STOCHASTIC METHODS IN COSMOLOGY

M.NOVYELLO
Departamento de Relatividade e Particulas - DRP
Centro Brasileiro de Pesquisas Fisicas - CBPF/CNPq
Rua Dr. Xavier Sigaud, 150 - Rio de Janeiro, RJ (22290)
BRASIL :

[ MADELUNG-FLUID DESCRIPTION OF THE SCHODINGER FIELD

In the so-called hydrodynamical (or Madelung-fluid) des
cription of guantum mechanics“] r @ fluid density p(;, t) and a

fluid velocity v(X, t) defined by

> VS
v o= | (1a)

where $ correspond to the action of the system, are assumed to sa

tisfy a law of conservation of probability (or matter),

22y ¥ 0 (15)

in such a way that the dynamics is expressed by

3 tHy =0 ' {1c}

with
2 .
By = Holageica) * Yaiffusion © (-g_m _‘"’) =
2 ' 2 '
_ .k 1 2 )_ ) (-R 2 R) )

~m [—_/p_ (V /-D]- H - —5— e 7 e . (2)
in which

of%, t) = R € (3)

(Notes from a series of lectures concerning Stochastic Methods
and some of their applications in Cosmology, prepared and revised

by L.A.,R.0liveira, Research Assistant, DRP-CBEPF).
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The diffusion term in eq(2) is sometimes called a "ghost" part .
Eq (1b) then implies

gf_ +d.1.v{p'-\;)=2ﬁem+2e29\?vm+div$vem=0
or, using the definition eglia},
2 .
*+ - YR*VS8 vTs
R+ —¢ t =0 - {4)

Let us now consider a complex function ¢ = §[p, 8], defined in

terms of p and S as
vE, 6 =\ o, 8 exp [—%{— s &, t:] ; (5)
then .
T = ¥ TR + =& 475 (6a)
and also

ey R w2 Erevs - “%T ws)?[  (eby

Hence, when we calculate the operation

fi6 3/at -H )Y (7)
n? 2
where_Ho = (- —=a Vs v) is the Hamlltonian of a particle

of mass m submitted to a potential V, we therefore obtain

(K g - H )y = 6 L g: vy -y =
= iR [ as -l- 2111 st.-l- -—111— v-n-vs:l- P o+ (8)
+[- gts,_ + fzi: R y2e® _;f.(vsjz-v] ’
since
¥R 4+ (vR)2 = &R ViR
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The first term in eqg(8) vanishes due to eq(i16b) or eql4), while
the second vanishes due to eqg(tcl. Thus, the complex function
¥(X, t) is shown to satisfy Schddinger's equation for a particle
in a potential in result of the defining properties of the Made

lung fluid.

11 STOCHASTIZATION PROCEDURE

A. BASIC DEFINITIONS

Let M be a n-dimensional vector space and let xi{tl be
an arbitrary point of M. (L =1, 2, ..., n), with t being a con
tinuous parameter, (0 £ t < =),

A diffusion process qi(tl in "n is defined by the fo=~

llowing properties:

1) q,(t) is a Markovian process - this means that in the irregu
lar, aleatory process qk(to} £ xk(to}, the variables qklt} for
any t > t are independent of the behaviour of gy {s) for any
8 £ to' that is, the process has no memory.

1i) there exists a density p(i, t) such that the expectation va-

lue E[F] of any function F(Xx(t), t} on M is given by
E [Fxit), t] = < F(x, t) >, = I pX, t) F&x, t) d% . (9)

11i) there are two functions $(+}{§, t), called drift velocities,
and a constant v (of dimensions {L2 T"]l such that for any func

tion F{i, t), defined by the process qi(t], wa can write



PE (& + 86), £+ 26) = FEMR), t) + 2 ae 4 t#m - VP) ot 4

« (W + oty - Feed] » vr o - [whee + a0 - w*u:)]

