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Abstract
After a review of the theory of non-null boundary surfaces and surface layers in
general relativity, the evolution of spherical bubbles in vacuum, and voids in cosmology,
are studied in detail. The notes conclude with a study of the transition from Minkowski
space to Schwarzschild spacetime via null boundary surfaces.
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1. Introduction to Boundary Surfaces

Following the pioneering work of Lanczos (1924}, Darmois (1927), now some sixty
years ago, formulated the junction conditions appropriate to 3-surfaces of discontinuity
in the spacetime manifold of general relativity. Since in Newtonian gravity at & mild
discontinuity (what we will call a boundary surface) one impeses the continuity of the
gravitational potential and its first derivatives, it is natural in a similar situation in gen-
eral relativity to require the continuity of the metric tensor and its first derivatives. This
condition (which is sometimes called the Lichnerowicz condition) is clearly coordinate
dependent and so, as Darmois pointed out, of rather limited use.

In general relativity what is needed is a coordinate independent formulation of
the above ideas concerning smoothness. This was accomplished by Darmois at non-
null 3-surfaces by requiring the continuity of the first and second fundamental forms
of the surface. These are the conditions in use today. Curiously, however, it toock a
long time for these conditions to take hold. It was not until 1966, when the influential
paper by Israel appeared, that Darmois’ conditions became widely appreciated. (Israel
was primarily interested in surface layers where the second fundamental form exhibits
discontinuities. This is discussed in these notes starting in section 2.)

1.1 Junction Conditions *

Consider a 3-space T which divides spacetime into two distinet four-dimensional
manifolds V*+ and ¥V~ with metric tensors g;’, and g, each of class C? (except on L).
L is said to satisfy the Lichnerowicz conditions (Lichnerowicz 1955) if there exists a
system of coordinates (% say, o = @, 1, 2, 3) which cover T and for which

[9a8) =0, (r.1)
and
[?T“.f] =0, (1.2)

where for all ¥,[¥] =¥ |;‘ —¥ | for all points p on Z. With the conditions (1.1} and
(1.2) satisifed, the coordinates z® are called aedmiasible. I is to be a boundary surface if
it can be covered by admissible coordinates. Unfortunately, however, £ need not be a
boundary surface, and even if it is there is no general algorithm for the construction of

* Througout these notes we use standard geometrical units, a metric signature of
+2, Latin 3-indices, Greek 4-indices, and the sign convention of Israel for the second
fundamental form.
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admissible coordinates from those which are not. What is needed, as Darmois pointed
out, is an invariant characterization of L. As long as I is not null (for null hypersurfaces

see section 5) this is achieved by considering the first and second fundamental forms
asgsociated with it.

Let the coordinates intrinsic to T be £, = 1,2,3 so that the equations for & in
V¥ are r3 = £3(£*) which are assumed to be of class C2. It is not difficult to see that
conditions (1.1) and (1.2) are equivalent to

lgi] =0, (1.3)
and
[Kij] =0, (24)
where
&z ozf

9ii = 98 ZET BET
is the first fundamental form (instinsic metric) of & and

8z% 9z
K,'_,' = BE‘:-&—,.—Vanp,

n® the 4-normal to I (directed from V= to V) is the second fundamental form (ex-
trinsic curvature) of T (see, e.g., Eisenhart 1926). Conditions (1.3} and (1.4) are called
the Darmeois conditions for a boundary surface.

It is convenient to record here an alternative form for the extrinsic curvature K;;
{e.g. Cocke 1966). Write L (assumed non-null) as the identity

fa* €'y =0, (1.5)
so that
SRR S
o= i(l 9P 20 2L |\if3 Bza” (1.6)
We take n, # 0. Differentiating the identify (1.5) then gives
ore _ 0f _
no e = 5 =0 (1.7

Differentiating the identify again gives

8z On, Oz® fa
n,—a-é';'é'é? + @F@ =1{. {1.8)
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With this last expression the extrinsic curvature can be given as

_ 3%z dz~ 31'" )
=" agiae + ag og LAY

which is somewhat more useful than the standard definition. The Darmois conditions
{1.3) and (1.4), though equivalent to the Lichnerowicz conditions for non-null boundary
surfaces, circumvent the often difficult problem of finding admissible coordinates explic-
itly. There is, however, a complication which arises when applying condition {1.4). We
must ensure that the orientation of n® is preserved through E. This can in practise
be rather difficult to do, on the basis of conditions (1.3) and (1.4) alone, when the
coordinates used in V¥ are not “admissible”. We return to this point below.

Kij (1.9)

In addition to the Lichnerowicz and Darmois conditions, one finds reference to the
junction conditions of O'Brien and Synge (1952). Subject to coordinate transformations,
these reduce to the present conditions. (See Bonnor and Vickers 1981 for a discussion
of the O'Brien-Synge conditions.)

It is worth mentioning here a consequence of the contracted Gauss-Codazzi equa-
tions (see section 2) for boundary surfaces. From conditions (1.3} and (1.4) and the
contracted Gauss-Codazzi equations (see equations (2.3) and (2.4)) it follows that

[Gagn®nP] =0, (1.10)

and that

(Cas 2 af. " nf] = (1.11)

where Gog is the Einstein tensor. In particular, it does not follow in general that
[Gapu™uf] = 0 where u® is the 4-tangent to £. Conditions {1.10) and (1.11) follow if
Lisa boundary surface, but they do not alone guarantee that 1t 1s (Note that since
u’ = %ru we can also write condition {1.11) as [Gapu®n?] =

1.2 Some Examples

We start with some general, but elementary, observations. Suppose V'~ (say) rep-
resents a fluid with flow lines ¥ with respect to which the energy momentum tensor
can be decomposed as

TZ =(p+p—(O)E"Tps + (p — (O)5 — 205 + 5¢s + ¢y, (112)

where, as usual, p represents the energy density, p the isotropic pressure, ¢ the bulk
viscosity, i the shear viscosity, and ¢ the heat flux. Further, suppose that &* = u®



]

where u® is the 4-tangent to . (Note that in general this will not be the case.) Then,
from condition (1.10) and the Einstein equations, it follows that

p-(¢- %q}e - 2mm*nfVsu,) =0 (1.13)

(timelike ). With the identify (1.7} and condition (1.11) we also have
N + 9wV ougl = 0. (1.14)
For an ideal fluid (p = { = n = ¢™ = 0) conditions {1.13) and (1.14) reduce simply to

the continuity of the isotropic pressure. (Note that for a fluid without heat flux and
without a shear viscosity p = (© at L for junction onto vacuum.}

Most work on surfaces of discontinuity has been restricted to spherical symmetry.
Then, the metric intrinsic to £ can be given as

dst = g;;de'de’ = R*(r)(d8® + 5in®60d¢?) + Adr?, (1.15)

where A = u”u,. Without loss of generality we take # and ¢ continuous through T, With
the symmetry, it follows from (1.9) that there are but two independent non- vanishing

components of Ki;, K, and Kee(= sin~28K,4). These components follow from (1.9)
as

Ker = —ngtt”, (1.16)
where 4%(= u#Vsu®) is the 4-acceleration to u*, and

K” = -—n.,I‘S’,. (117)

In terms of the mixed angular components of the Reimann Christoffel tensor we ean, as
usual, define the effective gravitational mass,

1
m = 5(g00)*/* Rey *. (1.18)
Then, from {1.17), we find
Kss = £R(R® - A(1 - —)112), (1.19)

where R = dR/dr, and the sign of Ksg depends on the orientation of n®. In any event,
since A is preserved across I, it follows that

[m)=0 (1.20)
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for spheriecal boundary surfaces. It is important to note that [Kes] = 0 = {m} = 0 but
that {m} = 0 # {Kes] = 0. The sign of Kge in V* and in V- must be considered.
Moreover, one must ensure, as mentioned above, that the erientation of n® (which can
alter the sign of Kye) is preserved through L. There are examples in the literature
where this orientation has been inverted to I. This can lead to the fallacious conclusion
that the configuration is encased with a negative mass layer. It can also happen that
this inversion misrepresents £ as a boundary surface when it is not. We return to this
point once we have explored the junction conditions in a special simple case.

i) The spherical dust/vacuum interface

It is instructive to begin with a rather simple consideration of the junction of dust
onto vacuum in the case of spherical symmetry. (We begin here with A, the cosmological
constant, = 0 but we relax this condition later in these notes.} For uniform dust
this construction (with a vacuum “interior”) gives the familiar “Swiss cheese” model
pioneered by Einstein and Straus {1945).

From (1.16) and (1.20) this junction looks deceptively simple, though it has been
discussed many times in the literature. Since the flow lines in dust are always geodesic,
we have K,, = 0. We need only ensure that the Schwarzschild mass of the vacuum
equals the effective gravitational mass of the dust at T (assuming that the continuity of
the sign of K¢p has been checked and that the orientation of n® is preserved through ).
Of course the continuity of the intrinsic metric links the coordinates used to describe V—
and ¥*. But how do we know that T is generated by the geodesic streamlines? Perhaps
the easiest way to see this is to consider the evolution of m along . In vacuum clearly
m = 0. Suppose we choose comoving synchronous coordinates in the dust (r,84,1).
Since, for dust, m = m(r) (see below), we have

thy = === [z=0 (1.21)
so that unless dm/dr = 0 at 3 we have T comoving and hence geodesic as expected.

