter moving away (due to the Hubble
expansion in the expanding universe), and this limits the region which can be
influenced. Geodesic motion represents this effect accuralely. Clearly this
model does not represent local physical effects, eg ram pressure resisting
the motion, that will further limit the domain that can be affected by the
explosions. Thus such free fall estimates give upper bounds on the scales that
can be affected; local effects that do not feed energy into the particle
motion will reduce the possible size of bubbles even further.

" From (53) radisl timelike geodesics of the metric (i8b) obey the equabions
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8 = constant, ¢ = constant, and
dr/dt = E / {S{t) (S*t) « E)"*) (81)

where E is s constant. Evaluating the speed of motion v, of the psrlicle ab
the time & reistive lo comoving observers, E is given by E = »S/(1 - v
Therefore if particles are scattered by an explosion at time &, at speed v,
and they move freely (ie. on geodesics) until time b, (either the present
time t,, or a iime when they are brought to rest by meeting particles coming
in the opposite direction) the change in their r—coordinate value is

we = -t = J @S (FSW - (T6e)

with the integral kaken from ¢ Lo t,, where

¥ = 1/ {t - %)’} (76b)
The corresponding distance d evaluated at the time iy is given by
d = S(to) uy - (76¢c)

To evaluate these expressions we need an explicit form for S{t). For
convenience we iake it in the form

Sit) = alt - ) )

where (a) n = 2/3 for k<0 dusi, (b) n = 1/2 for k=0 radiation, or (¢) n = 1
for the Milne universe. Then the Hubble constant Hy is given by

Ho = (SYSh = 0flig - to) (77a)

and so

So = @ (n/Ho)" (77b)

[we write S{ty) = S, St) = 5, S{t;) = S,) while the deceleration parameler
Qo 15 given by

9 = - (5%/Sk (Ho)* = (1 -n)fn (T7c)
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It is not possible to obtain a general form for the integral when S(i} is
given by (77). However for large ty, uyp ~ f dt/t*® which converges for n > 1/2

and diverges if n = 1/2. Thus in the low-density {n = 1) and high density (n =
2/3) (matier dominated) cases, the maximum comoving sphere that can be affected
by such an explosion is strictly finite, no matter how long the particles
continue to expand (cf Fairall 1987). In the radiation dominated high density
case, on the other hand, arbitrarily large r-values can in principle be
atlained eventually. Furthermore, the local speed v of motion of the explosive
sifect relative to comoving matter is given by

v = St} drfdt = B/(S({)+E)V2 (78)

which always stays posilive, but goes to zero as t goes to infinity and S(t)
increases indefinitely,

For the specific cases (7T7a—c) we find,

n=1/2 d = [(¢/2H6,) (Si/Se) {arc cosh(28,’+1) - arc cosh(26,2+1)} (798)

where

G =-v)v, 8 =SS (79b)
=2/ d = (2o/Heb!™) (S/so)” f asfls + sp" (79%)
where the integral is taken from 3, = 8, to 3, = §,% and

n=t d = (¢/Ho) {arc sinh (1/8} — arc sinh(1/8,) } (79d)

In a general universe filled with pressure—free matier, i) is determined
by the Friedmann equation (43b) which shows

d = (c/Ho) J (t-2aaly™ + 2003} @BH/vF ~ "y - (0)

where the integral is taken from y, = S$i/S, = (1+5)" to ¥y, = Sy/Se = (+u)™.
Bquations (79a) and (79c) above are respectively the special cases resulling
when qy = 1/2 and q, = 0.
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In high density cases {79a) and (79¢), as 3 is taken to higher and
higher values (for fixed s, and v, d attains a maximum value and then declines
although the freely moving products of the explosion have longer and longer
times to expand, in fact they are pulled back by the gravitalional effect of
the intervening matter, and for very large values of ¥ only very small
distances are attained at 3, For given 3, and v, there is a value . of 3
giving & maximum value of d, which is the largest distance (evsluated sl ty)
that can be affected by an explosion ejecting products at speed v, ai any
value of %, The same effect occurs in the /ow denmsity cases of pressure—
free universes with qo = 002 and 005. Another way of thinking of the effect
is that abt earlier times, v, can be expscted lo be the same (because its local
physical causes are unchanged] but the Hubbie constant at that time is higher,
g0 the speed has less effect; the explosion fragments are chasing matier which
{at the same comoving distance} is moving sway faster, and so is less successful
in catching up with it. Smaller values of d will again be oblained for earlier
galaxy formation, ie. larger values of 3, for each vaiue of 5 > 2,