Wi et —W ] 3,47 # olat) {10a)
F @), t) = F @(t - a8), £ - At) + e At + W) ) ot +
+ [Hieey = fie = ae]) -1 [whior - whee - 2e)]

. [:wj(t} -Wit - at)] 9, 4F + olat) . (10b)

In egs. {10a) and (10b) above, each stochastic variable wl(t) is

called a Wiener process {which corresponds to the mathematical

content of BHBrownlan motion), satisfying

E[wesat) -wwr] ze[aitw] =0 , 1)
E[atw o)) = 2v6tda | | (11b)
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B. 1KS

In general, the process sketched above, when applied to
a particle of mass m which diffuses in a medium performing a
Brownlan motion, will impose v v -:u— , 80 it follows that v =
= [action]/m . We will see later on that Nelson's interpretation
of stochastic mechanics as a representation for gquantum mechanics
yields v = K/2m .

Note also. that the variance (Qomej:imes called the co-va -

riance}, given by
cov (X, ¥) = E [ (X - X} (¥ - E[¥])], ‘ "2

if X and Y are two aleatory varilables, in our case is

cov (@, o) = E @ &) , {13)

due to eq(11a). Remark that according to the (co)variance proper
ties of Wiener processes, O(Wil = /At - a feature which is at the
basis of the (strange) properties of stochasticity.

The first dramatic consequence of the existence of a
random~type motion E(t) is that we cannot deal with continuocus cur
‘veg which admiE derivatives everywhere along the trajectory; we can
not define —gcé— {t) . we thus have to face the guestion of gene
ralizing the concept of derivative for a stochastic motion {ob
serve that a similar problem on how to extend the notion of deri
vative to a curved spacetime occurs when we pass from the Loren
tz group to MMG, in General Relativity).

In order to elaborate this extension, we start by conside
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rimj that the basic principle to bo usod ariseo from a gonorall

zation of the Langevin equation to the stochastic regime:

&) =V, (i), t) at + Al (4
in which the "differentials® dX are to be understood in the sense
of finite differences x{t + At) - X(t), and W(t) is a Wiener pro
cess. 1In this case, E[dﬁ].= §‘+}.

Keepin% these remarks in mind, we now introduce the con

cepts of mean forward and backward-dertvativaslz]:

_ -+ 1 > :
) & 8= Atlj.m --b-t—EE (F@it » at), € + at) ~

>0
-r@w )| |z ] (15a)
o, \F} X, t) = Llim [ (r@w), t) ~
- At + 0 L
- PGt - 48, t - M:J) > ] (15b})

In virtue of eqs(10a), (10b) and (14) we can write

> 1 aF - : .
D P 6, € = Lin g |E- 86+ @ AL u{vzrmgl

1 _OF

(DHF} (, t) = 5t At + @F

3
r*l

) * TEIaE - u{sz)ﬁt;I ,

and so we arrive at the final expressions for the derivatives, res

pectively

F

(D“_)F] {x, t} ==+ v( ) * VF + WZF (16a}

©. )FHX. ) =—-—-—+v( y* VF - W . (16b)
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We shall leave to the reader the proof that, for any fug
ctiong F and G, in the stochastic world holds the relation
d -
~cEtF.a =g[F.p.,,q «+Ep_F.q . (17}

Setting G = 1, we obtain the special case
a
3 51 = 2P y8] - Py,)8) (18)
Bxploiting egs(16a} and (16b), we have
& fratee | (B oreol) ak -

= ] p(—"?%-q-;(_}-w-wzf‘) d‘x H

hence, if F is arbitrary, results

3
S5+ VetoV, ) + o =0, (19)

and also

—é’t—Ide4x= Ip(gi +Ve -vr+uv2r) alx

s¢ that, analogously,

gg + V'(p;(_}]) —\JVZD = 0 . {20]

Iet us define now a current velocity 3,

V, ., + v
> _ Vs (=)
vVErTTm (21a)

and an osmotic velocity &v .