We now look at the above situation a little more closely. Let us label the dust V—
and write the metric in coordinates (r, 8, ¢,t) as

ds® = e%dr® + R*(d6® + sin?8de?) — P di? (1.22)

where o, R and # are functions of r and t. {The formulae recorded here are more
general than those required for dust, but will be made use of lat er in these notes.) The
components of the Einstein tensor relevant to the present discussion are

Gh = -F] (1-c=*(R? + RE'RY + (R +2RK - RERY), (1.23)



n

Gi= 23 1+ (' + RIR) - e"*(R? 4 2RR" — RC'R)}, (124
and 1
G = —efGl = — {—2h + R'& + RaY, (1.25)
where * = 8/t and ' = 8/9r. Along any rad.tal timelike trajectory of the metric (1.22)
the tangent and normal 4-vectors are
u® = (#,0,0,%) and n™ = £({/4,0,0, §7), {1.28)

where § = ¢/*~#)/2 and, as before = d/dr,r the proper time along the trajectory.
From (1.18) and (1.22) we have

R _ _ 2

=5 {1+e R’ cor”). (1.27)
Now in the dust we can take comoving synchronous coordinates (e.g. Landau and
Lifshitz 1975 ) so that 8 = 0 and along the streamlines we have u* = § with n® =
4e~2/252. Then from (1.25) the statement Ggnqu® = 0 gives

R =Te/? (1.28)
where I' = I'{r}, so that (1.27) can be rearranged to give
B =rr_14 2;', (1.29)

and hence K3, = RPT?. The statement Gnan? = 0, (1.23), and (1.28) now give
m = m(r) in the dust, as is well known. It is useful to record here some scalars
associated with a general timelike trajectory through the dust:

2m'R'
o’ = g

2m' »
Ggnav’ = oA, : (1.30)

and om!
w2
Gsuuu" = %t
‘We observe from conditions {1. 10) and {1.11), and the first two scalars, that for junction
onto vacuum £ must be comoving unless m'(rg) = 0. f m'(rg) =0 and ¥ # 0 it follows
that the “dust” is not dust, but rather vacuum. (The circumstancem! =+ =f =0is
allowed, see below.)
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Now let us label the vacuum V+ and use Kruskal-Szekers coordinates (u, 8, é,v) so
that

s .
T e gydy + #F(d8? + sin®8dg?) (1.31)

where ¢ (1, v) is defined, as usual, by uv = (1 —¢/2m)e #/m_ From the continuity of the
intrinsic metric (condition (1.3)), and the metrics (1.15) (& = —1), {1.22), and (1.31)
it follows that

¢g(u,v) = R(rz,t) = R(7). (1.32)

We call this the “history” of £. This is a statement of the continuity of gse and ggs.
The continuity of the remaining component g.r gives

3 - - .
§2‘lc' s =i - —=F =i =1 (1.33)

This is simply a statement that T is timelike. The radial timelike geodesic equation in
V* gives
2
= -1+, (1.34)

where v = (v} — w/)/8m so that 4 = 0. From equation (1.29) and the history (1.32)
then, as expected,

(e} =7 (1.35)
where, from (1.20), we have set
m(rg) =m. (1.36)

What remains to be given here is a specification of what I will call the “topology™
of the situation. The Kurskal-Szekeres diagram is (physically) symmetric about v = u
so we need consider only v > %, With this in mind, it is necessary to specify whether
the vacuum is “exterior” to T (isolated dust ball} or “interior” to I {the vacuum forms
2 bubble in a background of dust). The easiest way to do this is to pick a point p in
the u — v diagram. {The point is to represent an event in the history of a particle on
¥). At p construct n®. We find

n® = *—(_&10!0!6)' (1-37)

If we take the “4", n® “points”, to increasing values of v. With this choice for n®,
if n® is directed into vaccum, we have an isolated dust ball. Otherwise we have a
bubble, Notice that for the bubble case E can, in principle, be viewed from the parallel
asymptotically flat “universe”. (I return to this point below.)
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The topological distinction sketched above is meaningless for L given by u = v,
However, in this case it follows that y = Kgg = 0 {Le. ¢ = 2m). With T{(rg) =0
the metric (1.22) is regular at ¥ for R'(rg,t) = 0, and so from (1.30) we must have
m!(rg) = 0. We return to other cases with R’ = 0 below. For the remainder of this
section we take R and " # 0 at E.

I would like now to return to a consideration of the sign of Kgy. For dust joined
onto vacuum we have K2,/ R? = 4? so that the sign of K¢ is fixed throughout the non-
singular history of Z. {The sign of K;; is net fixed in more general situations.) With
the choice “+” in (1.37) one easily calculates

m?
Koo = %{m’c—m}} = . (1.38)
Observe that Kys > 0 for v > u. (The choice ¥ > 0 for v > u gives the standard future
orientation). Label the vacuum as V* and the dust as V—. We then have a dust ball for
K% > 0 (and a bubble for X2 < 0 having taken the “” in (1.37)). The question to be
answered now is that given n® = (—,0,0,%) in V', which is the correct choice of n® =
+e~/262 in V- which retains the required orientation from V= to V+? For the case
at hand, a direct calculation gives the following: In V= for n* = :l:%ﬁf.’, K¢ = £RT
and V,.n" = i%; and in V¥ for n™ = £(—%,0,0,9), Ky =+ 2 vy and Von® = :I:%T.

It is evident then that the condition [Von®] = 0 picks out for us the correct
crientation of n®. Moreover, since Von® = K} (as is easily verified by reference to e.g.
Gaussian coordinates at I), condition (1.4) gives

(Van®] =0, (1.39)
Though not independent, condition (1.39) is a useful supplement to the Darmois con-
ditions (1.3) and (1.4) as the above simple example demonstrates.

#i) Comoving spherical dust/dust interface

Consider a comoving boundary surface T in dust. Aslongas R' and " #0at 2
it is clear from the discussion above that the Darmois conditions require the continuity
of R and T' {and, of course, m} at X. An interesting situation arises for T defined by
r = r, where R(ro,t) > 0 and

R'(rs,t) = 0,T(r,) # 0. (1.40)
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1t then follows from (1.8) and (1.40) that n, = 0 at I. Retreaiing to the Lichnerowicz
conditions, it follows that with R, T, and m of class C! at T the coordinates (r,#¢,1)
are admissible, as long as R(r,,t) is finite. With ' and m of clasa C' and R of class
C?~ then I, defined by (1.40), is a boundary surface. This conclusion is at variance
with that of Bonnor (1985) and Hellaby and Lake (1985). Moreover, there is, evidently,
no formal requirement that m'{r,) = 0. If m'(r,) # 0O then it follows that T is a
scalar polynomial singularity in the sense that Rag,sR*P7* diverges along I (Ragqs
the Riemann Christoffel tensor}. I am unaware of any other boundary surface which is
also an s.p. singularity in the above sense.

We return to the study of boundary surfaces in Chapter 5.
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2. Introduction to Surface Layers

In this section we examine non-null 3-surfaces of discontinuity ¥ at which condition
(1.4) (that is, [K;;] = 0) fails to hold. The “Gauss-Codazzi formalism” of Israel (1966)
is used. (The approach by Papapetrou and Hamoui (1968) is not.}) This “thin shell”
formulation fits into a more general analysis by Taub (1980).

2.1 Review of Basic Equations

We start with the equations of Gauss

Jz2 32 Az 8"

Ragys o7 367 €7 DEF BEE = Rijre — A K Kjx — KixKje), {2.1)
and of Codazzi 828 527 B2t
o027 87 Bz

Ropvsn® 57 et agr = v ik — VaKie, (22)

(e.g. Eisenhart 1926). Contracting these we have

Gagn®n® = (ACR) + K* - Ki;K')/2, (2.3}
and Py
Gap aLEin’ =V;Ki - V.K, (2.4)

(see, e.g., Misner, Thorne and Wheeler (1973) for details) where Gog is the Einstein
tensor, K = ¢*1 Kjj, and R = Ricci scalar constructed from Fij-

Consider the intrinsic 3-tensor §; defined by

878y = Alvij — gi57) (2.5

where 7;; = [Kij], and v = g¥y;;. We call S;; the surface energy tensor and (2.5) the
Lanczos equation. From equations {2.4) and (2.5) we have

(G n."] 8nAV;87. (2:6)

aﬂ 3{
With & = (9 IF +4 |;)/2 for all points p on T, from equation (2.4) we also have

Gog——nf = V;K! - V.K. (27
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From equations (2.3) and (2.5) we find
{Gopn®n?} = ~8xASYK,;. (2.8)
Finally, from equations (2.3) and (2.5) we also find
| 2Gqpn®n® = —168%(5,;5Y - §7/2) + ACR) + (K - (Kg)(KT),  (29)
where, from equation (2.5), we have used the trace

16%%5% = 42, (2.10)

Note that the right hand side of equations (2.6) through (2.9) invelve only quantities
intrinsic to .

2.2 Thin Shells

We presume that V*+ and V™~ are given solutions to the Einstein equations. Then
equations (2.7) and (2.9) may be viewed as redundant since, given a surface equation
fo state for I, equation (2.6} gives the intrinsic conservation laws for X, and (2.8) gives
the equation of motion for T (see below). By way of Einstein’s equations, and equation
{1.7), we can rewrite equation (2.6) as

[T, nf] = AV;S], (2.11)

36
and equation (2.8) as
A R
[AToan"n? + &) = SV Ki. (212)

To offer an interpretation of equations (2.11) and (2.12), consider the (discontinu-
ous) 4-tensor 5% defined by

58 = { o G 5 on %; (2.13)

In terms of the 3-tangent u; = ugdz? /3¢ it follows from equations (2.11) and (2.13)
that
2o V5% = u,V,5% = AlTagu®n”]. (2.14)
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That is, the tangential “stress™ on T is continuous across B and equal to the jump across
T of the “flux”. From the definition K;; and equations (1.7) and (2.13} we have

na V58 = —K;59, (2.15)
50 that from equation (2.12)

I A
7oV a5 = [AT,gn"n” + g;]- (2.16)

That is, the average normal “stress” on T is equal to the jump in “pressure” across I.
Finally, from the Lanczos equation (2.5) and equation (2.15) we find

[ra VS| = —8xA(SYS,; - 57/2). (217

That is, the jump in the normal “stress” across T is due to the “self-interaction” of the
layer.

In analogy to a fluid, we define the surface energy density o by
o= —ASijuiuj,
so that from the Lanczos equation we have
8o = Ay — yju'ul. (2.18)
Similarly, we define the surface pressure P by
2P = —A.S'gju"u’. +5
s0 that, agein from the Lanczos equation, we have
167 P = —Ay — yijuted. (2.19)
Equations (2.18) and (2.19} give
Ingai®] = —yi;u'u? =8x(P +a/2). (2.20)

As a result, if T is geodesic (4* = 0) it follows that P = —¢/2. In general, however, &
is not geodesic,

We now summarize the fundamental equations for . From equation (2.11) (or,
equivalently (2.14)), the Lanczos equation (2.5), and relations (2.18) and (2.19) we have

&+ (o + P)® = ~AlTapu®n?), @221)
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where, as usual, & = u'V;e, and $ = V;u' gives the 3-expansion associated with I,
Similarly, from equation (2.12) {or, equivalently (2.16)), the Lanczos equation (2.5) and
relations {2.18) and (2.19) we find

A(0 + PYnai® + PK = —AlTagn®™n® + %—3]. (2.22)

Much of what I have given here has been known for close to twenty years (see Chase
1970). Despite this, parts of the above can be found repeated numerous times in the
current literature.

Equations {2.18) and (2.19) relate the intrinsic “thermodynamic” quantities ¢ and
P to the intrinsic geometric structure of I. Equations (2.21) and (2.22) relate this
intrinsic structure to the enveloping 4-dimensional spacetimes. In particular, equation
(2.21) governs the conservation laws which must hold on T and, as will become clear
below, equation (2.22) gives the history of T in the background spacetimes.

In what follows we presume that the background spacetimes are known. Then,
given the history of £, we can solve for the evolution of ¢ and P. Alternatively, given the
surface equation of state (say P = P(o)) we can solve for the evolution of T. In either case
the foregoing equations indicate that the situation requires a fair amount of calculation.
For example, it has been known for about ten years {Cunningham (unpublished)) that
even the motion of a dust shell (P = 0), with V* given by Reissner-Nordstrém metrics
{A = 0), can be classified into 80 types! Except for some limiting calculations in the
Kerr metric (see De La Cruz and Israel 1968} most caleulations involving thin shells
have assumed spherical symmetry, to which we now turn.