It is particularly inlteresting that the bubble size i3 in many cases
insensitive to 3, for quite a large range of values of %, The point is
that there will in general be varied explosion times and strengths, so one
might expect a large variation in resulting bubble sizes. The insensitivily
to g, provides a possible explanation for relatively uniform sises of observed
bubbles; for example if n = 2/3, v, = 10000 km/sec and z, = 4, then roughly
the same bubble size will result for 3, anywhere between i0 and 45. Indeed
these particular parameter values correspond reasonably well to the observed
gises of the foam-like structure.

Obviously if geodesic motion is delermined by the expansion of the
universe, geodesic deviation will also demonstrate such effects, A direct
analysis (Ellis and Stoeger 1987a} shows this explicitly. For example, in an
Einstein—de Sitter universe the motion of a freely falling particle relative
to a (geodesically moving) fundamentsl observer is characlerised by ihe
deviation vector

7" = G+ KM (75)
where C* and K" are covariantly constant along the world-lines. The implication
is that a freely falling cloud of particles in an Einstein—de Sitter universe
will feel the expansion of the universe, no matler how small the scale of the
cloud. Consequently one might expect the expansion of the universe lo imply a
spiralling of planetary orbits when a mass such as the sun is imbedded in an
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Einstein—de Sitter universe {cf Gautreau 1984). To the extent thiz does not
happen, it iz because the exactly smooth FLRW model iz misleading about the
nature of local physice in a realistic (lumpy) universe modei. Thus one issue
“ig, in applying the FLRW model to the real universe, what iz the scale on which
we expect Hubble's law to affect local physics 7

Closety related to the geodesic deviation squation is the use of Liouvilie's
theorem to estimate the evolution of random velocities of galaxies.

93 Homogeneity and causslity

An interesting question in relation to local physics in the expanding
universe is, how do physical processes occur homogeneously ? As & specific
example, consider nuclecsynthesis, Because of the causal limitations implied
by the past light cone, two distinct events P, Q on a surface of simuitaneity
t = b do not share the same causal past, and indeed if far enough apart their
causal pasts will be completeiy disjoint, Thus no common physical events can
explain why nucieosynthesis takes place exactly simuitanscusly ab these
separate evenls.

The resolution is that physical processes along separale world lines are
initialty synchronized (in & FLRW universe) by the spalially homogeneous big
bang; and thereafter, events on different world—lines remain synchronised,
although they are causally disconnecied, because in effect local physical
processes act as perfect ciocks along each separate world line. Thus spatial
homogeneily, once initiated, is maintained by perfect time-keeping along the
different world lines. This result will not hoid if random processes [(eg. due
to quantum Fluctuations) occur; they wili break this mechanism for maintaining
homogeneity.

9.4 Deoper issues

There are other specific issues one can examine in relation to local
physics in an expanding universe, However there is a deep underlying issue,
namely the Machian probletn: what is the relation of local physical laws to the
nature of the universe 7 If the universe were totally different, it is possible
thal local physical laws would be different; equivalently, in the cosmological
context the division between local physical laws and boundary conditions may
become meaningless. Such speculations have led to proposals such as Dirac's
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Large Number's hypothesis, but the issue is still basicaily unresolved.

A related question is the relation between the nature of the universe and
the existence of life. In essence, it is easy to construct universe models in
which life is impossible {eg. a recollapsing k = +l universe where either the
microwave background temperature never drops below 1000 K, or the total life—
time of the universe is less than 107 years); so why is the real universe such
as to admit the existence of intelligent life ? This takes one onto the hotly
debated ares of the Anthropic Principle (Barrow and Tipler 1986),
suggesting that the universe must be such as to allow the existence of
intelligent life. The proposal raises many intriguing questions but does not
fully resolve them.

Overall, the point is that local physics is affected by the expansion and
evolution of the universe, and the malure of this relation is nol trivial and
is not fully resolved. It is worth further exploralion.