]

v V-V (21b)
67 = —te) _ Ti)
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such that adding up eqs{19) and (20) wa cbtain the Fokker~Planck

eyuation,

2o =0, (22)
while subtraction yields
- V-{p6¥) + v VoVp = 0

wherefrom
&V = o . {23)

We are thus led to introduce the following two concepts of sto-
chastic differentiation procedure : a so-called drift (or syste
matic) derlvative, given by the operator

D + D

D= 3 ,

and a so-called stochastic derivative, given by

D - D
D = Lz_!:l_ s {24b)
which operating on an arbitrary function F yield, respectively,
DF-—g{—-+$-VF, (25a)
(6D)F = &% « VF +vV2F . (25b)

Some useful relations that we leave to the reader to show are
D = v (26a)
(8D) q = &V (26b)

and

=) * P Pea
= DD ~ (8D)(&D) . (26¢)
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111 NELSON'S STOCHASTIC INTERPRETATEION

Nelson[3] has proposed a stochastic interpretation
of the particle description of the Madelung fluid relying on the
following hypothesis: _ )

Let E{t] be a stochastic process with  probability
density p{x, t) and drift velocities ¥ ,,. Suppose that there
exists a function s{;jtﬁ, t} such that

s W an

(+) m '
then, due to eq(23), we can write

- "=+_ _ +=+_._ Vg =
v(_} v(‘) 26v v(+} 2v P =
1 ] 1 .

- TV(SM"“"]“"")"__m Sy

so that we obtain, by analogy,

vs
ors (=)
Vie) ® “n , (28)
where
S{_) = s{+, - 2m ¥V 1lng . (29)
Introducing the functions
8§, ., + 5
sz o) ) (30a)
2
] -5
and §s = {+) 5 (-} (30b)

. we then conclude that
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V&

<+

- 1. (312)
and .
5 » LL88)  Gew

according to egs(2ta) and (21b).
We can now proceed to build a dynamics for the quan

tity S(;, t), introducing the so-calléd Nelsgson-Newton eguation:

- .
mas=-Y0, (32}
in which U stands for a potential and the acceleration a must be

understood in the symmetrized form

ae I-Dm D) ;D(-} D(+}] g = [0~ (o) IGDD 3 (33)

The origin of this symmetrization procedure rests on the fact that
we are interested in obtaining a time-reversible theory — just

as Schrédinger's is. We remark alse that in general one should

write
2= [op-usoen)] § (34)

for a given linear combination coefficient u, or else, which ia

the sane,

3= {m Y [DGJD(-J-*'b(-Ip{U] i [D‘*’D“’-
_D{_lD(”]} q. 33

Nelson's choice, in order to provide for his stochas
tic approach to quantum mechanics, was to take y = 1. Another pos
sible choice, which corresponds to a pure Brownian motion, is p=1.

Due to eqs{26a) and {26b), eq(33}) can be rewritten
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% = DV - (SD)6V . (36)

Well,

k avk

- k
DV = 3T +(\;0?]v ’

and reminding the fact that v(H-u) = 2(H-7) 3, we obtain

Dv‘k "Wk +-——V(v-v) =

+ —z'ﬁr— V(?S VS) r (371

using eq(31a). On the other hand, according to  egs {3ob} and
{31b), we have

(6D) & = (&D} (V_ir;‘-i!_) = (D) Vivinp) = 2v(6D) (7R}, (38)

2R

where we have put p = e, just as in eqi{3). Using eq(25b] and

eq({23), this is

(60163 = 20[(BvMIVR +v V2 (R)] »

- 2% (FR-vR) + 22 v(viR) . (39)
Then the acceleration 2 turns out to be

d-1v (38) + gy T(TSS) — 20 V(TRIR) -

2% y(vR)

L

_ since vzeR = eR [VZR + vR-VR:I , this is equal to

-1

REIRTAE. B By B (40)