2.3 Spherical Shells

From section (1.2) recall that the intrinsic metric can be given as in (1.15) and
that without loss of generality @ and ¢ can be taken continuous through I. Moreover,
there are but two independent non-vanishing components of K;; and these are given by
expressions (1.16) and (1.17). Writing

v’ =(8,4,#) =(0,0,1)
it follows from the intrinsic metric (1.15) and equation (2.18) that

4rR*0 = Avyes = M(7) (2.23)
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where we call M the mass intrinsic to E.

Two observations follow from equation (2.23}. Firat, suppose that [T,,u“n-’] =0
and that P = 0. Then, from equations {2.21} and (2.23) we have

M=0. (2.24)
That is, “dust” shells through which the “Aux” is constant have fixed surface mass. In
general, however, there is no a priori reason to take P = 0, though this is frequently

done in the literature. Moreover, in part of what follows we will be interested in cases
for which [Tasu®n?] # 0. In terms of M, equation (2.21) reads as

M + 8TRRP = —4xR? A[Tasu®n?). (2.25)

Next, from equation (2.23) note that we have the identity

oK+ MY (226)

(Kg)* =

For any spherically symmetric spacetime it follows that

Ki, = RY(R*-a(1- E;%'-}) (2.27)
where, as before,
R3 23
m= —2—Rg¢ . (228)
Equations {2.26) and (2.27) give us the useful relation (Lake 1979)
w2 _p gy 287 M 9
R -A+(M) R +{2R). (2.29)

For example, in vacuum (with A = 0 so m is the Schwarzschild mass) equation (2.29)
clearly gives the history of I. The evolution of M (which is required to solve (2.29))
follows from {2.25) given the surface equation of state P = P(M). What equation (2.29)
does not do is to distinguish m4 from m_ as regards the dynamics of the shell. This
is complicated by the fact that, as yet, we have no physical distinction of V* from V™.
To do this suppose Kgs > 0 on one side of I, label this as V%, and call it the “outside”.
Next, consider timelike T and impose the intrinsic weak energy condition

M>0 (2.30)
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so that from the definition (2.23) we have
Kp>Kf>0. (2.31)
Equations (2.27) and (2.31) then give the condition

my > m_ (2.32}

which is exactly what one might guess. The problem is, however, that there exist situa-
tions (e.g. E located beyond an "Einstein-Rosen bridge™) where the above construction
doesn't work. We return to this situation in section 3. Note that condition {1.39) is not
applicable here since, for surface layers, v # 0 except for P = ¢ /2.

Both equations (2.22} and (2.29) give the dynamics of the shell. Writing equation
(2.22) out explicitly we obtain the proper time derivative of equation (2.29). We can,
therefore, view {2.29) as the general first integral of the motion of spherical shells.

Now whereas ¢ has a natural interpretation leading to the definition (2.23), it is
worthwhile here to take another look at P. From (2.22), with spherical symmetry, we
find

2P, — 2a

where a, motivated by the standard definition of the surface tension ([p] = —2a/R), is
defined by R AA

= — a8 —

=3 AlTygn™n + o }-
In the weak-field (ms << R) slow-motion (R << 1) limit it then follows that P — —a,
as expected.
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3. Evolution of Bubbles in Vacuum

On the basis of guage field theories with spontaneous symmetry breaking it has
become popular to argue that the Universe may have undergone vacuum phase transi-
tions. Because of these transitions the Universe may also have undergone an exponential
expansion phase with important consequences for the horizon and flatness problems of
the standard model (Guth 1981), “Old” infiation concerns a Higgs effective potential
V(¢) with local minima at ¢ fersc 300 Perue such that the difference between the real and
false vacua is much smaller than the potential barrier between them. In this situation
one can argue that the bubbles of a true vacuum in a background of a false vacuum can
be described by the thin-wall approximation (see Coleman 1977 }. Through “New”
inflation (see Linde 1952 and Albrecht and Steinhardt 1982 ) is less amenable to a
thin- walled treatment, one still needs some idea about the role of gravitational effects
and so the thin-wall approximation is a useful first step.

In the last few years there have been many discussions in the literature concerning
vacuum bubbles in the thin wall approximation. In this section a systematic treatment
is attempted along the lines of Lake and Wevrick (1986). Pseudoeffective potentials
are developed for the motion of a bubble, and, as a result, the qualitative history of a
bubble is reduced to an algebraic problem. It is assumed here that the intrinsic surface

tension and density are proportional. This restriction includes the important domain
wall case (P = —a).

3.1 Formulation of psendopotentials

The spherical vacuum in "curvature” coordinates (r, 8, ¢,¢) is given by

dst = (I 412407 — f(r)at?) 3.1
"= {7 N e, Y
with I A2

fry=1- T’“ - %, (3.2)

and i constant. Note that
n AP
m=m + ?. (3.3)

The curvature ceordinates are not only defective near horizons, they do not, in
general, map one to one onto events of the spacetime. (The elliptic interpretation is
not used in these notes.) Double-null coordinates for the metrics (3.1} are constructed
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in Appendix A. It is convenient to work in curvature coordinates, but to interpret the
history of ¥ in the generalized Kruskal-Szekeres diagrams.

For metrics of the form (3.1) it is convenient to rewrite the equation of motion
(2.29) in the form

B = (G 11 - T+ (55 (34)

for timelike . (Whereas it is possible to consider a *simultaneous” transition of the
vacuum (Hawking and Moss 1982), which would require spacelike £, we do not consider
this possibility here.} In this section we take the ansatz

P=¢a, é=0 (3.5)
so that equation (2.25) reduces to
MR* =k, k=0. (3.6)
{(With € = —1 we have the familiar domain wall case for which & =0.)

From equations {3.4) and {3.6) it follows that

4kt RV = (R - )R - ) _ (3.7
where
kL = RV (f + f- 2205 f) (3.8)

Note that R? > 0 for k? > k2 and for k? < k2 and that R = 0 for &* = k3. Even though
equation (3.7) cannot, in general, be integrated analytically, the evolution of I can be
understood qualitatively from the function k1(R) given by (3.8). The construction of
a dimensionless equivalent to this function depends on the explicit forms of fi.

3.2 History of E

Since R does not, in general, map uniquely onto events in the embedding space-
times, it is necessary to distinguish the history of I in the neighbourhood of a Killing
horizon {assumed here to be non degenerate). This is done in figure 1 about a non-
cosmological horizon (By "cosmological horizon™ I mean the largest root to f = 0 for
A > 0.) For a cosmological horizon the roles of A and C are interchanged. Further, it is
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useful to exhaust the possibilities leading to the equation of motion (3.4). This is done
in Appendix B. We conclude that

B+ - JR+5) <VE~F (3.9)

= f-—1+ (3.10)

(\/thz +f_+,/f't=+f+)>\/f_—f+ (3.11)

for the trajectories A, B, and C, respectively, as distinguished in figure 1. Moreover,
from the intrinsic weak energy condition {2.30) (M > 0} we conclude that

f->f (312)

M
R

for trajectories of type A.

From equations (3.7} through (3.11) it follows that
Sk £E e A
Hl=k=t B (3.13)
>R #FE eC
in the regions for which k3 are defined. Further, it follows that if fi has an inner root
at Ry (that is, a non cosmological horizon for which f.(Ro) = 0 and f{(Rq) > 0) then

k2 =k = R¥Y2f (Ro) >0 (3.14)

and k% is undefined for R< Rg. If f, has an outer root at R, (that is, a cosmologieal
horizon for which fi(R)) = 0 and fi(R;) < 0} then

ki = kz_ = R}‘+2f_(R1) >0 (315}

and k} is undefined for R > Rj. Further details regarding k1 depend on the explicit
forms of f4 and f_.

Before we move to some examples, it is necessary to address a somewhat thorny
issue. That is, can we take all the trajectories in figure 1 to be part of physical reality?
Contrary to some recent work (see, for example, Blau, Guendelman and Guth 1987} 1
do not believe so. The reason is that non-degenerate Killing horizons, to the past of
their bifuraction, are unstable. This is known from perturbations with test electromag-
netic fields (see Appendix C), from global atguments (Tipler 1977}, from perturbation
methods (e.g. Giirsel ef al 1979), and from semi-classical calculatios {e.g. Wald and
Ramaswamy 1980). This means that a bubble boundary located beyond an "Einstein-
Rosen bridge” (e.g. trajectories of type C in figure 1 when "our” vacuum has v > 0
and u < 0) is a mathematical artifact. The complete pseudopotential k3 is, however,
included in what follows.



Fig. 1 Generalized Kruskal-Szekeres diagram for the totally geodesic 2-sucface @ and ¢
constant for, say, the embedding ”+" in the neighbourhood of a nondegenerate
Killing horizon H. The branches of H are designated Hy for 4 = 0 and H} for
v = (). Null geodesics on the 2-surface are represented by constant 1 or ¥ lines.
The chosen (global) fugure orientation is shown. represents the bifurcation
of H and is the image of spacelike 2-surface of the full space-time. Surfaces of
constant R are space- like for uv > (. Three distinct types of timelike trajectories
are labelled A, B, and C and are distinguished as follows: trajectoties A reach
v > 0,u < 0; trajectories B have uv > 0: and trajectories C reach u >
0,v < 0. The sense of the normal to £ is shown, and we use the convention
that K;‘s > 0for A,= 0 for B, and < 0 for C. (It can, of course, happen
that trajectories A(C) reach ut > 0 and that K:; =0at, sy R =R,
where k? = R‘i‘*'z(f_(R.) — f+(R.). This is in no way affects the above
labelling.) Because of the reflection symmetry allowed about 4 = v, there is no
loss of generality by the choice of labelling used here.



3.3 Some examples
§) A =094 #£0

Set
a=m_/imy (3.16)

and write z = R/my with €2 = k2/M{**2. The equation of motion (3.7) takes the form
4Lt = (2 - Y -8) (3.17)

and the pseudopotential {3.8) takes the dimensionless form

& =2z~ (1+ )t T - 2)(z 2} . (3.18)

Figure 2 shows the function £1(x) for the case a = 1/2. It is a straightforward matter
to skeich the qualitative history of I in the Kruskal-Szekeres diagrams (for ¥+ and for
V™) given the general behaviour of the pseudopotential. (The case & = ¢ = 0 has been
considered in detail previously by Kodama ef el. 19581.)

From the form (3.18) it follows that €4 # 0 for finite £ and that as 2z — o0, &4 ~
22?41 and £_ ~ (1 —~ a)x**. For vacuum phase transitions we are interested primarily
in transitions with £ < 0 and which can be carried to completion*(z — o0, T ~ i+
in ¥*). The asymptotic form for £_ gives us the important result that these vacuum
phase transitions cannot be completed with Ay = 0.