10: PROBLEMS AND POSSIBLE SOLUTIONS
10.1 Issues

1011 "Best-buy® FLRW universe
The simplest approach is simply to look for & "best buy" FLRW universe.
Despite the possible existence of dark matter of numerous kinds, the observa-
tional evidence iz still as it was in 1974 and indicates, taken on its [ace
value, a low—density universe. This “standard model" provides a good overall
picture of the evidence presently available, and a salisfying overall picture
of the evolution of matter in the expanding universe (see eg. Longair 1985).
The problems arise when one starts to relale this to more reslistic,
"lumpy universe" models. On the one hand formation of inhomogeneous structures
in this uniform background, and in particular galaxy formation, is still an
unsolved issue. On the other hand the relation of these idealised, exactly
homogeneous and isotropic universe models to Teality is not clear. It is not
obvious how pariicular galexies or clusters relate to the comoving cecordinates
of the idealised model, nor how particular light rays correspond to ihe
idealised geodesics of those models; indeed it is known that light rays in
lumpy universes behave in @& rather different way thsn in the smooth models.
The standard approach to this issue is via examining perturbed FLRW models,
which have not been discussed here (see particularly Bardeen 1980), and how
they relale to possible observations of galaxies (Sasaki 1987) and background
radiation (Sachs and Wolfe 1967). This has not been developed to the point of



144

relating real observations to detailed periurbed universe models. An salternative
15 lo consider the "fitling problem*: can we prescribe a procedure determining
the best—fit of a FLRW model to a lumpy universe by means of possible cosmo—
logical observations (Ellis and Stoeger 1987a) ? .The approach is promising but
needs development,

10.1.2 Relation to verification

Observational problems arise due Lo observational selection and
detection effects on the one hand and source evolution on the other. More
fundamentally, problems arise because we can only observe on the past light
cone and (unless we live in a "smail universe") the fraction of matter we can
possibly see is strictly limited by particle horizons. Thus there are regions
of the universe for which data is limited and others fgr which we cannot
obtain any observationa! dais whalever (Bllis 1975} Anr examination of the
null data for cosmology, using observational coordinates, shows that the
observationally determinable region is a FLRW universe if and only if the
observational relations on the past null cone are precisely those predicted by
FLRW models (Ellis ot sl 1985), but direct proof of homogensity in this way is
not practicable (Ellis 1980). Thus our belief in the applicability of the FLRW
models results more from their overall coherence and general compatibility
with the data than detailed observational confirmation of their nature.

101.3 Creation and the laws of physics

The big-bang origin of these models inevitably raises the issue of
creation, and the special nature of creation leading Lo the observed universe.
In parlicular, why are the laws of physics and the initial conditions in the
universe such as to allow intelligent life ? This implies a very deficate
_ balance of laws and environments.

The problem of “explaining” why the universe is the way it is, is
compounded by the uniqueness of the universe: by definition, there is only one
universe. This raises the complex issue of the relation of local physical laws
to the universe: just as local physical laws affect the universe it is
possible that the universe (which is the tolality of all there is) affects
local physical iaws; indeed it is plausible that if the universe were very
different these laws would also be different. Viewed differently, it may be
that in the cosmological context, where initial conditions sre given once and
for all and cannot be altered, we cannot really make the usual distinction
belween physical laws and initial {or boundary) conditions.
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10.1.4 Improbability

Until a decade ago, cosmologists were happy to accept that a Cosmological
Principle (postulating either uniformity or simplicity, of Ellis and Matravers
1985) "explained” why the real universe was very like 8 FLRW modsl. Recently
there has been a move away from ihis view with various attempis to explain
thig uniformity in other ways. The basic probiem here is that the FLRW modeis
are very specisl, and s0 a4 priori are extremely unlikely within the
general family of univetse models. Why shouid ihe real universe have Lurned
out Lo have such an extremely improbable geomsetry 7

10.2 Proposed solutions:

1021 Chaotic cosmology

One approach iz the "chaotic cosmology” program initiated by Misner
(1969) irying to show that s wide variety of initial conditions would lead to
the smooth universe we see iloday. The initial version was only partially
satisfactory (MacCallum 1983) A recent version of this program is the infla~
tionary universe model (Guth 1981, Gibbons et al 1983), where an early
exponential expansion through many orders of magnitude amooths out the universe
and also solves the horison problem: due to this expansion, dpp, >> dyy
{cf (74)) There are now many versions of this theory, but none are completely
salisfactory.