If now we make use of the Nelson-Newton equation eq(32), we ok

tain for the potential U the expresslon

U = -—Ea%— WS) + 2 e R N, (41}

whaerefrom

»x2
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where the last term corresponds precisely to the additional term
charactheristic of the Madelung-—fluid picture of quantum mechani

cs (see egs (2) or (8)}, provided that
#

o (42)

vV o=

tollowing Nelson, we can then split the acceleration

a into two terms, a current acceleration, typical of a system of

particles with velocity field ¥, and an osmotic acceleration, ty

. Plcal of hydrodynamics:

- + -+
® 3current * 9gsmotic

S[E . @] - [Fv&sh « 22v0%] . (43)
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I¥  STOCHASTIC PROCESSES IN RIEMANNIAN MANIFOLDS

Let gij be a(positive definite) Riemannian metric

so that
as? = g, axt axd ¢ 0 (44)

' We will define a stochastic process xk(tl, where t 15 a parame-
ter, on this Riemannian manifold as a generalization of the
previcus, Euclidean case {section II above), and depart from

k

k
dx"(t} = v(+

), € de + awtie) (45)

which represents a n-dimensional generalization of the Langevin

eduation. In the same way, the definition of a Wiener process

can be achleved by a natural extansion[4]=

£ [awt aw?] = 2v gtlac (46)
i 1 ik 4
E (@] = -2vrj, o'f at (47

in which we now use the expectation

E[F] = Jp&, t) Fix, t) Vg &% . (48)
Eq(4?} is indeed the most immediate proposal for the extension
of eq(11a) to the Riemannian regime; on the other hand, since
.now the transport of the components wj of a given vector w is to
‘be given by

k

awd = - r{k aw’ ax {49)

where Pik are the affine connections of the manifold, we ean
see that in the case of a "pure” Wlener process ﬁ, the use of

eq(45) gives
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efad] - n[-rj&# aka .
eor) e[atat] (50)

4+
80 that from eg(47) follows, for consistency, eq{47b}. It is

strailghtforward to show that for an arbitrary scalar P(§; t) we
have

aF i 2
D{t}F I-_—E-E-'l»v(i) ViFtW F , {51)

where now the Laplacian vz is to be given by

G I
with the notation 3, P = F,, .

There are some problems, however, when we envisa
ge to apply such definitions of the operators D(t) to objects
like tenscrs. The reason 1s that for a givgn vector Hi, the term
M1(§,+ ﬁi} - Hi(;l is not conveniently defined, since it is not a
tensor. This difference shall be evaluated on a given point; to

do so, we naed the concept of Lie transportationls] {we follow

here, with some minor distinctions, Guerra's solution[4]l.

ka = £k 8h , M = curve parameter

Fig. 1

355



Pofina ;

Dt'+}"k - tl-j;mﬂ —A—E[-ﬁ"(x . 6%, €40+
+ MEE, + 6%, £+ m:)] (53)

atl
in which M has been- Lie-transported from P to Q [see fig.1]. Now

from the theory of Lie transport it feollows that

5*

ieny2
SA) + —-—T EGA  * suu =
h=0 Aal

Win e o = utin) o

=u' 0 + 0 "'aijk w! sm (@ omw) e m
-n"w +Rijk6x kau3+ (54)

Hence

' k M Lk
_D(”M"' [M" Rijk Gx Mj + At-n»a—xk—(ix +

'+——~—:'§(—5xi&:“+...] : (55)

and using eq(46) and eq{47) we obtain

o

" ) ut 2
D(+}M1"Rijkg uj+—§--+v" My + W u’ {56)
or in general

1}
P oM S ST
DM = Bt +v‘:ﬂ % M sl uts "Rk’_‘# . {57)

in which ?k and v2 are to be understood in the general covariance

sense. Dynamics for (p, v} follows the same lines as above SectionIITIL
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V  STOCHASTIZATION OF THE ELECTROMAGNETIC FIELD