2 4 6 8 10 12 14 16

Fig. 2: Pseudopotential for Ay = 0.¢(z), given by (3.18), is shown for & = 1/2. The
curves are labelled by «.



i) My =0As #£0

Set
A= {t ﬁ: ig (3.19)
8= {3‘:’ A+, R: 4 g (3.20)
y=|A| R, (3.21)
y=k| A2, (3.22)
and
L=Af|A}. (3.23)

The equation of motion (3.7) now takes the form

PP = A (0 —B) -2 (3.24)

with the dimensionless pseudopotentials

1= 2peny XDy o SIVE D). (3.29)

T+ = §y
Note that as y — 0,7% ~ 4y***! and v ~ (1 — )24+ /36.

First consider L = +1. Some examples are shown in figure 3. (The de Sitter-
Minkowski case has been examined recently in detail by Laguna-Caatillo and Matzner
19086). Cases with § > —1 are much like those in figure 3, but for § < —1 the character
changes. For —1/2 > ¢ > (V=8 + 8 ~ 1)/{1 — B) = p*, two stationary points arise
along 74, the mner one representing stable equilibrium. For —(2+4£*) > € > ~2/3, two
stationary points arise along v_, again the inner one representing stable equilibrium.

Next, for L.= —1, the pseudopotentials (3.25) are definedon 0 < y < oo for > 0
andon0 <y < —3/ffor 8 <0.If §2>0ande > —1/2, then 44 and y_ intersect only
at y=0. If ¢ € —1/2 then %, and y_ do not intersect. For § < 0 the pseudopotential
is closed for ¢ » ~1/2, and ¥4 and 4_ intersect only at y = -3/f for ¢ < ~1/2. As
¥y — oo(f 2 0)

74 ~ 2P + B)/2 + VB3, (3.26)

so phase transitions cannot be completed (in the sense that yg —» ) for £ < —1.



Fig. 3: The Pseudopotential for My = 0.v1{y) is given by (2.35) and is shown for
L = 41 and 8 == (). The curves are labelled by £.



) |

iti) Mx£0,As #0

Set
= ﬁ'ﬁ' Vv | * m+ 7(" 0
6= { AL My =0, (3.27)
AT
r={3 N o)

and use a as defined in (3.18) for M4 # 0, but set o = 0 for M4 = 0. The equation of
motion (3.7) again reduces to the form (3.24), but the pseudopotentials are now given
by

2041 g3 3(1 4 a)s _ L(1 +ﬁ)y:|: \/‘i,}

=12y = - (3:30)
where 8 2
vop+ 28 2 By e+ 6)
v vy (3.31)

+ QMWL +aBlyg - LBy BT

{The case a = 8 = 0,¢ =f= -1, and L =#f= +1 has been examined recently by Blau,
Guendelman and Guth 1987 , and the more general case a = /=1, and ¢ = —1 by
Hiscock 1987.) Note that condition (3.12) holds for

ss{c(1o)- 240 Lv* (2 B(137) (3.32)

and that v_ = 0 at y,, where y. is the solution to (3.32).

With L = 41, the cases allowed by condition (3.32) are summarized in Table 1 for
=f 1. Some examples are shown in figure 4. With L = —1, as y — o0, it follows
from (3.30) that 43 has the same asymptotic form as for the case My = 0 discussed

above except that
2~ 3{1 — a)26% y*o! (3.33)

for 8 == 1 (which rules cut the completion of a phase transition in this single case without
£ > 1/2). The cases allowed by condition (3.32} are summarized in Table 2.
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Fig. 4 The pseudopobentml for m 0 and A+ # 0.71(y), given by (3.20) with
{3.31), is shown for =+1,& <1,and 8 < 1. (&) The curves are

labelled by @ and ha\re € —-1/2 ,B = 1/2, and § = 0.2. () The curves ure
labelled by § and have g = 0, 8 = ), and & = 1. Note that the roots yg and 1y
are functions of 8. {¢} The curves are labelled by € and have 8 = 1,6 = 0.2,
and @ /=2 1/2. {d} The curves are labelled by B and have € = 0,4 = 0.2, and
a=1/2



TabLE 1. Range in & and B given that Al =

¥ =L =+t and M > 0. » indicates no ¥3;.

# indicates no restriction on ¥ > 0; and ys =
(68 — 1N/(1 — B

a

g <1 =1 > 1
<l # # bR
1 * . *

>1 A *

TaBLE 2. AsinTable 1 butfor L = —1. Here
yo = (631 — a)/(1 - pp*"?

o
B <l =1 >1
< Y< I . .
' . .




Appendix A: Construction of Double-Null Coordinates

Consider the totally geodesic 2-surfaces I of the metrics (3.1) defined by d} = 0.
The radial null geodesics on I satisfy

& _ ﬂ;—ﬂl—r) (A1)
g0 there exist coordinates (u,v) on I' such that
2CA(w)du = f (r)dr — dt
and
(A.2)

2CB(v)dy = £ (r)dr + dt

where C = const. That is, u = eonst. and v = const. label null geodesics on I'. Suppose
A(z) = B(z) = 1/z so that from (A.2)

dr
ln|uv|+D-/'CT(r)r (A.3)
where D = const.. Suppose f has a simple root at r = e. Then

Fr) =(r — a)h(r), h{a)} £ 0

so that we have the unique decomposition

1 1 g(r)
RO ) (44)
where g(a)/h(a) # 0 and finite, and h(a} = f'(a). From (A.3) and {A.4) then
Luv |=|r—a [/ ex {fcg'!(:( )d r + E} (A.5)

where E = const.. The removal of || depends on how we choose to orientate the uv axes
for r g a. In any event,

w = £(r — a)M/OMD exp { f C}(:E))d r + E}. (A6)



From (A.2) .
dr? 4C7f(r)
ds} = o f(rd? = _— ————=dudv, (A4.7)
so that from (A.6)
4C%(r — ajh(r) o)
dsh = 2 a),fcw xp {— / Ohiry O~ B} dudo. (4.8)
The metric {A.8) is regular at r = a only for € = 1/h(a} = 1/f'(a). Let
= _f (a)r (A.B)
the usual “surface gravity”, so finally
dst = :I:ai(:} exp {—2::/ % dudv}, (A.10}

where, by choice of scale for u and v, we have set ¢~F = a. Once again, the choice of
sign in (A.10) follows from the chosen orientation of the u — v axes from {A.6).

The procedure given above (Lake 1979a) yields a regular metric about a simple
root r = a. About another simple root b # a the procedure is repeated (with a replaced
by b) to yeild a new chart, say (#,%). If a iz not a simple root (that is, the horizon
r = a is "degenerate”} a different procedure must be used (see Lake 1979b). For general
relativity (without a scalar field), the most general form for f(r) is

2 Ar? e?
fo=t-r-Sta
which gives the Reissner-Nordstrom-de Sitter metric. The case ¢ = 0 was, to my
knowledge, first considered by Gibbons and Hawking (1977}, and independently by
Lake and Roeder {1977).



Appendix B: Possible Histories for L

The purpose of this Appendix is to exhaust the possibilities leading to the equation
of motion (3.4) for trajectories of type A or C in figure 1. We use curvature coordinates
for convenience, though the coordinate t does not enter the argument. Futher, we
assume that necither ¥+ nor V— are degenerate, and we refer to some event p in the
history of & such that f(rp) > 0. We have

Ko = s;gn(n')n\/izﬂ +f (B.1)

so that from the definition of the surface mass (2.23)

BB+ o~ R+ ) - (82)

—RGR + o+ 4 1) (8.3)
M=

RO + -+ B2+ £4) (8.4)

R(—\B 4+ f- + B + f4). (85)

"Che intrinsic weak energy condition M > O rules out (B.3). As a result, if K >0
equation (B.2) must hold and it follows that

f_ > f+. (BG)

This case corresponds to r increasing away from I into ¥+ and © {as viewed from V+)
is a trajectory of type A for a non cosmological horizon, and of type C for a cosmological
horizon. Now suppose K3 < 0 so that r decreases away from I into V*. Then I (again
as viewed from V*) is a trajectory of type C for a non cosmological horizon, and of
type A for a cosmological horizon. Equation (B.4) gives M > 0 without condition (B.6}),
whereas with equation {B.5) the intrinsic weak energy condition gives

fy > f-- (B.7)

This latter case is, however, identical to the case (B.2) above upon interchange of the
labels + and —.



Appendix C: Stability of Killing Horizons

Consider timelike trajectories r, and r, which cross the same branch of a non
degenerate Killing horizon H, (less 4} designated by H, for v = 0 and H; for v =0 a5
in figure 1. From the general frequency shift relation

_ Ve _ (u%ka)e
L= T ok, S
and equation (A.6) it follows that
_ vofv, along Hy
(14 z)q = const. { uju, along Hi. (C.2)
The metric {A.10) is invariant under the transformation
= vexp{xD)
(C.3)

€ = vexp(—nD)

for finite constant D. (Transformation (C.3) can be visualized by noting that t=t+ D}
Whereas (C.3) applied simultaneously to e and o leaves (14 2) unchanged, this is clearly
not the case when it is applied to e or o separately. Along H, fix e and choose xD > 0
to shift o to & by {(C.3). Then

P, = voexp(—sD). (C4)

This means that "eikonal” perturbations along H, die out. Next, along H; fix ¢ and
choose I} < 0 to shift e to € by (C.3). We again obtain (C.4), but now with xI} < 0,
the perturbations along Hz grow. (This fundamental asymmetry was first pointed out
{for the Schwarzschild metric) by Eardley 1974.) One can view the timescale as the
e-folding time | x |~1 . For the Schwarzschild case this is of the order 20{m/mg)usec.
In contrast, for de Sitter space | & |~!= +/3/A ~ age of the universe.
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4. Development of Voids in Cosmology

It has been known for some time now that the distribution of galaxies may con-
tain voids (e.g. Kirshner et al. 1981, Davis et al. 1982, de Lapparent, Geller, and
Huchra 1986). These “voids” are known to contain a few galaxies (Moody et al. 1987)
and, perhaps, low-density metal-enriched gas (Brosch and Gondhalekar 1984). In the
literature there are a number of Newtonian calculations which indicate that negative
perturbations can give rise to “voids” bounded by sharp “walls” (e.g. Hoffman, Salpeter
and Wasserman 1983, Hausman, Olson, and Roth 1983, Fillmore and Goldreich 1984).
Such voids can appear in n-body simulations (e.g. Aarseth, Gott, and Turner 1979, Ef-
stathiou and Eastwood 1981, Klypin and Shandarin 1983, Centrella and Melott 1983),
though the n-body voids and the voids in the distribution of galaxies appear to be
different (Ryden and Turner 1984). Recently a Monte Carlo study of two-dimensional
voids has been carvied out by Icke and van den Weygaert (1986).

In this section we study the development of spherical voids in a Robertson-Walker
background within the context of the thin-wall approximation. I summarize and up-
date here the analysis by Lake and Pim (1985) and Pim and Lake (1986). This work
follows upon the work of Maeda and Sato {1983a,b) but extends it so as to include a
background pressure, an interior pressure and mass, and a surface pressure (or tension).
(In comparable situations, however, some of our integrations differ significantly from
those presented previously.)