10.2.2 BEntropy considerations

Penrose {1979, 1981) argues that entropy considerstions require of
necessity that the universe be very smooth initially {but not finally),
relaling thiz issue to the arrow of time question. In effect this is a new
version of the Cosmological Principle, tied in to the necessity that [ocal
physics proceed as we know it. However it is not clear that thermodynamic
arguments apply in this context, and if s0, there are questions az to Lthe
appropriate measure of gravitational entropy.

10.2.3 Small universes

This proposal (Ellis 1984b, Ellis and Schreiber 1985) suggesis that very
general inhomogeneous small universe models can provide the appearance of a
FLRW universe. However their spatial topology cannot be the usual topology,
and no proposal has yet been made as to how this topology, or the closure
length scale, is determined.
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1024 Anthropic Principle )

The strong version of this proposal (Barrow and Tipler 1986) is that the
universe must admit intelligent life, perhaps for exampie because the nature of
quantum mechanice tequires observers to exisi; it iz then suggested that this
must make the universe look the way it does. This kind of claim is intriguing
but controversial. Its foundations (in terms of an ensemble of universes, the
many worlds interpretation of quantum mechanics, or & much larger inhomogeneous
universe] are open to debate, The weaker version (Carr and Rees 1979) simply
enquires as to what conditions are necessary for intelligent life Lo exist
The hoped-~for implication that the observed region of the universe must be
like a FLRW model has not been [ully substantiated.

1025 Creation theory

The most ambiticus project is a theory of creation of the universe, of
necessity through some kind of quantum process (eg. Hawking 1984). This
involves specific approaches to quantum gravily and quantum cosmology, the
foundations of both subjects being somewhat obscure. Interesting resuits
obtained so far suggest this may go towards explaining present observalions,
but in terms of pre—existent structures whose origin is itself then open fto
question.

1026 Fundamenials

In essence, it is probable there are four fundamental viewpoints on the
origin of the present structures we see. These are, (1} Accident: conditions
just happened initially, and so led to things being the way they are now, by
chance. This appears to be very improbable in view of the high symmetry observed
and the delicate balance required to allow intelligent FKfe, ie. the observed
universe seems very unlikely within the set of all conceivable universes.
However the application of probability arguments is dubious; the concept of
probability cannot propetly be applied to the universe itself, because it is
unique {McCrea 1953). (2} Probability: although the structure of the universe
appears very improbable, for various physical or other reasons it is in faci
actually highly probable, {3) Necessity. coherence and consistency, as in the
"bootstrap" approach to physios, require that things HAVE Lo be the way they
are. The apparent allernatives are illugsory. This is really just a strong
version of the previous approach. (4) Design: the symmetries and delicate
balances observed require an extraordinarily ocareful coherence of conditions
and cooperation of eifects, suggesting that in some sense they have besn
purposefully designed. Cleatly this has theological implications.

It is possible elements of these different approaches could be combined
in some form. A survey of the previous proposals will suggest thai each of
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discussion within the domain of physics, rather than (1) or (4), which do not,

10.3 Conclusion

The standard models have a very clear geometrical and physical structure
with great explanatory power, and represeni sstisfactorily much of what we
see. However they need to be tested by comparison with 8 wider class of models
with more general geometrical and physical properties, in order tc ses how
good their explanatory power is relative to such alternatives, In looking at
these alternalives it is important io distinguish what physical problems from
metaphysical ones. Both kinds of problems are important in cosmology, but one
must be clear which is which.

I thank D. R. Matravers for useful comments on this manusocript.

Appendiz

The area distance relations (56-57) are of fundamental importance in
relating the FLRW universe to observaitions. Three points are of interest.

Firstly, there is a problem with the (p = 0, A = 0) relation {57a), namely

it is unstable as (qq3)} - 0. Terrell {1977) derived a form of this relaiion,
algebraically equivalent to (57a), that does not suffer from this problem. Ii is

ot) = (5/Ho) (13 §t + s1-qo){t + qo + (1o200n+117)%}.  (570)

Secondly, the general formuls for the area distance with p and A possibly
non-serc is given by Dabrowski and Stelmach (1986). Thirdly, if either the
source or the observer does not move with the fundamental 4-velocity then
redshift changes according to (55b); the corresponding change in ares distance
is implied by results given by McKinley (1979)
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