In 1979 Guerra and Lnffredolsl preéented a simple and
convincing way of treating Maxwe;l(s equationq:for the electromag
netic field in a stochastic manner. Since we ihteﬁt to use a gimi
lar approach to treat the case of the gravitational field,we shall
review briefly their procedure. ) _

on a three-dimensional basis, Maxwell's equations can

be written as

% = rot B8 o - diveB=0 - ({58u,b)
—gf—— = - rot B Y aiv g =0 ., (5.9a,bl

Or, in a covariant four-dimensional way, as
F*:v = 0 , F =2 '-A - {60a,b)

where Au(xl is an electromagnetic four-potent%al. If we adopt the
Lagrangian of thie field to be

L--TI F,, P a‘x , B (61}
then we obtain for the corresponding Hamiltonian the expression

H = J =2 + 8% a'x . (62)
It will be convenient to decompose vectors B and B in a sultable
basis {ﬁntﬁl} of complete {feal) vector functions, chosen so as to
sdtisfy appropriately the following conditiéns of definition, nor

malization and completeness:
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div ﬁn{§} -0 (63a)

Lat u =0 (63b}
n .

j T LY, 0 k- ey (64)

Futo wlg - SB3E oy "~ (65)

Thus, we can set
-~ T
Bix, t) = Lux) gty , {66a)

EX, £) = - prot U (%) m_q (£} . {66}

Using such decomposition in the expression for H, we get

2
1 Pn A 2
"TRTT m tT 4 (67)

where P, 5 m, én' and where we first restrict our universe to a
box and then let the dimensions of the box go to infinity. This
system reduces to the dynamics of n uncoupled harmonic oscila=-

tors, each one obeying

ot 5— 9 =0 - (68)
n
Now, we will let functions qn{t) be "stochastized", that is, to be
such that each obeys a Langevin-like equation,
(+)
dqn(tl = v, {g, t} at + dwn(t) ' {69)

in which dwn{t) is a Wiener variable ({see eq({11) above), and also
satisfles the egquation for the "stochastic harmonic oscillator” ,

that is, eqg{68) expressed in the Nelson-Newton system, which reads
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F [ wrn W ] vamao o o0
n

Then ,
B=(X,t) mz Entil q (t) 179

becomes a stochastic variable. Hence, it follows that

ad = ¢ En'{?z) dq ft) = I En(:‘EJ (vl:“’ at + mn) . (722)
and alag that

Diyy B =28, @ vt €73)
Let us define the "true" (i.e., not stochastic) variables

o - - b {£) .

E(ﬂ x, t} =-L m, rot un{x} Y : (74)
thén

- ) > {£)
:otE(ﬂ=—Znhmtmtunbc)v =

n
2+ {t) 1 + (x)
=Im Vu v, =Er%(n—h—-}unlx}vn =
- -z v (75}

(where we have used eqgqi{63} and the vector relation

rot rot M = grad ({(div M) - vz Mo,

Using eq{75) into eq (73} we have that

D(tl B = - rot E(tl (76)
and thus

- -+ -+
dB = - rot Ei,) + dv . (77}
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where dW ~ I ‘Gn(il aW (t} . Wow,

)

+ > {= )
DBy =~ Im rot § & D, vy (78a)

{+}

D E,) =-im rot Q& D, v (78b)

80 that using eq(70) there results in the Nelson-Newton scheme

1 ] b
T [DhlE(-I * D(-JEM] = -Lmy, rot y, ).

1 (=} . * -1
] ["m o * Dy vl:"’J =, ot u ) g

= I yot Gnu’i) q, (&} = rot B, (79}

N .
and therefore tha equation for —g%- in the Nelscn-Newton approach

results to be

1
- [TD(+} E{_] + D{_’ §{+, ] = rot B . {80)

N .
Remark, however, that while B is a stochastic variable, % is notl



VI  THE CASE OF THE GRAVITATIONAL FIELD

There are, in the literature, two formal ways {at
least) to describe gravity:

‘a) Einstein's manner, by means of Elnstein's equations

u 1 B u
R, - —~R&, =-kT {81)

~b} Jordan's manner, by means of an equation invelving Weyl's con

a8Uv

formal tensor W + Plus initial conditions:

waBuv. a Juﬁu {82)

wWa shall consider here Jordan's way[7].