Certainly the thin-wall approximation is applicable to the observed distribution
of galaxies at best over a limited part of the evolution of a void. The work reviewed
here explores the initial conditions associated with the thin-wall equations, but not the
development of the applicability of this approximation in the early universe. Though
the analysis is restricted to spherical symmetry, there is some evidence to suggest that
this is an entirely reasonable approximation for voids (e.g. Fujimoto 1983, Icke 1984).

In contrast to section 3, where A played an essential role, we set A = 0 in this
section.

4.1 Vacuum voids

We start with a vacuum (i.e. Schwarzschild) bubble joined onto a Robertson- Walker
background.



i) Basic Equaiions
The metric exterior to T is taken to be the Robertson- Walker metric
dst. = a*(n){dx® + SHx)Q — dn’) (41)

where, as usual, Si(x) = { sin{vEk x)}/v¥ (k = £1,0). From the metric (4.1}, and
Einstein's equations, it follows that

Tapu™n? [F=a*i%(p +p) Iz, (42)
where p is the total comoving energy density

1 da
p= o (GG +8 (43)

and p is the comoving isotropic pressure

P=goet {EF__(E:;)LH‘ }- (49

Note that ¥ is, in general, not comoving. Equations (2.28) and (4.1) give

my = Zra®SH0p Is (45)
The interior Schwarzschild mass (m_) is, of course, constant, With (4.3) we define
a=m_fmy; (4.6)
where m.4 is the initial value of m. Rearrangement of the equation of motion for £
(2.29) gives

dy, (PASE+¥-(RE) o was @47
dny '* SE+ ¥ E .

where

my — am.... ), m+ + am+.

¥ = +( V(g -1 s, 48)
with M defined asin (2.23). As in section 3 we again take P = ¢o ,€ = 0, so that since

Tasu®n? |5 =0, {4.9)
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it follows from the conservation equation (2.25), and equation (4.2) that

dM abSTdyfdn §i dx
—_—sm—_—— - - + 4.1
(s o (G DI (4.20)
where P
- 2 a 2
b= —adqz a’ ( ) + k. {4.11)

Note that for ¢ = @ = p = 0, the system of equations (4.7) and (4.10) reduces to
the equations integrated by Maeda and Sato (1983b).

&i} Background Model

As a model of the background we use a noninteracting mixture of dust and black-
body radiation. Then

Vim+ ‘nao'? , k=0
aln)=a VUsing + ua,(l ~-cosn), k=41 (4.12)
ﬁsmhn+ pag{coshp—1), k=-1

where (in units of time=?)
s St
, = 547 GA'TS
45R3¢°
and
_ 128x°GA (m. + mp)(3)T5
3hdc3fy
Here f, gives the photon to baryon number density ratio and Ty the present background

temperature (~ 2.7K). The scale factor today, a, is removable for £ =0. For k £ 0
it is obtained from the relation

k

2—_—
RN

(4.13)
where H, is the present Hubble parameter (taken here to be 100 km ™! Mpc~1). In
summary, a flat background has one input parameter (in addition to Tp), H, (say). If

k % 0 in the background, two parameters must be given, Hy and fp (or, equivalently,
= (v + u/2)/ H).

With the background specified, and with the aid of equations (4.12}, the system
of equations (4.7) and (4.10) (with the definitions {4.8) and (4.11)) can be reduced
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to a dimensionless form suitable for numerical integration. These formulae are given
explicitly in Appendix A.

iti} Initial Conditions

At an initial epoch #; (specified by (1 + z);) x:i and M; must be given. We specify
the first by the dimensionless ratio

=Xy,
B=(q). , {4.14)

the void/horizon (coordinate) size. For the remaining condition either M; or (dy/dn)
can be specified. In the latter procedure M; is obtained from the definition

. - : 2
M= R {2 +1- 22000 (i 41 - B2y, (415)

where m is given by (4.5). Note that of the two values of M; which follow from (4.1%),
the larger one is spurious.®

iz) Summary of Iniegrations

In what follows I use the notation

v = (dx/dn), (4.16)
and
& = log, {1 + ). (4.17)
a) k=0

ie=0

There is a minimum 4 (Ymin) such that for ¥ < vmin T collapses (to K = 0}, and
for ¥ > Ywmin, = has the asymptotic form (af.) d In x/d Inn ~ 0.39. (This asymptotic
form is discussed by Maeda and Sato 1983a,b.)

There is & minimum A {Bmin) such that for # < Bmin T collapses, and for § >
Bmin,Z —+ a.f. This fmin is epoch dependent such that Spin increases with 6. This i
shown in figure 1.

* We find that the initial conditions stated by Sato (1984) (m.. = 0, M; = my, #
0, (ax/dn); = 0) are not consistent with the equation of motion (2.29).
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There is a maximum o (ames) such that for & > Gmar I collapses, and for
a < Gmaz,Z — a.f. This am.; is epoch dependent such that as o, decreases as §
increases. This 15 shown in figure 2.

ithe # 0

If ¢ > 0 we find the asymptotic form d In x/d In p — 1. If £ < 0 we find that
collapses. Some examples are shown in figure 3.

b) k #£ 0
o = ¢ =0

For k = —1 we find that T becomes comoving (to, say, xz) and that yr decreases
as f, increases. For k = + 1, grows rapidly and continues to grow as the background
recollapses. Some examples are shown in figure 4.

ie=0 oa#0

For k = —1, as o is increases, yr decreases. There is an an.. {(which is epoch
dependent) beyond which E collapses. This is shown in figure 2. For k¥ = +1, the
growth of & decreases as « is increased. Again there is an ama; beyond which T
collapses. This is also shown in figure 2.

As for k = 0, with & = =1 there is a minimum 8, dependent on epoch, below
which £ collapses.

fi)e £ 0

For ¥ = —1 and £ > 0 we find the asymptotic form d Inx/d Inp — 1, just as
with k = 0. Moreover, again as with k = 0, we find that with ¢ < 0,% collapses. Some
examples are shown in figure 5. For £ = +1 we find that £ > 0 gives rise to a more

rapid growth of I. For ¢ < 0 we find &, < 0 such that with £ < g, < 0, collapses.
Some examples are shown in figure 8.

The role of « is as one might guess. An effective gravitational mass slows the
growth of a void. Moreover, as can be seen from figure 1, voids must have a minimum
initial “size” if they are to survive. Perhaps most interesting, however, are our results
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with £ # 0. For ¢ > 0 we found that T grows asymptoctieally like the particle horizon
in an open background. In contrast, for £ < 0 we found that T eventually collapses.



45

Fig.1: Minimum § for a given epoch. Curveshavea = ¢ = 0,and(dx/dn);i = 1—
1078 Fork = +1, f, = 1.8x107°, andfor k = =1, f, = 10%
Abscissa gives ].Ogm Bmin, where ﬁ < Brmin guarantees collapse of the void.
Curves are labelled by k.
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Fig.2: Maximum ¢ for a given epoch. Curveshavee = 0, 8 = 1,and (dx/dn); = 1—
107 Fork = +1, f, = 18x 107, andfor k = —1, f, = 10%
Abscissa gives (tmqy, where @ > (¢ mqz guarsntees eventual collapse of the void.



Fig.3: Effect of &. History of L for (1 4 2z); = 10* and (dx/dn); = 1 — 10
isshownfor @ = k = Oand § = 0.1. Curves are labelled by &.
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Fig.4: Effect of f,. History of I for 1+ 2) = 10% and {(dx/dp)i = 1 — 10-6
isshownfora = € = 0and f = 5. Curves are labelled by f,.
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Fig.5: Fffectofe, k = =1. History of Zfor (1 + 2); = 103 and (dx/dn)i = 1~
108 isshownforae = 0, 8 = 1,and f, = 10°. Curves are Iabelled by &.



Fig.6: Effectof¢,k = +1. History of T for (1 + z)i = 10 and (dx/fdn)i = 1 -

1078 isshownforax = 0, # = 0.1, and fo = 1.8 x 107, Curves are
lalielled by €.
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4.2 Radiation Voids

The use of vacuum in the void as described above is certainly idealized. One would
like to know, for example, the effect of a radiation field filling the void. One might
guess that the effective gravitational mass of the radiation field would slow the growth.
However, one might also guess that the pressure associated with the radiation field
would drive the expansion. To obtain a definitive answer the model of a void must be
refined so as to include the interior radiation field, and the equation of motion must be
reintegrated. In the model described below we use an isotropic pure (blackbody) radia-
tion field interior to E, and, as above, a noninteracting mixture of dust and blackbody
radiation exterior to £. In what follows I will only sketch the appropriate refinements
to the vacuum model for ki = 0 (see Pim and Lake 1986 for further details) and merely
summarize our results for k4 # 0.

i) Basic equations for ky =0

In addition to the metric (4.1), the interior metric is given by
ds? = o? ($){d¢? + ¢2dQ* — dy?), (4.18)

so that with ¢ and ¢ continuous, a-{¥){ = a4(%)x. We continue with the ansatz P = ¢¢
with constant ¢. In addition to equation (4.2) we have

Tastu™n? [5= a2 $((p- + p-) (4.19)

where p_ and p_ are as given in equations (4.3) and (4.4) but replacing a, with a_,
and n with 1, As a result, the conservation equation (2.25) now takes the form

dM R? dx dv& d( 1 da+ 1 dx
—_— (b 2 , 4.20
dy  ay\/T— (dxjdn)? tdy ~ d'? drr) (a+ dq ) (4.20)

where b is given by (4.11) (5 replaced by ¢ in V).

We are interested in the history of £ in V*. As a result, expressions are required for
dip/dy and d(/dn. The latter is obtained from the relation a4 x = a—¢ by differentiation.