¥

Let us define "electric" and “magnetic* components of Weyl“s con-
formal tensor by

a B
Bu‘*' -wuu\-‘ﬂ v v {B3a)

B, - -u:wB ve vP (83b)

where w* is the dual of Weyl's tensor w .
Using this decompositjon into eq{82) one can show[al +that "Max-

well-1ike" equations are obtained:

D oy
- F =« 1ot B {84a)
b
e = - rot? {84b)
div® =0 (84c)
AvE «0 | {844d)
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NOTE: eqys(B4) are only formal expressions, in which rot and div
are operators which generalize in four-dimensional curved ({(Riema
nnian) space the usuval [ operator in three dimensions, and 80

are to be understoed in a covariant senselg].

They are obtained
from Blanchi identities for the (decomposed) conformal Weyl ten-
sor W via projection operations; for instance, eg{84a) in full

reads
£ 4 A > Vi v
R R B, +n5WvBB eV u a0, (85)
in which Vu is the four-velocity field associated ¢to a perfect

fluid, huv is the corresponding projector, and where

1 :
%y =V * Y Tv"m b, (86)
T _ 1 aBprT '
Gy * Vg T Ve o0 @R GV, (87

auv _ _ _1 c&BuY
=13

being the Levi-Civita symbol (which is not a true tensor :

M {88)

euBuv

however, the dual object n*Fuv isl), For a complete review of the
se "quasi-Maxwelllan” equations of gravitation, along with  fur-
ther comments, the reader is referred to ref.[9].

Eqs(84) have been shown by Lichnerowicz''®lto.be com
‘pletely equivalent to Einstein's dynamics. One could argue, then,
that if thie is the case one should be able to find a potential
such that ¥ and B could be reduced to derivatives of this poten
tial. 1Indeed, this has been done by Lanczos[111. Let AhBu be a

{true) tensor such that

{89a)

*
auBu g = 0 <=> AuBu + ABUG + A =0 {89b)
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rhon wo can write, for any Riomannian ppaco, Lthal

Woapuv™ Pagusv * Rgvin = Huvazs * Aivia

1 1
- B r AL Yoy =2 ‘ABu+P\lB]gav +

+—-u\ ot A Gg + l(AB‘,+F\|B)‘Jﬂu+

2 0k | '
+ 3 A gk (ga_u ga\, - gm, gsul r {90}
where
= a A G :
Av F R e Ay o

Note that although the Auﬁu should be given as functions of the
geometry (l.e., of the metric guv], an explicit analytical rela-
tion 1s unknown (and cannot be, in general, obtained). In the casge
of "weak" fleld only, where

2

g, AN, +EV (e® << €}, (92)

uv uv uv

it has been possible[11]to find one such relation:

1 1 1
Bogy = T -E"ﬂhﬂ “Vg,a * T Ve s T 6 Y,8 o 9
expressed in the so-called Lanczos gauge in which

Uu-o

BAogy 9 (94a)

A

A8 =0 (94b)

(It is a direct consequence of eq{90) that there are 10 degrees
of freedom to be fixed in AaBu' since W

aBuv
dent components and a general AuBu has 20; fixing the gauge, via

has only 10 indepen
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egs(94), we reduce this freedom to the required 10 indepaendent
conditions).
Let ug now set forth the dynamics; we choose for

the Langrangian density, as in Maxwell's theory, the expression
2 2
230 = VY=g (E" - B") , {95)
where

2 _ TRV 2 uv
E 'Euv E s B 'BuvB . (96)

It is a straightforward exercise to show that Jordan's egs. ari
se from this Langrangian. Then, we can find the corresponding Ha

miltonian for the gravitational field:
% - /=5 €2+ 8Y | (97)

{We observe that there are extra terms in the generai expression
of gg, which conspurcate its apparent positivity and are due to
the fact that the space 1s curved, so there are effects on thé e-
quation ¢f motion of an arbitrary observer that woves with veloci
ty Vu: these can be used to describe the evolution of the gravita

tional field in terms of the quantities E__ and Bw“z]).