We find
da d da_ diy
= {o-(Grx+ar )~ arx(Gr g al (4.21)
As a result, if dsb/dq is known, we calculate dM/dn. Note that with an interior radiation
field both m4 and m_ are functions of the shell’s history. In addition to relation (4.5)
we have

m_ = %:R“p- e (4.22)
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Finally, to obtain dip/dn, it follows from the timelike condition

d d d
AR -1 =GP - (G, “2)
and equation (4.21), that ” ” .
r 2 e =
A(dq) +B(dq)+C =0, (4.24)
where 1 ) 2 a,da
A= E{"—ﬁ_ +a+x (-E‘lf)—) }s (425)
1 dy da_ doy da_
B= E(—%ia_xd—ﬁ:—w - 2a+a_x2d—:-d-;), (4.26)
and

L o RPN C. S YL S SR T 4
C= az_ {(Cl.+ﬂ_ dﬂ) + daya_Xx dn dl] +a_y ( df,l ) } a-i-{( d‘l?) 1}' (427)

(It can be shown that in solving (4.24) the positive root gives a spurious history of )
The background V't is described by equation {4.12), and V'~ by

a-(#) = sg_ P (4.28)

(= pure radiation field). Note that ao— is, as before, removable for k_ = 0. For initial
conditions we again use the ratios (4.6} (with m_ given by (4.22)) and (4.14). M; again
follows from (4.15). Note that given «,; follows from

at

v ¢! = (m)i- (4.29)

Whereas the value of v_ depends, say, on the present temperature within the void,
its actual value does not alter the exterior history of the void. (In particular, if »
is decreased by a constant multiple then ¥; and di/dn decrease by the fourth root of
that multiple. However, because of the form of a_, the final equations describing the
external history (dM/dn, dx/dn) ate unchanged. If one is interested only in the external
properties (i.e., ¥, M) any value for v_ can be used. Formally this corresponds to the
transformation /% — ¥.)



i) Summary of integrations

a) Given an initial epoch (1 + z};, void size #, and interior photon density o, there
is a minimum initial dy /dy below which the voids collapse. This minimum is lower than
for vacuum voids. That is, radiation-filled voids grow much more readily. As before,
however, there is a minimum B{fmin} below which T collapses. This is shown in figure
7.

b} Voids expand more readily by increasing the interior photon density (increasing
a). The presence of radiation allows, in some circumstances, £ to bounce. This is in
contrast to the vacuum case where once x begins to decrease, the void collapses. In
contrast to figure 2, figure § shows the mirimum a below which the voids collapse. (The
limit o — 0 corresponds to a Minkowski vacuum void.)

c) For any surface pressure or tension, if the void does not collapse, the growth
is always like the particle horizon at late times (dlny/dInn — 1). It is possible for
radiation voids to grow for £ < 0, but below ec,¢ < 0 (which depends on the detailed
initial conditions) the voids collapse. This is an interesting contrast to the vacuum void
case.

iti) General Resulls for ki # 0

With k3 = —1 and £ = 0 voids become comoving at late times. However, it can
take many lifetimes of the Universe for this limiting behaviour to become apparent.
Similarly if £ > 0, though the voids eventually expand like the particle horizeon, if € is
small the growth can be virtually indistinguishable from the case £ = 0 for several ages
of the Universe. With ¢ < 0 we find that the voids collapse, in contrast to the case
k+ = 0, though this can again take a very long time. Also, our integrations indicate
that Ty /T < 1.

With k1 = 41, our present integrations indicate that voids do not grow unless
T /T =7,
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Fig. 7: The minimum £ for a given epoch. The curves have &€ = 0. The abscissa gives
log Bmin where B < Smin guarantees collapse of the void. The solid curves
have ex = 0.01, the dashed curves have & = 0.001. The curves are labelled by

(dx/din)i. The curve labelled “1” has (dx/dn);i =1-107%,
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Fig. 8: The minimum o for a given epoch. The curves have € = 0 and # = 0.1
The abscissa gives 10g, Omin where @ < G'min guarantees eventual collapse
of the void. The curves are labeHed by (dx/ df]),'. The curve labelled “1” has

(dx/dn) = 1 - 107°.



Appendix A: Dimensionless Equations for Vacuum Voids
All quantities are evaluated at L.

For k=10

2.7+ zg:% +pplx
d_x (‘p{l +¥—( (4§u+n)1 )2})”2 [{] :+Mh

dn (1+%)

and

dM 16w + 12y/vpn + 35, x2dx/dn 22yv +um)

(4.1)

1 dy

b 2@/F +uv)n) /1~ (dx/dv - ((4\/_ + pn)y *xa” (42)

where
m— am. m+ am; M
V=0 tE ((4\/_+.mr}nx) ((4\/_+pn)nx)
and
_ @+
24w +umn

-1, (A.3)

(A4)

We have transformed n — aon and x — doX/c. Note that M, m, x and n have the

dimensions of time.

For k= %1
(W (cos (hYx +¥_— Asin (h)?x))"/? = Asin(h)x cos (h)x is
dq cos (R)Zx + ¥ ' (4.5)
with
A= 2/ cos (h)y+ pao sin (A (4.6)
T 2/v sin (R + peo K(1 = cos (R)n) ’ ’
where X = k/1k}and
: 2
%" - B\;‘li‘ﬂ(’(‘;x’;‘i"‘?; 21 _ 9eM { cot (h)x% +4), (A7)
with
. 5 — (27 con (R + it sin (A1)
= %\5/5 sin (h)n + pagK (L — cos (A)n) (A8)

+K{2V5 sin (R)n + paoK(F — cos (R)n)))
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where
m— am, 2 m + am;
T=( F+ (a sin (h)x) ( 2a sin {h)x ¥-1, (4.9)
and
m= %a sin (B)° x(4® + K). (4.10)

Here we have transformed x — /|k1x, n = eIk, v = v/ |k |,m >
Vik|mict, and M — /| k [M so that x, 3, v, m and M are dimensionless. For
equations (A.9) and (A.10) a is given as in equation (4.12), but in terms of the trans-
formed quantities.
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5, The Transition from Minkowski space to Schwarzschild Spacetime

In this final section I would like to return to the study of boundary surfaces.
The particular problem of interest here is the transition from Minkowski space to the
Schwarzschild spacetime (and vice versa) by way of a radiation field approximated by
the Vaidya metric. This transition invelves a null boundary surface separating the
Minkowski and Schwarzschild spacetimes. (Recent general treatments of junction con-
ditions at null surfaces have been given by Redmount 1983, and by Clarke and Dray
1987.) The problem considered here, though highly idealized, gives rise to a num-
ber of interesting questions. For example, in the radiating counterpart to the familiar
Oppenheimer-Snyder collapse, what is the “endstate”? Alternatively, if one transforms
Minkowski space into Schwarzschild by way of an ingoing radiation field, how “strong”
are the “shell-focusing” singularities which develop?

5.1 Boundary Surface Collapse to zero mass

I would like to consider the collapse of a radiating object whose history has been
contrived to give zero mass at some event in its history. Exterior to the object I consider
a high frequency (eikonal) approximation to a unidirectional radial flow of unpolarized
radiation. The associated exterior metric is the Vaidya metric (e.g. Linquist, Schwartz
and Misner 1965) which in single-null coordinates takes the form

ds% = 2edrdw — (1 — 2’rlrlT(w))tfw2 +r2dQ2, (5.1

where for ¢ = +1, the radiation field is considered “ingoing” (m is monotone increasing,
w the advanced time), and for ¢ = 1 the field is “outgoing” (m monotone decreasing,
w the retarded time). The associated energy-momentum tensor is

Tag = Z626Y = Tkokg, kak™ =0

where

(52)
_ ¢ dm
= 4l Guw’
k. is tangent to the trajectories w = const. In these notes I will consider the radiating
counterpart to the familiar Oppenheimer-Synder collapse scenario (see Lake and Hellaby
1981). Interior to £ we take a flat Robertson-Walker metric generated by a perfect fluid.

n

We start with the ansatz

p=¢p, € = consi. (5.3)
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The junction conditions (1.3} and (1.4) now give the exterior history of  as

£ = %13:);2:3 (5.4)
with 631+ cho
T AT (5.5)
Note that this history is a special case. Writing the interior metric as
ds? = a?(1){(d ¢2 + #2d0%) — dt?, (5.6)
for the history (5.4) with (5.5) we have chosen the final condition
#5(t = 0) = 0. (5.7)

This evolution has been chosen to give m = 0 at a finite value of w (by translation,
w = 0) since we are interested in a “naked” endstate. In particular, r = 0 is singular
at w =0 (e.g. RapysR*?7 diverges along r¢) and naked, since w = 0 reaches “seri”,
for physically reasonable values of € (e.g. £ = 1/3). A collapse history of thiz type was,
apparently, first pointed out by Bondi (1964), and the first detailed example was given
by Demanski and Lasota (1968) (see Steinmiiller, King and Lasota 1975),

Unfortunately, as can be seen from equation (5.5), m — oo as w — —oo, and so
the initial conditions can not be considered “regular”. This deficiency can be overcome
by using the model of a mixture of noninteracting dust and blackbody radiation as in
section 4. Then we obtain the exterior history

_ Yvrl(ayv + un)

6(2/v + pn) (88)
and
4322 5.
= T+ anN2vo + ) (59)
with
_ (39 + 24p/on + 28v)y 202y
36y s P(ﬂ;’-‘ +2y) (5.10)
B 3/ pn
~ 1n(2v,_ D+ ST+,

The constants v and p are as given in section 4. Note that my,,, = 40%/227u? (for
1 — cc). Moreover, near w = 0 the history is indistinguishable from the case £ = 1/3.
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The essential features of the collapse scenario discussed above are not changed by
the inclusion of a (constant) bulk viscosity (Lake 1982). One can conclude that there
ia a class of radiation collapse histories, with regular initial conditions, which give rise
to a naked singularity. (It should be noted however, that alternate equations of state
can lead to very different histories for I (see Zhang and Lake 1982, and Santos 1984).)
Two questions to be answered are, how “singular” is the endstate, and how long does
it last? The first question is answered in section 5.4 below. We now look at the second
question.

It was first pointed out by Unruh (1985) that with m oc w there exist coordinates
in which Minkowski space is a C! continuation of the Vaidya metric across the terminal
null cone w = 0. The following demonstration of this continuation is given by Lake and
Hellaby {1985). Write

m= {m+‘w >0 (5.11)

m_,w <0,

and for the outgoing (¢ = —1) metrics (5.1} let

v-w 2m(ww

r{u,w) = 0 u (5.12)
define u. Then
ds? = (4&“;)—“1 ~ 1)dudw + r?dQ?
u

4 m'(ww + m{w) m{w)u Jdw? (5.13)

u u(z — w) + dm(w)w '

It follows that the sole C! condition on gapg at w =0 is

(m)=0. {5.14)

Since conditions (1.1) and (1.2) are satisfied with {5.14), we conclude that with (5.14)
w = o is a null boundary surface.

Whereas Minkowski space is & C! continuation of the Vaidya metrics considered
above, it is not the unique continuation since any metric with m4(0) = 0 will do. On
the null surface w = 0 we have the components

Ryowe = 2m'(0}, {5.15)



and

. _32m'(0)

w 2 (u,0)
The first is proportional to the luminosity at spatial infinity, and the second is propor-
tional to the energy flux observed on w = 0 by any timelike trajectory crossing it. With

my = 0 and m. & w then the metric is C' at w = 0 but the flux and luminosity are
co-.

(5.16)

In conclusion we can say that the end state of radiating collapse to zero mass can
be made instaniancously singular by demanding that m = 0 for w > 0. This demands,
for example, that the flux be discontinuous at w = 0. Note that if the metric is c?
at w = 0 then the endstate is not instantaneously singular and the flux is continuous.
For the collapse scenarios considered here then one can phrase the cosmic censorship
hypothesis as - why must the metrics be C?*~ at w = 07

I find the indeterminacy arrived at above somewhat unsatisfactory, How are we to
determine that the metrics must be C?~? One way out of this situation is summarized
in Appendix A following an argument of Waugh and Lake {1986a). The importance of
backscattered radiation {via a radial null test field) in the Vaidya metric near zero mass
in examined and it is found that the backscattered radiation for an outgoing Vaidys
metric becomes blueshifted without bound. This argues that the Vaidya metric cennot
physically model the late stages of radiating collapse to zero mass. To my knowledge it is
this instability argument which saves the cosmic censorship hypothesis for the examples
given in this section. )

5.2 Collapse of a pure radiation field

As a result of the foregoing, we are lead to consider the collapse of a pure radiationr
field. Kuroda (1984} and Papapetrou {1985) have considered the transition

0,w<0
m= {Aw.ﬂ < w << wy {517)
Attrg, w > wp,

where the null surfaces v = o and w = wp are boundary surfaces. Here X is a constant,
not to be confused with the affine parameter. (Though the metric looks C'~ at w =0
and at w = wg, as shown above, this is a coordinate effect. The metricis C*™ at w =0
and at w = wy.) Whereas the ingoing null geodesics satisfy w = const., the outgoing
null geodesics have

dr

dw

%{1 - 2)‘7‘”) (5.18)
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for 0 < w < wp. Equation (5.18) can be analyzed following standard techniques (e.g.
Nemytskii and Stepanov 1960). One finds that for 0 < A < 1/16 the originr =w =0
is a nodal singularity. For A > 1/16 it is a spiral point. For 0 < A £ 1/16 then
the transition {5.17) is accompanied by a naked singularity at the origin. The nature
and strength of this singularity is examined in the following two sections. It should be
noted that due to the nodal nature of the singular origin, the singularity is certainly
rot instantaneous.

The transition {5.17) is not entirely smooth in the sense that it is not C?. The
question to be answered then is, is it possible to construct a smooth (C?) transition
from Minkowski space to Schwarzschild space by way of an ingoing Vaidya field in a
finite interval of advanced time? {Kuroda 1984 does give a source function m{w) which
grows like w? near w = o and shows that r = w = 0 remains singular but visible
from infinity. The resultant field, however, never settles down to the Schwarzschild
solution and m grows without bound.) The following example of a smooth transition
from Minkowski to Schwarzschild has been given previously (Lake 1986).

Consider a perticular solution to

ar 1. 2m(w)
o= 2(1 . h {5.19)

say r = r(w). Along this geodesic introduce the (non-affine) parameter p where

d
dp= % (5.20)
In terms of p, equation {5.1%) reduces to
dw ldw
-&;72' - E?p. +m(p) =0. (5.21)
As a result, \
r(p) = Ee’ﬁ{ﬂ - 2]m(p}e"’ndp} (5.22)
with
wlp) = o+ (8 =2 [ miple*dp) +2 [ m(pri, (5:23)

where o and § are constants. Notice that a variation in f does not produce a congruence
in & given background field m(w), but rather a collection of different background fieids!
An exception is the Schwarzschild field where



w(p) = a + fe*? + 2m(2 + p)
and
‘ (5.24)
r(p) = 381 + 2m,

m constant. (This covers the ingoing Eddington-Finkelstein patch of the Kruskal-
Szekeres diagram.}

Now suppose
m(p) = —y p "%, (5.25)
where v is a constant. Scaling by 7, the subsequent analysis here is dimensionless. (This

is equivalent to setting ¥ = 1.) Set a = 0 so that from equations (5.22) and (5.23) we
have

w(p) = e?*(p* - 4p + 8+ 6), (5.26)
and

(p) = %c” 2@ + 6), (5.27)

where § is 5 (dimensionless) constant. (This is the history of the particular backscattered
ray.) Note that r > 2m for p > ~oo with § > 4. Moreover,

dm _ (p+2) "
dw - F+0) (5.28)
m=m =w=0as p— —00, (5.29)
and .
m=2fe,m' =0,w=(20+8§)/e for p=-2. (5.30)

In summary, the following gives a smooth (C?, manifestly C') transition from
Minkowski to Schwarzschild:

Foow<0,m=10.

For 0 < w < (20+68)/e; m= —pe?/?, p< —2and r(p) = Le?/?(p? + 6} along the
particular ray (say AN ).
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For w > (20 + 8)/e;m = 2/e,p > ~2 and r = $(§ — 4)eP/? + 4/c along A" Note
that if § > 4, A propagates from r = w = 0 to “scri”. If § = 4, 4/ propagates from
r = w = 0 to 2m and stays there. (This is the marginally naked case.} The erigin
is “singular” since Rog,sR*#" along A"~ e~2Pp~? as p — —co (but see section 5.4
below). The singularity is persistent for & > 4 since 4/ hits scri and not future timelike
infinity.

5.3 Regular coordinates for the Vaidya metric

The coordinates used in the metric (5.1) do not give a complete picture of the
spacetime. Consider, for example, the outgoing case ¢ = ~1. If m = 0 for finite w
a nodal singularity can develop at the origin (see above). What, for example, is the
character of this node? If m 4 0 it follows, by consideration of the backscattered rays,
that the coordinates are incomplete {just as the Eddington-Finkelstein coordinates give
an incomplete picture of the Schwarzschild spacetime).

More useful, but less intuitive, coordinates for the Vaidya metric have been given
by Israel (1967). Define u by

cdu
dw = E'(“u—, (531)
such that d
u
= — .32
dU(u) Tm(o)’ (5.32)
and define £ by .
r = 2m(u) + Ulult. (5.33)
Then, the metric (5.1) takes the form
ds? = 2dudt + (4m'(u)/U(u) + 2 /2mr)du® + r2dQ%. (5.34)

In Israel coordinates (1,8, ¢,t) the radial null geodesics are given by

u = const.,
and
(5.35)
.‘.i_t_ = _(2_1’2'_ + —tz_..)
du U " 4m(2m + U(u)t)”

The behaviour of the second class must, in general, be obtained by numerical integration.
{Moreover, if m' # 0, these trajectories consist of two distinct types (Pim and Lake
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1985). Those that begin and end at r = 0, and those that hit r = 0 only once.
For the first type it follows that r is maximal for = 0 and o = 2m(u).) These
.coordinates have seen too little application in the literature. (The only application of
Israel coordinates for the Vaidya metric of which I arn aware is the consideration of
radiating shells by Pim and Lake 1985.)

Whereas the Israel coordinates work beautifully in Schwarzschild (see, for example,
Israel 1966}, they can break down in Vaidya. For example, if m = Aw, it follows that
U(u) = u/U+Y and so g., is irregular at m = 0 for finite t. What is needed for
Vaidya is a set of manifestly regular coordinates, and to this end the best choice is a set
of double-null coordinates. A little experimentation with the metric (5.1) shows that
a search for transformations to double-null coordinates is fruitless. In what follows 1
retreat to a consideration of Einstein's equations eb initio in double-null coordinates.
(This has been done for Schwarzschild by Synge 1974.) Further details of this analysis
are given by Waugh and Lake (1986). I will concentrate here on the characteristics of
the spacetime for linear mass functions in order to unfold the nodes mentioned above.

The spherically symmetric metric in double-null coordinates is
ds? = —2f(u, v)dudy + r?(u, v)d?, (5.36)

where the coordinates {u,v) are not assumed to be related to any previous coordinates
used in these notes. The algebra associated with the metric (5.36) is reproduced in
Appendix B. We take the associated energy momentum tensor to be of the form

Tag = %k,k; Jkak® =0 (5.37)

where k% = (4,0,0,0) for flow along v-direction, and k* = (0,0,0,%) along the u-
direction, = d/d) for affine A. (In what follows we consider, without loss of generality,
a flow along the v-direction only.) From the form (5.37) the Einstein equations reduce

to
2(f;r1/r —_ 7'11)/?“‘ = 0
Anra+rrdff+1=0

2faraf = raa)]r = hs,) (638)
(hi/f = ha)lf =2rufr=0,
which in turn foliow from
JF=2B{vIn,
ra = —B(v)(1 - 2A(v)/r) } (5.39)

= —4B(v)A, [r?,
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where A and B are “arbitrary” functions of v. From the definition of m(1r' Rsg ) we
have

r Tiry4
m=z +r 7 (5.40)
so that
Alv) =m. (5.41)
There is no loss in generality in taking
my C
= st = . .42
2Im4!_ 29“’49"'—0 (54)

This reduces v to the proper time in the rest frame at infinity. In summary, given m(v)
such that m' # 0, the solution to

ar ¢ 2m(v)
s =fa-Y (5.43)
gives the metric (5.36) via
ar
f=—czm (5.44) .
with the associated energy momentum tensor
=& A
Tag = 2% do da85. (5.45)

{Note that r is not a coordinate, it is ,/gss.}) The Schwarzschild case my = 0 is treated
{once again!) in Appendix C. In what follows we consider

m = cAv, A = const, > 0. (5.48)
With the form (5.46) let
g =rfev, (5.47)
so that from equation (5.43)
lncv+jL=D(u) (5.48)
F-gfztr D '

where D is “an arbitrary” function of u. From equation (5.44) then

—cD(r? — Levr 4 Ao?)
- )

f= (5.49)
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We must choose D(x) sc as to remove zeros in f. This done, r(x, v) foliows from equation
(5.48). Three cases must now be considered separately:

i} A>1/16

. With A > 1/18, it follows from (5.49) that f is without zeros (D) # 0). If, for
example, we take

"D=-cu (5.50)
then from (5.49) we have simply

2_1 X ]
f=r__..2..w. (5.51)

r

The function r(x, v) follows implicitly from equations (5.48) and (5.50) and is given by

1 1 1 4r — cv
—ct=-ln|r2—-= Avt | 4=
=g | r 2.f.:v1r'+ v |+ aarctan( ;

where § = /16X = 1. The spacetime diagram is shown in figure 1(a}.

) (5.52)

i) A =1/16
We now have
f = —cDy(4r — cv)?, (5.53)
where, from equation (5.48),
ey dr—cv
D(u) l— 4+In I 2 l= L. (5.54)
With the choice 1
we have 4 R
f= %{L’ +4+clVI?+4} (5.56)

which, on the horizon (4r = cv > 0,u = 0) reduces to
flu=0,0>0)= %. (5.57)

The spacetime diagram is shown in figure 1{b).



5i) A < 1/16

We now find
' f= _.ch(r —ar/4)(r —1 7 /4)
- T
where
o = cv(l = A),
and _
1r = el + A),

with A = /1~ 16X From equation (5.48) we now have

D(u) =In | (r —g r/4) 8~ V/28(p —, pfa)a+N28 |

There are two regions to be considered. With

144

Du) = A Injeu|
and cu > 0 for yr/4 > r we find
f= lo;f(r —or/ay/U+8)

s0 that the choice (5.62) is useful for r >¢ /4. With
A-1
D(tc) = T In | [=H |

and cu > 0 for prf4 > r we find

_1-a _2/-a)
f=55Gr/4=r)

(5.58)

(5.59)

{5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

and so the choice (5.64) is useful for 7 <, r/4. This covers the complete spacetime. The

diagram is shown in figure 2.