Hv

Therefore, we are able to use a similar method_ to
that chosen for the Maxwell field in order to find a stochastic
realization of the gravitational field (a guestion left to the
reader: should Buv be gtachastic and Euv not, just as ‘in Max-

well's case 7},
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VII  STOCHASTIC PROCESSES IN COSMOLOGY

There have been, up to now, very few applications of
stochastic techniques in Cdsmology. Among these, we can quote the

[13]and Nove110[14t

works of Guinzburg et al. These authore treat,
in a phenomenolog;cal way, the geometry of spacetime as a stochas
tic process; the russians work in Einstein's formulation of gravi
tation and Wovello, in Jordan's. The essential idea of both a-
pproaches is to take the metric g_‘N as a stochastic variable. How
ever,.this poses a lot of problems, which are clrcunvented in the

phenomenoclogical point of view adopted by the authors. Basically,

they set
gu\? = < guv > % 5gu\, (98)
where < > denotes a mean value; thils assumption impliés[13] that -
Einstein's equations are slightly changed,
u 1 LI | u
R v -2 RS v kT vt ] v 7 {99)

in which ¢uv is some (complicate) functional of Gguv. How should

" one proceed from here ? The trick is to develop Q”vin terms of the
mean metric < gu\J >, or in terms of powers of < R"v > . In Novel
lo's treatment, for instance, this implies the use of a decomposi
tion in which a "stochastic® current term (.)Q‘Bu is written as a fun
ctional of < Eu“ > and < Bvu > » thereby resulting

wabuv v = JoBM | aBu

F

' {(100)
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with

ofy _ uBu '
g™V = [<3 ,» <B, > (101)

One of the main consequences of these stochastic a--
pproaches was[13} to modify the behaviour of the gravitational
field in the neighborhood of a singularity; another, to speed up
the time evolution of (standard) inhomogeneous perturbations in
the process of galaxy formation“s1

Here we intend to present another and very distin
ct stochastization procedure, based on two very recent papers by
Gruszczak et al.[161and Novello and oliveiral!?’], The first one
deals with the stochastization of a given.Pfiedmann geometry by
allowing a stochastic behaviour for the equation of statep = pip).
They set '

p=—}—o+—-fz—ﬁttl ' (102)

in which f{t) is a "white noise" such that

< hfe) » =0 , . (103a)

< fi(t), fift + 1) > = %uo s(r) . {103b)’

The most important consequence of the introduction of sych pre
babilistic perturbation is the removal of the inevitability of
the appearance of singularities — the "radius" of the Universe
extends indefinitely to infinity {(even for closed models e.= 11).
Let us now turn our attention to a more specific modalf1?]. Befo
re entering the explicit calculations of probabilistic effects on
given cosmological models, lhough, we shall point out some few re

marks concerning the meaning of this enterprise.



Although one of the most basic tenets concerning
the Universe, nowadays, be that of its unity — assoclated to the
image of totalization which we are used to picture it with- recen
tly there have been speculations involving more complex structures
in which totalities like {e.g.) De Sitter cosmos are allowed to e
xist as separate, distinct entities. Some authors have in fact
proposed to thinksof such mini-cosmos as nuclei of (elementa
ry) particles. The méin known effort in this direction is due to
Markov“al , who analyzed the case of "friedmons" — mini-Fried
mann-like universes.,

Of course, in order to serilously consider one such
idea, one should provide for a specific mechanism of interaction amng
these worlds. It seems that the simplest way to achieve this is
to split these collections of minl-coswoe into individual systems,
each one perceiving the remaining systems as a perturbative ef-
fect of random character - as in a stochastic process. Let us
try to sketch now this procedufe:

A De Sitter universe is characterized by a Riemanni
an line element  described {in the Gaussian/co-moving system of

coordinates) by

as? = at? - %) aa® (104)
where

an? = a + £? [ a6 + sin®e @) (105a)

£(x) = siny, sinhyor x {105b}

Einstein's equations for the "radius" R(t) are, in the vacuum,

e Y (106a)

R R
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R, _&2

2 & +..§§_ - .i%“ .= A . (106h)

R R ‘

(e =0, £1}, If ¢ = =1 ("open" case) these agquations reduce to
the unique relation

LI w%; RZ = 1 , (107)

which is nothing but the condition of “conservation of energy"®
for an harmonic oscillator. 1Indeed, from eq(107) we can easily
obtain the tradidional equaticn

§+—3‘—R=o . (108)

Setting p = R for the assoclate unit-mass momentum, we have for

the corresponding Hamiltonian H the expression

2 2 2 2.2
P {miw 2_p° .o wy
H = Zim) + p] q = 7 * 2 ’ {109}
WithR=q,f{=p,m-1,w2--—g— .

The general classical solution of eg{107) is

pO
q o &)= 9, coswt + B sinut {110a)
P, t}= p, coswt - wy, sinwt {110b)

with (g , p_) being the initial data. The gchrédinger equation

corresponding to this classical harmonic oscillator structure,

2 ) 2
iﬁ'—-g‘-:-— =——~£"i)— V2¢+ lm]-%—-—xzw ' {111}
admits solutions of the form § = Vp exp [%— S] such that
- 2
1 1 ( X xc!.)
p 8 ————— gXp - 75— | ——t=2 (112)
T . ° ’
8 = xpc:”,‘r_-%pcfr£ xcg—ﬁ%t , {113}

along with (Gaussian) mean value and variance given by



<x > =x (114}

ot
02 = (< x%5ecx2?) & _21'2‘)‘:?‘ (115)

Recalling the Madelung-fluid description of Quantum Mechanics {Seg
tion I) we can see that using the phase given by eq(113), eq.

(1a) implies
&

for the norm of the associate fluid velocity v: also, using the

density given by eq(112), the osmotic velocity &v (ega(21)} turns
out to have the norm

6v=v]-—%e-]--mlx-_<x>l, (17}

with the usual diffusion coefficient v = i/2(m}. Then Nelson's
forward and backward drift velocities v“, {egs (27}, {28)) are

found to be

. 2y .
vm=v+6v=—m--w,{x-<x>} ’ _.1118a)
| Fer
v(_,zv-ﬁv-—m— +ufx-<x>) , {118b}

so the. pertinent Langevin equation can be expressed as

dqit, W = v, iqit), t) dt + A W) =
Poy,
[ H-ex-<xor]acawm (119)

in which W{t) is a Wiener process (see eqs{11)}.

Therefore, for De Sitter case {egq.(107)), we obtain

drR(t, W)} = [ﬁcx{t} - wirit) - Rcz“"”] at + awit) {120}

The manifestly Gaussian nature of the probien j.mplieslzl



E[R{t, W)] = R“(u ' _ (1210)
2 2, 2 /s A
ERE, W) = B2, (6)+ & - 0D + o (121b)

in which we made use of eg(103) and eq(115), and E{ ] stands for
an expectation value procedure,

We can see from these expressions that the net ef
fect of the "environment” is to preclude the colapse of the mo
del: the classical (i.e., non-stochastic) singularity disappears,
since the minimum of the average of the square radius tht)(which
is the important quantity to be constructed and put into the line
element daz of the geometry) results proportional to A'1/2 - This
means that if A is small, the radius will bé great. Indeed, a ra
pid calculation (in units m el =c=1) givesfﬁ//]-m 10"9cm, 80

that R, 10'2cm, much greater than Planck's lenght (on this

in
instance, see also the work of Trautman[19]l. Remark , however,. that
we have used the present, very small, value of A, and also that
we are able to fix arbitrarily the value of A for each bubble or

minicosmos, thereby resulting many sorts of minimum radii.
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