1t is clear from figures 1{b) and 2 that the “node” r = w = 0 has a rather more
detailed structure. It is what Eardley and Smarr (1979) have called a “shell focusing
singularity”. Hiscock, Williams and Eardley (1982) have also given double null coordi-
nates for the Vaidya metric, but valid only for A > 1/16. (They do, however, obtain the

Penrose diagrams given above.)
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A>1/18

-2

Fig. 1: (a) u — v diagram for a linear mass function M = cAv with A > 1/16 and ¢ =
+1 (ingoing field). The curves represent surfaces of constant r{0,0.1,1/2,1
and 5). The future is the right and up. The Penrase diagram is inserted. Note
that the outgoing case (¢ = —1) is obtained by reflection about a harizontal
axis. (b) As in {a) but for A = 1/16. The u-axis {u > 0) is & “shell focusing”
gingularity.
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Fig. 2: u— v diagram for a linear mass function T = cAu with A < 1/16and ¢ = +1
(ingoing field). (The particular case shown has A = 1/ 18.) (2) A portion of
the spaceiime obtained from (5.62) (r >p 1‘/4,1" =g 'r/4 at 4 — o). The
curves represent surfaces of constant ¥, where the values of r shown are (from
top to bottem) 0.1,0.2,1/2,1, and 5. r = () is given by the positive 1 sxis.
(b) A portion of the spacetime obtained from (5.64) {r <3 !"/4,!" =y rf4at
u — —00). The curves represent surfaces of constant r, where the values of r
are shown {from top to bottom) are + = 0,0.05,0.1,0.2, 1/2, 1, and 2. The
# axis also gives ¥ = 0. In both diagrams the future is the right and up. The
Penrose diagram is shown. Again, the outgoing case (¢ = —1) is obtained by
reflection about a horizontal axis.



5.4 Strengths of singularities in the Vaidya spacetime

We now examine the “strength” of singularities in the Vaidya spacetime. The
argument given here follows the work of Rajagopal and Lake (1987} which generalizes
the analysis of Hollier {1986).

Along a null geodesic, affinely parametrized by A, with 4-tangent &2 let
#H(\) = Rapl®t?, {5.66)

where Rop is the Ricci tensor, and the geodesic terminates at A = 0 (by choice of A).
Define the limiting focusing condition {LFC)

lim 2 >0, (5.67)

and the strong LFC (SLFC)
lim By > (5.68)
Clarke and Krélak (1986) have shown that the SLFC is equivalent to termination in

a strong curvature singularity in the sense of Tipler (see, e.g., Tipler, Clarke and Ellis
1980).

1t is convenient to return to the single null coordinates of the metric (5.1). Whereas
k* is associated with the radiation field (w = const.}, €% is tangent to the backscatiered
field which evolves according to equations (A.5) and (A.6). We are concerned here with
the strength of the shell focusing singularity r = m = w = 0 at A = 0 for an ingoing
Vaidya field {¢ = +1). (We take dA > 0, > 0.) Whereas 3 = 0 for &%, we find

_8dm
T AT dw

for the backscattered ficld. As a result, it follows that the SLFC holds ealy as long as

(5.69)

d
FE' lw=o (= 1) >0, (5.70)

that is m ~ uw as w ~ 0. Moreover, SLFC holds for all geodesics which terminate at
the node r = w = 0. (Hollier 1986 has shown that with m = pw, the Cauchy horizon
satisfies the SLFC.)

Since m ~ pw as w — 0 is a strong condition to impose on m(w), it is of interest
to examine the (not strong) character of the node for a more general function. Suppase

me~ew™,n>1 (5.711)
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as w — 0, where ¢ = const. > 0. Then, from the general form (5.69), we have
8new™!

¥ 37

(5.72)

s w — 0. Equation (5.72) shows that some details of the geodesic history are required
(ie. w{d)as A —0)

Following standard techniques {e.g. Nemytskii and Stepanov 1960) it can be shown
that equations (A.5) and (A.6) have the regular critical direction

w=2r. (5.72)

A single null geodesic (the Cauchy horizon) leaves a node tangent to this direction.
Along the Cauchy horizon then we have

8ne
P re o= (5.73)

a5 w — 0 so that the past most paint of a shell focusing singularity satisfies the LFC
anly for 1 < n < 2. In contrast, for the remaining geodesics which reach the node we
find that )

¥ DM (~1oN)

as ) — 0. As a result, the LFC is satisfied along the remaineder of the shell focusing
singularity.

(5.74)

The limiting form (5.71) is itself very restrictive since, as seen for example in section
5.2, m need not have an expansion near the node. However, for the form (5.25) we find
that the limit (5.74) holds, but withn=1/e = 2.

As a final remark, note that for the form (5.74) ¥ grows faster than 1/3# for all
8 < 2. That is, the remainder of the singularity just fails to be “strong”.
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Appendix A: Backscattered Radiation in the Vaidya Metric near Zero
Mass

The argument summarized in this Appendix follows that given by Waugh and
Lake (1986). The Vaidya metric (5.1) consists of the radiation field w = const., and the
“hackscattered” test field which satisfies

dr e m(w)

0> 2(1 2-_!' ). (A1)
We subject this “test” field to the following test: if, for a “generic” cbserver, v, >> vp
for the backscattered field, then the field is considered insignificant. If v, << vy, the
“test” field is significant and qught to be included in Typ (which it is not for the Vaidya
metric). In what follows we consider backscattered trajectories along which r > 2m{w).
We choose w such that r = m = 0 at w = 0 and take w < 0 for ¢ = +1 (ingoing field)
and w > 0 for ¢ = —1 (outgoing field).

Write y = u®f,, £, tangent to the backscattered rays. We find x xw, =dfd A
for affine A, where

W = exp{—c f T dw) = rexpl—c %‘:—). (42)

First suppose that r{w) ~ écw as w — 0 along the ray (ie. m ~ %(1 — 28)becw,0 <
§ < 1/2,6 =| r'(0} |). Then

W ~ (cw)~* 6 = (1 — 26)/26 (A.3)

as w — 0. As a result, for c = ~1, xp ~| w |~® as w — 0 and so v, << wp. That is,
the backscattered field is not ignorable near the endstate of collapse and so the Vaidya
approximation is not physically reasonable. In contrast, for ¢ = +1, {ingoing “real”
field), x, ~ w™¢ as w — 0 so 1, >> ¥g. As a result, the outgoing backscattered field is
ignorable. These results agree with what one might intuitively expect.

For r(w) ~ é(cw)", n > 1,88 w— 0 (i.e. n~8cw)*/2, & =[r"(0)] nl) we
find
1

U~ exp{mjm} (A.4)

as w —» 0. Equation (A.4) leads to exactly the same conclusions as equation (A.D).

Clearly m(w) need not have an expansion about w = { (see, e.g., section 5.2).
A more general argument is, therefore, required. The null geodesic equations for the
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backscattered field can be reduced to the set

dr _ r=2m{w)
B A (4.5)
and
dw 2¢
T {A.6)
for affine A with dA > 0, ¢A> 0,and w=r = m =0 at A = 0. If follows from equation
{A.5) that
i = [ o (A7)
_ ~ Jo t—2mi{t) )
where r = a at | A |= 1. From the weighted mean value theorem we have
r dt 1, .7
[, T am 9 a) (48)
where i =1 — 2m(6)/6 and r € § < a so that 0 £ ¥ < 1. As a result
r=a|Al¥ (A.9)
and so from equation (A.6)
w=2a|X[¥""". (A.10)

{Note that with ) =0, r = & = 2m, the Schwarzschild horizon.) Equation (A.10) leads
to exactly the same conclusione as obtained above.
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Appendix B: The algebra associated with a general spherically symmet-

ric metric in double-null coordinates®

For the metric (5.36) the Christoffel symbols of the second kind are

Ty =hif
T}, =sin 2604 =rr/f
I, = —sinfcosf

I} =Th=n/r

I = ria =rfr

I3, = cos§/ sinb

I3, = sin “2OTSy =/ f
I‘:-l =f4/f-

The Riemann-Christoffel tensor as calculated from (B.1) is

Riziz = sin™? 8R1313 = r(fira/f — r11)
Rizas = sin"? Ryase = 171¢
Runia=—fu+hHflf

Raaza = v sin® 8(1 + 2riry [ f)

Raq24 = sin"? ORauaa = v{fare/ f —Taa)-

The Ricci tensor then reduces to
Ru = 2(f11"1 ,f -_ 1‘11)/‘"
Ryz = sin~ 2 0Rs = 2nrg +rrua)/f+ 1
Ry =2(fard/ [ —rad)fr

Ri=(fifalf — fraF— 2ridfr.

From the components (B.3) we find that the Ricci scalar is given by

R=R2=2{fiu— Hf/F}F? +{1+20nm +2rm)/ FH?)

(B.1)

(B3)

(B.4)

* Only nonvanishing terms are given. The coordinates are ordered as (v, 8, ¢,v).



78

and that
RERG = 202f s + r(ffra = LIPS
+2(f + 2rrie 4+ 2rimy )2/r‘f2 (B5)
I+8{.ff‘11 w1 1)(fes — raf)Ir L

From (B.3) and (B.4} it follows that the components of the Einstein tensor are

Gu =2(fir/f —ru)/r
Gaz =sin"20G = P (f1f/f — )] 2 = 2ri/f

B.6
Gun = Afare/f —ree)fr (B:8)
Gu = (f + 2(1'11‘ + f‘f14))/fz.
The Weyl tensor is given by
Ciaze = r*(fifs — fRa)I8F* — £/6 + (rr1q — rire)/3
Ciau = sin? 8C1224
Crane = 7 Ci224 (B.7)
T
0.2
Caizs = 2r sin® 8Cia4.
f
As usual, the Weyl scalar is given by
CaprsC™ = K —2RERS + %R’, (B.8)
where K is the Kretschman scalar (R, 545R%77%). For the metric (5.36) we find
K =4(f +2rr ' et 2 +16(fray ~ ri fi)(frae — refa)/r2 A (8.9)

+16r3,/r2 2 + 41 o = LHha )P/ 1R
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Appendix C: Yet another derivation of the Schwarzschild metric in null

coordinates®

With my = 0 we retain B(v). The Einstein equations are

ar 2m
o = —Bl)(1 - ),
m = const., and o
= 2B(u)5.
Equation (C.1) gives o
f.l—2—m/r- = —dev+C(v).
As a result, 0
f=2%BC(1~ —:“-).
Let 9
B = ——m-,
v
and
Cl = 2—m
u

Tt then follows that
(1-r/2m)e?™ = uv,

where uv > 0 for r < 2m, and

f _ lﬁm“ e""u“_

r

* Compare Synge (1974}

©1)
(C.2)
(€.3)

(C4)
(C.5)
(C.8)

€

€3
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